
Well-Terminating, Input-Driven Logi ProgramsJan{Georg SmausUniversity of Kent at Canterbury, Canterbury, CT2 7NF, United Kingdom,telephone xx44/1227/827553, fax 762811, j.g.smaus�uk.a.ukAbstrat. We identify a lass of prediates for whih termination doesnot depend on left-to-right exeution. All that is required is that deriva-tions are input-driven, that is, in eah derivation step, the input argu-ments of the seleted atom do not beome instantiated. The methodof showing that a prediate is in that lass is based on level mappings,losely following the traditional approah for LD derivations. Many pred-iates terminate under suh weak assumptions. Knowing these prediatesan be a very useful part of a more omprehensive method of showingtermination, whih would have to make more spei� assumptions aboutthe seletion rule.Keywords: Logi programming, termination, modes, seletion rules.1 IntrodutionTermination of logi programs has been widely studied for LD derivations, thatis derivations where the leftmost atom in a query is always seleted [1, 3, 8{11,13℄. All of these works are based on the following idea: at the time when an atoma in a query is seleted, it is possible to pin down the size1 of a. This size annothange via further instantiation. It is then shown that for the atoms introduedin this derivation step, it is again possible to pin down their size when eventuallythey are seleted, and that these atoms are smaller than a.This idea has also been applied to arbitrary derivations [6℄. Sine no restri-tion is imposed on when an atom an be seleted, it is required that in eah queryin a derivation, the size of eah atom is always bounded. Programs that ful�ll thisrequirement are alled strongly terminating. The lass of strongly terminatingprograms is very limited.For most programs, it is neessary for termination to require a ertain degreeof instantiation of an atom before it an be seleted. This an be ahieved usingdelay delarations [2, 16{21℄. The problem is that, depending on what kind ofdelay delarations and seletion rule are used, it is not possible to pin down thesize of the seleted atom, sine this size may depend on the resolution of otheratoms in the query that are not yet resolved. Nevertheless, [17, 18℄ and to alimited extent [16℄ are based on the idea desribed above, whereas [19{21℄ avoidany expliit mention of \size" and instead try to redue the problem to showingtermination for LD derivations.1 The tehnial meaning of \pinning down the size" di�ers among di�erent methods.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Our approah falls between the two extremes of making no assumptions aboutthe seletion rule on the one hand and making very spei� assumptions on theother. We believe that a reasonable minimal requirement for termination an beformulated in terms of modes:In eah derivation step, the input arguments of the seleted atom annotbeome instantiated.In other words, an atom in a query an only be seleted when it is suÆiently in-stantiated so that the most general uni�er with the lause head does not bind theinput arguments of the atom. We all derivations whih meet this requirementinput-driven.This paper is about identifying prediates for whih all input-driven deriva-tions are �nite. Other works in this area have usually made spei� assumptionsabout the seletion rule and the delay delarations, for example loal seletionrules [17℄, delay delarations that test arguments for groundness or rigidness [16,18℄, or the default left-to-right seletion rule of most Prolog implementations [19{21℄. In ontrast, we show how previous results about LD derivations an be gen-eralised, the only assumption about the seletion rule being that derivations areinput-driven. We losely follow [13℄.We exploit that under ertain onditions, it is enough to rely on a relativederease in the size of the seleted atom, even though this size annot be pinneddown.Example 1.1. Consider the usual append program and the following input-drivenderivation, where the seleted atom is underlined:append([1℄; [℄; As); append(As; [℄; Bs)!append([℄; [℄; As0); append([1jAs0℄; [℄; Bs)!append([℄; [℄; As0); append(As0; [℄; Bs0)!append([℄; [℄; Bs0)! 