Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

CYCLIC DISTRIBUTED GARBAGE COLLECTION

A THESIS SUBMITTED TO
THE UNIVERSITY OF KENT AT CANTERBURY
IN THE SUBJECT OF COMPUTER SCIENCE
FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY.

By
Helena Cristina Coutinho Duarte Rodrigues

November 1998

https://core.ac.uk/display/63202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

To Luis and my family

Acknowledgements

I warmly thank my supervisor, Richard Jones, for his care, encouragement and patience.
I greatly appreciate the guidance he has given me over the course of my studies.

I thank everyone in the computing laboratory for providing such a pleasant working
environment. Especially, all the members of the TCS group, and in particular Howard
Bowman, for their encouragement of my participation in the TCS seminars.

I have made many friends during my stay in Canterbury. I warmly thank them all.
To my office mates Eduardo Rojas-Vegas, Eduardo Albuquerque and Carlos Ferraz for
a wonderful office (latin) atmosphere. To the group that joined everyday for a relaxing
and joyful lunch break. To Jason and Vince for being so wonderful office mates and
for all the fun we have together. To Catarina, Joao Corte-Real, Maria, Paula, Regina,
Julia and Pedro, Paul and Valéria, for their care, support and constant friendship. To
Manel and Helena and Filipe, Miguel and Francisco for making me feel more close to
Portugal.

I warmly thank Geraldina for her friendship and constant companionship.

I thank my family and all my friends in Portugal for always being so supportive and
caring.

Finally, I thank Luis for all his love and encouragement.

I acknowledge the financial support of JNICT, Portugal, without whom this work

would not have been possible.

iii

Abstract

With the continued growth of distributed systems as a means to provide shared data, de-
signers are turning their attention to garbage collection, prompted by the complexity of
memory management and the desire for transparent object management. Garbage col-
lection in very large address spaces is a difficult and unsolved problem, due to problems
of efficiency, fault-tolerance, scalability and completeness. The collection of distributed
garbage cycles is especially problematic. This thesis presents a new algorithm for dis-
tributed garbage collection and describes its implementation in the Network Objects
system. The algorithm is based on a reference listing scheme, which is augmented by
partial tracing in order to collect distributed garbage cycles. Our collector is designed
to be flexible, allowing efficiency, promptness and fault-tolerance to be traded against
completeness, albeit it can be also complete. Processes may be dynamically organised
into groups, according to appropriate heuristics, in order to reclaim distributed garbage
cycles. Multiple concurrent distributed garbage collections that span groups are sup-
ported: when two collections meet they may either merge, overlap or retreat. This
choice may be done at the level of different partial tracings, of processes or of individ-
ual objects. The algorithm places no overhead on local collectors and does not disrupt
the collection of acyclic distributed garbage. Partial tracing of the distributed graph
involves only objects thought to be part of a garbage cycle: no collaboration with other

processes is required.

iv

Contents

Acknowledgements

Abstract

List of Figures

1 Introduction

1.2 Actors o e
1.2.2 RPC-based Systems,
1.2.3 Object-Oriented Database Management Systems
1.2.4 Distributed Shared Memory
1.3 RPC-based System Model
1.4 Distributed Garbage Collection Goals
1.5 Cyclesof Garbage
1.6 Outline of the Thesis

Classical Uniprocessor Algorithms

2.1 Principles
2.1.1 Live and Garbage Objects
2.1.2 Garbage Collection
2.1.3 Safety and Liveness properties

2.2 Reference Counting oL

2.3 Tracing oL

2.3.1 The mark-and-sweep collector

iii

iv

xi

e oo O W -

10
11
12
14
18
19

2.3.2 The copying collector
2.4 Advanced Techniques
2.4.1 Incremental Garbage Collection
2.4.2 Generational Garbage Collection
2.4.3 Conservative Garbage Collection

2.5 Summaryo e e

Distributed Garbage Collection Techniques
3.1 Partitioned vs Non-partitioned Collection
3.1.1 Model for Partitioned Garbage Collection
3.1.2 Road-map to the Remainder of this Chapter
3.2 Global Tracing
3.3 Partitioned Tracingo L Lo
3.4 Reference Tracking L
3.4.1 Acknowledgement Messages
3.4.2 Weighted Reference Counting
3.4.3 Indirection, and Strong-Weak Pointers
3.4.4 Reference Listing
3.4.5 Timestamp Packet Distribution
3.5 Hybrid Collectors
3.5.1 Complementary Tracing
3.5.2 Tracing in Groups
3.5.3 Local Tracing
3.5.4 Train Collection
3.5.5 Object Migration,
3.5.6 Back-Tracing
3.6 Garbage Collection in Distributed Shared Memory
3.7 Garbage Collection in Object-Oriented Database Management Systems

3.8 Summary e

A Cyeclic Distributed Garbage Collector
4.1 General Overview Lo

4.2 Goals and Outline of Solutions

vi

4.2.1 Scalability and Completeness, 84

4.2.2 Efficiency 86
4.2.3 Fault-tolerance oL 87
4.3 Mark-red Phaseo 87
4.3.1 Mark Steps and Red-list 88
4.3.2 Mark-red Algorithm 90
4.4 Scan and Sweep Phase oo 90
4.4.1 Scan Steps 91
4.4.2 Scan Algorithm oo 92
443 Sweep Phase L 93
4.5 Termination Lo 94
4.5.1 Distributed Termination Protocol 94
4.5.2 Report phase 100
4.6 Heuristics L e 101
4.6.1 Heuristics for Suspect Objects 101
4.6.2 Howfartogo? 102
4.7 Summaryo e 103
A Scalable Cyclic Garbage Collector 105
5.1 Scalability 105
5.2 Cut-references Graph o o 108
5.3 Multiple Partial Tracings, 111
5.3.1 Initiating a partial tracing oL L. 113
5.3.2 Mark-red Phase. o o oL 116
5.3.3 ScanPhase o 118
5.4 Exampleo 128
5.5 Synchronised Merging oL 131
5.0 Summary L e 136
Mutator Concurrency 137
6.1 Synchromisation Lo L 137
6.2 Termination L 148
6.3 Summary e 150

vii

7 Proof of Correctness 152

7.1 Summary of the Model o L 153
7.2 Safety 157
7.2.1 Partial tracing algorithm 157

7.2.2 Distributed Termination Protocol 159

7.2.3 Mutator Concurrency oo 161
7.2.4 Co-operative partial tracings 165

7.3 Liveness. L 169
T4 Summary e e e e e e 171
8 Implementation over Network Objects 172
8.1 An Overview of Network Objects 173
8.1.1 Implementation of the Garbage Collection Model 174
8.1.2 Local Garbage Collection 175
8.1.3 Network Objects Runtime System 179
8.1.4 Remote Invocation and Marshaling of Network Objects 179
8.1.5 Acyclic Garbage Collection, 181

8.2 Prototype Implementation oo 183
8.2.1 Partial Tracing 184

8.2.2 Suspect Identification 190
8.2.3 Remote Barrier 195

8.3 Prototype Extensions 200
8.3.1 Cut-references Grapho L. 200

8.3.2 Dirty Barrier 200

8.4 Summary e e 201
9 Conclusions and Future Work 203
9.1 Discussiono e e 203
9.1.1 Scalability and Completeness 204
9.1.2 Efficiency 205
9.1.3 Fault-tolerance oL 218

9.2 Future Work 220
9.2.1 Prototype Implementation 220

viii

9.2.2 Performance Evaluation

9.2.3 Fault-tolerance
9.2.4 Related Areas

Bibliography

ix

List of Figures

© 00 N S Ot kW N =

[N T e e e e e o e
_ O © o0 NN oY Ot W NN = O

22

Heap and Roots. 22
Reference Counting Algorithm. 26
Mark-and-sweep Algorithm. 30
Cheney’s Algorithm. L. 32
Concurrent Mutator Activity. 37
Partitioned Garbage Collection Model 46
Partitioned vs Non-partitioned Distributed Garbage Collection 49
Decrement/increment race condition L. 57
Increment/decrement race condition 57
Locality Spectrum 65
Inter-process Garbage Cycle 82
Cycle Dependency 85
Mark-red phase identifies a subgraph suspect of being garbage 89
Scan phase ‘rescues’ any red objects that may be live. 92
State transition diagram for termination detection. 97
State changes for termination detection 99
Multiple Partial Tracings, 106
Entry-item/Exit-item reachability 108
Multiple Partial Tracings Co-operation 112
End of the mark-red phase. oL 117

State transition diagram for termination detection of PT, accounting for
co-operative partial tracings.o o oo 122
State changes for termination detection of PT, accounting for co-operative

partial tracings. L L 123

23
24
25
26
27
28
29
30
31
32

33

34
35
36
37
38
39
40
41

42
43
44
45

End of the scan phase oo L.
Token Algorithm.
End of the mark-red phase.
Mark-red phase events
End of the scan phase oL
Distributed termination detectiono
Reference mutations — local copy (dotted lines).
Reference mutations — remote copy (dotted lines).
Reference mutations (dotted lines) and Cut-references graph.
State transition diagram for termination detection of PT, accounting for
mutator concurrency.o Lo oL Lo
State changes for termination detection of PT, accounting for mutator
COLCUITENCY . .+ « v v v v v e e e e e e e e e e e e e e e e e
Network Object Model for Garbage Collection.
Modula-3 local collector algorithm
System Architecture
Object: Object Table. o L.
Object Table Barrier
Modula-3 local collector algorithm for suspect identification
Implementation of Remote Barrier for transmission of a reference. . .
Time-line showing the need for repeated piggy-backing of scan requests
on barrier execution. L Lo L L o
Connected garbage structureso 0oL
Double linked list
Searching tree with back references

Tree nodes pointing to cyclic garbage structures

x1

139

Chapter 1

Introduction

The development of computer and high-speed network technology has led to the in-
troduction of computing systems composed of large numbers of processors connected
by high-speed networks that appear to users as a single computing system; these pro-
cesses may co-operate in solving computational problems. Such distributed systems
can make effective use of loosely coupled multiprocessor systems. In these systems, the
network provides communication amongst several processors, which do not have access
to a common physical memory. Distribution allows multiple users to access the system
simultaneously, regardless of their physical location. More importantly, it allows users
to share data. Another benefit of distributed systems is fault-tolerance: a distributed
system is able to continue despite the failure of one process.

An essential part of tomorrow’s computing world will be workers and organisations
carrying out cooperative tasks interacting via shared information. The need for dara
sharing is well known in applications such as interactive computer aided design, office
information systems, engineering databases, medical imaging systems, geographical in-
formation processing systems, biological information systems, and others. Information
is shared either concurrently or at different times, thus it must be available at different
locations and may persist beyond completion of a particular application.

Many recent distributed systems have been developed with objects as their main

structuring concept, as this offers a suitable paradigm for distributed computing. An

CHAPTER 1. INTRODUCTION 2

object-based programming language encourages a methodology for designing and cre-
ating an application as a set of autonomous and co-operative objects, whereas a dis-
tributed operating system permits a collection of workstations or personal computers to
be treated as a single entity. These two concepts together are the basis for distributed
object-based programming systems (Chin and Chanson 1991).

In general, the objects in such systems are dynamically created, and persistent, ¢.e
conceptually they live forever. Such address spaces are usually composed of a large
number of objects — Large Address Spaces. The implementation of such systems must
deal with scalability problems. Accessing an object entails finding its references by
navigation from the active part of the system — roots. Objects are considered garbage
if they are not reachable from such roots. Garbage objects should be removed from the
system. This can be done either via manual memory management, or automatically via
Garbage Collection (GC) (Wilson 1992, Jones 1996).

A program that uses explicit deallocation rather than garbage collection needs to
keep track of object reachability to know when to deallocate an object. Keeping track of
object reachability in a large shared address space where different programs written by
different programmers exchange references to objects, becomes impractical and error-
prone as the number of programs increases. This is also true for uniprocessor systems.
This is because objects are potentially shared among independent threads of control,
none of which can have a comprehensive view of the overall object graph, and because
objects may outlive the thread of control that created them. Explicit object deallocation
requires all programs to agree explicitly when to deallocate an object.

Distributed garbage collection is a difficult problem. It should collect all the garbage
of a system but still be prompt, that is, rates of collection should match rates of al-
location of objects. Moreover, a distributed garbage collector must deal with lost, out
of order and duplicated messages, process crashes, long lasting network failures, and
problems of scalability.

There are many algorithms for distributed garbage collection in the literature (Plain-
fossé and Shapiro 1995). Each of these algorithms solves some problems but leaves other
problems unresolved. For example, there are algorithms that collect cycles of garbage

using some form of complementary tracing but require global synchronisation (Hudak

CHAPTER 1. INTRODUCTION 3

and Keller 1982, Augusteijn 1987, Derbyshire 1990, Juul and Jul 1992) making the al-
gorithm unscalable. Other algorithms are efficient at passing references, but are not
fault-tolerant (Bevan 1987, Watson and Watson 1987, Piquer 1991, Dickman 1992).
Other are scalable and deal with process and message failure, but do not handle cyclic
data (Shapiro, Dickman and Plainfossé 1992, Plainfossé and Shapiro 1992, Birrel, Ev-
ers, Nelson, Owicki and Wobber 1994, Maheshwari and Liskov 1994). Others migrate
objects until an entire garbage cyclic structure is eventually held within a single pro-
cess where it can be collected by the local collector (Shapiro, Gruber and Plainfossé
1990, Maheshwari and Liskov 1995), but migration is communication-expensive.

However, unreclaimed garbage is particular undesirable in long-lived systems, espe-
cially persistent systems, where even small amounts of uncollected garbage can accu-
mulate over time to cause a significant storage loss.

In the next sections we will introduce the background from which garbage collection
is investigated in this thesis. First we introduce distributed object systems and different
solutions for object sharing. We intend to briefly acquaint the reader with the different
fields of garbage collection in large address spaces. Next, we describe in more detail the
RPC-based computational model, as this is the target of our system.

We also present the generic goals of distributed garbage collection, and state our

primary goals. Finally we explain the structure of this thesis.

1.1 Why Garbage Collection?

Heap allocation is required for objects that may survive the procedure that created
them. If these objects are passed to further procedures or functions it may be impossible
for the programmer or compiler to determine at compile-time at which point it is safe
to deallocate them. The prevalence of sharing and delayed execution of suspensions
means that some programming languages have unpredictable execution orders. For
them garbage collection is mandatory (Jones 1996).

Garbage collection has been a research topic for more than 40 years (McCarthy
1960, Collins 1960). It was first investigated in the domain of symbolic programming
languages, for example Lisp. Applications written in such languages had complex data

graphs. In such applications, memory management is an intricate problem. Today,

CHAPTER 1. INTRODUCTION 4

object-oriented languages and systems face the same problem. With the advent of
distributed and persistent systems, the need for GC has increased even further. In
such systems, manual memory management becomes a complex task as the number of
objects, references and users scales up.

Automatic garbage collection is to be preferred to user-controlled memory manage-
ment for many reasons. Programmer-controlled memory management is error-prone.
The programmer tends to make two mistakes. One mistake is that he fails to free a
resource when it is no longer used. This leads to storage leaks and performance degra-
dation. The second mistake is that he returns a resource that is still in use, leading to
dangling references. Both mistakes are difficult to detect and recover from, especially
in systems managing persistent data. Garbage collection relieves the programmer from
the burden of discovering memory management errors by ensuring they cannot hap-
pen. A considerable proportion of development time may be spent on bugs of this kind
(Rovner 1985). Object-oriented or object-based programming languages typically allo-
cate a greater proportion of program data structures in the heap and generate complex
data structures. This only increases the complexity of explicit memory management.

Consequently, garbage collection also provides a better division of responsibility.
The task of programming becomes easier and productive increases when memory man-
agement is no longer a concern. Programs become shorter and simpler.

Other issues relate to abstraction and modularity. Garbage collection is necessary
for fully modular programming, to avoid introducing unnecessary inter-module depen-
dencies (Wilson 1992). If objects must be deallocated explicitly, some modules must
be responsible for knowing when other modules are not interested in a particular ob-
ject, to prevent one module from causing the failure of another through space leaks
or premature reclamation of storage. This introduces nonlocal book-keeping: the be-
haviour of a module is no longer independent from the context in which it is used. This
reduces abstraction and extensibility, because when new functionality is implemented,
the book-keeping code must be updated. Manual reclamation is often tightly coupled
to the application, making any further modification difficult.

All these reasons apply equally to distributed object-based systems. Moreover, as
we have already said, explicit garbage collection is a complex task in distributed systems

where objects are highly shared among different programs. The design of an efficient

CHAPTER 1. INTRODUCTION b}

distributed algorithm for managing distributed data is complex: local collectors must
be coordinated to consistently keep track of changing references between address spaces.

Distributed garbage collection contributes to transparency in distributed systems:
just as modern distributed systems support transparent, uniform placement and invo-
cation of both local and remote objects, so should they also support transparent object
management, including reclamation.

With the advent of persistent programming languages and database systems that
provide general purpose programming capabilities, garbage collection issues are be-
coming more relevant to designers of systems that manage persistent data (Franklin,
Copeland and Weikum 1989).

Persistent Object stores, also known as a stable heap, are found in many object
databases, persistent programming languages and environments, and distributed shared
memory systems. Garbage collection is an important issue in persistent object stores.
First, the object graphs of applications over persistent stores are complicated, which
makes manual storage management increasingly difficult and error-prone, often resulting
in dangling pointers and storage leaks. This is because objects are potentially shared
among independent programs that cannot have a comprehensive view of the overall
object graph, and because objects outlive the program that created them.

Second, garbage collection is necessary to support the property of persistence by
reachability. This approach provides true orthogonality of object types and persistence
— objects of any type become persistent and operations can be applied to an object
regardless at whether it is persistent or not. Any object that is reachable from a
persistent object becomes persistent itself (Atkison, Bailey, Chisholm, Cockshott and
Morrison 1983).

Third, compaction and clustering of objects improves efficiency. Databases may
contain gigabytes of data. Garbage is expensive. If disk blocks contain a large percentage
of garbage, disk I/O traffic may be drastically increased. Deferring garbage collection
may adversely affect performance (Franklin et al. 1989).

Garbage collection does not, however, guarantee perfect utilisation of memory; the
programmer may still, for example, construct ever-expanding data structures that fill
the address space. Furthermore, there are costs involved in garbage collection which,

although comparable with the cost of manual memory management (Zorn 1992), are

CHAPTER 1. INTRODUCTION 6

non-trivial and which might exceed the cost of doing no recycling of memory in small,
short-lived applications. However, garbage collection has advanced rapidly and is now

a robust, mature technology (Wilson 1992, Jones 1996).

1.2 Distributed Object-based Programming Systems

Distributed object-based programming system attempts to hide the underlying distri-
bution thus giving the programmer the illusion of a non-distributed system. Using
this model, programmers interact with a single conceptual system which fully man-
ages distribution. Examples of such systems include Emerald (Jul, Levy, Hutchin-
son and Black 1988), IK Platform (Sousa, Sequeira, Zuquete, Ferreira, Lopes, Pereira,
Guedes and Marques 1993), Network Objects (Birrel, Evers, Nelson, Owicki and Wobber
1993), CORBA (Vinoski 1993), JAVA Remote Method Invocation protocol (Gosling and
McGilton 1995), Microsoft DCOM, Thor (Liskov, Day and Shrira 1992) and Larchant
(Ferreira and Shapiro 1996).

The main advantage of distributed object-based programming systems is a simple
conceptual framework that normally translates to a simple programming environment.
The programmer does not need to understand the complexity necessary to manage dis-
tribution, deal with partial failures, optimise the placement of objects, or locate compu-
tations. In a distributed system all of these are intended to be performed automatically
— and transparently — by the support system.

The most important challenges for garbage collection in these systems are that they

feature:

Concurrency A distributed system provides inherent concurrency, i.e. it is possible to
have more than one part of an application running at the same time. In particular,
we may have the application program and the garbage collector running at the

same time.

Asynchrony A large class of problems in distributed systems can be cast as execut-
ing some notification or reaction when the global state of the system satisfies a
particular condition. Thus, the ability to construct a global state and evaluate a
predicate over such a state constitutes the core of solutions to many problems in

distributed systems (Babaoglu and Marzullo 1993).

CHAPTER 1. INTRODUCTION 7

The global state of a distributed system is the union of the states of the individual
processes. Given that the processes of a distributed system do not share memory
but instead communicate solely through the exchange of messages, a process that
wishes to construct a global state must communicate with the other processes

through message exchanges, which are expensive and unreliable.

Partial failures Distributed systems may be partitioned by break-downs of processors

or communication links.

Availability In theory, distributed systems can be more reliable than centralised ones,
since if a machine crashes others may keep functioning. This property should not
be ignored if we want to increase availability and reliability. When independent
failure is properly harnessed by replicating functions on independent components,
multiple components failures are required before system availability and reliability

suffer (Schroeder 1993).

Scalability Distributed systems may be augmented easily by any number of processors.

Remote communication at the programming language level may be accomplished
through any number of paradigms including message-passing, e.g. Remote Procedure
Calls (RPC) (Birrel and Nelson 1984, Jul et al. 1988, Sousa et al. 1993, Vinoski 1993,
Birrel et al. 1993, Gosling and McGilton 1995), transactions (Ozsu, Daylal and Valduriez
1994, Liskov et al. 1992) and distributed shared memory (Nitzberg and Lo 1991, Ferreira
1996). This results in different computation models and solutions for data sharing in
distributed systems as RPC-based systems, Object Oriented Database Management
systems and Distributed Shared Memory systems respectively.

Also, the relationship between the processes and the objects of a distributed object-
based programming system characterises the composition of the objects. Processes
may either be separate and temporarily bound to the objects they invoke, or they
may be coupled and permanently bound to the objects in which they execute. These
two approaches correspond to the passive object mode and the active object model,

respectively (Chin and Chanson 1991):

Passive Object Model Passive objects store data and the computational thread of

control is external to them. Once a passive object is no longer referenced from

CHAPTER 1. INTRODUCTION 8

any other object it is garbage and its memory is free to be re-allocated.

Active Object Model Whenever an object controls its computational thread it is
called an active object. Their management is more complex than the passive
one, because reachability and state may need to be analysed simultaneously. A
passive garbage object wastes space only, while an active garbage object consumes

processing power and may also waste unbounded amounts of memory.

All these factors influence the job of a garbage collector. In the next sections we
will introduce Actor systems, a computational model of active objects, RPC-based sys-
tems, Object Oriented Database Management systems and Distributed Shared Memory
systems and outline their garbage collection job. Only the Actor model is of Active
Object model type. In the remainder of this section and the rest of this thesis we are

only concerned with the Passive Object model.

1.2.1 Actors

Actor systems (Agha 1986) are of Active Object Model type. In an Actor system
each object contains a thread of control and a message queue, as well as encapsulated
behaviour and state, including references to other Actors. Actors exchange messages
between each other and this is the only way that one Actor can influence the actions
of another Actor. The processing of messages by the embedded thread within an Actor
may cause the Actor to change its subsequent behaviour.