2:When append([1jAs0℄; [℄; Bs) is seleted, it is not possible to pin down its sizein any meaningful way. In fat, nothing an be said about the length of thederivation assoiated with append([1jAs0℄; [℄; Bs) without knowing about otheratoms whih might instantiate As0. However, the derivation ould be in�niteonly if the derivation assoiated with append([℄; [℄; As0) was in�nite. Our methodis based on suh a dependeny between the atoms of a query.Not surprisingly, the lass of programs for whih all input-driven derivations are�nite is quite limited, although it is obviously larger than the lass of stronglyterminating programs. Realistially, a omprehensive method for proving termi-nation would have to make stronger assumptions. However, within the frameworkof suh a method, it an be useful to know for whih prediates termination analready be ensured only assuming input-driven derivations. This is demonstratedin [21℄, but apart from that, we believe that it has not been reognised previously.Example 1.2. Consider the following program whih permutes a list. Assumethat in both prediates, the �rst position is the only input position.2

permute([℄, [℄).permute(Y, [U | X℄) :-delete(Y, U, Z),permute(Z, X).delete([X|Z℄, X, Z).delete([U|Y℄, X, [U|Z℄) :-delete(Y, X, Z).Then we have the following in�nite input-driven derivation:permute([1℄; W)!delete([1℄; U0; Z0); permute(Z0; X0)!delete([℄; U0; Z00); permute([1jZ00℄; X0)!delete([℄; U0; Z00); delete([1jZ00℄; U00; Z000); permute(Z000; X00)!delete([℄; U0; Z00); delete(Z00; U00; Z0000); permute([1jZ0000℄; X00)! : : :The rest of this paper is organised as follows. The next setion �xes the notation.Setion 3 introdues well and niely moded programs and Setion 4 shows thatfor these, it is suÆient to prove termination for one-atom queries. Setion 5then deals with how one-atom queries an be proven to terminate. Setion 6disusses the results and the related work.2 PreliminariesOur notation follows [1, 13℄. For the examples we use Prolog syntax. We reallsome important notions. The set of variables in a syntati objet o is denotedas vars(o). The domain of a substitution � is denoted as dom(�). The restritionof a substitution � to the variables ourring in a syntatial objet o is denotedas �jo. A syntati objet is linear if every variable ours in it at most one.For a prediate p=n, a mode is an atom p(m1; : : : ;mn), where mi 2 fI ;Ogfor i 2 f1; : : : ; ng. Positions with I are alled input positions, and positionswith O are alled output positions of p. We assume that a �xed mode isassoiated with eah prediate in a program. To simplify the notation, an atomwritten as p(s; t) means: s is the vetor of terms �lling the input positions, and tis the vetor of terms �lling the output positions. An atom p(s; t) is input-linearif s is linear.A query is a �nite sequene of atoms. A derivation step for a program P isa pair hQ; �i; hR; ��i, where Q = Q1; p(s; t); Q2 and R = Q1; B;Q2 are queries;� is a substitution; p(v;u) B a renamed variant of a lause in P and � themost general uni�er of p(s; t)� and p(v;u). We all p(s; t)� the seleted atomand R�� the resolvent of Q� and h B. A derivation step is input-driven ifdom(�) \ vars(s�) = ;.A derivation � for a program P is a sequene hQ0; �0i; hQ1; �1i; : : :, whereeah suessive pair hQi; �ii; hQi+1; �i+1i in � is a derivation step. Alternatively,we also say that � is a derivation of R [fQ0�0g. We often denote a derivation3

as Q0�0;Q1�1; : : :. An LD derivation is a derivation where the seleted atom isalways the leftmost atom in a query. An input-driven derivation is a derivationonsisting of input-driven derivation steps.If Q; a;R; (Q;B;R)� is a step in a derivation, then eah atom in B� is adiret desendant of a, and b� is a diret desendant of b for all b 2 Q;R.We say b is a desendant of a if (b; a) is in the reexive, transitive losure ofthe relation is a diret desendant. The desendants of a set of atoms are de�nedin the obvious way. If, for a derivation : : : Q; : : : ;Q0;Q00 : : :, the seleted atom inQ0;Q00 is a desendant of an atom a in Q, then Q0;Q00 is an a-step.3 ModesIn this setion we introdue the notions of well moded and niely moded pro-grams. Well-modedness has been used before to show termination of LD deriva-tions [13℄. In the ontext of arbitrary input-driven derivations, it is also ruialto require that programs are niely moded.Well-modedness has been introdued in [12℄ and widely used for veri�ationsine. In Merury it is even mandatory that programs are well moded, whih isone of the reasons for its remarkable performane [22℄.De�nition 3.1 (well moded). A query Q = p1(s1; t1); : : : ; pn(sn; tn) is wellmoded if for all i 2 f1; : : : ; ngvars(si) � [j<i vars(tj) (1)The lause p(t0; sn+1) Q is well moded if (1) holds for all i 2 f1; : : : ; n+1g.A program is well moded if all of its lauses are well moded.Another ommon onept for veri�ation is the following.De�nition 3.2 (niely moded). A query Q = p1(s1; t1); : : : ; pn(sn; tn) isniely moded if t1; : : : ; tn is a linear vetor of terms and for all i 2 f1; : : : ; ngvars(si) \[j�i vars(tj) = ;: (2)The lause C = p(t0; sn+1) Q is niely moded if Q is niely moded andvars(t0) \ n[j=1 vars(tj) = ;: (3)A program P is niely moded if all of its lauses are niely moded.Note that other authors have denoted the lause head of C as p(s0; tn+1) orp(s0; t0), whih allows for a more ompat de�nition [13℄2, furthermore suggest-ing that there is an analogy between (2) and (3) above [2℄. We have hosen not2 We refer to the de�nition of simply moded here, but this is very similar to nielymoded. 4

to do this for two reasons. First, our notation is onsistent with Def. 3.1. Se-ondly, the analogy is misleading. It would be more appropriate to see an analogybetween (3) and the requirement that t1; : : : ; tn is a linear vetor of terms thanbetween (3) and (2).Example 3.1. The program in Ex. 1.2 is well and niely moded. It is neither wellmoded nor niely moded in reverse mode, however it an easily be made welland niely moded by interhanging the two body atoms in the seond lause.The example shows that multiple modes of a prediate an be obtained by havingmultiple (renamed) versions of a prediate. This is why it is often assumed thateah prediate has a �xed mode [2, 13, 19, 22℄. However, this usually impliesatual ode dupliation and is therefore a real loss of generality.In this paper, assuming a �xed mode for eah prediate is not a loss ofgenerality, but merely a notational onveniene. We onsider arbitrary input-driven derivations. The textual position of an atom within a query is irrelevantfor its seletion. Any result that holds for a well moded program also holds for aprogram where the atoms in eah lause body are permuted in an arbitrary way.In this sense, we an assume that the program of Ex. 3.1 is well moded and nielymoded in both modes. Whenever one onsiders spei� seletion rules where thetextual position is relevant, one has to treat multiple modes expliitly [21℄.The following lemma states a persistene property of well-modedness [2,Lemma 16℄. It has been shown previously for LD derivations [5℄.Lemma 3.1. Every resolvent of a well moded query Q and a well moded lauseC, where vars(C) \ vars(Q) = ;, is well moded.For niely-modedness, there is a similar persistene property. It has been shownpreviously for LD resolvents [5℄ and arbitrary resolvents [2℄. However in the lat-ter ase, it was required that the lause head is input-linear. For input-drivenderivations, this is not neessary. It is assumed that the seleted atom is suÆ-iently instantiated, so that a multiple ourrene of the same variable in theinput arguments of the lause head annot ause any bindings to the query.Lemma 3.2. Every resolvent of a niely moded query Q and a niely modedlause C, where the derivation step is input-driven and vars(C) \ vars(Q) = ;,is niely moded.Proof. Let C = h B. We want to use [2, Lemma 11℄. Therefore we mustshow that we an assume without loss of generality that h is input-linear. LetC 0 = h0 Eq;B be the lause obtained from C by repeatedly applying thefollowing transformation: If the input arguments of the lause head ontain twoourrenes of a variable x, replae one ourrene with a fresh variable y andadd the equation x = y at the beginning of the lause body.Then h0 is input-linear, and C 0 is niely moded, where the prediate = in Eqis used in mode (I ; I). Furthermore, if Q = Q1; a;Q2 andhQ; ;i; hQ1;B;Q2; �i5