The key distinction, for the purpose of garbage collection, between Actor systems
and passive objects systems is that Actors contain a thread of control at all times.
Traditionally, the definition of ‘roots’ used by garbage collection algorithms includes
the stack associated with every thread in the system. If this was done in an Actor
system, every object would have to be considered as live, which is inappropriate. One
the other hand, an Actor A which holds a reference to another Actor B that is live
might send a message to B which contains a self-reference. In this case, B would then
hold a reference to A, and since B is live A must also be live. If A was not considered
a root at the time of the garbage collection, A would not be reachable from any root
and hence would be unsafely discarded. Consequently, Actors with at least one active

behaviour or with a non-empty message queue are also included in the system roots.

CHAPTER 1. INTRODUCTION 9

Such Actors are called active.

Conceptually, an Actor can be considered garbage if its absence from the system
cannot be detected by external observation, apart from its consumption of memory and
processor resources. Kafaru et al. (Kafaru, Washabaugh and Nelson 1990) have given
the definition of liveness of objects in the field of Actor garbage collection, that has
become a standard: An Actor may be defined as garbage if it lacks either one (or both)

of the properties below:

Computable the Actor is active or can become active hereafter.

Reachable the Actor can send information to, or receive information from, a root.

Garbage collection in such systems concentrates in finding efficient techniques for
determining the liveness of objects following the above definition of the system roots.

These kinds of system are not addressed in this thesis.

1.2.2 RPC-based Systems

One possibility in a programming language to support distributed computing is to pro-
vide a distributed heap with parts at different processes; each individual object resides
at a single process, but it can refer to objects at other processes. They communicate by
Remote Procedure Call (RPC). RPC (Birrel and Nelson 1984) is a basic communication
mechanism that forms the basis for the client-server model (Jul et al. 1988, Linington
1992, Sousa et al. 1993, Vinoski 1993, Birrel et al. 1993).

Mutator processes perform local computations independently of other mutators in
the system, although they may periodically exchange messages and allocate objects in
local heaps. These mutator messages transfer data, which may include references to
objects. The mutator sending the message is referred to as the sender, the mutator
receiving it, the receiver. The object to which a reference in the message points may
be on yet another process, usually called the owner. On receipt of the message, the
receiver’s mutator may store the reference in a local object, thus creating a new inter-
process reference. In some systems, mutator messages may also transfer objects from
one process to another; this is called migration.

The role of garbage collection in such systems is usually divided into:

CHAPTER 1. INTRODUCTION 10

Local garbage collection is performed in individual processes. It regards inter-process
references as roots for garbage collection, in addition to the local roots. It is re-
spounsible for detecting and deallocating local garbage. Further, depending on the
exact scheme employed, the local garbage collectors may be required to store extra

information and do extra work to assist the distributed garbage collection.

Distributed garbage collection is a protocol to exchange information between local
garbage collectors. It is respousible for detecting distributed garbage and make
it be recognised as garbage by the local collectors, as well as protecting objects

reachable from a remote root against local collection.

Garbage collection in such systems mainly addresses problems of inter-process com-
munication, global synchronisation, scalability and fault-tolerance, while achieving safety

and completeness. These systems are the main target of this thesis.

1.2.3 Object-Oriented Database Management Systems

Object-Oriented Database Management Systems (OODBMS) provide persistent storage
of objects with complex inter-relationships (Ozsu et al. 1994). They support atomic
transactions (Tanenbaum 1992), a mechanism that allows client applications to group
a set of reads and writes to objects as an atomic unit.

In a client-server system, objects reside in a stable heap on secondary storage. Ap-
plication clients navigate by starting at some persistent root object and may access the
objects in the heap through a memory cache. Persistence is determined by reachability
from the persistent root. A client fetches objects from the server, and keeps them in
a local cache. It works upon these objects by copying data between objects, removing
data from objects and creating new objects, in its private space. In other words, objects
are gathered from their servers and the transaction works upon them at the client.

Servers keep a log where read, new and modified objects are written. The log is
maintained in secondary storage or in main memory, but replicated, in order to allow
recovery after a crash. When the transaction commits, modifications are installed into
the stable heap.

The address space of such systems is maintained in the stable heap, usually called

a persistent object store. Garbage collection in such systems is usually implemented by

CHAPTER 1. INTRODUCTION 11

a server-based garbage collector. This is because object-oriented database technology
takes the view that data resides mostly on secondary storage, with main memory being
used as a temporary scratch buffer.

Garbage collection in such systems supports persistence by reachability. The role
of garbage collection is to reclaim storage allocated to objects that are useless because
they are not reachable from the persistent root or any application variables. The roots
for the local collection at the persistent store include its persistent root, application
roots and references from other persistent stores, if they exist. To allow concurrency,
the roots also include the modified versions and new objects in the log that are yet to
be installed.

Garbage collection in such systems mainly addresses problems of concurrency, re-
covery and disk traffic. It borrows some ideas from garbage collection on RPC-based
systems. We discuss an adaptation of the solution presented in this thesis for such

systems.

1.2.4 Distributed Shared Memory

The concept of distributed shared memory (DSM) provides a shared memory abstraction
for a physically distributed memory architecture. The simple abstraction provided to
the application programmer by the DSM model has made it the focus of recent study
and implementation efforts (Nitzberg and Lo 1991).

DSM systems maintain the illusion of a distributed shared memory by synchronis-
ing data access and moving objects between processes when required, transparently to
applications. The address space is distributed amongst the processes. Processes either
have no, read or write access to data. Conceptually, data can be replicated on multi-
ple processes to increase data locality, reducing access times. Each process can access
any memory location in the shared address space at any time and read or write values
altered by any other process. Objects’ replicas are kept consistent by a consistency
protocol (Tanenbaum 1992).

This model can be extended to distributed applications with persistent objects (Fer-
reira 1996), providing the illusion of a shared address space across the network, including
secondary storage. This model offers transparent distribution and persistence. Applica-

tions have uniform access to any object in the system independently of its location. The

CHAPTER 1. INTRODUCTION 12

model hides both the distinction between local and remote data, and the distinction be-
tween short-term and long-term storage. Applications navigate through the shared store
by following pointers in virtual memory. The system moves the necessary data between
main and secondary storage or between the main memory of remote sites, according to
application needs.

Garbage collection in such systems also supports persistence by reachability. By
traversing the objects graph starting from persistent roots, the collector is able to dis-
tinguish live objects from garbage objects which can then be safely collected.

The most interesting problem for garbage collection is consistence interference.
Garbage collection algorithms must not compete with applications for holding con-
sistent object replicas. Such competition would interfere with application’s consistency
needs. For example, if the collector on some process requires access to a consistent ob-
ject, that would prevent an application from writing into another replica of that same
object at the same time (Ferreira 1996).

We find in the garbage collection literature both server-based and client-based
garbage collectors for persistent object stores. The former are used by object-oriented
database technology (section 1.2.3). The latter are used by distributed shared memory
technology extended with persistent objects where applications need high performance
data manipulation in main memory.

Garbage collection in such systems mainly addresses problems of scalability, effi-
ciency, disk traffic and consistence interference. It also borrows some ideas from garbage
collection on RPC-based systems. We believe that these systems also may benefit from

the ideas presented in this thesis.

1.3 RPC-based System Model

The main goal of this description of the RPC-based model is to establish the environment
in which the cyclic distributed garbage collection algorithm executes (later, in chapter
8 we will describe the implementation of this model in the Network Objects system).
Our cyclic distributed garbage collector is presented for a classical distributed sys-
tem, that is, RPC communication, no shared memory, partial failures, and unreliable

and costly messages.

CHAPTER 1. INTRODUCTION 13

Process Model

Each process has an independent object space. It may contain any number of threads.

It performs local computations independently of other processes in the system.
Processes may fail. Processes are fail-stop, that is, they will either deliver the correct

result or no result at all. Processes recover from crashes eventually, but objects are lost

in crashes.

Network Model

Communication between different processes occurs via message passing. Communica-
tions channels are potentially unreliable. Consequently, messages may be lost, dupli-
cated or arrive out of order.

Processes may be disconnected temporarily because of a network failure. Process

crashes cannot be differentiated from long term communication failures.

Memory Model

We assume a large scale object space distributed amongst a set of processes in a dis-
tributed system. Each address space supports a large number of objects. An object may
contain any number of references to other objects. The implementation of a reference is
not considered for now (in section 8 we will describe the implementation in the Network
Objects system).

We distinguish between a local reference (to an object known to be in the same

process) and a remote one (to an object thought to be in another process).

Mutator Model

Mutators modify the pointer graph: they create objects, and assign and delete refer-
ences. Reference assignments modify objects’ reachability. Any distributed garbage
collection algorithm must detect the objects which are not remote referenced from any

other processor. For this, every remote pointer operation must be considered:

1. Creation of an o-reference

A process P where an object o resides, the owner, transmittes an o-reference to

another process (). Process () has now a remote reference to o.

CHAPTER 1. INTRODUCTION 14

2. Transmission of an o-reference

A process), which already has an o-reference to an object on another process
P, transmittes the o-reference to a third process R. This operation differs from
creation because the owner of the object (P) is not involved. So, it does not
necessarily know that a new o-reference was created. Process R has now a remote

reference to o.

3. Deletion of an o-reference

A process ¢, holding an o-reference to an object located on a remote process P,

discards it.

1.4 Distributed Garbage Collection Goals

In this section we describe the issues in designing a garbage collector for large persistent
and/or distributed address spaces. We have identified efficiency, concurrency, fault-
tolerance and scalability as the main issues, apart from safety and completeness, for
large address spaces. Persistence introduces other issues like low I/O traffic, recovery

and clustering, but they are not considered in this thesis.

Safety

Only garbage should be reclaimed.

Completeness

All objects that are garbage at the start of a garbage collection cycle should be reclaimed

eventually. In particular, it should be possible to reclaim distributed cycles of garbage.

Concurrency

Distributed garbage collection should not require the suspension of mutator or local
collector processes. Concurrency allows the collector to work in small mutator pauses
making it possible for several processes to change the connectivity of the graph simul-
taneously in an autonomous way. However, inconsistencies in the object graph may be

introduced. This leads to the need for some form of synchronisation between mutator

CHAPTER 1. INTRODUCTION 15

and collector actions in order to avoid live objects being missed by the collector (safety),
and in order to allow progress of the collector (liveness).

In a distributed environment, this problem is more serious given the asynchrony of
distributed systems. Consider for instance the following example. Process A holds the
last reference to object z, sends a copy of it to process B, then deletes this reference.
Suppose B collects before receiving the reference to x, and A collects after having
removed it. Then it would appear that x is unreachable although a reference to it is in
transit.

Concurrency may interfere with garbage collection algorithm termination: consecu-
tive changes of the object graph may delay termination of the collector in a large address
space system. This is true for algorithms that need to visit every object in the system.

Another issue concerning concurrency is the possible existence of multiple collectors.

In this situation, global synchronisation between the different collectors may be required.

Fault-tolerance

In a distributed system partial failures occur. Partial failures include crashes of indi-
vidual nodes and failures in message delivery. Crashes are fail-stop, therefore the only
consequence of a crash is temporary disconnection, loss of volatile memory, and halting
of computation. Messages can be delayed, lost, duplicated, and delivered out of order,
or there might be a network failure, in which a group of nodes becomes virtually dis-
connected from the rest. The memory management system should be robust, i.e. work
efficiently and be safe, in spite of message delay, loss or duplication, or process failure.
It should also prevent the dangling references that are caused by failures.

Failures in message delivery can be dealt with by using a generic reliable message
protocol, but this is a costly solution that often requires multiple round trips per reliable
message. The goal then is to design a garbage collector where messages are idempotent
(so that duplicated messages are harmless), and non-essential (so that the loss of a
message does not violate correctness, and is expected to be taken care of by later
messages or on demand).

A robust garbage collection scheme must cope with unavailable nodes of the system:

e Wherever possible, garbage should be reclaimed despite the unavailability of parts

of the system, without interaction with the crashed nodes.

CHAPTER 1. INTRODUCTION 16

e The garbage collection algorithm must adapt its behaviour to the situation, ex-
hibiting graceful degradation of service, in order to guarantee safety and liveness:
processes need to disregard references from processes that have failed, since they
would otherwise be unable to collect garbage objects that were ‘referenced’ by
such processes; if a process has not communicated for a long time and does not
respond to repeated query messages, other processes assume that it has failed.
Failure detection based solely on time-outs is inconsistent because (for instance) a
transient overload could cause some processor be considered terminated, whereas
it continues to execute. This introduces the problem of dangling references that
may interfere with safety: a process may hold references to deallocated objects,
and these references must be prevented from corrupting objects in the referenced
processes. Consistent failure detection is however harder to achieve (Ricciardi and

Birman 1993).

Failures and their recovery must be handled efficiently and should scale. Additional
overheads due to fault-tolerance must be limited and mainly incurred when failures are
present.

Persistent servers are however expected to recover from failures (see Recovery below).

Scalability

Distributed garbage collection algorithms should scale to networks of many processors
without incurring non-linear cost overheads due to computation and synchronisation
(Ferreira and Shapiro 1996). This requires that the chosen mechanisms have mini-
mum dependence on limited resources that do not grow as the system gets bigger. In

particular, the collection of the whole graph in a single phase is clearly not scalable.

Efficiency

There are two main issues concerning efficiency:

Promptness Collector efficiency: garbage should be reclaimed promptly. Having the
collector run concurrently with the user application may not resolve the efficiency
problem: it disperses a long garbage collection pause into shorter ones, but it does

not reduce the total work to be done before garbage can be collected. If a garbage

CHAPTER 1. INTRODUCTION 17

collection takes too long, the garbage collection may effectively fail as the system
may run out of storage. If too much garbage accumulates, and must be paged to

disk, the system may slow down even more.

Correctness of concurrent solutions often requires costly synchronisation methods.
Moreover, global synchronisation between multiple garbage collectors may also be
required in distributed environments, contributing to the system overhead. In
particular, a consistent view of the object graph is very expensive (Babaoglu and

Marzullo 1993)

The garbage collector may need to manage specific data to guarantee safety or
fault-tolerance aspects. This may be specially significant for efficiency when some

extra data, like log records, needs to be stored on stable storage.

User Application Overhead performance overhead due to garbage collection must
be minimised. Two factors may slow down applications: the extra load expe-
rienced by the system and the potential synchronisation between mutators and

garbage collectors.

Low I/O traffic

As we have already pointed out persistent object stores may consist of a huge object
graph. Algorithms which frequently analyse most or all of the objects in the system are
not feasible. Disk I/O is costly: only a small part of the heap may be cached in main

memory. Garbage collection has to minimise disk traffic.

Recovery

In persistent object stores the effects of committed transactions survive crashes. In this
case the safety requirement that an object remain in existence as long as it is accessible
must be satisfied even if the only node that holds a reference to that object is down or
unavailable. This requirement is needed since the heap is stable and once the crashed
node recovers it should contain valid references in order to avoid objects being corrupted.

Some of the information that supports garbage collection must survive crashes too,
while the rest can be recomputed on recovery. Updates of the garbage collection in-

formation may therefore incur stable-storage writes in addition to those required for

CHAPTER 1. INTRODUCTION 18

durability of transactions (Tanenbaum 1992). The challenge is to reduce the amount of
garbage collection information that must be kept stable, without incurring a long wait
on recovery to re-establish the remaining information.

Also, the possibility of recovering implies that it no longer means that when an

objects becomes garbage, it remains garbage.

Clustering

Clustering — the action of putting together related objects — is important. The per-
formance of persistent object stores is often dominated by disk access. Clustering data
that is likely to be accessed together is a major consideration in such systems. Garbage
collection must take clustering (rather than merely compaction) into account (Franklin

et al. 1989).

1.5 Cycles of Garbage

Cycles on uniprocessor systems are common, both at the application level and at the
system level (Jones 1996). Cycles are typically created by programmers when they use
back-pointers or they aim to express domain-specific problems in a natural manner.

When using a system that does not provide cyclic distributed collection, program-
mers must either modify their style, or break cycles explicitly by deleting pointers.
However, it is not always apparent which pointer should be cut. Manual intervention is
both burdensome and unsafe. We know of no good large-scale methodology of avoiding
cycles.

We believe that cycles also occur in large shared address spaces (Godard 1994).
In distributed systems for example, in client-server systems, objects that communicate
with each other remotely are likely to hold references to each other, and often this
communication is bidirectional (Wilson 1996). Many object-based systems are long
running (persistent stores), so floating garbage is particularly undesirable as even small
amounts of uncollected garbage may accumulate over time to cause significant memory
loss (Maheshwari and Liskov 1995). Since cyclic distributed garbage collection is not
widely available, there are few applications that make full use of distributed garbage

collection. As in uniprocessor systems, programmers tend to either modify their style,

CHAPTER 1. INTRODUCTION 19

or break cycles explicitly by deleting pointers. As we have already shown, this is even
more complex in distributed systems

In distributed systems cycles may also be formed as a consequence of replication
(Louboutin and Cahill 1995). Hypertext documents often form large, complex cycles
(Maheshwari and Liskov 1997a). Recently, programming models for mobile computing
applications seem to be a potential source for distributed cycles, as they allow arbitrary
transmission and copies of data graphs that preserve sharing and circularities (Bharat
and Cardelli 1995).

Some solutions for distributed garbage collection trade off completeness, that is,
the ability to collect all garbage in a system, including distributed cycles of garbage,
for weaker inter-process synchronisation constraints and a higher degree of concurrency
under the assumption that distributed cycles are rare (Bevan 1987, Watson and Watson
1987, Shapiro et al. 1992, Ferreira 1996, Birrel et al. 1993). Such acyclic techniques
only work if cycles are rare enough to be neglected. This approach may be acceptable
if servers are short-lived, if sufficient memory is available to support the storage leaks
and any additional paging cost due to memory fragmentation is bearable.

We do not make any assumption about topology of the overall distributed object
graph, and more specifically about the rarity of distributed cycles. That is, we do not
ignore them. However, we assume that local and acyclic distributed garbage are formed

more frequently, hence they should be given the higher priority for reclamation.

1.6 Outline of the Thesis

The contribution of this thesis lies in the design of a distributed garbage collection
algorithm that accounts for the collection of distributed garbage cycles.

Our goal is an expedient and complete, scalable, efficient and fault-tolerant cyclic
distributed garbage collector for large address spaces (Rodrigues and Jones 1996, Ro-
drigues and Jones 1998).

As we argue, compromises inevitably must be made between these goals. For exam-
ple, scalability, fault-tolerance and efficiency may only be achievable at the expense of

completeness, and concurrency introduces synchronisation overheads.

CHAPTER 1. INTRODUCTION 20

We propose a garbage collection scheme that collects cycles on RPC-based sys-
tems without compromising the efficient reclamation of local and distributed garbage,
it requires little synchronisation with applications and avoids global synchronisation.
Additionally, it provides a technique that can be adapted to some solutions for garbage
collection in persistent stores that are usually found in Object Oriented Databases Man-
agement systems and Distributed Shared Memory systems.

In chapter 2 we describe uniprocessor garbage collection. This description will help
the reader to understand why the simple extension of these techniques to distributed
environments does not match our goals.

In chapter 3 we survey the main techniques for partitioned collection. We will focus
on techniques for RPC-based distributed systems as our work targets these systems. We
will also present extensions for Object Oriented Databases Management systems and
Distributed Shared Memory systems.

In chapter 4 we introduce our basic cyclic scheme. We do not account for con-
currency, scalability, completeness or fault-tolerance. In chapter 5 and chapter 6, we
describe the advanced features of our algorithm such as scalability, completeness and
concurrency. In chapter 7 we present a proof of correctness of several aspects of our
algorithm.

In chapter 8 we describe the implementation of our system over the Network Objects
system.

Finally, in chapter 9 we conclude and discuss how we have met our primary goals,

and present some ideas for future work.

Chapter 2

Classical Uniprocessor

Algorithms

In this chapter, we briefly overview classical uniprocessor garbage collection techniques
since most distributed garbage collectors are built upon them. For a more complete
description of such techniques, readers are recommended to refer to (Wilson 1992, Jones
1996).

In section 2.1 we define the basic principles of garbage collection and introduce
some terminology. Then we describe the three classical techniques for garbage collection:
reference counting (section 2.2), mark-sweep and copying collection (section 2.3). These
techniques are first described in the stop-the-world mode, that is, they suspend all user
computation during garbage collection. This latency is sometimes unbearable for real-
time or interactive applications which have strong responsiveness requirements.

We discuss, in section 2.4, advanced uniprocessor garbage collection techniques that
decrease user program pause times: incremental and generational garbage collection.
Section 2.4.1 introduces incremental garbage collection techniques, which allow the cost
of garbage collection to be spread incrementally throughout the computation. Section
2.4.2 overviews generational garbage collection, a paradigm that has proved effective at
reducing garbage collection pause times by segregating objects into regions according
to their age, and concentrating garbage collection effort in a single collection cycle on
just one region of the heap.

Finally, section 2.4.3 addresses garbage collection issues specific to environments in

21

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 22

roots

] Heap
! globdl - ())
/- variables
! | P
! |
sk ——
. registers - @ @

Figure 1: Heap and Roots.

which there is no support from the language compiler.

2.1 Principles

2.1.1 Live and Garbage Objects

Most high-level programming languages are able to allocate storage in a dedicated area
called the heap. An individually allocated piece of data in the heap will be called an
object. An application dynamically creates, in any order a number, of objects in the
heap. An object embodies a mixture of regular data and internal pointers or references
to other objects. The whole set of objects allocated in the heap forms a directed
(potentially cyclic) graph whose nodes are the objects and whose arcs are references
to heap objects. Each object in the graph may be referenced by a number of parents
and may refer to a number of descendants

The values that an application can directly manipulate are those held in processor
registers, the application’s stack and global variables (static area). Such locations that
hold references to objects in the heap form the set of roots of the computation. Other
objects are reachable indirectly by following chains of internal pointers. The roots and
heap are shown in figure 1.

By definition an object reachable from a root is live, that is, an object in the heap
is live if its address is held in a root, or there is a pointer to it from another live heap

object. More formally, — is defined as the ‘refers-to’ relation (Jones 1996): for any

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 23

object or root M and any heap object N, M — N if and only if M holds a reference
to N. The set of live objects in the heap is the transitive closure of the set of the roots

under this relation, i.e. the least set! live where:

live = {N € Objects | (3r € Roots.r — N)V (IM € live M — N)}

When an object is no longer referenced from other reachable objects it becomes
unreachable and cannot become reachable again?, at least for well-behaved programs. It
is called garbage. Since a garbage object remains garbage forever, it should be reclaimed
in order to reuse the corresponding memory for further allocation.

Counsider figure 1. Objects z, z and v are live since they are directly reachable from a
root. Object y is also live since it is referenced by the live object z. Object u is garbage
since it is neither reachable from any root and nor referenced from a live object. But

note that if this were an actor system u might be live.

2.1.2 Garbage Collection

Manual reclamation of dynamically managed storage is often unsatisfactory. The al-
ternative is to still allow the programmer to request dynamically allocated storage to
be reserved but no longer ask him/her to determine when that memory is no longer
required: it is recycled automatically. Garbage collection is the automatic reclamation
of dynamically heap-allocated storage after its last use by a program.

The garbage collection literature distinguishes the mutator and collector roles (Di-
jkstra, Lamport, Martin, Scholten and Steffens 1978). The mutator encompasses all
application activities. Its sole role is to change or mutate the connectivity of the graph
of active data structures in the heap. The collector detects and reclaims garbage objects.

Conceptually, garbage collection operates in two distinct phases. Garbage detection
tries to distinguish the set of garbage objects from the set of live objects, whereas garbage
reclamation disposes of memory occupied by objects previously detected as garbage. In
practice, garbage detection and garbage reclamation can be interleaved temporally and

the garbage reclamation technique is usually strongly coupled to the garbage detection

! Mathematical note: such a least set exists by Tarski’s theorem, which says that any equation of the
form S = fS, where f is a monotonic operation on sets, has a least fixed point.
2This is not true on persistent stores in the presence of recovery.

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 24

technique: an object’s liveness may be determined either directly or indirectly. Direct
methods require that a record be associated with each object in the heap, recording all
references to that object from other heap objects or roots. The most common direct
method is reference counting. It stores a count of the number of references to an object,
its reference count, in the object itself. In its simple form, these records must be kept
up to date as the mutator alters the connectivity of the graph in the heap. When the
record reaches zero, the object is immediately made available for recycling.

Indirect or tracing collectors typically determine the set of live objects whenever a
request by the mutator for more memory fails. They actually detect garbage objects
by infering that they are not members of the set of live objects. The collector starts
from the roots and, by following pointers, visits all reachable objects. These objects are
considered to be live and all memory occupied by other objects is made available for
recycling in a second phase.

It is difficult to compare different garbage collection algorithms either in principle
or in practice. While formulae for algorithmic complexity can be determined, their con-
stants and implementation details often have substantial impact on actual performance
(Jones 1996). We do not deeply address this problem in this thesis. We aim at making
a simple description of the three classical methods of storage reclamation: reference
counting, mark-and-sweep and copying. As the techniques and ideas behind these al-
gorithms form the basis of many more complex schemes, including distributed garbage
collection schemes, it is important to understand how they work, and their strengths

and weaknesses.

2.1.3 Safety and Liveness properties

There are two goals that we have to take into account when choosing a garbage col-
lection algorithm: it must reclaim every garbage object as soon as possible without
corrupting the integrity of references. The liveness property guarantees that all garbage
is eventually reclaimed, and the safety property ensures that only garbage objects are
reclaimed.

Garbage collection should be comprehensive: garbage should not be allowed to float
unreclaimed in the heap. However collectors vary in their approach to comprehensive-

ness collection with different efficiency tradeoffs: most collectors based on reference

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 25

counting cannot reclaim garbage cycles. A system that uses a tracing garbage collector
delays garbage detection to the next collection: garbage collection introduces a latency
between the moment an object becomes garbage and the moment it is eventually re-
claimed. Generational collectors (as explained in section 2.4.2) and other partitioned
collectors (as explained in chapter 3) concentrate their efforts in a single collection cycle

on just one partition of the heap, rather than collecting the entire heap.

2.2 Reference Counting

Algorithms based on reference counting have been adopted for many languages and ap-
plications (for example, early versions of the Smalltalk object-oriented language (Gold-
berg and Robson 1983) and Modula-2+ (DeTreville 1990)). It is also the method used
by the operating system Unix to determine whether a file may be deleted from the
file-store.

The basic idea of the reference counting algorithm is to count the number of refer-
ences to each object from other live objects (Collins 1960). Each object has an additional
field, the reference count, denoting the number of references to it. When a new object
is created, a single reference points to it, and its reference count is set to one. Each
time a reference is duplicated the object’s reference count is increased by one. When a
reference to an object is deleted, its counter is decreased by one. Therefore, the refer-
ence counting algorithm preserves the invariant that the value of an object’s reference
count is always equal to the number of references to it.

When a reference count drops to zero, the reference counting invariant implies that
there are no remaining references to the corresponding object. This means that the
object is no longer required by the mutator and it can be safely reclaimed. For
instance, in figure 2-(i) object u’s reference counter is equal to zero. Therefore u is
unreachable and « can be reclaimed. Upon reclamation of object u, v’s reference counter
is decremented by one, from two to one.

One advantage of this algorithm is that it is simple to understand and straightfor-

ward to implement. It is also a naturally incremental technique. Garbage detection

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 26

Heap Heap

- @ @ roots%
o s

D
\o X \a

(i) Before pointer deletion (ii) After pointer deletion

roots

@ Reference count
Object name

Figure 2: Reference Counting Algorithm.

and reclamation are performed concurrently with the mutator, distributing the mem-
ory management overheads throughout the computation. This contrasts with (non-
incremental) tracing schemes in which the mutator is suspended while the algorithm
runs. If the mutator has strong responsiveness requirements, short pauses may be
important. Nevertheless, there are circumstances, for the simple algorithm described
above, in which counter updating can suspend the mutator for a long while: the cost of
deleting the last pointer to a sub-graph depends on its size. If any of the descendant’s
counters happen to drop to zero then their own descendants must also be recursively
decremented. This is likely to occur with long data structures such as linked lists.
Therefore, the deletion of a single pointer may result in a large amount of reclamation
activity. Weizenbaum proposed a method to ameliorate the recursive freeing: Weizen-
baum’s lazy freeing (Weizenbaum 1963). Pointers in any reclaimed object with reference
counter equal to zero are only deleted when that object’s memory is again allocated.
This lazy method is as efficient as the original method — the same instructions are
used, but have moved from deletion to allocation of an object — but the algorithm is
not so vulnerable to delays caused by cascades of object releases.

Another advantage of reference counting is its good locality of reference. It offers a
good temporal locality of reference because an object is immediately reclaimed as soon

it becomes garbage, that is, as soon as its reference count drops to zero. It also offers

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 27

a good spatial locality of reference because a garbage objects is detected and reclaimed
— as soon its reference count drops to zero — without access to objects in other pages
of the heap.

However, the reference counting algorithm suffers from a number of disadvantages.
First is the high processing cost paid to update reference counts. The cost is propor-
tional to the amount of work done by the mutator because reference counts must be
updated whenever references are assigned or deleted. This extra code imposes a severe
overhead to the mutator. It also restricts the portability of the garbage collector since
garbage collector efficiency is usually achieved by compiler support of the extra code.
This overhead may be reduced by taking every safe opportunity to not adjust refer-
ence counts. This problem is addressed by variants of this algorithm such as Deferred
Reference Counting (Deutsch and Bobrow 1976). Furthermore, it may exhibit poor
locality of reference in the sense that an old target object must have is reference count
decremented. Also, it may impose extra work on activities as simple as traversing a
list, because it may require the list cells to be written on disk (in system with virtual
memory), to update their reference counts, even if their value were not altered.

Another problem relates to the extra space in each object to store the reference
count and reference count overflow. In the worst case this field should be large enough
to hold the total number of pointers contained in the heap. Since there are usually
only a small number of references between objects, a small number of bits could be
used. Some authors have even suggested restricting the reference count field to a single
bit. One-bit reference counting concentrates reclamation efforts on the unshared objects
that typically make up the majority of the heap (Friedman and Wise 1977, Wise 1993).
However, some “popular” objects may be referenced by many different objects. This
can be handled safely by leaving the counter ‘stuck’ at its maximum value: it cannot be
reduced since the true count of pointers to the object may be greater than its reference
count. Hence, overflows of reference counts results in increasing conservatism.

Reference counting algorithms work badly with concurrency as each reference count
must be protected by a lock. This is a substantial disadvantage.

Finally, the major problem of simple reference counting algorithms is their inability

to reclaim cycles of unreachable objects. This algorithm is not complete. This problem

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 28

appears because each object in a garbage cycle is referenced (at least) from its prede-
cessor in the cycle. Therefore, each object in a cycle has a count of at least one even
if there are no more references to any of these objects outside the cycle. Figure 2-(ii)
illustrates a garbage cycle composed of objects z, y and z after deletion of two root
pointers.

Consequently, reference counting is effective only if the mutator cannot create cyclic
data structures. As we have shown in section 1, albeit in the context of distributed
garbage collection, garbage cycle reclamation is an important requirement for many sys-
tems. Several authors have suggested combining reference counting with other garbage
collection algorithms that handle cyclic data structures (Weizenbaum 1969). These so-
lutions consist of using reference counting until the heap has exhausted. At this point
a global garbage collector would be invoked in order to reclaim cyclic data structures
and restore reference counts in the case that small reference counts are used.

However, some effort has been invested on solving the problem of reclaiming garbage
cycles without using global garbage collection. Some of this work is specific to functional
programming languages (Friedman and Wise 1979) or it relies on information from the
programmer (Bobrow 1980). This work suggested that all objects should be assigned to
groups by the programmer and that these groups rather than individual objects should
be referenced count. In this way, intra- but not inter-group cycles could be reclaimed.
David Brownbridge and others investigated the possibility of distinguishing cycle-closing
pointers from other pointers (Brownbridge 1985). However, these proposals are either
incorrect or inefficient in the general case.

Other proposals are generally applicable like the work by (Christopher 1984) and
(Lins 1990). These algorithms are hybrid collectors. Most cells are freed by reference
counting but garbage cycles are reclaimed by a mark-and-sweep collector. The idea
behind these algorithms is to determine dynamically which data structures are only
referenced by those data structures’ internal pointers. Lins’ algorithm picks an object
that may be member of a cycle and performs a local mark-and-sweep on the object’s
transitive closure. In a first phase it removes reference counts that are due to pointers
internal to the sub-graph. Any non-zero reference counts in the traced subgraph can

only be due to external references and are considered live.

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 29

The technique developed by Lins has showed to be promising in the context of dis-
tributed garbage collection because it exhibits some locality: in the best case, only cyclic
garbage is traced. In chapter 3 we describe the adaptation of some of the techniques

cited above and other techniques for distributed garbage collection.

2.3 Tracing

Tracing techniques use the reachability property to distinguish live from garbage ob-
jects. There are two basic types of tracing algorithms: Mark-and-Sweep and Copy.
Tracing algorithms occasionally traverse the reference graph, from the roots, to deter-
mine which objects are reachable. An object is live if it can be reached from a root by
following pointers. Each object encountered during the traversal is marked as live and
the remaining unmarked objects are considered as garbage.

Section 2.3.1 describes the Mark-and-sweep collector, a tracing technique which
happens in two distinct phases.

Section 2.3.2 introduces the Copying collector, a different tracing technique which

merges the garbage detection and garbage reclamation phases.

2.3.1 The mark-and-sweep collector

Under this scheme, objects are not reclaimed immediately they become garbage, but
remain unreachable and undetected until all available storage is exhausted. A mark-and-
sweep algorithm has two phases (McCarthy 1960). The first phase, known as marking,
identifies all reachable objects. The second phase, the sweep, reclaims all unmarked
objects.

The marking phase traverses all objects reachable from roots and marks them by
setting, for example, a bit in each object visited. This phase ends when there are no
more reachable but unmarked objects. Termination is enforced by not traversing from
objects that have already been marked.

During the sweep phase, the memory is swept to find all unmarked objects, and
typically to insert their memory in the free-list. Marked objects are unmarked in order
to make them ready for the next collection.

Mark-and-sweep collectors have some advantages over reference counting. The most

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 30

Heap Heap

free-list [freelist |
rogts @ ropts @ @
N "

T o
AT S— W&

(i) mark phase (i) sweep phase

Figure 3: Mark-and-sweep Algorithm.

important of these is that no special action needs to be taken to reclaim garbage cycles
(this also is true for copying collectors). They also have much lower overheads on the
user program than reference counting: the overall elapsed time of a tracing system will
be better.

The interface between the user program and a non-incremental tracing garbage
collector is also much simpler than that of reference counting system. Under the later,
care must be taken to ensure that reference count invariants are maintained. The
simplicity of interface of tracing collectors makes them easier to maintain.

On the other hand, the simple version of the mark-and-sweep collector is a stop-
the-world collector: computation is halted while the garbage collector runs. The pauses
caused by this algorithm may be substantial. We introduce some methods of reducing
pause times in section 2.4.1 and 2.4.2, when we discuss generational and incremental
techniques respectively.

The simple mark-and-sweep algorithm presented above also tends to fragment mem-
ory, as does reference counting, scattering objects across the heap. In a virtual memory
system such fragmentation may lead to loss of locality between associated objects of a
data structure and result in excessive swapping of pages to and from secondary storage.
In a real memory system some benefits of caching can be lost. Fragmentation makes

allocation more difficult as suitable spaces must be found in the heap to store new

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 31

objects.

This problem can be ameliorated using a two-level allocator such as that used by
the Boehm-Weiser collector (Boehm and Weiser 1988). An additional compaction phase
can be also performed at the expense of a significant overhead to the garbage collector.
We refer the reader to (Jones 1996) for a description of several styles of compaction.

The complexity of a mark-and-sweep collection is usually measured as being propor-
tional to the size of the entire heap rather than to the volume of surviving data because
the sweep phase must examine the whole heap. Analysis must also consider the algo-
rithm’s virtual memory and cache behaviour. More sophisticated implementations of
the mark-and-sweep algorithm reduce the cost of sweep phase and improve the virtual
memory behaviour of both phases.

Some implementations store mark-bits in a separate bitmap table rather than placed
them in the objects that they mark, for instance (Boehm and Weiser 1988). Mark bits
have several advantages for the virtual memory system. If the bitmap is comparatively
small, it can be held in RAM so that reading or writing mark-bits will not incur page
faults. Furthermore, no heap object need be written to during the marking phase. Page
faults will only be incurred by the garbage collector when pointers need to be traced.
Also, in the sweep phase live objects do not need to be accessed at all, although garbage
objects may have to be linked into a free-list.

The efficiency of non-incremental garbage collection may be improved if the sweep
phase is done in parallel with mutator execution. This is possible because the mutator
cannot interfere with the collector’s sweep phase since the mark-bits of live objects are
invisible to the user program. We refer the reader to (Jones 1996) for a description of
techniques of lazy sweep.

A different problem with mark-and-sweep is that it requires a strong synchronisation
between phases. That is, generally, the mark and sweep phases cannot be interleaved
since all reachable objects must be marked before starting the sweep phase (this syn-
chronisation is relaxed in (Queinnec, Beaudoing and Queille 1989)). This contrasts
with reference counting where, as we have already said, the two phases are interleaved
and an object is immediately reclaimed as soon as its reference count drops to zero —
temporal locality of reference. This feature makes reference counting more attractive

for distributed systems since its communications are local to the objects involved in an

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 32

scan free scan free

Roots i i J/\ L
010 HOO

| I - 3
V0| [e00 | E00Eue

from-space to-space

Figure 4: Cheney’s Algorithm.

update.

2.3.2 The copying collector

The second class of tracing algorithm is that of copying collectors (Minsky 1963, Cheney
1970). Copying collectors merge garbage detection with garbage reclamation in a single
phase. This kind of algorithm divides the heap into two disjoint semi-spaces called
from-space and to-space. During normal mutator execution objects are allocated in
from-space. When there is not sufficient space to meet allocation requests, the algorithm
copies reachable objects to to-space. Unreachable objects are left in from-space. Once
the copying is completed, the roles of the two spaces are reversed. This transition is
called the flip.

Cheney’s algorithm (Cheney 1970) is a well known technique and it is usually pre-
sented as the simplest form of copying reachable objects from from-space to to-space.
Its major advantage is that it is iterative, hence elegantly avoiding recursive call costs,
stack space overhead and stack overflow.

The copying collection is done iteratively using two pointers: a scan pointer and
a free pointer (see figure 4). Objects immediately reachable from the roots are copied
to to-space. Free points now to the first free address in to-space, and scan points to
the first object in to-space. The object pointed by scan is scanned for references into

from-space. Each object reached is copied to to-space. In addition, the references in the

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 33

scanned object are updated to refer to the new copy, and a forwarding pointer (pointing
to to-space) is left in the object’s old location. The free pointer is then advanced and
the scan continues to the next object. Eventually the scan pointer reaches the free
pointer. This means that all the objects that have been copied have also been scanned
for descendents and that the algorithm is finished.

The complexity of copying is proportional to the size of the active data structure
rather than the size of the heap. This makes copying particularly attractive if the
surviving data is a small proportion of the total heap. This is typical of many functional
and object-oriented programming languages. However, this measure of complexity is too
simplistic. The constants in the complexity formula are also important (Jones 1996).
For instance, the cost of copying an object is likely to be more expensive than simply
testing and setting a mark-bit, particularly if the objects is large. Although mark-and-
sweep must sweep the entire heap, in practice its real cost is dominated by the mark
phase. Furthermore, lazy sweep techniques and bitmaps (see section 2.3.1) can reduce
significantly the cost of the sweep phase.

Copying collectors have the nice effect of compacting the heap since objects are
copied contiguously in to-space. This reduces heap fragmentation — by compacting live
objects into the bottom of to-space — and improves allocation costs — new memory
is allocated simply by incrementing the free space pointer. Compacting the active part
of the heap onto fewer pages should reduce the size of the program’s working set, that
is the locality of reference of the user program. Consequently, it may perform better
than mark-and-sweep with the virtual memory system, although reorganising data in
the heap may be undesirable in some environments. Unless care is taken with this
regrouping, the spatial locality of the resulting structures may be poor. We refer the
reader to (Jones 1996) for a description of regrouping strategies.

There is another issue of spatial locality, the locality characteristics of the garbage
collector itself. An immediate cost of copying garbage collection is the use of two semi-
spaces: the address space required is doubled, compared to mark-and-sweep collectors.
A copying garbage collector will touch every page in to-space and from-space in each
collection cycle. Consequently it may suffer more page faults than mark-and-sweep for
a fixed size of heap, as it uses twice as many pages.

Although copying garbage collection has predominated in the past — its advantages

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 34

of compaction, cheap allocation, low complexity and easier incorporation into incre-
mental and generational systems gave it the advantage over mark-and-sweep garbage
collection — recent studies suggest that the choice between mark-and-sweep and copy-
ing collectors may depend as much on the behaviour of the client program as on the

inherent properties of the garbage collection algorithm.

2.4 Advanced Techniques

2.4.1 Incremental Garbage Collection

The aim of incremental garbage collection is to avoid the pauses incurred by stop-
the-world garbage collectors. In such collectors small units of garbage collection are
interleaved with small units of mutator execution. Each garbage collection pause time
is smaller than in the stop-the world garbage collection.

The mutator and collector can also run concurrently. The usefulness of this mode
is that collection adds no pauses on top of time-slicing. In the rest of this section, and
when the difference is not relevant, we will use the term incremental to designate both
incremental and concurrent collectors. Several algorithms were originally designed for
multi-processors but are easily adapted for serial machines.

The simplest of incremental techniques is reference counting, which is naturally
incremental for all operations except the deletion of the last pointer to a sub-graph (see
section 2.2). However, it is expensive, it is closely coupled to the user program and it
is unable to reclaim garbage cycles. These drawbacks discourage its use. It is therefore
desirable to make tracing techniques incremental.

There are two potential conflicts between the mutator operations and the collector.
First, care must be taken to ensure that the collector makes sufficient progress to prevent
the user program from running out of memory before the collection cycle is complete
— mutator starvation. Several policies have been used to balance processing between
collector and mutator in way that avoid such mutator starvation. For instance, Baker
(Baker 1978) tunes the rate of collection to the rate of consumption of memory. The
idea is that a small amount of marking or copying can be done at each allocation.
Others, for instance (Appel, Ellis and Li 1988) avoid the problem by triggering garbage

collection whenever the amount of free memory falls below a certain threshold, avoiding

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 35

mutator starvation.

Second, the main issue of incremental tracing is how to ensure the correct execu-
tion of the collector when it competes, asynchronously, with the mutator for the same
data. This introduces a consistency problem: while the collector is tracing the graph of
reachable objects, the graph may change while the collector “isn’t looking”. This may
lead the collector to failing to find (i) all garbage objects in a garbage collection cycle
and (ii) all reachable objects and conclude wrongly that some live objects are garbage.

Concerning situation (i), consider an object o reachable from the root. The mark
phase reaches the object and marks it live. Afterwards the mutator discards the pointer
from the root to the object o. Since the object has been already marked live, it will
not be collected by the sweep phase. The reclamation of the object is only postponed
until the next garbage collection. Such unreclaimed garbage objects are called floating
garbage.

Situation (ii) may occur when the mutator concurrently to the collector detaches a
reachable object o from a non-traversed part of the graph and attaches it to an already
traversed part of the graph. In this way, the mutator may hide object o from the
marking process. At the end of the marking phase, object o is not marked as live and
therefore will be reclaimed, unsafely, by the sweep phase.

To avoid situation (ii) some synchronisation is needed between mutator and collec-
tor to indicate that the connectivity of the graph has changed. It is not necessary for
the mutator and the collector to share an identical view of the graph. The consistency
requirement can be relaxed to allow the collector to work with a conservative approx-
imation of the graph of live objects (Wilson 1992). If the mutator changes the graph
of reachable objects, garbage objects may or may not be reclaimed at the end of the
garbage collection cycle depending on whether or not they have already been marked
live by the garbage collector. As consistency requirements are relaxed, the collector’s
view of the graph becomes more conservative, and more floating garbage accumulates.

Before going into more details concerning synchronisation, it is useful to see how
incremental garbage collection can be described by the abstract tricolour marking algo-
rithm (Dijkstra et al. 1978).

Dijkstra’s algorithm required the mutator to communicate with the collector by

colouring objects black, grey or white.

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 36

Black indicates that an object and its immediate descendents have been reached by
the collector. The garbage collector has finished with a black object and need not

visit it again. At the end of garbage collection all live objects are black.

Grey indicates that an object has been reached by the collector, but its immediate
descendents may not have been, or its connectivity to the rest of the graph has
been altered by the mutator behind the collector’s back. Once a grey object has

been scanned its descendents are coloured grey and it becomes black.

White indicates that an object has not yet been visited by the garbage collector and

may be garbage at the end of the tracing phase.

A garbage collection cycle terminates when all reachable objects are coloured black,
and hence when there are no grey objects left. Any objects left white at this point are
garbage and can be reclaimed.

Intuitively, the traversal proceeds in a wavefront of grey objects, which separates
the white objects from the black objects that have been passed by the wave — that is,
there are no pointers directly from black objects to white ones. The importance of this
invariant is that the collector must be able to assume that it is “finished with” black
objects, and can continue to traverse grey objects (Wilson 1992). If the mutator creates
a pointer from a black object to a white one, it must somehow notify the collector
that its assumption has been violated. Therefore, the collector must be capable of
keeping track of graph changes resulting from mutator activity, and re-trace parts of
the graph adequately. This ensures that the collector is aware of every significant change
concerning the pointer graph.

Figure 5 demonstrates this need for synchronisation. Suppose that object x has
been completely scanned (and therefore blackened); its descendents (y and z) have been
reached and greyed. Now, suppose that the mutator copies the pointer from y to u into
x, copies the pointer from z to z into y and deletes the pointer from y to u. The only
pointer to u is now in object x, which has already been scanned by the collector. This
violates the invariant we have stated: black object z pointing to white object w. If the
tracing continues without any synchronisation, y will be blackened, z will be reached
again and u will never be reached at all, and hence will be unsafely reclaimed.