is an input-driven derivation step using C, then there is an input-driven deriva-tion hQ; ;i; hQ1;Eq;B;Q2; �0i; : : : ; hQ1;B;Q2; �iusing C 0 and the lause \z = z:" (whih is oneptually the de�nition of =).By [2, Lemma 11℄, (Q1; Eq;B;Q2)�0 is niely moded. Furthermore, sinehQ1;Eq;B;Q2; �0i; : : : ; hQ1;B;Q2; �i is input-driven, it follows that Eq�0 is asequene of atoms of the form s = s. Therefore �0 = � and (Q1; B;Q2)� is nielymoded. utFor a niely moded program and query, it is guaranteed that every input-drivenderivation step only instantiates other atoms in the query that our to the rightof the seleted atom.Lemma 3.3. Let P be a niely moded program, Q = Q1; p(s; t); Q2 a nielymoded query, and hQ; ;i; hQ1;B;Q2; �i an input-driven derivation step. Thendom(�) \ vars(Q1) = ;.Proof. Sine the derivation step is input-driven, it follows that dom(�)jQ �vars(t). Thus sine Q is niely moded, dom(�) \ vars(Q1) = ;. ut4 Controlled CoroutiningIn this setion we de�ne well-terminating prediates, that is prediates for whihall one-atom queries have �nite derivations. As in [13℄, we then show that ter-mination for one-atom queries implies termination for arbitrary queries.For LD derivations, this is almost obvious and only requires that programsand queries are well moded [13, Lemma 4.2℄. Given a derivation � for a querya1; : : : ; an, the sub-derivations for eah ai do not interleave, and therefore � anbe regarded as a derivation for a1 followed by a derivation for a2 and so forth. Thefollowing example illustrates that in the ontext of interleaving sub-derivations(oroutining), this is muh less obvious.Example 4.1. Consider the usual append programappend([℄,Y,Y).append([X|Xs℄,Ys,[X|Zs℄) :-append(Xs,Ys,Zs).in mode append(I ; I ;O) and the queryappend([℄; [℄; As); append([1jAs℄; [℄; Bs); append(Bs; [℄; As):This query is well moded but not niely moded. Then we have the followingin�nite input-driven derivation:append([℄; [℄; As); append([1jAs℄; [℄; Bs); append(Bs; [℄; As)!append([℄; [℄; As); append(As; [℄; Bs0); append([1jBs0℄; [℄; As)!append([℄; [℄; [1jAs0℄); append([1jAs0℄; [℄; Bs0); append(Bs0; [℄; As0)! : : :This well-known termination problem of programs with oroutining has beenidenti�ed as irular modes [19℄. 6

To avoid the problem, we require programs and queries to be niely moded.De�nition 4.1 (well-terminating prediate/atom). Let P be a well andniely moded program. A prediate p in P is well-terminating if for eah welland niely moded query p(s; t), all input-driven derivations of P [fp(s; t)g are�nite. An atom is well-terminating if its prediate is well-terminating.The following lemma says that a well-terminating atom annot proeed inde�-nitely unless it is repeatedly fed by some other atom.Lemma 4.1. Let P be a well and niely moded program and F; b;H a welland niely moded query where b is a well-terminating atom. An input-drivenderivation of P[fF; b;Hg an have in�nitely many b-steps only if it has in�nitelymany a-steps, for some a 2 F .Proof. In this proof, we all an a-step for some a 2 F an F -step, and likewisefor H . By Lemma 3.3, any H-step does not instantiate any desendant of b. Thusthe H-steps an be disregarded, and without loss of generality, we assume H isempty. Let � = hF;b; ;i; : : : ; hQ0; �0i; hQ1; �1i : : :be an input-driven derivation suh that hQ0; �0i; hQ1; �1i : : : ontains no F -steps(that is, � ontains only �nitely many F -steps). Sine by Lemma 3.3, no b-stepan instantiate any desendant of F , there exists an input-driven derivation�2 = hF;b; ;i; : : : ; hR; �i; : : : ; hQ0; �0i; hQ1; �1i : : :suh that hF;b; ;i; : : : ; hR; �i ontains only F -steps and hR; �i; : : : ; hQ0; �0i on-tains only b-steps (that is, the F -steps are moved forward using the SwithingLemma [15℄). Sine R = R0; b for some R0, there exists an input-driven derivation�3 = hb; �i; : : : ; hI0; �0i; hI1; �1i : : :obtained from hR; �i; : : : ; hQ0; �0i; hQ1; �1i : : : by removing the pre�x R0 in eahquery.Let t1; : : : ; tm be the vetor of output arguments of R0� and � a substitutionsuh that (t1; : : : ; tm)� is ground. Then by Def. 3.1, b�� is a well moded query.By Lemma 3.3, no b-step instantiates t1; : : : ; tm. Therefore from �3 we anonstrut an input-driven derivation�4 = hb; ��i; : : : ; hI0; �0�i; hI1; �1�i : : :Sine b�� is a well and niely moded query and b is well-terminating, �4 is �nite.Therefore �3, �2, and �nally � are �nite. utThe following lemma is a onsequene and states that well-terminating atomson their own annot produe an in�nite derivation.Lemma 4.2. Let P be a well and niely moded program and Q a well and nielymoded query. An input-driven derivation of P [fQg an be in�nite only if thereare in�nitely many steps where an atom is resolved that is not well-terminating.7