We describe below the two basic approaches to synchronising the collector with

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 37
Roots Roots

X X

v N\

O ‘O
(i) initial graph (ii) graph modified incrementaly
by the mutator

Figure 5: Concurrent Mutator Activity.

the mutator: read barrier and write-barrier. Different approaches lead to different in-
cremental algorithms that may be judged through several parameters. The degree of
conservatism is an important parameter because floating garbage fragments the heap,
increasing the effective residency of the program. The pauses incurred on mutator ac-
tivity are a second parameter. Incremental collection should delay computation only
briefly at each step. Pause time depends on how much work is done by the synchro-
nisation action — the barrier. Incremental collectors may also contain uninterruptible
sections: processing the root set and checking for termination of a garbage collection
cycle. If pauses are too great, the incremental nature of the algorithm is compromised.
The time and space costs of the barrier also depend on its selectivity and frequency,

and how it is implemented.

Write-barrier

Whenever the mutator attempts to write a pointer into a black object, the write-barrier
trap or records the write so that the object can be visited or revisited by the collector.
In order to falsely reclaim a live object, a white object must become invisible to the
collector but still be reachable by the mutator. For this to happen, both of the following

two conditions must hold at some point during the marking phase:

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 38

1. A pointer to the white object is written into a black object. If this condition does
not hold, there will not be any black-white pointer during the marking phase. In
this case, there must be a path to each reachable white object from a (black) root
that passes through a grey object. The marking phase will eventually reach the

white object from the grey one.

2. The original reference to the white object is destroyed. If a pointer to a live white
objects is written into a black object during the marking phase and the original
reference to that white object is not lost, the white object will still be reached by

the marking phase through that original reference unless this pointer is destroyed.

Write-barrier methods are classified as either snapshot-at-the-beginning or incre-
mental-update. When a pointer to a white object is written into a black object, snapshot-
at-the-beginning collectors prevent the loss of the original reference to the white object
(because it might have already been copied into black objects), while incremental-update
collectors catch the change to the connectivity of the graph (Wilson 1992). Snapshot-
at-the-begining algorithms are more conservative than incremental-update ones. No
objects that become garbage in one garbage collection cycle can be reclaimed in that
cycle. Actually, they allow the tricolour invariant to be broken, temporarily, during
incremental tracing. Rather than preventing the creation of pointers from black objects
to white ones, they ensure that the original path to the object is not lost, because all
overwritten pointer values are saved and traversed.

There are many incremental collectors that use a write-barrier. For example, (Steele
1975, Dijkstra et al. 1978, Boehm, Demers and Shenker 1991) use incremental-update

write-barriers, and (Yuasa 1990) uses a snapshot-at-the-begining barrier.

Read-barrier

A read-barrier ensures that the mutator never sees a white object: whenever a mutator
attempts to access a white object, the object is immediately visited by the collector
and coloured grey or black; since the mutator cannot read pointers to white objects, it
cannot write them into black objects.

Software read barriers are generally considered to be too expensive. Read barriers

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 39

may also be implemented with support from the operating system’s virtual memory pro-
tection mechanisms to trap access to protected pages. Appel-Ellis-Li’s collector (Appel
et al. 1988) uses this last approach. Zorn’s measurements suggest that its performance
may be inferior to software methods, although different architectures and operating
systems vary considerably (Zorn 1990).

The expense of read-barriers means that they are rarely used with non-moving col-
lectors. They are instead used with copying garbage collectors to trap mutator accesses
to to-space. The best well known collectors using a read-barrier are (Baker 1978, Appel

et al. 1988, Nettles, O’Toole, Pierce and Haines 1992).

2.4.2 Generational Garbage Collection

Generational collectors use the ages of objects to optimise the collection of younger,
smaller partitions. They aim at reducing the garbage collection pause time by decreasing
the amount of memory that has to be collected. They take advantage of the following

empirical observations (Lieberman and Hewitt 1983, Ungar 1984):

1. Newly created objects have a higher chance of becoming garbage than those that

have already survived many collections.

2. There are more references from new objects to older objects than the other way
round. Older objects may refer to newer ones only if they have been updated.

Mutations are comparatively infrequent in many systems.

Objects are segregated into generations based on how long they have survived. We
talk of just two generations, old and new, but the scheme can be extended to any number
of generations. Since the new generation is where most garbage is created, it is collected
more frequently. Objects that survive a certain number of collections are moved to a
less-frequently collected partition.

In order for this scheme to work, it must be possible to collect the younger gen-
eration(s) without collecting the old one(s). The collector must be capable of finding
pointers into the young generation(s). This requires the use of a write-barrier similar
to the one found in incremental collection (see section 2.4.1) to keep track of such inter-

generational pointers. Each potential pointer write in the heap must be accompanied

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 40

by some extra bookkeeping in case an inter-generational pointer is being created. The
important point is that all references from old to younger generations must be located
at collection time, and used as roots for the collection. If the above assumptions hold,
there would be few such references.

Generational collectors only keep track of pointers from the old generation to the
younger generation (the converse would be expensive as there are typically many more
references from new to old than from old to new generations (Wilson 1992)). Conse-
quently, when the old generation is collected, the new and old generations are traced
together, starting from their roots. This also contrasts with other partitioned schemes,

where any partition may be collected at any time.

2.4.3 Conservative Garbage Collection

Tracing algorithms need to traverse the reference graph. For this purpose, the garbage
collector must be able to find references inside any object, in registers, the stack, the heap
or any other memory area. In other words it must distinguish pointer from non-pointer
data. This co-operation is usually difficult to implement in unco-operative environments
or programming languages such as C (Kernighan and Ritchie 1990) or C++ (Ellis and
Stroustrup 1990), which do not provide the necessary runtime type information.

A possible solution, for these cases, consists of either a pre-processor (Edelson 1992)
or the compiler (Samples 1992) statically generating type information. Normally this is
accomplished by maintaining tags. For example, pointers might be constrained to have
a fixed bit pattern in the low-order bit positions. This kind of solution typically slows
down some operations on integers, and brings a performance penalty for application
programs that rarely or never make use of garbage collection.

Another solution receives no help at all from the compiler and assumes that anything
that might be a pointer is a potential pointer unless it can be proved otherwise. It is
called conservative garbage collection.

The Boehm-Weiser collector (Boehm and Weiser 1988) is a conservative collector
with no reliance on co-operation from the compiler, and that has no knowledge of the
stack, registers or heap object layout. This approach relies on the use of a mark-and-
sweep collector. In order to determine accessibility, it treats any data directly accessible

to the program as a potential pointer. The allocator ensures that given such a data

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 41

value, it is possible to determine whether it points to a valid object or not. If so, it is
assumed that the data value in fact was a pointer, and that the object it points to is
accessible. Similarly, it treats any data inside the objects as potential pointers, to be
followed if they, in turn, point to valid data objects.

The Mostly Copying Garbage Collector (Bartlett 1988, Bartlett 1989) is a conserva-
tive garbage collector that still assumes no knowledge of stack or registers layouts, but
it does assume that all pointers in the heap can be found accurately. The collector is a
hybrid conservative and copying collector. The algorithm divides all accessible objects
in the heap in two classes: those which might be referenced from the stack or registers
(the root set), and those which are not. The former objects are treated conservatively
and are left in place, and the later objects are copied into a compact area of memory.

The main disadvantage of such collectors is the risk of misidentifying data as heap
pointers (e.g, considering an integer as a pointer), thereby leading to the consideration
of garbage objects as being reachable. This implies that memory is retained, which

could otherwise be recycled — a space leak.

2.5 Summary

In this chapter we briefly surveyed uniprocessor garbage collection techniques.

There are two fundamental garbage collection strategies: reference counting and
tracing. There are two tracing collectors: mark-and-sweep and copy. Stop-the-world
collections are not suitable for real-time or interactive applications as they suspend all
user computation during garbage collection.

Reference counting algorithms are inherently incremental and are scalable. However,
they do not collect cycles of garbage. Consequently, tracing collectors had to be made
incremental. We described two techniques for synchronisation between mutator and
collectors in order to provide safe garbage collection: a read-barrier and a write-barrier.

Another technique that decreases mutator pause times is generational garbage col-
lection. The heap is divided in several generations. Young generations are collected
more frequently as young objects tend to become garbage more rapidly than objects
that survive several collections.

Finally, we described a technique for garbage collecting unco-operative environments,

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 42

which do not provide runtime type information. Such collectors all are called conser-
vative collectors as they may misidentify data as heap pointers, thereby leading the

collector to consider garbage objects as being reachable.

Chapter 3

Distributed Garbage Collection

Techniques

In this chapter we review the most relevant solutions for distributed garbage collection.
We will emphasise distributed garbage collection solutions that collect cycles of garbage,
showing the extent to which they meet the goals we have introduced in section 1. We
also describe extensions of these techniques for persistent stores like Object-Oriented

Database Management Systems and Distributed Cached Stores.

The key to achieving an expedient, scalable and fault-tolerance distributed garbage
collection is to preserve the property of locality. The first step is to use a partitioned
model, dividing a large address space into several partitions that can be collected some-
what independently. We describe this model in section 3.1. Reclamation of garbage is
typically done by a local collector that traces a single partition independently. Parti-
tions track remote references by storing all incoming references in an entry-table, and
all outgoing references in an exit-table. This is an abstract model; different systems may
use different implementations of this model.

Unlike non-partitioned collectors (we describe an example in section 3.2 — global
tracing), partitioned collectors collect local (to the partition) garbage without any coop-
eration of the rest of the distributed system. The local collection makes a conservative
assumption that references in the entry-table are reachable, and counts them as roots
for the local collection.

Broadly speaking, techniques for distributed garbage collection fall under the same

43

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 44

two paradigms as uniprocessor techniques: tracing and reference counting (recall section
2). In the following sections we survey a number of distributed garbage collection
techniques that fall into one of this paradigms and show how they preserve the property
of locality.

In order to analyse these techniques we have recast the terminology used by their
authors into the one we present in section 3.1. This helps to compare between algorithms

and allows better understanding of their fundamental contributions.

3.1 Partitioned vs Non-partitioned Collection

A first step in the direction of the distributed garbage collection goals of expediency,

scalability and fault-tolerance is to preserve the following property:

Property of Locality The collection of garbage should not require the co-operation
of any process other than those containing the garbage.

This property is desirable for scalability and fault-tolerance in distributed systems.
An algorithm that preserves such a property is scalable because it does not need the co-
operation of every process in the system. Consequently, it does not require any protocol
that demands the co-operation of all the distributed system. Fault-tolerance is achieved
because progress may be made even if some processes of the system are down. The
collection of distributed garbage can only be delayed by those processes containing the
garbage.

The key to preserving such a property is to sub-divide the address space into separate
areas and collect each area independently. This idea was first proposed by Bishop
(Bishop 1977) in the context of a virtual memory system, and is now generalised to
describe all decentralised distributed garbage collectors. This concept is supported by

the following advantages of partitioned approaches over non-partitioned ones:

Scalability The collector does not need to wait for the collection of the entire address
space. Only a subset of a potentially huge set of objects needs to be considered
at any point by a collector. Partitioned collection greatly improves the locality of
reference of the collection algorithm. In RPC-based systems local computation is

used and message passing avoided. In persistent stores I/O operations are reduced.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 45

This makes the collection more efficient.

Promptness Separate collections give control over how frequently to traverse different
parts of the object graph. Some parts of the graph may remain unchanged for a
long time, so that traversing them repeatedly is a waste, while other parts may

change rapidly, providing a rich source of garbage.

Mutator Overhead The disruption caused by interfering with the application during

garbage collection is reduced.
On the other hand, partitioned schemes are not complete:

Completeness The liveness of objects reachable from outside the partition cannot be
decided locally, hence these objects are conservatively considered as roots by the

partition garbage collection.

In the remainder of this chapter we concentrate on solutions for collecting inter-
partition garbage. We introduce a model for partitioned garbage collection. We describe
a general scheme — a hybrid of tracing and reference tracking (following the terminology
in (Maheshwari 1993)) — that is used to create arbitrary sized partitions that can be

collected separately and concurrently.

3.1.1 Model for Partitioned Garbage Collection

The exact nature of partitions may vary, since different models of distributed object-
based programming systems allow different implementations. On a RPC-based system,
each site is a partition. On a persistent server, a set of logically related persistent objects
is a partition. Finally, in a cached distributed persistent store, each unit of memory
cached is a partition.

To correctly collect one partition without entirely scanning the others, information
must be kept about object pointers that cross partition boundaries. We distinguish
between intra-partition references (to an object known to be in the same partition) and
inter-partition ones (to an object in another partition). For garbage collection purposes,

an inter-partition reference is described by an ezit-item in the source partition and an

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 46

Partition P Partition Q
entry-list
entry Bix Eij
table Eiy k:{R} Eik

root —
y z i j

O g

Partition R

table [i |Ej Ei A =
Ei r

vy

©

Bxy [u]
Bxp [k]

Figure 6: Partitioned Garbage Collection Model

entry-item in the target partition’.

Entry-items are collected in a structure called the entry-table and exit-items are
collected in a structure called the exit-table. They are represented in figure 6. Partitions
are identified by capital letters P, @,..., etc. Objects are identified by lower case letters
Y, Z,..., etc. An exit-item for object z is noted by Fx, and the corresponding entry-item
by Ei,.

Additionally, we group together all inter-partition references in a partition that point
to the same object. We model this by having each exit-table store a single item for each
outgoing inter-partition reference. The importance of this will become clear during the
rest of this section.

The entry-table of a partition is maintained by co-operation between the local col-

lector and an inter-partition reference tracking protocol.

!Generally, in RPC-based systems, an inter-partition reference is represented as a local reference
to a structure called a surrogate, which in turn contains necessary remote information. This remote
information may, in turn, point to the entry-item which points to the actual object, or point directly to
the object.

In garbage collection schemes for persistent object stores, entry and exit-items are simply auxiliary
data structures; they are not seen by application code.

We will use the entry-item/exit-item abstraction whenever we may abstract from system-dependent
issues. We will explicitly describe such issues whenever it is significant for our scheme.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 47

Intra-partition collection

Local garbage is collected independently in each partition. Usually a tracing algorithm
is used because of the inability of the reference counting technique to reclaim circular
garbage and efficiency considerations (recall section 2.2).

The root set used for local garbage collection consists of local roots — the local root
set — that is, objects usually designated as roots (stack, registers and global variables),
plus global roots — the global root set — that is, the entry-table: these are objects
known outside this process; consequently, it is not possible to decide locally if they are
garbage or not. As we have already said, each entry-item refers to an object that is
alleged to be referenced from other partitions.

Once an inter-partition reference to some object is created, it is no longer possible
to determine locally whether or not it is still reachable from a root. The local garbage
collector must therefore conservatively consider it to be a global root. Until it is shown
otherwise, all local objects and exit-items reachable from this root are considered to be
live, as are any objects and exit-items reachable from local roots.

An intra-partition collection updates the exit-table: unreached exit-items are re-

moved.

Inter-partition Collection

The information maintained by the inter-partition protocol constitutes a conservative
snapshot of the actual object graph, built incrementally as the overall object graph
evolves. The union of the local root set and global root set is a superset of the actual
root set?. The actual root set of a given partition contains only the roots from which
live objects, and only live objects of that partition, are reachable. The actual root set
of a partition is the union of the local root set and the set of global roots that are
live, that is, reachable from some root in the system. Only the inter-partition protocol
can determine whether or not a given global root is still referenced from outside the
partition.

The inter-partition reference tracking protocol is responsible for maintaining the

entry and exit-tables, that is, how they are created and how reachability information is

2Following the terminology in (Louboutin and Cahill 1997).

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 48

propagated. When the mutator creates a new inter-partition reference, or deletes one,
extra messages may or may not be required to update the target entry-table. Following
the terminology in (Maheshwari 1993), we call the part of the inter-partition protocol
that takes care of creation of references the increase protocol, and the one that takes
care of deletion the decrease protocol. The increase protocol ensures the safety property
that live objects will not be collected; it is therefore run by the mutator when creating
a new inter-partition reference in such a way that prevents the premature reclamation
of objects. As we are going to see next, this is an issue related to the global order of
events in distributed systems.

On the other hand, the decrease protocol ensures the liveness property that garbage
will ultimately be reclaimed; therefore, it can be delayed and executed in the back-
ground. If, in a partition, we represent every inter-partition reference to the same object
as a single item in the exit-table, then the decrease protocol must only be performed
when the last intra-partition reference is deleted.

Different schemes result in differences in the message passing protocol and fault-
tolerance.

For the rest of this chapter we assume the mutator model described in sections 1.3,
except for sections 3.6 and 3.7. For simplicity, we consider that one process corresponds
to one partition. From now on, in this chapter, we will treat partition and process as

synonymous.

3.1.2 Road-map to the Remainder of this Chapter

In the following sections we describe different distributed garbage collection techniques
following the taxonomy shown in figure 7.

Section 3.2 discusses distributed algorithms based on tracing. We argue that the
pure form of tracing is unacceptable for distributed systems as it is a non-partitioned
algorithm. We also describe an intermediate tracing solution that preserves the property
of locality for local garbage (section 3.3).

Section 3.4 describes a number of reference tracking techniques for inter-partition
garbage collection, and compares them with respect to message passing and fault toler-
ance.

(Louboutin 1997) suggested that these schemes are called reactive schemes as they

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 49

Distributed Garbage Collection

non-partitioned partitioned

global tracing partitioned tracing reference tracking
(section 3.2) (section 3.3) (section 3.4)
/ indirect timestamp
hybrid collectors acknowledge reference packet
(section 3.5) messages counting distribution
/ \ weighted reference
complementary object reference listing
tracing migration counting
local train back
groups tracing collection tracing

Figure 7: Partitioned vs Non-partitioned Distributed Garbage Collection

“react” directly to some events of the mutator. These approaches make it possible to
identify a garbage object from information received from objects directly adjacent to it
in the global object graph. Collection can therefore proceed without need of co-operation
from all sites in the system. They preserve the property of locality.

The most typical reference tracking based algorithms are those based on variations
of uniprocessor reference counting (Lermen and Maurer 1986, Bevan 1987, Watson and
Watson 1987, Piquer 1991, Dickman 1992) or reference listing (Birrel et al. 1994, Shapiro
et al. 1992, Plainfossé and Shapiro 1992, Maheshwari and Liskov 1994, Ferreira and
Shapiro 1996) that are not intrinsically complete, that is, that are not able to col-
lect cycles of garbage. We also describe a new approach for reference tracking that is
intrinsically complete (Louboutin and Cahill 1997, Louboutin 1997).

Finally, we address hybrid approaches for distributed cyclic garbage collection. Sec-
tion 3.5 describes a variety of schemes that collect inter-partition cycles of garbage.
These schemes have the common feature of having been designed for the partitioned
model. They usually combine a form of reference tracking with a second approach
in order to collect cycles of garbage. We classify several approaches in this category

depending to what extent they preserve the property of locality for cyclic garbage.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 50

3.2 Global Tracing

Global distributed tracing algorithms have the ability to collect garbage cycles. The
majority of the tracing collectors known are of the mark-and-sweep type (Hudak and
Keller 1982, Augusteijn 1987, Derbyshire 1990, Juul and Jul 1992).

Distributed mark-sweep algorithms visit all globally reachable objects. In the mark-
phase each process marks the objects reachable from its local roots. Each object is
scanned and for each remote reference found a marking message is sent to the target
process. The process receiving a marking message marks the corresponding object and
continues the marking phase. When every process has marked all the reachable objects
it owns and there are no marking messages in transit, the sweep phase starts. The
sweep phase may be done by each process independently from any other process.

Making a mark-and-sweep algorithm distributed adds the problem of global syn-
chronisation. The main problem is to synchronise the distributed mark-phase with
independent sweep phases. During the mark-phase processes receive and send marking
messages. The collector in each process can be resumed if it receives a marking mes-
sage for an object it owns. Therefore, processes are alternatively contributing to global
marking — active state — and waiting for a marking message — idle state. The active
processes are those which are carrying out marking, and only they can send messages.
An active process goes from active to idle when it finishes its marking. An idle process
can only be reactivated on receipt of a message. When all the processors are idle, the
global mark-phase is said to be terminated since no further marking is possible.

This problem is even more difficult if the global marking is concurrent with the muta-
tor, since the mutator may turn an idle process to active as a result of the synchronisation
with the collector (section 2.4.1) (Hudak and Keller 1982, Augusteijn 1987, Derbyshire
1990, Juul and Jul 1992).

Global synchronisation can be detected by any existing distributed termination de-
tection protocol (Dijkstra and Scholten 1980, Mattern 1987, Mattern 1989, Tel and
Mattern 1993). However, different distributed tracing algorithms have presented their
own protocols, since the existing solutions may be either very expensive for the garbage
collection problem (Augusteijn 1987) or unco-operative with synchronisation between

mutator and collector.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES ol

Finally, distributed tracing algorithms require the cooperation of all processes in the
network before it can reclaim any objects. This technique, is, thus, neither scalable nor
fault-tolerant.

Below, we present a set of solutions that use the approach described above. These
schemes have the common feature that garbage is only reclaimed with the co-operation
of all processes in the system.

Hudak and Keller (Hudak and Keller 1982) present a concurrent distributed marking-
tree collector based on the Dijkstra’s concurrent mark-and-sweep collector 2.4.1. Mark-
ing (mark an object, scan it and mark its descendents) comprises spawning a mark-task.
In addition, a marking-tree is simultaneously built to provide mechanisms for cooper-
ation and proper termination. The algorithm terminates when there are no more grey
objects in the system (cf. 2.4.1). Termination is detected by having each mark-task
spawn an uptree-task, which propagates upward in the marking-tree. When the root re-
ceives an uptree-task for each mark-task it has spawned, the marking phase terminates.
Each process can then proceed to the sweep-phase independently.

This work leads to a large space overhead in providing space for recording the
marking-tree. It also halts the mutator for a long period when a remote reference
to a potential white object is written into a black object as a mutator needs to execute
(rather than just spawn) a mark-task on the white object. Thus the mutator must halt

until the remote object has been marked and has spawned an uptree-task.

Augusteijn (Augusteijn 1987) also presents a concurrent distributed collector based
on the Dijkstra’s concurrent mark-and-sweep collector. The marking phase operates by
colouring objects. When there are no more grey objects the phase has terminated (cf.
section 2.4.1). When a remote object must be greyed, a request message is sent to the
owner process. The main problem is the detection of a global state in which there are
no grey objects. This global state is detected by a termination detection algorithm as
follows.

Each process can be active-disquiet, passive-quiet or passive-disquiet. Initially, all
processes are active-disquiet. A process will turn from an active-disquiet into a passive-
quiet state when it has no more local grey objects and it has received an acknowledge-

ment for each request message it has sent. Once passive, it remains so, but it changes its

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 02

state from quiet to disquiet on receipt of a request message. This request message can
only be sent by another disquiet process. This means that once all processes are quiet,
they remain so in a stable state. This state is determined by having each process send
to a synchroniser process a message informing it of the change from active to passive.

A process may also turn to a disquiet state when a remote mutator sends a request
message to preserve the “no references from black objects to white ones”. This may
happen when a grey object sends a message to a black object with potential white
descendents. If its descendents are not local, a request message must be sent, possibly
disturbing quiescence. This is no problem, since the sender must be disquiet (it holds
a grey object). The mutator sending the message needs to wait until the objects in
remote nodes are shaded. This may disrupt the mutator.

The global distributed tracing algorithm presented in (Derbyshire 1990) uses a sim-

ilar termination detection protocol.

3.3 Partitioned Tracing

In this scheme, the only information kept by the entry-table is which local objects are
referenced by one or more remote references. Such objects are distinguished by the
presence of an entry-item; the entry does not contain any other information. The entry-
item is created when a process first sends a mutator message containing a reference
to the object. When the reference is passed on to other processes, the entry-item is
not affected. Thus, it cannot be removed without help from a global tracing (Hughes

1985, Juul and Jul 1992, Ladin and Liskov 1992).

The Emerald System

The Emerald garbage collection scheme (Juul and Jul 1992) consists of two sets of col-
lectors, which are applied concurrently. The global scheme is achieved by concurrent
mark-and-sweep collectors on each process, which cooperate as one global garbage col-
lector across the entire network. This global collector tries to achieve completeness even
though various parts of the distributed system may be temporarily unavailable. The
local scheme consists of an independent partial local collection on each process that col-

lects local garbage. These local collectors do a more expedient collection of local garbage

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 93

without being complete. Note that, in this solution, global tracing is needed for col-
lecting both acyclic and cyclic distributed garbage. This is because the inter-process
collector is not reference counting-based.

Any site in the system may initiate a global garbage collection cycle. All messages
in the system are identified with the the current cycle number, making it possible for
the receiver to join the current cycle.

The algorithm is based on a concurrent variant of the mark-and-sweep collector.
The mark-phase is done concurrently with the mutator using an object-fault mechanism
similar to a page-fault mechanism in a virtual memory system (Appel et al. 1988).
This mechanism implements a read-barrier — the mutator processes can only access
black objects. All grey objects are protected (cf. section 2.4.1). The object protection
mechanism ensures that whenever the mutator attempts to access a grey object, a fault
occurs, causing the collector to mark and traverse, that is colour the object black, which
entails shading all the objects reachable from it. Unlike Augusteijn’s algorithm, this
distributed version of the mark-and-sweep algorithm allows a black object to temporarily
hold a reference to some remote object that has not yet actually been shaded at its own
site. Each site maintains a set of non-resident grey objects that makes it possible to
postpone the actual shading of these remote objects. The remote shading involves
sending a message to the remote site. When the site at which the remote grey object
is located acknowledges the message, the reference denoting the remote object may be
removed from the non-resident grey set. A black object is prevented from invoking a
remote white object because objects that are remotely invoked are implicitly marked
and traversed before the invocation is actually performed.

Marking is complete when there are no longer any grey objects in the system. Ev-
ery process in the system needs to cooperate to determine when the mark-phase has
finished. For this purpose the algorithm uses a a two-phase commit protocol based on
acknowledgement messages and pairwise availability. This protocol is robust to process
and message failures, but depends on each process being aware of all other processes in
the system, hence not being scalable.

As local and global garbage collection operate concurrently on the same objects,
conflicts may arise. To prevent the two collectors from conflicting with each other, their

activities become mutually exclusive on a given site.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES o4

This algorithm violates the desirable property of locality for distributed garbage: all

processes in the system need to co-operate in order to collect distributed garbage.

Tracing With Timestamps

The algorithm described in (Hughes 1985) is similar to the basic distributed mark-
and-sweep algorithm except that it uses timestamps instead of mark bits. The main
idea of this algorithm is that the timestamp of a live object keeps increasing while the
timestamp of a garbage object eventually stabilises. A global timestamp threshold is
computed. When this threshold exceeds the timestamp of an object, that object is
garbage and can be collected.

This algorithm performs many global garbage collections in parallel. Each processor
makes a contribution to all currently active global garbage collections every time it
performs a local garbage collection. Each process has a clock that is used to record
the time when the garbage collection started locally — the G'C-time. A local collection
propagates the roots’ timestamps to the exit-items. The local roots are timestamped
with the GC-time, while entry-items retain the timestamps last put into them. When
an entry-item is created, it is time-stamped with the local process’ current timestamp.
The local collection in a process is expected to timestamp an exit-item with the largest
local timestamp of any root from which is reachable. To ensure this, references in the
roots are selected for tracing in decreasing order of timestamp.

At the end of the local collection, exit-items’ timestamps are sent to the corre-
sponding entry-items on the target processes in timestamping messages (similar to the
marking messages of the basic distributed mark-and-sweep algorithm). When a pro-
cess receives a timestamping message, it updates the timestamps of the corresponding
entry-items to the maximum of their current value and that received in the message.
When a process increases the timestamp of an entry-item, it records the fact that it has
not propagated the increased timestamping. For this purpose, each process maintains
a timestamp called redo whose value is equal to the greatest timestamp already locally
propagated. Thus, when an entry-item’s timestamp is increased, the redo is set to the
entry-items’s old timestamp if that is lower than its current value. When a process has
processed the timestamping message, it sends back an acknowledgement to the sender.

When the sender has received all the acknowledgements of all messages it has sent, it

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 95

can update its own redo to the local GC-time, provided it did not receive timestamping
messages from other processes itself.

It can be shown that an entry-item timestamped below the global minimum of
the redo’s of all processes — the threshold — is garbage. However, it is tricky and
costly to compute this threshold at any time. Such computation depends on any global
termination algorithm (Dijkstra and Scholten 1980, Rana 1983, Mattern 1987, Mattern
1989, Tel and Mattern 1993).

This algorithm does not preserve the property of locality: it does require all processes
to co-operate in order to collect distributed garbage. Additionally, if a process that
crashes does not recover, the entire global tracing will eventually come to a halt, as the

global minimum redo’s will be stuck at the crashed process’s value.

Logically Centralised Tracing

Ladin and Liskov (Ladin and Liskov 1992) describe a variant of distributed tracing.
The idea is to compute the global accessibility of objects on a single centralised service.
This service is used to store information about the inter-process references. Each pro-
cess performs asynchronous local collections and communicates periodically with the
central service providing it with its inter-process references. From time to time, each
process asks the central service about the reachability of its objects that are not locally
reachable. The answer may indicate that an object is no longer remotely reachable,
thus it can be deleted.

Since each process garbage collects asynchronously, the service never has a consistent
view of the reachability of every object. Thus, the central service adopts a conservative
approach that can be used safely. For this purpose, it uses a timestamp protocol in-
volving loosely synchronised clocks at each process and a bounded delay for messages in
transit. Messages containing references to objects also contain the time at which they
are sent.

To reclaim cycles they also timestamp objects as Hughes. Each public object is
timestamped with the latest time at which it was accessible from some process, and
the algorithm is based on the premise that timestamps of accessible objects continue to
increase, while those of garbage objects eventually become constant. These timestamps

are also kept in the central service and the threshold is also computed in the central

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES o6

service (avoiding a termination detection protocol). In contrast with (Hughes 1985),
only garbage objects in cycles will be identified and collected by this technique. Most
objects will be found to be inaccessible earlier (without using timestamps).

In this service the processes do not have to communicate with each other for the
purpose of garbage collection. The communication with the service can be performed
in the background. The drawback, however, is that the server, albeit replicated, can
become a bottleneck in a large system. Also, the processes have to transfer a fair amount
of information to the server in order to have it detect all garbage.

Although this algorithm ameliorates some drawbacks of Tracing with Timestamps, it
still requires the co-operation of all processes in the system in order to collect distributed

garbage.

3.4 Reference Tracking
The reference counting algorithm is promising to distribute for the following reasons:

e [t is performed in small steps interleaved with the mutator, allowing concurrency
without the need of synchronisation and hence presenting lower communication

costs.

e There is no need to scan global data structures.

Distributed reference counting is a simple extension to uniprocessor reference count-
ing. Each entry-item stores a count of the number of exit-table items that point to it.
Duplicating or deleting a reference to an object requires, as part of the increase and
decrease protocol, increment and decrement messages to be sent to the owner of the
object in order to increment or decrement, respectively, the corresponding entry-item’s
reference count.

Distributed reference counting, however, poses some problems: it is vulnerable to
out-of-order delivery of reference counter manipulation messages, leading to premature
reclamation of live objects — race conditions. There are two types of race conditions,
both possibly leading to the unsafe reclamation of a reachable object. We call them

decrement/increment and increment/decrement race conditions.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES

Process P Process Q

mutator message(z)

,,,,,,,,,,,,,, =

ProcessR

O

decrement /" increment

Figure 8: Decrement/increment race condition

Process P Process Q

mutator message(z)

,,,,,,,,,,,,,, =

ProcessR

O

increment /" decrement

Figure 9: Increment/decrement race condition

o7

Figure 8 illustrates the decrement/increment race condition. Suppose process P

holds a reference to object z in process R, and sends a message to process () containing

a reference to z. Process @) receives this message and sends an increment message to

R concerning object z; concurrently, process P deletes its reference to z and sends the

corresponding decrement message to R. If the decrement message arrives first at R,

then z is considered to be unreachable and is unsafely reclaimed.

On the other hand, suppose process P sends the increment message before sending

the reference to z to (). This also results in a potential race condition.

Figure 9

illustrates the increment /decrement race condition. Suppose that @ receives the message

and immediately discards it. Therefore it sends a decrement message to R. Once again,

if the decrement message arrives first at R, z is unsafely reclaimed.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES o8

This scheme is also less fault-tolerant then the first. If the increment message to
R succeeds, but the mutator message does not arrive to @, the reference count of Ei,
would be erroneously incremented, compromising the liveness of the algorithm.

We model the transmission of a z-reference as an incomplete transmission.

Incomplete transmission The transmission of a z-reference is incomplete while the
owner of z does not receive the corresponding increment message. A potential race
condition may occur when a decrement message is sent during this period.

Race conditions can be resolved by imposing a global order on message delivery,
which is expensive. Moreover, distributed reference counting is not resilient to message
failures because increment and decrement messages are not idempotent and must neither
be duplicated nor lost.

A number of variations of the standard distributed reference counting algorithm im-
prove resilience to either race conditions, message failures or process failure. These vari-
ants can be grouped in the following categories: acknowledgement messages, weighted

reference counting, indirect reference counting and reference listing.

3.4.1 Acknowledgement Messages

Acknowledgement messages suppress those potential race conditions described in the
section above.

Lermer and Maurer (Lermen and Maurer 1986) describe a communication protocol
based on acknowledgement messages that provides a correct distributed reference count-
ing algorithm. This protocol assumes that point-to-point communication links can be
modeled as infinite length FIFO queues (and hence do not allow loss or duplication of
messages). The protocol is based on four kinds of messages: delete messages, acknowl-
edge messages, copy messages and acknowledge request messages; and two attributes
per object in a processor, giving the number of acknowledge references to that object
and the number of ‘incomplete’ references to it. A copy of a reference to an object
passed to a process P is complete when P receives a copy message (with the reference)
and an acknowledgement message from the process holding the object (this message
acknowledges the increment of the object’s reference counter). This process sends this

acknowledge message after receiving an acknowledge request message from the process

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 99

doing the copy. A process P can only delete a reference to an object if that reference
is an acknowledged reference. This algorithm eliminates race conditions, and allows a
partial detection of lost messages, at the expense of a significant overhead in message
traffic for each reference copied.

This algorithm is still not completely resilient to message failures — increment and
decrement of reference counts is still a non-idempotent operation and messages cannot
be lost or duplicated — nor, as with standard reference counting, to process failure. As
references (counts) cannot be identified with processes, it is not possible to associate
them with crashed processes, hence to be disregard.

Birrel et. al. (Birrel et al. 1994) describe a variant of the reference counting technique
for reclaiming Network Objects (Birrel et al. 1993). We explain this technique in greater
depth in section 3.4.4, but we introduce it here because it also uses acknowledgement
messages to prevent race conditions.

References to Network Objects are created as a side-effect of marshaling references in
remote invocations. The potential race condition between concurrent copy and deletion
of the same reference is avoided by preventing the remote reference from being reclaimed
in the sender process until this process receives an acknowledgement from the target
process indicating that the operation has been completed, that is, the target process has
already reported the creation of the new reference to the owner of the object. Following
the terminology in (Ladin and Liskov 1992, Maheshwari 1993), the transmitted reference
is kept in a translist. The references in the translist are seen as roots for the local
collection, preventing the collection of the exit-item correspondent to the transmitted
remote reference.

This extra acknowledgement is only needed when a reference is sent as a result of
a remote method invocation. If it is sent as an argument, the method’s return serves
as the acknowledgement that the operation is completed. It seems that performance is
not seriously affected by this extra message, because the wait for the acknowledgement
is asynchronous with the mutator: for safety, the object is kept locally reachable until
the acknowledgement arrives. However it still doubles the number of messages for the

worst case.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 60

3.4.2 Weighted Reference Counting

Bevan (Bevan 1987) and Watson (Watson and Watson 1987) independently proposed a
new algorithm — Weighted Reference Counting — that eliminates increment messages,
and hence the potential race conditions.

To each reference is associated a weight and to each object a standard reference

counter. The algorithm should maintain the following invariant:

The reference counter of an object is equal to the sum of the weights of the

references to it.

When a remote reference is first created, a weight equal to the reference counter
of the object is assigned to it. Each time a reference is duplicated to another process,
its weight is halved and the remainder is sent to the target process. When the process
receives it, it associates the weight with the new reference. Thus the sum of the weights
is kept unchanged. The increment message is thus not necessary.

When a process deletes a remote reference, it sends a decrement message with the
associated weight to the target process. When the process receives the message, it
subtracts the received weight from the object reference counter. The object may be
reclaimed, if it is not reachable locally, when its reference counter becomes zero.

This algorithm has extra space associated with each remote reference. Bevan (Bevan
1987) proposed using weights that are power of two, in order to store only the logarithm
in the references. In addition, this algorithm has the following problem: the number of
times a reference may be sent to another process is limited by its initial weight. This
problem can be solved with the use of an extra indirection object. This solution may
create remote indirections (if the indirection object is not created on the same processor
holding the object pointed by the reference being duplicated) which are expensive, and
also affect the access to the data.

Weighted Reference Counting avoids race conditions and improves communication
overhead, but is not resilient to message loss or duplication, or process failures, in order
to ensure safety and completeness.

Dickman (Dickman 1992) improves on Weighted Reference Counting in two aspects:
resilience to message loss and indirection objects. He defines a new weaker invariant

that is compatible with message loss. The new invariant states:

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 61

The reference counter of an object is greater or equal to the sum of the

weights of the references to it.

A lost or miss-ordered message does not violate this weakened invariant. In contrast,
a duplicated decrement message remains problematic because it could make the sum of
the weights of the references to an object greater than the object’s reference counter.

This algorithm avoids the use of indirection objects when weights cannot be split,
by using a special null weight value. In this case, the reference counter is always greater
than the sum of the partial weights, thus preventing the object from being reclaimed at
all. In this case, this algorithm generates memory leaks. The author assumes that some
cyclic distributed tracing collector is used in conjunction with the Optimised Weighted

Reference Counting, in order to reclaim such objects and cycles of garbage.

3.4.3 Indirection, and Strong-Weak Pointers

Piquer (Piquer 1991) suggests an algorithm that improves on Weighted Reference Count-
ing by avoiding the indirection objects at the expense of some memory overhead. It also
avoids the use of increment messages by maintaining a distributed reference counter for
each remotely referenced object. Increments are performed locally, therefore without
communication. This is achieved by always maintaining enough information on each
process to do the increments locally.

The key observation is that the process that sends a reference already has an entry-
item that protects the remote entry-item at the owner of the object. If the remote
reference sent to the target process is made to protect the exit-item at the sender,
the entry-item at the owner will be protected indirectly. The basis of the algorithm is
to maintain a tree structure representing the diffusion tree of a reference throughout
the system. For this purpose, remote references are extended with two fields: the
identification of the process that sent the reference and a counter recording the number
of times the reference was copied from the local process. The latter is incremented every
time the reference is copied. This means that a new (remote) reference was created to
the target object. A reference may be deleted if its reference counter is zero. When this
happens the process sends a decrement message to the process from which the reference

came. In its turn, this process decrements the counter of the reference it holds.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 62

As for the other proposals based on reference counting, Piquer’s proposal is not
resilient to message or process failures. However, this technique may be used in con-
junction with another variant of reference counting. The work on SSP chains (Shapiro
et al. 1992, Plainfossé and Shapiro 1992) combines reference listing — a fault-tolerant
variant of reference counting (see section 3.4.4) with indirection.

A further problem with the indirection method is that if the receiver accesses the
reference, it is indirected through the sender. The work in (Shapiro et al. 1992, Plain-
fossé and Shapiro 1992) proposes the use of weak and strong pointers. An exit-item
encapsulates two pointers: a strong and a weak one. The strong pointer indicates the
next entry-item in the above diffusion tree. It is used only for garbage collection. The
weak pointer short-cuts ahead of the strong pointer and allows direct access to the ob-
ject. As an optimisation, the strong pointers can be short-cut in the background to
point directly to the object after the owner has created a corresponding entry-item.

One drawback of using strong-weak pointers is that every reference included in muta-
tor messages actually occupies the size of two references. As pointed out by (Maheshwari
1993), if the mutator message is carrying an object that contains references, the object
would have been marshaled into a different format wherein the contained references are

twice as big.

3.4.4 Reference Listing

Reference Listing (Shapiro et al. 1992, Plainfossé and Shapiro 1992, Birrel et al. 1994,
Maheshwari and Liskov 1994, Ferreira and Shapiro 1996) differs from standard reference
counting in the way the reference counter of a remotely referenced object is managed.
Instead of maintaining a simple reference counter, recording the number of remote ref-
erences for each object, the entry-item for an object keeps a list of the process identifiers

that refer to the object. The following safety invariant is maintained in such systems:

If process P refers to an object z in process (), then P is in Fi,’s reference

list.

Increment and decrement messages are replaced, respectively, by insert and delete
control messages, which include the process’ identity. To preserve the invariant, when-

ever a reference is copied, the process acquiring the new remote reference must be

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 63

inserted in the target object’s reference list. When a process P no longer refers to a
remote object, the owner must remove it from the object’s reference list. There are
two ways of doing this. P may send a delete message to the owner (Birrel et al. 1994)
or may periodically send the complete list of references that it holds for objects in
the owner (Shapiro et al. 1992, Plainfossé and Shapiro 1992, Maheshwari and Liskov
1994). A failed deleted message needs to be remembered and retried, while a lost list is
compensated for by the subsequent one.

Race conditions may be avoided by using acknowledgement messages (Birrel et al.
1994) (as explained in section 3.4.1) or using any other variation of reference counting
that avoids the sending of synchronous insert messages; (Shapiro et al. 1992, Plainfossé
and Shapiro 1992) uses indirection and weak-strong pointers (as explained in section
3.4.3).

Reference Listing has two important advantages over the standard reference counting
variants: it improves resilience to message and process failures, albeit at the expense of
some memory overhead. Insert and delete control messages are idempotent, in contrast
with the increment or decrement messages in standard reference counting, and therefore
can be retried on failure. However, a straggler delete message is potentially unsafe.
Suppose that an insert message was sent after the delete message to re-create the entry-
item. If the delete message arrives before the insert message, the entry-item may be
deleted for good. One way to avoid this problem is to use timestamped insert and delete
messages. A process stores the timestamp from the insert message in the entry-item. A
delete message is effective only if it is timestamped higher than the entry-item (Shapiro
et al. 1992, Plainfossé and Shapiro 1992, Birrel et al. 1994).

Tolerance of process failures relies on the ability of each process to compute the set
of processes holding references to an object it owns, by looking through the object’s

reference list, so it can prompt one of those to proceed with any communication.

3.4.5 Timestamp Packet Distribution

The work presented in (Louboutin and Cahill 1997) is based on the work described
in (Schelvis 1989) that is often overlooked in the literature because of its complexity,
and message and space overhead. It describes a new approach to cyclic garbage col-

lection that entails reconstructing the vector-times (Dependency Vector — DV) that

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 64

characterise the causal history of relevant events of the mutator processes’ computa-
tion. These events are those that result in modifications to the inter-process paths in
the global object graph. The global root graph is formed by the global roots and the
local roots of each individual process. It is shown that knowing the causal history of
these events makes it possible to identify garbage objects that are not identifiable by
means of per-process garbage collection alone.

The global graph’s edge-destruction events’ dependency vectors are constructed by
propagating increasingly accurate approximations of these vectors along the paths of
the global root graph.

This algorithm preserves the property of locality. Detection of garbage only requires
the co-operation of those processes that contain the cycle. The underlying reference list-
ing scheme is responsible for repeatedly circulating approximations of the dependency
vector until the complete transitive closure, that is, the full vector-time of events respon-
sible for the creation of all the paths to an entry-item, has been determined. Whenever
an entry-item receives a dependency vector, a new approximation can be computed.
If this newly computed dependency vector is the actual full vector-time and indicates
that the entry-item is no longer reachable from an actual root (recall section 3.1), the
entry-item is removed.

This algorithm is very complex, however, and, as pointed out by (Maheshwari and
Liskov 1997a), its space overhead is large. It requires full reachability information
between all entry-items and exit-items, and each entry-item FEi; stores a set of vector
timestamps; each vector corresponds to a path Ei; is reachable from. At present we
argue that some issues need more clarification, in particularl, the maintenance of the

global root graph in the presence of mutator concurrency.

3.5 Hybrid Collectors

Distributed reference counting based algorithms cannot collect cycles of garbage span-
ning processes. Collecting interprocess cycles of garbage is, however, an important
issue especially for long running distributed systems (e.g. distributed databases), where
floating garbage is particularly undesirable as even small amounts of uncollected garbage

may accumulate over time to cause significant memory loss (section 1.5).

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 65

Tracing in groups (3.5.2) Train Collection (3.5.4)

| | | |
| | | |
Local Tracing (3.53) Object Migration (3.5.5)
Complementary Tracing (3.5.1) Back Tracing (3.5.6)

Better Locality

Figure 10: Locality Spectrum

Several techniques have been proposed for cyclic distributed garbage collection. In
this section we will provide a brief description of each, and discuss how they meet our

primary goals of completeness, efficiency and fault-tolerance as we stated in section 1.

The degree of locality is the metric we have chosen for judging distributed garbage

collection. For cyclic distributed collection, this is defined as follows (Maheshwari 1993):

Property of Locality The collection of distributed cycles should not require the co-
operation of any process other than those containing the cycle.

For the same reasons described in section 3.1, we judge cyclic distributed garbage
collection techniques on the extent to which they meet this property. We summarise a
set of cyclic distributed garbage collection techniques found in the literature in figure 10
(the enumeration represents the section in which they are described). Complementary
Tracing methods do not preserve the property of locality. As we move to the right, the
techniques improve, in some way, the locality of the algorithms.

Some hybrid approaches are based on the choice of suspect objects: objects that
may be garbage. Those objects are identified by heuristics. Heuristics are not accurate
because, although are able to identify garbage objects as suspects, they may identify live
objects as well. This fact may result in the performance of wasted work that directly
influences factors like message passing, local computation overhead and space overhead.
It is then necessary to trade locality against these factors.

We have identified two heuristics in the literature: local reachability (Bishop 1977,

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 66

Shapiro et al. 1990, Gupta and Fuchs 1993, Rodriguez-Riviera 1995) and distance heuris-
tic (Maheshwari and Liskov 1995).

Local reachability An objects is suspected of being garbage if it is not reachable
locally.