Proof. Let Q = F; b;H where b is a well-terminating atom, and � an in�nitederivation for Q. We show that � an have in�nitely many b-steps only if � hasin�nitely many steps where an atom is resolved that is not well-terminating.The proof is by indution on the length of F . If F is empty, the result followsfrom Lemma 4.1. Now suppose F ontains at least one atom. By Lemma 4.1, �an have in�nitely many b-steps only if for some a 2 F , � has in�nitely manya-steps. If a is not well-terminating, the result follows immediately. If a is well-terminating, let F = F1; a; F2. Sine F1 ontains fewer atoms than F , the resultfollows from the indutive hypothesis. utLemma 4.2 provides us with the formal justi�ation for restriting our attentionto one-atom queries. However, it requires that programs and queries are nielymoded. This is not neessary for LD derivations [13℄.We now de�ne well-terminating programs. The de�nition di�ers from theorresponding one in [13℄ in that they onsider only LD derivations.De�nition 4.2 (well-terminating program). Let P be a well and nielymoded program and Q a well and niely moded query. P is well-terminatingif all input-driven derivations of P [fQg are �nite.The following is an obvious orollary of Lemma 4.2.Corollary 4.3. A program P is well{terminating if and only if all its prediatesare well-terminating.5 Showing Weak TerminationAll of the mentioned approahes to termination [1, 3, 8{11, 13℄ more or less ex-pliitly rely on measuring the size of the input in a query. We agree with Etalleet al. [13℄ that it is reasonable to make this dependeny expliit. This gives riseto the onept of moded level mapping [13℄, whih is an instane of level mapping�rst introdued in [6, 7℄. BP denotes the set of ground atoms using prediatesourring in P .De�nition 5.1 (moded level mapping). Let P be a program. j:j is amodedlevel mapping if1. it is a level mapping, that is a funtion j:j : BP ! IN,2. for any t and u, jp(s; t)j = jp(s;u)j.For a 2 BP , jaj is the level of a.Thus the level of an atom only depends on the terms in the input positions.The following onept, adopted from [1℄, is useful for proving termination fora whole program inrementally, by proving it for one prediate at a time.De�nition 5.2 (depends on). Let p; q be prediates in a program P . We saythat p refers to q if there is a lause in P with p in its head and q in its body,and p depends on q (written p w q) if (p; q) is in the reexive, transitive losureof refers to. We write p = q if p w q and q 6w p, and p � q if p w q and q w p.8

Abusing notation, we shall also use the above symbols for atoms, where p(s; t) wq(u;v) stands for p w q, and likewise for = and �. Furthermore, we denote theequivalene lass of a prediate p with respet to � as [p℄�.The following de�nition provides us with a riterion to prove that a prediateis well-terminating.De�nition 5.3 (well-aeptable). Let P be a program and j:j a moded levelmapping. A lause C = h B is well-aeptable (with respet to j:j) iffor every substitution � suh that C� is ground, and for every a in B suh thata � h, we have jh�j > ja�j.A set of lauses is well-aeptable with respet to j:j if eah lause iswell-aeptable with respet to j:j.Let us ompare this onept to some similar onepts in the literature: reur-rent [6℄, well-aeptable [13℄ and aeptable [4, 11℄ programs.Like [11, 13℄ and unlike [4, 6℄, we require jh�j > ja�j only for atoms a wherea � h. This is onsistent with the idea that termination should be proven inre-mentally: to show termination for a prediate p, it is assumed that all prediatesq with p = q have already been shown to terminate. Therefore we an restritour attention to the prediates q where q � p.Like [6℄ and unlike [4, 11, 13℄, our de�nition does not involve models or om-puted answer substitutions. Traditionally, the de�nition of aeptable programsis based on a model M of the program, and for a lause h a1; : : : ; an,jh�j > jai�j is only required if M j= (a1; : : : ; ai�1)�. The reason is that forLD derivations, a1; : : : ; ai�1 must be ompletely resolved before ai is seleted.By the orretness of LD resolution [15℄ and well-modedness [5℄, the aumulatedanswer substitution �, just before ai is seleted, is suh that (a1; : : : ; ai�1)� isground and M j= (a1; : : : ; ai�1)�.Suh onsiderations ount for little when derivations are merely required tobe input-driven. This is illustrated in Ex. 1.2. In the third line of the derivation,permute([1jZ00℄; X0) is seleted, although there is no instane of delete([℄; U0; Z00)in the model of the program. This problem has been desribed by saying thatdelete makes a speulative output binding [19℄. Programs that do not makespeulative output bindings are onsidered in [20℄.Theorem 5.1. Let P be a well and niely moded program and p be a pred-iate in P . Suppose all prediates q with p = q are well-terminating, and alllauses de�ning prediates q 2 [p℄� are well-aeptable. Then p, and hene everyprediate in [p℄�, is well-terminating.Proof. Suppose the set of lauses de�ning the prediates q 2 [p℄� is well-aept-able with respet to the moded level mapping j:j. For an atom a using a prediatein [p℄�, we de�ne jjajj = sup(fja�j j a� is groundg), if the set fja�j j a� is groundgis bounded. Otherwise jjajj is unde�ned. Observe thatif jjajj is de�ned for an atom a, then jja�jj � jjajj for all �. (�)9

To measure the size of a query, we use the multiset ontaining the level ofeah atom whose prediate is in [p℄�. The multiset is formalised as a funtionSize, whih takes as arguments a query and a natural number.Size(Q)(n) = #fq(u;v) j q(u;v) is an atom in Q; q � p and jjq(u;v)jj = ngNote that if a query ontains several idential atoms, eah ourrene must beounted. We de�ne Size(Q) < Size(R) if and only if there is a number l suh thatSize(Q)(l) < Size(R)(l) and Size(Q)(l0) = Size(R)(l0) for all l0 > l. Intuitively,a derease with respet to < is obtained when an atom in a query is replaedwith a �nite number of smaller atoms. It is easy to see (K�onig's Lemma [14℄)that all desending hains with respet to < are �nite.Let Q0 = p(s; t) be a well and niely moded query. Then s is ground andthus jjQ0jj is de�ned. Let � = Q0;Q1;Q2 : : : be an input-driven derivation ofP [fQ0g.Sine all prediates q with p = q are well-terminating, it follows by Lemma 4.2that there annot be an in�nite suÆx of � without any steps where an atomq(u;v) suh that q � p is resolved. We show that for all i � 0, if the seleted atomin Qi;Qi+1 is q(u;v) and q � p, then Size(Qi+1) < Size(Qi), and otherwiseSize(Qi+1) � Size(Qi). This implies that � is �nite, and, as the hoie of theinitial query Q0 = p(s; t) was arbitrary, p is well-terminating.Consider i � 0 and let C = q(v0;um+1) q1(u1;v1); : : : ; qm(um;vm) be thelause, q(u;v) the seleted atom and � the most general uni�er used in Qi;Qi+1.If p = q, then p = qj for all j 2 f1; : : : ;mg and hene by (�) it follows thatSize(Qi+1) � Size(Qi).Now onsider q � p. Sine C is a well-aeptable lause, jjq(v0;um+1)�jj >jjqj(uj ;vj)�jj for all j with qj � p. This together with (�) implies Size(Qi+1) <Size(Qi). utExample 5.1. We now give a few examples of well-terminating prediates. Wedenote the term size of a term t, that is the number of funtion and onstantsymbols that our in t, as TSize(t).The lauses de�ning append(I ; I ;O) (Ex. 4.1) are well-aeptable, wherejappend(s1; s2; t)j = TSize(s1). Thus append(I ; I ;O) is well-terminating. Thesame holds for append(O ;O ; I), de�ning jappend(t1; t2; s)j = TSize(s).The lauses de�ning delete(I ;O ;O) (Ex. 1.2) are well-aeptable, wherejdelete(s; t1; t2)j = TSize(s). Thus delete(I ;O ;O) is well-terminating. Thesame holds for delete(O ; I ; I), de�ning jdelete(t; s1; s2)j = TSize(s2).In a similar way, we an show that permute(O ; I) is well-terminating. How-ever, permute(I ;O) is not well-terminating.Figure 1 shows a fragment from a program for the n-queens problem. Themode is fnqueens(I ;O); sequene(I ;O); safe(I); permute(O ; I); <(I ; I);is(O ; I); safe aux(I ; I ; I); no diag(I ; I ; I); =\=(I ; I)g. Again using as levelmapping the term size of one of the arguments, one an see that the lauses de�n-ing fno diag; safe aux; safeg are well-aeptable and thus these prediates arewell-terminating. This information is useful sine this program relies on non-LDderivations for its performane [21℄. 10

nqueens(N,Sol) :-sequene(N,Seq),safe(Sol),permute(Sol,Seq).safe([℄).safe([N|Ns℄) :-safe_aux(Ns,1,N),safe(Ns).