This heuristic is weak if we consider, as is suggested by (Maheshwari and Liskov
1995, Gupta and Fuchs 1993), that in a long-lived distributed systems it is likely that
objects are not locally reachable, but still live. (Gupta and Fuchs 1993) suggests that a
suspect object must not have been used for some time period. But, again, in long-lived

distributed systems it is likely that live objects may not be accessed for long periods.

Distance heuristic The Distance Heuristic (Maheshwari and Liskov 1995) is based
on the “distance of objects” from a root. The distance of an object is the length of
the shortest path from any root to the object, that is, the minimum number of remote
references in any path from any root to the object.

Suspects are found by estimating distances. A distance field is associated with
each entry-item. When a new process is added to an entry-item list, its distance is
conservatively set to one. A root is modeled as an entry-item with zero distance. The
local collector propagates distances from entry-items to exit-items. Changes in the
distances of exit-items are sent to target processes, where they are reflected in the
corresponding entry-items. The estimate of the the distance of a cyclic distributed
garbage objects keeps increasing without bound; that of a live object does not.

The following theorem is defined: If all processes containing a cycle perform at least
one local collection in a certain period of time, called a round, then n rounds after the
cycle became garbage, the estimated distances of all objects in the cycle will be at least
n.

Therefore, they select a suspicion threshold distance, D. Objects with estimated
distances greater than D are highly likely to be garbage. Such objects (entry-items) are
candidates for suspect objects. The choice of the threshold depends on the expected
distance of live objects. Although estimated distances of live objects may temporarily
deviate significantly from their actual distances, this is not expected to be common.

The threshold can be chosen to be a small multiple of the expected maximum distance.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 67

3.5.1 Complementary Tracing

The idea of complementary tracing is to provide periodically a global tracing collector
(cyclic collector) to collect circular garbage (Dickman 1992).

This algorithm violates the desirable property of locality: all processes in the system
need to co-operate in order to collect distributed garbage cycles. Indeed, the drawbacks
of this scheme are the same as those of global tracing itself (section 3.2), except with
reduced severity because the responsibility of tracing as a complementary scheme is to

collect cycles of garbage.

3.5.2 Tracing in Groups

Lang et. al. (Lang, Quenniac and Piquer 1992) present an algorithm for tracing within
groups of processes. They combine reference counting and mark-and-sweep in order to
reclaim inter-group cycles of garbage. A group is a set of processes that may overlap or
include other groups. Multiple collections on different groups can run in parallel.

A group collection begins with group negotiation. The next phase — initial marking
— distinguishes inter-group from intra-group references. For this purpose they use a
technique inspired by Christopher (Christopher 1984). At the end of this phase all the
entry-items of processes within the group are marked with respect to the group. The
marks on entry-items depend on whether they are referenced from inside or from outside
the group. In the following phase — local propagation — local collectors propagate the
marks of the entry-items towards the exit-items. Then, in the next phase — global
propagation — the group garbage collector propagates the marks of the exit-items
towards the entry-items they reference, when within the group. The preceding two
phases are repeated until marks of entry or exit-items of the group no longer evolve.
When this is completed, any dead cycles can be collected. Objects referenced from
outside the group are considered to be reachable. Group stabilisation — when there are
no more marks to propagate locally — can be detected, in the absence of failures, by
any distributed termination detection protocol (the paper does not describe how it can
be done).

This algorithm approximates the property of locality in the sense that the collection

of intra-group cycles does not need co-operation of other processes in the system, but

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 68

only of the members of the group. In this way, it tolerates process failures in the sense
that if some process is down (or unreachable due to communication problems) the set
of accessible processes can still form a group, hence the group collection is not blocked
due to a crashed process. However, the new group collection is restarted almost from
scratch. Also, a small distributed cycle can be collected quickly by a small group instead
of having to wait for a global tracing.

Although it is suggested that a process may be removed or added during garbage
collection, knowing which processes should be grouped (and when) in order to reclaim
the maximum amount of inter-process cycles of garbage is still a difficulty of this al-
gorithm. Some groups could be large enough so that cycles can be collected, but the
large they are the longer the group collection takes. The authors propose a tree-like
hierarchy of embedded groups. Multiple group collections can be activated at the same
time. Groups may overlap, though this puts more burden on local collections. This
ensures that each cycle is covered by some group, but the smallest group covering, for
example, a two-process cycle may contain many more processes.

Unfortunately, this algorithm is very difficult to evaluate because of the lack of detail
presented. Dynamic configuration of processes into groups that succeed in collecting

circular garbage is not trivial.

3.5.3 Local Tracing

Local tracing techniques basically combine reference counting based techniques (acyclic
algorithm) with distributed tracing (cyclic algorithm). Usually the cyclic algorithm is
triggered at a low rate and most garbage is assumed to be reclaimed by the acyclic one.

Jones’ and Lin’s approach (Jones and Lins 1993) combines the ideas behind weighted
reference counting with mark-and-sweep in order to collect interprocess cycles of garbage,
as was first proposed in (Lins and Jones 1993). This idea may be seen as based on the
trial deletion technique proposed by Vestal (Vestal 1987).

The mark-and-sweep algorithm does not trace the whole distributed graph. Instead
it traces locally from an object suspected to be part of a garbage cycle. Every time a
reference to a shared object is deleted, it is inserted on a control-set of suspect objects.
When a distributed garbage collection is triggered, it picks an object from the control-set

and the object’s transitive referential closure — the suspect subgraph — is inspected.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 69

The suspect graph is traced in order to decrement the object’s counter (previously
copied). At the end of tracing, if the object’s counter has dropped to zero, it means
that this object belonged to a garbage cycle and it can be safely reclaimed.

Tracing may discover objects that cannot be proved to be garbage. Thus it may
involve live objects, leading to wasted work. The efficiency of this algorithm depends
on the accuracy of the heuristic for choosing the seed object. So, this algorithm ap-
proximates the property of locality. It is thus more scalable than global tracing be-
cause it eliminates the need for global synchronisation. However, it has three main
disadvantages. First, this algorithm assumes that local collections are also reference
counting-based; second, each phase of the local mark-and-sweep must be sure that the
preceding phase has finished before starting; finally, the corresponding phases of differ-
ent distributed collections must synchronise in order to allow concurrency.

Maeda et. al. presented (Maeda, Konaka, Ishikawa, TomoKiyo, Hori and Nolte
1995) a new algorithm that borrows the ideas of Jones’ and Lins’ algorithm. The main
advantage is that it does not require the local collections to be reference counting-
based. However, as above, if multiple processes on the same cycle initiate separate local

tracings, the collection of the cycle will fail.

3.5.4 Train Collection

Hudson et al. have adapted their Mature Object Space ‘train’ algorithm for distributed
garbage collection (Moss, Munro and Hudson 1996, Hudson, Morrison, Moss and Munro
1997). This algorithm is complete, non-disruptive, incremental and scalable.

Like the other partitioned collectors, it divides the address space into a number
of disjoint partitions called cars. To collect cyclic garbage that spans more than one
car, cars are grouped together in trains. Partitions are grouped in processes. Each car
resides on a single process but a train may span more than one process. By ensuring
that all the cars in a train are collected by copying the reachable objects into other
trains, cyclic garbage will be left behind and can be collected when marshaled into the
same train.

This algorithm also uses a reference listing scheme (recall section 3.4.4). It main-

tains for each entry-item, corresponding to an object o at process P, a set of those

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 70

cars that have pointers to o at P — the remembered set of 0. The protocol that imple-
ments the insert and delete messages introduced in section 3.4.4 is asynchronous, only
assuming FIFO channels between any two processes. When a reference to an object o
is transmitted from a process P to process (), process P informs the process holding o.
As noticed by (Birrel et al. 1994), this approach is not fault-tolerant. The sender may
notify the process holding the object, but, for some reason, process () may not receive
the reference to o. In this case,) will be inserted in o’s remembered set, compromising
the liveness of the protocol. The same protocol is used to update the references to an
object that has been moved to a different car/train.

Joining a train requires a distributed termination protocol, that only involves the
processes that belong to the train the process wants to join. Those processes form a
ring that is identified and managed by the process that creates the train — the master.
A process that wants to join the train communicates with the train’s master. Leaving
the ring is more subtle. The algorithm provides a technique that propagates the leave
intention around the ring. The technique works for any number of simultaneous deletions
from the ring. However, it depends on the fact that messages flowing around the ring
cannot pass one another.

This algorithm depends on being able to detect when there are no references into a
train from outside of the train, allowing the whole train to be reclaimed at once. For
this purpose, it uses a distributed termination protocol that, as above, only involves
the processes that belong to the train. The basic idea in detecting that there are no
references into a train is to pass a token around the train’s ring. The protocol described
in (Hudson et al. 1997) accounts for objects being created in the train or added to the
train during detection.

This algorithm shares the features of any partitioned solution for distributed garbage
collection. It is scalable in that it is decentralised, uses asynchronous communication,
and has no protocols that demand the involvement of all nodes. It reclaims objects
incrementally without global knowledge of reachability. However, it requires an object
substitution protocol to ensure that all old references to an object are updated to refer
to the new copy, when it is moved to another car/train. This seems to add a significant
message overhead to the system.

The number of trains and the creation of new trains may influence the degree of

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 71

locality of this algorithm. A garbage train may include more than one garbage cycle.
Consequently, collection of garbage cycles may delay the collection of other garbage
cycles. Moreover, this implies that the token technique may visit processes not belonging
to a garbage cycle in other to be able to collect that cycle. However, the extent of these
problems may only be known after measurements of real applications. Intuitively, this
algorithm exhibits a good locality, however at a cost of the message overhead required
by the substitution protocol.

Finally, although this algorithm is fault-tolerant in the sense that it does not require
the participation of all processors in the system, the authors suggest an extension to

tolerate process failure and communications failures.

3.5.5 Object Migration

The idea of object migration is to consolidate a distributed garbage cycle on a single
process in order to transform a distributed cycle into a local cycle that can be easily
reclaimed by a tracing local collector.

This idea was first proposed by Bishop (Bishop 1977). In his thesis he proposes
that a local collector be broken into two parts, in order to find which objects are only
referenced remotely. These objects are then considered to be migrated to the process
from which they are being referenced. This will bring the benefit of consolidating an
unaccessible interprocess cycle into a single process where it can be reclaimed. This
technique was followed by (Maheshwari and Liskov 1995, Shapiro et al. 1990, Gupta
and Fuchs 1993).

Migration techniques have, however, some practical problems: they may tend to
migrate live objects along with garbage and they may need to migrate objects multiple
times before they converge on the same node. Migration of live objects is undesirable
because it wastes process and network bandwidth, and also interferes with load bal-
ancing. The definition of heuristics may help to distinguish which objects are likely
to belong to a garbage cycle. Some schemes use the “local reachability” heuristic for
identifying suspect. Such suspects are migrated either immediately or if they are not
invoked for long periods (Gupta and Fuchs 1993, Shapiro et al. 1990).

A recent work (Maheshwari and Liskov 1995) uses the “distance heuristic”. It pro-

poses to limit migration to those objects with distances above some threshold because

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 72

they have a high probability of being garbage. This technique reduces highly the prob-
ability of migrating live objects, reducing wasted heavy work.

The consolidation of a garbage cycle may be very inefficient if it involves migrating
objects multiple times before they converge on the same process. The work presented
in (Maheshwari and Liskov 1995) also presents a simple way of selecting one of the
processes containing a garbage cycle as the destination, avoiding multiple migrations.

This algorithm is fault-tolerant and scalable because it does preserve the property
of locality: the collection of a cycle only requires the co-operation of those processes
containing the cycle. The better the heuristic that identifies candidates for migration,
the greater the probability of migrating only garbage objects. However, it still presents

some problems:

e Migration requires support for object migration. Some heterogeneous systems

either do not allow migration or make it rather cumbersome.

e Migrating an object is a communication-intensive operation, not only because of
its inherent overhead but also because of the time necessary to prepare an object
for migration and to install it in the target process. It may also interfere with
other object management goals such as load balancing (Shivaratri, Krueger and

Singhal 1992).

3.5.6 Back-Tracing

Recent works (Fuchs 1995, Rodriguez-Riviera 1995, Maheshwari and Liskov 1997a) pro-
pose an original technique based on back-tracing, instead of forward tracing, in order to
collect interprocess cycles of garbage. Call the traditional reference graph the forward
reference graph (FRG). The inverse reference graph (IRG) is obtained by switching the
direction of all the references in the FRG (Fuchs 1995). Back-tracing, as opposed to
forward tracing, follows the references in that inverse graph. When an entry-item is
suspected to be garbage, the references that point to it are recursively back traced.
The back-tracing continues until the closure of all the objects from which the suspect
entry-item can be reached is found — the suspect subgraph. If this closure does not
contain any root, then all objects in the closure are reclaimed. This algorithm does not

need global synchronisation and scales well to a distributed system of many processes

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 73

since it only involves the processes containing the garbage cycle.

However, this algorithm imposes an extra overhead on the local collector in order
to determine the local backwards references. It also needs some kind of synchronisation
to allow concurrency between the mutator and collector, and between multiple back-
tracings running at the same time in the same cycle in order to avoid duplication of
efforts. Finally, although the collection of a garbage cycle only needs the co-operation
of the processes that contain the cycle, and thus preserves the property of locality, the
efficiency of the algorithm depends on heuristics in order to avoid wasted work.

The solution presented in (Rodriguez-Riviera 1995) computes the backward ref-
erences during the local garbage collection. However, local objects may be traced
more than once, which imposes a great overhead on the local collector. To resolve
the first synchronisation problem, this solution uses a barrier against new references or
method invocations on remotely referenced entry-items to detect modification in the
back-references after the last local collection. Then, a second pass through the sus-
pect subgraph, done to inspect the barrier, will state if the back-tracing is still valid
or not. This second step requires the state of the first back-tracing to be recorded in
a single token-message or maintained in the processor that has started the back-trace
(Rodriguez-Riviera and Russo 1997). The former solution is fault-tolerant in the sense
that, if a processor is known to have crashed, it is just ignored (references from the
crashed process are deleted); if not, a network failure is assumed and the token is safely
discarded. Later, another suspect would start another back-tracing. The later solution
is less fault-tolerant because if the starter process fails, the back-trace must be aban-
doned. However, recording the back-tracing state in a single message may lead to huge
messages if the suspect graph includes too many objects.

Fuchs (Fuchs 1995) does not suffer from this problem since he assumes that there
are only remote references, and uses Piquer’s or Birrel’s algorithm. Consequently, an
entry-item always knows about new references to it. But this situation is unrealistic.

Maheshwari and Liskov (Maheshwari and Liskov 1997a) present an efficient method
for computing local backward references that uses Tarjan’s algorithm (Tarjan 1972). The
method computes the backward references during the local forward trace during a local

garbage collection for every suspect entry-item. Each local object is only traced once.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 74

To resolve the first synchronisation problem, they use the same barrier as (Rodriguez-
Riviera 1995). However, in contrast with (Rodriguez-Riviera 1995) it does not perform
a second pass through the suspect sub-graph. This has the advantage of not needing to
record the state of the back-trace. Instead, it creates a chain of activation frames for
each call on each entry or exit-item — a call returns garbage if it reaches an item that
has been already visited or returns live if it reaches a root. A back-trace is active at an
item if it has a call pending there. Thus, the algorithm safely ensures that if there is any
overlap in the periods when a barrier is performed in an item and when a back-trace is
active there, the trace will return live.

As for the second synchronisation problem, (Rodriguez-Riviera 1995) and (Mahesh-
wari and Liskov 1997a) do not present any solution. However, (Maheshwari and Liskov
1997a) argues that, using the distance heuristic, it is likely that one suspect item will
cross the distance threshold first.

Fuchs (Fuchs 1995) present an algorithm that uses a total partial order in the back-
tracings identifiers. If two different back-tracings arrive on the same object, the one
with the ‘biggest’ identifier will proceed, and the other one is blocked until the higher
priority back-tracing terminates. If the encounters are in order of decreasing priority,
his solution may still lead to repeated work.

Fuchs (Fuchs 1995) and Maheshwari and Liskov (Maheshwari and Liskov 1997a) sug-
gest the use of back-tracing in conjunction with the “distance heuristic”. This decreases
significantly the probability of performing wasted work. Rodriguez-Riviera (Rodriguez-
Riviera and Russo 1997) suggest the use of the “local reachability” heuristic in conjunc-
tion with generational back-tracing and back-tracing factoring. The idea is to improve
the accuracy of the “local reachability” heuristic by taking into account the ages of the
objects. He tries to decrease the number of redundant back-tracings by collecting less
frequently objects that have survived collections. Back-tracing factoring improves this
heuristic by propagating the output of a failed back-tracing to every object involved in
the back-tracing.

The three algorithms presented are fault-tolerant. If processes crash, the first two
algorithms abort very cheaply (this is not true for the solution in (Rodriguez-Riviera and
Russo 1997), as we said). They are also resilient to duplicated messages, relying on the

idempotency of the algorithm operations and message identifiers. Acknowledgements

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 75

protect them against loss of messages.

Back-tracing algorithms are promising for cyclic distributed garbage collection, al-
though the problem of synchronising multiple back-tracings running at the same time
in the same cycle in order to avoid duplication of efforts still persist. Also, pathological
configurations — for example, the mutator may infinitely create new back paths for a
back-tracing — may compromise the liveness of the algorithm. A possible solution is
to abandon the back-tracing, but this would lead inevitably to wasted work. However,
this configuration is not likely to happen.

Only measurements of the behaviour of such algorithms in real applications may

give a better understanding of their effectiveness.

3.6 Garbage Collection in Distributed Shared Memory

In Distributed Shared Memory systems garbage collection is provided by adding func-
tionality to the Distributed Shared Memory service, rather than built on top of it. The
work presented in (Ferreira and Shapiro 1996, Ferreira 1996), supports persistence by
reachability in a distributed shared address space transparently and efficiently. The
main issue in these system is coherence interference. This work addresses this issue
while being scalable and efficient.

Garbage collection for persistent distributed shared memory systems borrows many
ideas from the algorithms we have described. However, they must be extended to
account for multiple replicas of objects. In addition, while in RPC-based systems there
is one partition per process, in such systems partitions and processes are orthogonal.

The shared address space spans every process in a distributed system and it is in-
herently large. Consequently, a scalable solution should be based in a partitioned model
of the address space. The solution in (Ferreira and Shapiro 1996, Ferreira 1996) ap-
proximates a global trace with a series of non-synchronised, per partition, local traces.
Each partition (a bunch) is collected independently at the process where it is cached.
In addition, if a partition is replicated, each one of its replicas is also collected indepen-
dently. Inter-partition garbage is collected using the reference listing protocol described
in section 3.4.4.

The intra-partition collection does not compete with applications for coherent data,

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 76

there is no synchronisation between collectors and mutators or between different col-
lectors, and the garbage collection messages are asynchronous and exchanged in the
background. The price to pay for these features is some degree of conservativeness, and
some messages need to be delivered in causal order.

In order to collect inter-partition cycles of garbage, this algorithm performs a group
collection in partitions cached in the same processor. Here a group collection is simpler
than in (Lang et al. 1992) because this algorithm uses reference listing instead of ref-
erence counting. In this way, references external to the group are easily determined by
not considering entry-items only reachable from inside the group as roots for the group

collection. However, such groups may not contain all of a garbage cycle.

3.7 Garbage Collection in Object-Oriented Database Man-

agement Systems

Garbage collection in Object-Oriented Database Management systems borrows many
ideas from the algorithms we have described. Usually they are extended to deal with
the specific safety problems posed by transactional systems. We survey here some of
the work in the literature. However, we mainly focus on how high-level design decisions,
such as partitioned v.s. non-partitioned garbage collection, affects garbage collection.

The work on automatic garbage collection in these systems was mainly developed
on a server-based basis for multiple client-single server architectures (Franklin et al.
1989, Kolodner and Weihl 1993, Yong, Naughton and Yu 1994, Cook, Wolf and Zorn
1994, Amsaleg, Franklin and Gruber 1995, Moss et al. 1996, Cook, Klauser, Wolf and
Zorn 1996). This is because here garbage collection takes the view that data resides
mostly on secondary storage, with main memory being used as a temporary cache
buffer. They focus on garbage collection of persistent stores, which are the core of
Object-Oriented Database Management systems. The only work we know for multiple
client-multiple server architectures is (Maheshwari and Liskov 1994).

The collector presented in (Kolodner and Weihl 1993) is an incremental copying
collector and is correct in the presence of concurrency, concurrency control, and crash
recovery. This work was mainly concerned with devising correct algorithms, in the face

of concurrency and/or failures (Moss et al. 1996). This is a non-partitioned approach,

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 77

thus, like other non-partitioned schemes, this collector makes random access to the heap
and requires the traversal of the entire persistent address space in order to collect any
garbage.

Other works were mainly concerned with efficiency (Yong et al. 1994, Amsaleg et al.
1995, Moss et al. 1996, Ng 1996, Maheshwari and Liskov 1997b). All of them approach
the garbage collection problem using a partitioned scheme. As in the algorithms de-
scribed in this chapter, partitioned collection of a persistent store alone does not collect
inter-partition cycles of garbage.

(Yong et al. 1994) compared incremental copying, reference counting, and parti-
tioned collection in Object-Oriented Database Management systems and found parti-
tioned collection to perform the best. The partitioned scheme involves multiple clients
and a single server. It uses a remembered set for each partition that holds the identifi-
cation of each object holding a reference to that partition. The remember set is created
and maintained by a write barrier. Every object in the remember set needs to be fetched
and scanned before tracing a partition.

In contrast, the work in (Maheshwari and Liskov 1997b) provided an efficient method
that allows partitions to be collected independently. They remember the objects in the
partition that are referenced from other partitions in an entry-table. To keep track of
which partitions reference an object they use a scheme akin to the reference listing pro-
tocol described in section 3.4.4. They also record information about outgoing references
from a partition in an exit-table. Additionally they describe a global tracing scheme for
collecting inter-partitions cycles of garbage.

PMOS by (Moss et al. 1996) is the persistent version of the DMOS described in
section 3.5.4. They collect cycles of garbage and address efficient maintainance of
inter-partition references. As noticed by (Maheshwari and Liskov 1997b), collecting
a partition (a car) may involve accessing multiple target partitions.

Work by (Cook et al. 1994) investigates heuristics for selecting a partition to collect
when a garbage collection is necessary. Their results show that the partition selection
policy can significantly affect application performance and proposed a new policy based
on the observation that when a pointer is overwritten, the object it pointed to is more
likely to become garbage.

The garbage collection algorithm in Thor (Maheshwari and Liskov 1994) has been

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 78

designed for a multiple client-multiple server architecture. Clients cache in memory
objects that are being accessed. The complexity added to the algorithms above is that
the persistent store is distributed, consequently, garbage collection of the persistent
store has to account for references in other servers. Also, clients may acquire references
to servers through the fetching of objects in other servers.

This algorithm is a fault-tolerant version of the reference listing scheme (recall sec-
tion 3.4.4) that handles fetches of objects into clients and commits of transactions. Every
server keeps entry-tables for clients — garbage collection between client and servers —

and for other servers — garbage collection between servers.

3.8 Summary

Distributed garbage collection poses a challenging problem: reclaiming all data struc-
tures while achieving efficiency, scalability, completeness, fault-tolerance and safety.
Several proposals have been made to design a distributed garbage collection that fulfils
all these requirements. The great number of incomplete proposals reflects the difficulty
of the problem.

The most suitable algorithms are those based on reference counting. They can be
made fault-tolerant to message and process failures but they cannot reclaim cycles of
garbage.

The second family, tracing-based techniques, ensures better liveness but most of
them make strong assumptions on the reliability of the network. They require all pro-
cesses to co-operate in the distributed collection. Therefore, those techniques cannot
progress if a single process is crashed.

The drawbacks of global tracing are not so severe if it only runs infrequently, and
its responsibility is limited to collecting circular garbage. However, all processes must
be up together for tracing to complete. This violates the desirable property that the
collection of a cycle not depend on processes other than those that contain the cy-
cle. This drawback can be alleviated if the tracing is confined to a suspect subgraph.
However existing solutions are either not fault-tolerant, or do not allow concurrency be-
tween different tracings, or do not provide methods to confine the sub-tracing to suspect

objects.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 79

Another method to alleviate the drawbacks of global tracing is to trace within groups.
The problem with group tracing is configuring groups in order to collect inter-partition
cycles. Cycles may never be covered by any group and collection of larger cycles may
delay the collection of smaller ones.

Migration schemes for collecting cyclic garbage have the locality property. Since
migration is expensive it is important to use a good heuristic for finding suspects.
The distance heuristic alleviates unnecessary migration. However, some systems do
not support migration due to security or autonomy constrains or due to heterogeneous
architectures. Forced object migration may also result in load-imbalance.

Recently, new techniques have been proposed: Back tracing, Train Collection, and
Causal Dependencies (Timestamp Packet Distribution based). These techniques exhibit
good locality in collecting cycle garbage and look promising for distributed systems.
However, real measurements would be necessary to know to what extent the message
and space overheads of the Train Collection technique and the Causal Dependencies
technique are a problem.

Back tracing is fault-tolerant, concurrent and scalable. However, how to control
multiple back tracing in the same subgraph that could lead to repeated work is still an

open issue.

Chapter 4

A Cyclic Distributed Garbage

Collector

In this chapter we describe a garbage collection technique for large address spaces that
has the potential to collect garbage cycles of objects efficiently.

In a RPC-based system, each process maintains its local address space as a partition
(recall section 1.3). In this and the following chapters we will use process as synonymous
for partition. Our description is based on the partitioned model we provided in section
3.1 and takes into account the mutator model described in section 1.3 for RPC-based
systems.

Our technique is designed to work with a partitioned solution for distributed garbage
collection: reference listing (recall section 3.4.4). In this chapter and the following one
we assume a safe reference listing protocol is provided. We augment the reference listing
scheme with Partial Tracing (PT) in order to collect inter-process garbage cycles.

A partial tracing is a tracing that only involves a subset of the processes in the sys-
tem. This definition will be made clear in the next sections. This technique provides an
efficient, scalable and fault-tolerant solution for RPC-based systems and shows promise
for garbage collection of persistent stores. We want to provide completeness while not
compromising our primary goals of efficient reclamation of local and distributed acyclic
garbage, low synchronisation overheads, avoidance of global synchronisation, and fault-
tolerance. All these aspects raise interesting problems in terms of safety.

As we have already pointed out, the challenge in collecting inter-process garbage

80

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 81

cycles is to preserve locality, that is, to involve only those processes containing the
cycle. Our method belongs to the category of methods that approximate this property,
in the sense that it relies on heuristics for identifying objects that may belong to a
garbage cycle. A group of processes co-operates in the detection of garbage cycles.
Group membership is determined by heuristics that improve inter-process garbage cycle
collection. Collection operates in three phases. First, it identifies a subgraph suspect of
being a garbage cycle: subsequent efforts are confined to this subgraph alone. This phase
also defines the group of processes that will collaborate to collect cycles. The second
phase determines whether objects of this subgraph are actually garbage. Finally, the
last phase makes those garbage objects discovered available for reclamation by local
collectors.

This technique has the luxury of using techniques that are too costly if applied to all
objects or to uniprocessors, but are acceptable if applied only to a subset of distributed
objects we call suspects. More precisely, it may be seen as framework within which other
heuristics may be used.

This chapter first presents an overview of our solution. Then, it describes our pri-
mary goals and outlines some strategies, in the light of the overview, to meet them. The
following sections describe in detail the different phases of a partial tracing. First we
give a very simple description of the different phases without considering termination.
Then, we present the termination protocol. Finally, in section 4.6, we discuss heuristics
to discover suspect objects and to improve the algorithm’s discrimination, and hence its

efficiency.

4.1 General Overview

The reference listing algorithm reclaims acyclic inter-process garbage. However, it is
incomplete because does not collect inter-process garbage cycles. For example, consider
the inter-process cycle illustrated in figure 11. It crosses processes A, B, C' and D. The
entry-items for objects a, ¢, e and g are considered roots of A, B, C' and D processes’
local collection respectively. This condition does not allow the collection of exit-items
reachable by the garbage objects. In this case, the corresponding entry-items’ entry-list

is never emptied by the reference listing protocol (recall section 3.4.4), that is, a cycle of

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 82

entry-list b
entry Eic g{C} Eig
x

table Eig /E'h/

B [¢ |Bxc D :><<R00t
[d JEx, h
C
d Ei g
f{B i
exit c [a |Bq
table | f |EX f x e
e
9]Exg
Ex,

Figure 11: Inter-process Garbage Cycle

garbage is self-supporting with respect to reference listing (more precisely, with respect
to every form of reference counting).

Our scheme is based on the fact that an inter-process cycle of objects is garbage if
it is only reachable from global roots (recall section 3.1) internal to the cycle, that is,
only from entry-items only reachable from exit-items on the cycle. Note entry-items
Ei,, Ei., Ei, and Eig4 in figure 11. It first identifies a distributed subgraph that may be
garbage; secondly, it discovers whether members of this subgraph are actually garbage
by determining if they are reachable from any global root external to the subgraph.
Finally, it makes any garbage objects available for reclamation by local collectors.

The distributed collector requires that each item in processes’ entry and exit-table
has a colour — red, green or white — and that initially all items are white. Red means
that an item may be garbage; green means that we cannot conclude that an item is
garbage (although it may be). Entry-items also have a red-list of process names, akin
to their entry-list.

Partial tracing is initiated at suspect objects: objects suspected of belonging to a
distributed garbage cycle. A new partial tracing may be initiated by any process not

currently part of a tracing. There are several reasons for choosing to initiate such an

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 83

activity: the process may be idle, a local collection may have reclaimed insufficient space,
the process may not have contributed to a distributed collection for a long time, or the
process may simply choose to start a new distributed collection whenever it discovers a
suspect object.

The partial tracing operates in three phases:

Mark-red phase We identify a red set of objects reachable from an object heuristically
suspected of belonging to a garbage cycle, starting from the corresponding entry-
item. This phase determines implicitly which global roots are reachable only from
the suspect subgraph, and forms a group of processes that will collaborate in the

subsequent phases.

Scan phase We try to isolate self-contained red subgraphs, that is, garbage cycles:
the mark-red phase may lead to the discovery of entry-items in the suspect red
subgraph that are reachable from outside this subgraph. These items must be
considered live!. We perform a group collection that aims at marking green any
red object reachable from outside the red subgraph, that is, red objects reachable
from a non-red global root (recall that the global root set includes local roots of
each process and process’s entry-table). A group collection involves a local trace in
each process. However, to trace a group: (7) those red entry-items only reachable
within the suspect subgraph are not considered as members of the local roots, and
(i) tracing continues across boundaries internal to the group, when red exit-items

are marked green. The scan phase ‘rescues’ any red object that may be live.

Sweep phase Any objects remaining red are garbage. We make them available for

collection by the local collector.

There is an important detail in the design of our system that concerns the reach-
ability between entry and exit-items. A first approach invokes a trace from entry to
exit-items every time reachability information is needed. In section 5.1 we show that
we can always cache this information, and we describe a solution proposed in (Mahesh-

wari and Liskov 1997a) that efficiently computes the required information in chapter 8.

! Although, they might be garbage.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 84

The mark-red phase is able to use such information. However, the scan phase will still

perform a recursive trace until we introduce the concurrent model in section 6.

4.2 Goals and Outline of Solutions

In this section we describe the specific problems we want to solve and we outline our
corresponding solutions. Our solution is directed at RPC-based systems, although it
shows some potential for garbage collection of persistent stores. Our main goals are
then efficiency, scalability and completeness, and fault-tolerance. In section 9.2.4 we

describe a possible implementation in persistent stores.

4.2.1 Scalability and Completeness

Our scheme combines reference listing (across process boundaries) with a subgraph
tracing scheme. Reference listing does not collect inter-process cycles, thus it is not
complete. However, it is scalable: it allows independent local garbage collection and
only involves processes containing objects suspected as garbage when collecting inter-
process acyclic garbage. Partial tracing is also a scalable technique since it only involves
processes that may contain garbage objects and does not require the co-operation of all
processes in the system.

Ideally, a cyclic garbage collector would reclaim all cycles of garbage objects. We
claim that our solution has the potential to reclaim all garbage cycles in a large address
space without need for global synchronisation. Our solution provides some degree of
adaptability and can take advantage of heuristics to improve completeness, including
hints from the user program. However, as we show in the next chapter, our first system
design decision is to trade completeness for promptness.

Collecting cycles by tracing within arbitrary groups may be a heavyweight mecha-
nism in that it may never collect all cycles. Suppose there are disjoint cycles between
pairs of sites A, B, C, and D. Then if A and B and C and D always pair up, cycles
between B and C will never be collected. The problem is more serious in a larger
network. Our scheme has a first phase that defines which processes should be involved
in collecting cyclic garbage. Thus, we use heuristics to form groups opportunistically.

Ideally, this heuristic would guarantee that B and C eventually would pair up.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 85

CycleA CycleB

D Partial T racing

Figure 12: Cycle Dependency

The key to this problem is to allow processes to co-operate, simultaneously but
independently, in the detection of garbage cycles. In the case of disjoint garbage cycles,
and assuming that each one would be covered by a separate partial tracing, this would
be possible and would result in the independent collection of each one. For example, two
processes containing a two-process cycle may also contain part of a bigger cycle. Those
two processes may participate, independently and simultaneously, in the collection of
the two cycles, without having to synchronise to organise the collection of each different
cycle.

Moreover, by allowing each partial tracing to work independently and to use pri-
vate information, different partial tracings may operate on the same cycle (this will be
explained in section 5.1) and then co-operate in the collection of that cycle.

Some problems may also arise concerning shape of cycles of garbage. Cycles may
reference other cycles, possibly of different dimensions (number of edges and objects).
Depending on the chosen suspects, collection of one cycle may either delay or abort
collection of other one. This is because the mark-red phase may not trace a whole
set of connected garbage objects. Delays may be acceptable assuming cyclic garbage
spanning processes is generated slowly. In its turn, aborted collections lead to ineffective
and wasted work.

Consider figure 12. It represents a graph formed by two cycles A and B. For
simplicity, each circle represents an object and each object is allocated to a different
process. We call A and B connected cycles. Cycle B is dependent on cycle A, because
cycle B is reachable from cycle A, even if cycle A is garbage. X’s liveness depends

on information from cycle A. The partial tracing shown in the figure will fail without

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 86

A’s cooperation. This cooperation may be through the reference listing scheme or
through a partial tracing on A. One the other hand, cycle A may be collected without
cooperation of processes containing cycle B. Objects on cycle A are not accessible from
objects on cycle B, thus their liveness may be determined without cooperation of cycle
B. However, a partial tracing initiated by any process containing cycle A may involve
cycle B as well. In this case, all the represented processes would form a group and
co-operate in the simultaneous collection of cycle A and B.

A slightly different problem arises from the fact that, z and y, being suspects of
the same cycle, may initiate two different partial tracings on the same cycle. Although
they are allowed to co-operate, the different phases of each partial tracing might not be
synchronised, thus preventing the collection of cycle A. These restrictions make even
more difficult the selection of suspect objects.

We accept that our solution trades completeness for promptness. However, we allow
co-operation of different partial tracings and mark-red phases to provide some degree
of adaptability in the way that our system may decide when to stop mark-red, and
possibly restart another partial tracing, based on some heuristics or hints from the user
program. We may also require the synchronisation of the begining of scan phase of each

co-operative partial tracing. These avenues are better discuss in section 9.1.

4.2.2 Efficiency

As stated in section 1.4, efficiency is concerned with mutator overheads and collector
promptness. There are two fundamentals difficulties concerning the mutator overhead
of tracing partitioned schemes. First, how are low synchronisation overheads to be
ensured, in order to be unnoticed by the user independently of the size of the address
space, and second, how to avoid the need for global barriers.

To achieve the first goal, our scheme runs concurrently and asynchronously with the
mutator. To achieve the second, our scheme reduces the need for synchronisation with
the mutator in two ways. Firstly, it only requires mutator cooperation when accessing
remote objects, i.e, in the concurrent model, local mutator activity does not incur in any
additional overhead to ensure safety. Synchronising action is associated only with new
inter-process reference creation, and invocation of remote methods. Action is needed

only if a new inter-process reference to a red object is created and whenever any remote

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 87

method is invoked. However, as we describe, these control actions are very cheap.
Secondly, once red objects are suspected of being garbage, the probability of their being
mutated or new inter-process references to them being created is small. Clearly, the
better the heuristic for identifying suspect objects the lower these overheads are.

Our scheme achieves promptness in two ways. First, it does not compromise the
reclamation of local and acyclic distributed garbage. Second, it approximates the prop-
erty of locality: the first phase uses a strong heuristic to define suspect subgraphs and
those processes that should co-operate in subsequent efforts. This improves the prob-
ability of success — reclaiming garbage — for the subgraph tracing, and reduces the

need for global synchronisation.

4.2.3 Fault-tolerance

A garbage collection scheme should be safe and complete in the presence of failures.
In this thesis we assume fail-stop process semantics and accept communication failures
and/or delays. Whenever a process fails, all contained objects are inaccessible.

As we described in section 3, inter-process reference listing is fault-tolerant in the
sense that the detection of distributed garbage needs the cooperation of only those
processes that the garbage was reachable from. Thus, if a processor is temporarily
unavailable, or otherwise slow in doing local collection, it will prevent the collection of
only the garbage that is reachable from its objects.

Our scheme approximates this feature: the collection of a garbage cycle is likely to
only require the cooperation of processes that contain the garbage cycle. In this way,
our system allows garbage to be collected despite unavailability of parts of the system.

Idempotent remote operation and a system of acknowledgements, between the pro-
cesses involved in the partial tracing, are the basis of our fault-tolerant scheme with

respect to messages failures. We deal with lost, duplicated and out of order messages.

4.3 Mark-red Phase

The aim of the mark-red phase is to trace from an object suspected of being garbage,
thereby defining an inter-process subgraph of objects that may be a garbage cycle. The
key insight behind this idea is to alleviate the drawbacks of global tracing by confining

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 88

the efforts of tracing to a subset of the address space, approximating the property of
locality.

The mark-red phase only identifies objects suspect of being garbage. An entry-item
corresponding to a suspect object is marked red. Entry and exit-items traced from this
suspect entry-item are also suspected of forming an inter-process cycle of garbage, and
hence marked red. At the end of mark-red phase the set of red items may be a superset
of the set of garbage items, that is, some red items may be referenced by references
external to the cycle and hence may be live. This condition will be discovered by the
scan phase.

In the following sections we describe the basic techniques for conducting the mark-
red phase. For the moment we ignore concurrency, scalability and fault-tolerance. We

include an example for illustrating this phase and present the algorithm.

4.3.1 Mark Steps and Red-list

A initiator process — the process initiating the partial tracing — chooses a suspect
object and marks red the corresponding entry-item. The mark-red phase is a tracing

technique. Traced entry and exit-items are coloured red. It takes two kinds of step:

Local-step that goes from reddened entry-items to exit-items reachable from them in
the same process. Exit-items are reddened if not already red. For the present,
local objects are traced recursively in order to reach exit-items. Local traced

objects are marked red to allow termination of local steps.

All reddened exit-items execute a remote-step.

Remote-step that goes from reddened exit-items to the corresponding entry-items on
the target process. We call a remote step a mark-red request. Entry-items are
reddened if not already red, and the source process is inserted in the red-list of
the target entry-item. The red-list records which references are internal to the
red closure by using the identifier of the remote process (akin to the reference list
protocol). The red-list for an entry-item FEi, contains those processes that have a

red exit-item Ez,. The formal definition of red-list is:

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 89

—

/

A
entry-list ~ red-list b R
entry
wble [dfA} | |

h

d g
f{B}

exit C

teble I

I)

Figure 13: Mark-red phase identifies a subgraph suspect of being garbage

Definition 4.1

FEiy.red-list =

{p € processes : Ex, € exit-table(p) A colour(Ez,) = red}

All reddened entry-items execute a local-step.

The mark-red phase consists of taking local and remote-steps alternately. Consider
figure 11 on page 82. Assume the suspect object is a in process A. For the present,
let us consider an object to be suspect if it is not referenced locally, other than as an
entry-item. A mark-red trace will start at entry-item FEi, and will take a local step
to exit-item Fxz.. From there, it will generate a mark-red request to entry-item FEi, in
process B and so on.

The result of the mark-red phase is illustrated in figure 13. Shaded objects and
shaded entry and exit-items denote red items. White denotes white items. Note
that object f in process C is not garbage although it has been marked red, as has the

corresponding entry-item: its liveness will be detected by the scan phase.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 90

4.3.2 Mark-red Algorithm

The local and remote-steps described in section 4.3.1 are implemented by the algorithm
below. A local-step (mark-red) generates a remote-step — mark-red request — for each
red exit-item. The mark-red request is sent to the corresponding entry-item. In its turn,

every mark-red request received (handle-marked-request) generates a local-step.

mark-red(entry-item Fi_z) =
if colour(FEix) not red
colour(FEix) = red
for exit-item Fx_y in local-transitive-closure(Fi_x) do
if colour(Fx_y) not red then
colour(Ez_y) = red
send-markred-request(thisprocess, Fiy)

end

handle-markred-request (process P, entry-item Fi_y) =
entry-table[Fiy] .red-list = entry-table[Fiy]l.red-list U {P}
mark-red (Ei_y)
end
Until now, we ignored the problem of distributed termination detection. To de-
tect it, we use a scheme based on acknowledgements (not shown in the pseudo-code
above) (Dijkstra and Scholten 1980): every mark-red-request generated waits for an
acknowledgement. When the process that initiated the partial tracing has received ac-
knowledgements for all mark-red request it has sent, the mark-red phase has terminated.
It then reports to all processes reached during this phase, called the participants, the
begining of the next phase. To allow the initiator to determine the set of participants,
each participant appends its identifier to the acknowledgement of a mark-red request.

This acknowledgement system will be explained in more detail in section 4.5.

4.4 Scan and Sweep Phase

The scan phase aims to isolate red cycles of garbage by colouring any red accessible
object green to prevent it from being reclaimed. In this section we describe the basic

technique for conducting the scan phase. It ignores mutator concurrency, scalability

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 91

and fault-tolerance. We include an example illustrating this phase and present the

algorithm.

4.4.1 Scan Steps

The scan phase is performed concurrently on each participant. In each participant, first
we determine the members of the global root set that are not members of the suspect
subgraph. We will call them the local-scan-root-set. The local-scan-root-set does not
include any entry-items that may be internal to the red sub-graph. Red entry-items
whose entry and red-lists are equal are directly reachable only from the red sub-graph,
and are kept red. Red entry-items whose entry and red-lists differ must be accessible
from outside the suspect sub-graph, and so are marked green. We give the following

definition:

Definition 4.2 local-scan-root-set is a set, in each participant, consisting of the local

roots, non-red entry-items and red entry-items whose entry and red-lists differ.

As for mark-red, the scan phase is a tracing technique. Traced entry and exit-items

are marked green. It takes three kinds of step:

Initial-step Mark green any red entry-item in the local-scan-root-set. Mark green any
red exit-item that is reachable from the local-scan-root-set. For the present, traced
local objects are coloured green to allow termination of local steps (akin to the

mark-red phase).

All greened exit-items execute a remote-step.

Remote-step Propagate the green colour from greened exit-items to the corresponding
entry-item in the target process. Mark green the entry-item if red. We call a

remote step a scan request.

All greened entry-items execute a local-step.

Local-step Propagate the green colour from greened entry-items to those locally reach-
able exit-items. Mark green the exit-items if red. For the present, local objects
are traced recursively in order to reach exit-items. Traced local objects are also

marked green to allow termination of local steps.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 92

B
1=,

@)
=
.

v)
=

)

entry-list red-list b R
ety P Q)
table
B c D R
h
C
d {B} g
S c
] —
f
\

1K

Figure 14: Scan phase ‘rescues’ any red objects that may be live
All greened exit-items execute a remote-step.

The scan phase consists of taking an initial-step in each participant followed by
alternate remote and local steps, until all potentially live red objects have been marked
green. Continuing our example, each process performs an initial-step. For that, it
determines the local-scan-root-set. Entry-item Ei; is not red, so is marked green and
becomes a member of the local-scan-root-set. Object f and exit-item Exj are marked
green by process C’s initial-step. A remote-step from Exj, marks green Eip in process
D, which becomes a root for a local-step. h is marked green by the local-step. Figure
14 illustrates the situation at the end of the scan phase. Darker grey objects and items

represent green ones. Red objects are ready for collection through the sweep phase.

4.4.2 Scan Algorithm

The initial, remote and local-steps described above are shown below. Initial-step (main-
scan) and local-step (scan) generate a remote step — scan request — for each exit-item
marked green, and a request is sent to the corresponding entry-item. In its turn, every

scan request received (handle-scan-request) will generate a local-step.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 93

main-scan() =
for Ei_y in local-scan-root-set
if colour(Fz_y) is red then
colour(Eiy) = green
for exit-item Ez_y in
transitive-closure(local-scan-root-set) do
if colour(Fz_y) is red then
colour (Fz_y) = green
send-scan-request (Eiy)

end

handle-scan-request (entry-item Ei_y) =
scan(Ei_y)

end

scan(entry-item Fi_z) =
if colour(Fi_r) is red
colour(Fi_x) = green
for exit-item Fx_y in local-transitive-closure(Fi_x) do
if colour(Fz_y) is red then
colour(Ez_y) = green
send-scan-request (Ei_y)
end
Each participant detects termination of the distributed computation generated by
its initial-step using the same scheme we introduced for the mark-red phase. However,
in order to proceed to the next phase, each participant has to detect that all participants
have terminated. We describe a solution in section 4.5: group termination is detected

by the process that initiated the partial tracing — the Initiator.

4.4.3 Sweep Phase

At the end of the scan phase, any remaining red entry-items must be part of inaccessible
sub-graphs, and can thus be safely reclaimed.

The sweep phase is performed in each participant independently. Our scheme is
designed not to interfere with the reference listing scheme, which is responsible for the

collection of entry and exit-items (recall section 3.4.4). Such red entry-items are not

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 94

removed immediately in order to maintain referential integrity between exit and entry-
items. Thus, we keep the red entry and exit-items. However, in the next local collection,
red entry-items corresponding to a finished (scan phase) partial tracing will not be used
as roots in the local collection. Consequently, objects belonging to the garbage cycle will
be collected the next time the containing processes do a local collection. Additionally,
the sweep phase resets the colour of green items to white.