safe_aux([℄,_,_).safe_aux([M|Ms℄,Dist,N) :-no_diag(N,M,Dist),Dist2 is Dist+1,safe_aux(Ms,Dist2,N).no_diag(N,M,Dist) :-Dist =\= N-M,Dist =\= M-N.Fig. 1. A program for n-queensAs a more omplex example, onsider the following program, whose mode isfplus one(I); minus two(I); minus one(I); g. This example uses the suessornotation for natural numbers.plus_one(X) :- minus_two(s(X)).minus_two(s(X)) :- minus_one(X).minus_two(0).minus_one(s(X)) :- plus_one(X).minus_one(0).We de�ne jplus one(s)j = 3 � TSize(s) + 4jminus two(s)j = 3 � TSize(s)jminus one(s)j = 3 � TSize(s) + 2Then the program is well-aeptable and thus well-terminating.We see that whenever in some argument position of a lause head, there is aompound term of some reursive data struture, suh as [XjXs℄, and all reursivealls in the body of the lause have a strit subterm of that term, suh as Xs, inthe same position | then the lause is well-aeptable using as level mappingthe term size of that argument position. Sine this situation ours very often,it an be expeted that an average program ontains many well-terminatingprediates. However, it is unlikely that in any real program, all prediates arewell-terminating.The last example shows that more omplex senarios than the one desribedabove are possible, but we doubt that they would often our in pratie. There-fore level mappings suh as the one used in the example will rarely be needed.Consider again Def. 5.3. Given a lause h a1; : : : ; an and an atom ai � h,we require jh�j > jai�j for all grounding substitutions �, rather than only for �suh that (a1; : : : ; ai�1)� is in a ertain model of the program. This is of oursea serious restrition. In Ex. 1.2, assuming mode permute(I ;O), there an be nomoded level mapping suh that jpermute(Y; [UjX℄)�j > jpermute(Z; X)�j for all�. It might be possible to relax Def. 5.3 to allow more programs, but the fatremains that many prediates are not well-terminating.11

6 DisussionWe have identi�ed the lass of programs for whih all input-driven derivationsare �nite. An input-driven derivation is a derivation where in eah step, the inputarguments of the seleted atom are not instantiated. Prediates an be shownto be in that lass using the notions of level mapping and aeptable lause in avery similar way to methods for LD derivations [8, 11, 13℄.This paper losely follows [13℄. There a statement is shown whih is essentiallythe onverse of Thm. 5.1. It says that if a prediate is well-terminating, thenthere is a level mapping suh that the lauses de�ning the prediate are well-aeptable. It would be interesting to show a similar result for arbitrary input-driven derivations, but we believe that it must be diÆult, sine our de�nitionof aeptability is muh more restritive.We have laimed that most other approahes to termination rely on theidea that the size of an atom an be pinned down when the atom is seleted.Tehnially, this usually means that the atom is bounded with respet to somelevel mapping [4, 6, 13, 18℄. This is di�erent in [9, 11℄, where termination an beshown for the query, say, append([X℄; [℄; Zs) using as level mapping the term sizeof the �rst argument, even though the term size of [X℄ is not bounded. However,the method only works for LD derivations and relies on the fat that any futureinstantiation of X annot a�et the derivation for append([X℄; [℄; Zs). Therefore itis e�etively possible to pin down the size of append([X℄; [℄; Zs).In ontrast, we show that under ertain onditions, it is enough to rely on arelative derease in the size of the seleted atom, even though this size annot bepinned down. More onretely, we use that an atom in a query annot proeedinde�nitely unless it is repeatedly fed by some other atom ourring earlier inthe query. This implies that every derivation for the query terminates.Bezem [6℄ has identi�ed the lass of strongly terminating programs, whih areprograms that terminate under any seletion rule. While it is shown that everytotal reursive funtion an be omputed by a strongly terminating program, thisdoes not hange the fat that few existing programs are strongly terminating.Transformations are proposed for three example programs to make them stronglyterminating, but the transformations are ompliated and ad-ho.This paper is more abstrat than the literature on programs with delay de-larations [2, 16{21℄. We are not onerned with the details of partiular delayonstruts. Instead, we only assume what we see as the basi purpose of delaydelarations: ensuring that derivations are input-driven. Note that depending onwhat kind of onstruts are used, ensuring that derivations are input-driven isatually quite subtle [21℄. Nevertheless, delay delarations are learly a powerfulinstrument for this purpose.On the whole, there seems to be a strong relutane to give up the idea thatthe size of an atom must be pinned down when the atom is seleted. This is trueeven for [6℄, where no assumptions at all are made about the seletion rule. Itis also true for [17℄, where a loal seletion rule is assumed, that is a rule underwhih only most reently introdued atoms an be resolved in eah step. In [18℄, asimilar e�et is ahieved by bounding the depth of the omputation introduing12

auxiliary prediates. It is more diÆult to assess [16℄ sine the ontributionthere is mainly to generate delay delarations automatially rather than provetermination.3 However in some ases, the delay delarations that are generatedrequire an argument of an atom to be a rigid list before that atom an be seleted,whih is similar to [17, 18℄. Suh uses of delay delarations go far beyond ensuringthat derivations are input-driven.We do not laim to present a omprehensive method for showing termina-tion. In an average program, some prediates are well-terminating but some arenot. In general, one has to make stronger assumptions about the seletion rule.Nevertheless, it is useful to know whih prediates are well-terminating, essen-tially beause it means that one has to make the stronger assumptions onlyfor the prediates that are not well-terminating. For example, requiring groundor rigid arguments [16, 18℄ ould be limited to atoms whose prediates are notwell-terminating.In [21℄, well-terminating prediates are onsidered in a more onrete settingthan here and are alled robust prediates. The default left-to-right seletionrule of most Prolog implementations is assumed. It is exploited that the textualposition of atoms using robust prediates in lause bodies is irrelevant for ter-mination. The other atoms must be plaed suh that the atoms produing theirinput our earlier.AknowledgementsThe author would like to thank Florene Benoy for proofreading this paper. Thiswork was funded by EPSRC Grant No. GR/K79635.Referenes1. K. R. Apt. From Logi Programming to Prolog. Prentie Hall, 1997.2. K. R. Apt and I. Luitjes. Veri�ation of logi programs with delay delarations. InProeedings of AMAST'95, LNCS, Berlin, 1995. Springer-Verlag. Invited Leture.3. K. R. Apt and D. Pedreshi. Studies in Pure Prolog: Termination. In J. W.Lloyd, editor, Proeedings of the Symposium in Computational Logi, LNCS, pages150{176. Springer-Verlag, 1990.4. K. R. Apt and D. Pedreshi. Modular termination proofs for logi and pure Prologprograms. In G. Levi, editor, Advanes in Logi Programming Theory, pages 183{229. Oxford Unversity Press, 1994.5. K. R. Apt and A. Pellegrini. On the our-hek free Prolog programs. ACMToplas, 16(3):687{726, 1994.6. M. Bezem. Strong termination of logi programs. Journal of Logi Programming,15(1 & 2):79{97, 1993.7. L. Cavedon. Continuity, onsisteny and ompleteness properties for logi pro-grams. In G. Levi and M. Martelli, editors, Proeedings of the 6th InternationalConferene on Logi Programming, pages 571{584. MIT Press, 1989.3 For the reader familiar with [16℄, it is not said how it is shown that programs aresafe. 13

8. D. De Shreye and S. Deorte. Termination of logi programs: the never-endingstory. Journal of Logi Programming, 19/20:199{260, 1994.9. D. De Shreye, K. Vershaetse, and M. Bruynooghe. A framework for analysing thetermination of de�nite logi programs with respet to all patterns. In Proeedingsof FGCS, pages 481{488. ICOT Tokyo, 1992.10. S. Deorte and D. De Shreye. Automati inferene of norms: a missing linkin automati termination analysis. In D. Miller, editor, Proeedings of the 10thInternational Logi Programming Symposium, pages 420{436. MIT Press, 1993.11. S. Deorte and D. De Shreye. Termination analysis: Some pratial properties ofthe norm and level mapping spae. In J. Ja�ar, editor, Proeedings of the 15th JointInternational Conferene and Symposium on Logi Programming, pages 235{249.MIT Press, 1998.12. P. Dembinski and J. Ma luszy�nski. AND-parallelism with intelligent baktrak-ing for annotated logi programs. In Proeedings of the 2nd International LogiProgramming Symposium, pages 29{38. MIT Press, 1985.13. S. Etalle, A. Bossi, and N. Coo. Well-terminating programs. Journal of LogiProgramming, 1998. Aepted for publiation.14. M. Fitting. First-order Logi and Automated Theorem Proving. Springer-Verlag,1996.15. J. W. Lloyd. Foundations of Logi Programming. Springer-Verlag, 1987.16. S. L�uttringhaus-Kappel. Control generation for logi programs. In D. S. Warren,editor, Proeedings of the 10th International Conferene on Logi Programming,pages 478{495. MIT Press, 1993.17. E. Marhiori and F. Teusink. Proving termination of logi programs with delaydelarations. In J. W. Lloyd, editor, Proeedings of the 12th International LogiProgramming Symposium, pages 447{461. MIT Press, 1995.18. J. C. Martin and A. M. King. Generating eÆient, terminating logi programs.In M. Bidoit and M. Dauhet, editors, Proeedings of TAPSOFT'97, LNCS, pages273{284. Springer-Verlag, 1997.19. L. Naish. Coroutining and the onstrution of terminating logi programs. Teh-nial Report 92/5, University of Melbourne, 1992.20. J.-G. Smaus, P. M. Hill, and A. M. King. Preventing instantiation errors andloops for logi programs with several modes using blok delarations. In PierreFlener, editor, Pre-proeedings of the 8th International Workshop on Logi ProgramSynthesis and Transformation, number UMCS-98-6-1, pages 72{29. University ofManhester, 1998. Extended abstrat.21. J.-G. Smaus, P. M. Hill, and A. M. King. Termination of logi programs withblok delarations running in several modes. In C. Palamadessi, editor, Proeed-ings of the 10th Symposium on Programming Language Implementations and LogiProgramming, LNCS. Springer-Verlag, 1998.22. Z. Somogyi, F. Henderson, and T. Conway. The exeution algorithm of Merury,an eÆient purely delarative logi programming language. Journal of Logi Pro-gramming, November 1996.
14