When red exit-items are deleted, the corresponding entry-list is updated by the

reference list scheme. When the entry-list is empty, the entry-item may then be removed.

4.5 Termination

In this section we will address the problem of termination detection. We will define
the distributed termination detection problem, present a solution initially proposed by
(Augusteijn 1987), and describe a report phase for both mark-red and scan phase. For
the present, we do not consider concurrency, scalability or fault-tolerance. In chapter 5

we present variants of our solution which cope with the advanced features of our system.

4.5.1 Distributed Termination Protocol

A partial tracing is a multi-phase algorithm. It needs to determine the end of each phase
in order to progress from one phase to the following one, namely, from mark-red to scan
and from scan to sweep. This requires some kind of synchronisation between processes
co-operating in a given partial tracing. This need for synchronisation is much less
restrictive than the need for synchronisation in global tracing solutions: it only involves
processes involved in a partial tracing; this approximates the property of locality.

In a distributed system where processes communicate only via messages, in general
no process has a consistent and up-to-date view of the global state. As a result, it is
difficult to decide whether or not the global state is one in which a distributed compu-
tation has terminated. This is particularly true in our context, where some processes
may have finished their local steps, while others are still working. New remote steps
(mark requests?) may be generated and result in new local steps. As a consequence,

‘finished’ processes may later have to compute local steps again.

2We will use the notation mark requests to refer to both mark-red requests and scan-requests

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 95

However, termination is a locally stable property. Locally stable properties are those
for which once the property becomes true, the state of the processes over which the
property holds do not change with respect to the property, i.e., the property never
becomes false again (Marzullo and Sabel 1994).

Returning to our problem, it is not possible for a process to decide whether it will
later generate new mark requests. Therefore, it is always assumed that for each process
a local condition of stability exists (Tel and Mattern 1993). When this condition holds,
no local steps will be generated by the process, and no initiative of the process itself
will falsify the condition of stability. It now follows that if a global state is reached in
which that condition of stability is satisfied, simultaneously, in every process and no
mark requests are in transit, the computation is terminated.

Several classes of solutions to the termination detection problem are known. (Tel
and Mattern 1993) identified those based on probes (Dijkstra, Feijen and van Gasteren
1983) and those based on acknowledgements (Dijkstra and Scholten 1980) as the most
important ones. We adopt an acknowledgement based approach because it deals with
mark requests in transit. Additionally, our system is opportunistic — it identifies dy-
namically a suspect subgraph and those processes that will co-operate in collecting
distributed garbage. Consequently, we have chosen an acknowledgement based termi-
nation detection protocol that does not require the processes involved to be known a
priori. This is one of the features of our scheme that make it scalable. Our mark-red
phase detects on-the-fly processes that will co-operate in the partial tracing.

In order to define the required condition of stability, we first describe some require-
ments of our system. We require every mark request to be acknowledged. We introduce
the notation grey-marked® to identify exit-items that have generated mark requests
which have not yet been acknowledged. Those exit-items are inserted in a grey-set. It
is required that whenever a process acknowledges a mark-request it identifies the exit-
item. To achieve this, whenever a process receives a mark request it inserts the source
exit-item in a reply-set. Grey-set and reply-set are defined below. Intuitively, we can
infer that if no process has local steps to perform and all grey-sets are empty, then the

distributed computation is finished.

3 grey-marked actually means grey-red-marked or grey-green-marked depending on which phase we
are in.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 96

Following (Augusteijn 1987) we introduce three possible states for a process: active-
disquiet, passive-disquiet, or passive-quiet. We additionally introduce a new state, Inac-
tive, to model the situation when a process, not yet participating in a phase, receives a
mark request. We also introduce a process condition to describe when a process may,

by itself, generate mark requests in respect to a instantiation of a phase:

a dynamic process may generate mark requests by itself; it may also generate mark

requests as a consequence of receiving mark requests from other processes;

a non-dynamic process only generates mark requests as a consequence of receiving

mark requests from other processes.

Initially every process is inactive. It may participate in a phase by receiving a
< start-phase > event or by receiving a mark request. An inactive process receiving
a < start-phase > message enters the phase and its state turns to active-disquiet. An

inactive process receiving a mark request turns to:

e active-disquiet if it is a dynamic process. When it has no more local steps to
perform and its grey-set is empty, it changes to passive-quiet. If it is subsequently
reactivated by receiving mark-requests, it switches to passive-disquiet and then
reverts back to passive-quiet when it has performed all its local steps and its

grey-set is again empty.

e passive-disquiet if it is a non-dynamic process. When it has no more local steps

to perform and its grey-set is empty, it changes to passive-quiet.

Thus, it is clear that once a process has become passive it remains so.

The state transaction diagram for each phase is illustrated in figure 15. The events
illustrated in the figure are summarised in figure 16 on page 99.

When a disquiet process receives a mark request it sends the acknowledgement im-
mediately, but when the receiver is quiet it becomes disquiet and it delays the acknowl-
edgement until it becomes quiet again. In this case, from the receiver’s point of view,
the process sending the mark request is responsible for any further mark requests, i.e, it
is the process responsible for detecting the termination of computing activity generated

by such requests. We call it the Jem parent. In its turn, the sending process must

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 97

m b,c,d e

. a,i Active
Inactive Disquiet
J f
g
Passive Passive
Disquiet h Quiet

Ub,c,d,e

a..j: Events

Figure 15: State transition diagram for termination detection.

be a disquiet process because it has not received all the acknowledgements for every
mark request it has generated. It may have a process responsible for it or it maybe the
responsible process itself, if it has initiated the phase, that is, if it is an active-disquiet
process. Clearly a process may be switched from quiet to disquiet a number of times
before termination is detected, and on each occasion it may have a different process
respounsible for it. Given that only a disquiet process may send a mark request, this
scheme ensures that, if any process is disquiet, there is at least one process which is
active-disquiet.

The stability condition that must be satisfied simultaneously in every process X is

thus:
X is not active-disquiet;

We now define formally the events that model the two phases and the termination
protocol. The local state of a process p; with respect to termination is defined by the

following state variables:
e pj.condition € {dynamic, non-dynamic}.

e p;.state € {inactive, active-disquiet, passive-quiet, passive-disquiet}.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 98

e p;.grey-set: Set of exit-item; grey-set = () iff all acknowledgements have been

received; an exit-item recorded in grey-set represents an unacknowledged request.

pi-local-steps: Integer; local-steps = 0 iff there are no local steps to perform.

pi-reply-set: Set of exit-item; an exit-item recorded in reply-set represents the

exit-item to be acknowledged.

pi.parent € {self, other, none}.

— self : p; is responsible for mark requests it has generated;

— other(p;) : there is p;(i # j) such that p; has sent a mark request to p; and

p; has not yet acknowledged such request;

— none : p; is passive-quiet.

Before defining the invariant that must hold in each state in order to detect termi-

nation, we first make the following definition:

Definition 4.3 The relation Ancestor(pj,p;) holds for two processes p; and p; if and

only if p;.parent = p;.

Now, consider Ancestor® as the reflexive transitive closure of relation Ancestor, that

is Ancestor*(pj, p;) holds if and only if one of the following holds:
o Ancestor(p;, p;)
e or there is p; such that Ancestor(py,p;) and Ancestor*(pj, p);
Invariant 4.4 then holds:

Invariant 4.4

Vp; - p;.state = passive-disquiet =

Ip;.(i # j) A Ancestor™(p;, p;) A p;.state = active-disquiet

This invariant means that if there is a passive-disquiet process (and hence termina-
tion is not achieved) there must be an active-disquiet process. From this it follows that

if no process is active-disquiet, the phase has terminated.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR

Event ‘ Action
a || start-phase e initialise local-steps
e parent = self
e state = active-disquiet
b || send mark request(exit-item) e grey-set = grey-set U { ezit-item}
c || receive mark request(exit-item) e local-steps + +
from process p e send acknowledgement(ezit-item)
top
d || receive acknowledgement(ezit-item) | o grey-set = grey-set \ {exit-item}
e || perform local step e Jocal-steps — —
f || grey-set = O A local-steps = 0 e parent = none
e state = passive-quiet
g || receive mark request(exit-item) e [ocal-steps + +
from process p e parent = other(p)
e reply-set = reply-set U exit-item
e state = passive-disquiet
h || grey-set = 0 A local-steps = 0 e for exit-item in reply-set send
acknowledgement(exit-item)
to parent
® parent = none
e state = passive-quiet
i || receive mark request(exit-item) e initialise local-steps
from process p A dynamic e set parent = self
e send acknowledgement(exit-item)
top
e state = active-disquiet
j || receive mark request(exit-item) e local-steps =1

from process p A non-dynamic

e parent = other(p)
o reply-set = reply-set U exit-item
e state = passive-disquiet

Figure 16: State changes for termination detection

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 100

4.5.2 Report phase

We have presented a solution that allows a process initiating a distributed computation
to detect termination of such computation. Next we complete our distributed termina-

tion protocol describing a report phase for both mark-red and scan phases.

Mark-red

The mark-red phase is initiated by a single process, hence in a mark-red phase instan-
tiation there is only one dynamic process and consequently there is only one active-
disquiet process. As soon as the initiating process turns to passive-quiet, the mark-red
phase is complete. Processes join the mark-red phase when they receive a mark-red
request. These processes are non-dynamic because they do not generate mark-red
requests on their own account. Consequently their first state transition is to passive-
disquiet.

In order to proceed to the scan phase, the initiator needs to report the end of
the mark-red phase to processes that were involved in it — the participants. For the
initiator to know the group of participants, each participant appends its identity, and
the identity of those processes to which it has sent requests, to the acknowledgement
of a mark-request. This feature is the key to our opportunistic scheme for identifying
the suspect subgraph dynamically. Initially, it is not necessary to know which processes
will be involved in a partial tracing. Consequently, our system guarantees that only
processes involved in a partial tracing will co-operate in garbage cycle collection. This

approximates the property of locality.

Scan

The scan phase starts concurrently in each process holding a part of the suspect sub-
graph (recall section 4.4). In this case, all participants are dynamic because they
will generate mark-green requests independently through the local initial-step. Conse-
quently, all participants will be active-disquiet at the begining of this phase.

A process will turn to active-disquiet when it receives the report message from the
Initiator. However, a process may receive a scan request from another process that has

already entered the scan phase, without having received the report message itself. In

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 101

this case, it will enter the scan phase and become active-disquiet.

Following our termination protocol, each participant may enter the sweep phase
when it knows that every participant has changed to passive-quiet. The protocol requires
every participant to inform the initiator process when it changes from active-disquiet to
passive-quiet. In its turn, the initiator process will inform the participants of the end of
scan phase after having received the state change information from all the participants

and after it has changed from active-disquiet to passive-quiet itself.

4.6 Heuristics

The basic partial tracing algorithm we have described in the last three sections presents

two potential challenges in order to provide efficiency, scalability and promptness:

1. Which objects should be suspects? Suspects should be chosen with care both to
maximise the amount of garbage reclaimed and to minimise redundant computa-

tion or communication.

2. What should be the extent of mark-red? Limiting the extent of mark-red to just
garbage items would make our algorithm preserve the property of locality and

improve promptness.

4.6.1 Heuristics for Suspect Objects

The global cost of our algorithm depends on how frequently it is run. In particular,
acyclic garbage will be collected by the acyclic collector, so the greater the delay, the
more likely that acyclic garbage will have collected itself. Also, repeated and wasted
work would be minimised if our algorithm did not work on live objects.

Until now we have adopted the Locally Reachable heuristic. But, as we have already
said, this heuristic is very simplistic and may lead to undesirable wasted and repeated
work. It may repeatedly identify an object as a suspect even though it is reachable
from a remote root. Rather, our algorithm should be seen as a framework: any better
heuristic could be used.

Heuristics for finding objects determine on what extent our algorithm approximates
the property of locality. The closer we approximate this property, the better the prob-

ability of only triggering a distributed garbage collection on garbage objects. In this

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 102

way we reduce the frequency with which our algorithm is run and reduce the overhead
of a particular partial tracing by minimising the number of scan requests. We also
benefit from the fact that mutators do not work on garbage objects, hence reducing the
synchronisation actions overhead.

The distance heuristic described in section 3.5 is suitable for finding suspect objects,
because it allows the identification of objects belonging to a garbage cycle with a high
probability of being correct. This increases the probability of a partial tracing working
in a garbage subgraph. Simpler heuristics may be used in conjunction with the “Gen-
erational Heuristic” (Rodriguez-Riviera and Russo 1997). Instead of starting a partial
tracing every time an object is found suspect, we start only at those suspect objects
that have not been subject to a distributed collection recently. This reduces the number
of times the algorithm is run.

We may also locally decide between grouping the suspect objects in one partial
tracing and tracing independently from each suspect object. At first sight, the second
choice would provide better promptness because it would involve a smaller group of
processes and objects. However, with the current solution, the collection of a garbage
cycle would be compromised if different suspects in the same cycle start an independent
collection.

In section 9.1 we analyse the cost of our algorithm.

4.6.2 How far to go?

The mark-red trace may include more processes than necessary because a garbage cycle
may point to chains of garbage or live objects. Hence, a practical requirement on the
mark-red phase is to limit its spread to suspect objects. In this way, we may avoid a
mark-red trace from spreading to live objects by using the same heuristic that chose
suspect objects. This restricts the number of red objects that might to be rescued by
the scan phase. Recall figure 13 on page 89. Note that object i in process D is locally
reachable, hence live. Based on this information, the mark-red trace should terminate
at Fip: the represented garbage cycle points to a chain of live objects.

The aim of the mark-red phase is to mark red a subgraph suspected of belonging to
a garbage cycle. It does not make any decision about objects’ liveness. Consequently,

the red subgraph need not include the whole set of garbage objects. It suffices that

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 103

the red subgraph includes only a subset of the set of garbage objects sufficient to make
progress— i.e. a conservative approximation?. Indeed, early termination of this phase
trades conservatism (tolerance of floating garbage) for expediency, and bounds on the
size of the graph traced, and hence, as before, on the cost of the trace.

This policy decision can be taken statically by prior negotiation or dynamically by
mark-red. It may be determined by the collector itself or by the user program, globally
or on a per-process or even per-object basis. Heuristics based on geography, process
identity, distance from the suspect originating the collection, minimum distance from
any object known to be live, or time constraints may be used to restrict the extent of
mark-red.

In section 9.1 we make a qualitative analysis of our algorithm based on which heuris-

tics are chosen for suspect identification and mark-red phase extent.

4.7 Summary

We have described a basic algorithm for garbage collection on distributed large address
spaces that is scalable, efficient and fault-tolerant, albeit not complete.

It combines the reference listing scheme with an incremental, three-phase, partial
tracing to reclaim distributed garbage cycles. Our algorithm operates in three-phases.
The first, mark-red, phase identifies a distributed subgraph that may be garbage, to
which subsequent efforts are confined. The mark-red phase also dynamically identifies
groups of processes that will collaborate to reclaim cyclic distributed garbage. The
second, scan, phase determines whether members of this subgraph are actually garbage.
Finally the sweep phase makes any garbage objects available for reclamation by local
collectors.

Fault-tolerance and efficiency are achieved by requiring the co-operation of only
those processes forming the group: progress can be made even if other processes in the
system fail. Global synchronisation is avoided by partitioning the distributed system
into groups, with multiple groups simultaneously but independently active for garbage

collection: communication is only necessary between members of the group.

“Equally it does not matter if we mark too much.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 104

Moreover, two kind of heuristics are defined, whose goals are to improve the algo-
rithm’s discrimination and hence its efficiency: heuristics for suspect identification that
try to maximise the amount of garbage reclaimed and to minimise redundant computa-
tion or communication; and heuristics for the extent of mark-red that try to approximate

the property of locality and improve promptness.

Chapter 5

A Scalable Cyclic Garbage

Collector

In this chapter we identify some deficiencies of the solution presented in the previous
chapter. We give a detailed description of techniques for improve scalability. There
are two aspects of concurrency: collector/collector and mutator/collector concurrency.
The first is concerned with scalability and the second with efficiency. We address the
scalability aspect in this chapter and leave mutator/collector concurrency to the next

chapter.

5.1 Scalability

As we have already stated in section 4.2.1, the property of locality is the key to scal-
ability. Whether our solution approximates this property depends primarily on the
heuristic for finding suspect objects. More accurate heuristics give better approxima-
tions as we explained in section 4.6. However, the solution we have presented in the
previous chapter has deficiencies in scalability and completeness in large address spaces.

In practice, in a large address space, there will be multiple suspect entry-items, which
may generate numerous concurrent and/or overlapping partial tracings, i.e., several
partial tracings may be triggered concurrently at the same or different processes and/or
multiple partial tracings may be active on entry-items in the same cycle.

Until now we have ignored concurrency between different partial tracings. A first

solution might require a partial tracing to retreat when it meets a different partial

105

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 106

~

Figure 17: Multiple Partial Tracings

tracing or involves a process already participating in a different partial tracing. This

will not achieve the completeness goals we presented in section 4.2.1:

e Retreating introduces the problem of live-lock: different partial tracings may in-
definitely interrupt or restart, but never complete, preventing the collection of

cyclic garbage.

e The collection of disjoint cycles is compromised. The collection of a larger cycle

may delay the collection of small cycles spread across the same processes.

These two situations are shown in figure 17. Cycle (¢ — b — ... = e — a)
would not be collected if partial tracings a and e start and retreat indefinitely. Also,
collection of the cycle (¢ — d — ¢) could be delayed until the end of the larger cycle
collection. In section 5.3 we will describe techniques for allowing partial tracings to co-
operate in the collection of overlapping cycles. It will be shown in the next sections that
our solution does not always ensure completeness. However, although our first design
choice is to trade completeness for promptness, our solution does have the potential to
be complete at the cost of stronger synchronisation (see section 9.1).

Recall the two problems arising from dependent cycles introduced in section 4.2.1.
Concurrency of partial tracings is directly related to completeness: concurrent and

independent partial tracings could co-operate in the collection of cycles A and B in

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 107

figure 12 on page 85. Moreover, ideally a partial tracing should succeed independently

of garbage cycles’ dependencies.

We would benefit from a solution allowing disjoint partial tracings to proceed inde-
pendently, ignoring events associated with a partial tracing with a different identifier.
In this case, the mark-red phase would produce disjoint red closures. For example, the
garbage cycle (¢ — d — ¢) in figure 17 could be collected independently from the
larger one.

A different situation arises if different partial tracings are simultaneously active in
the same suspect cycle, or in connected cycles. This means that they would eventually
meet in an entry or exit-item, and interfere with each other. Consider figure 17. PT, and
PT, are simultaneously active in the same suspect cycle. PT, eventually reaches entry-
item Fi, and PT, eventually reaches entry-item Ei, (entry items are not represented
in the figure for simplicity). In this situation, as we have already said, live-lock must
be avoided, hence any retreat should be avoided.

We offer two solutions for partial tracings that may overlap:

Overlapping partial tracings The different partial tracings are allowed to proceed
concurrently and independently in every element of the suspect subgraph. Each
partial tracing would ignore any another. In effect, the partial tracings retain

their own identity but overlap.

Co-operative partial tracings Overlapping partial tracings are allowed to proceed
and co-operate in collection of garbage cycles. A partial tracing working in a part
of such a subgraph may contribute to partial tracings working in other parts of the
same subgraph. The result may be seen as the union of every partial tracing active
in the same subgraph. However, this would mean that every partial tracing’s phase
termination would be dependent on other partial tracings’s phase termination and
every event of each partial tracing would contribute in some way to an event of

the other partial tracing.

A solution for overlapping partial tracings would be essentially the same as presented
in the last chapter. This requires that the partial tracings do not share any state (the

colour and red-list information held in the entry and exit-tables). This could be achieved

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 108

(=
CA Root
-
entry-list - /‘/ el
entry / [g{c |
le” | GHAT | ; \
‘B | b 0
, / S
e}
wle Do X
R

Figure 18: Entry-item/Exit-item reachability

by maintaining a copy of this state information for each partial tracing, and have all
garbage collection messages signed with the identity of their partial tracing. The obvious
drawback is that, while it is scalable and complete, it is neither time- nor space-efficient
as it leads to repeated work.

Let us concentrate on the solution based on co-operative work. First we describe the
target graph for partial tracings in section 5.2; our aim is to implement efficient mark-red
and scan local and remote steps, and scan initial steps, and to decrease space overhead.
Then we describe a solution that accounts for multiple partial tracings; we define mark-
red and scan phase’ steps, the information that is necessary for each partial tracing
to proceed when there is some co-operation between partial tracings, and how that
information is built during a run. We also describe the new conditions for termination

and how they are achieved by every co-operative partial tracing — the report phase.

5.2 Cut-references Graph

Multiple overlapping partial tracings require every object traced to be signed with the
identifier of the partial tracing it is involved with, and coloured. This would lead to a

considerable space overhead. As we mentioned in section 4.1, we can always determine

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 109

reachability between entry and exit-items. We illustrate this idea, with respect to the
figure 11 on page 82, in figure 18: the entry and exit-items of each site taken together
form a distributed graph that we name the cut-references graph; every entry and exit-
item becomes a vertex of this graph. Every outgoing path from an entry-item, which
reaches an exit-item (via some local objects), becomes a single edge in the same graph
((Maheshwari and Liskov 1997a)). A remote edge is represented by the correspondence
entry-item/exit-item, for example exit-item(c)/entry-item(c). Notice that we are only
interested in suspect items, so we just require such information for those items. In
this figure we show the cut-references of suspect items. The cut-reference graph is
connected to the ordinary graph through ordinary references. For example, entry-item
Ei, is reachable from the local root at process A. Inter-process garbage collection can
therefore be described as performing garbage collection of the cut-references graph. If
two partial tracings are to overlap, they will will encounter each other in a common
entry or exit-item.

Now, multiple partial tracings only require entry and exit-items to be signed and
coloured. We benefit because both less space is needed and because local steps are
cheaper, as explained later (this solution will introduce more constraints on dealing

with mutator concurrency as we will show in section 6).

We now describe the computation of the cut-references graph. For now we consider
suspect items to be defined by the Local reachability heuristic. Notice that, indepen-
dently of which heuristic we use, a necessary condition is that those suspect objects
are not locally reachable. A better heuristic would only reduce the number of suspect
items. The requirement that suspect entry and exit-items must not be locally reachable
still holds.

The computation of the cut-reference graph may be performed at any time. However
because the mutator actions may change the reachability of entry and exit-items, the
more often the cut-reference graph is computed, the more accurate it will be.

We divide the computation of the cut-references graph into two phases. In the
first phase, we require a method that identifies suspect objects. That is, this method
must determine whether objects are reachable locally. This will inform our system

about which entry and exit-items are suspect. In the second phase, we compute the

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 110

cut-reference graph, that is, which suspect exit-items are reachable from each suspect
entry-item.

The first method, identify-suspects, can be implemented by tracing from the
local roots in each process, excluding objects only reachable remotely (as we describe
in section 8, this may be done by the local collector). After the identify-suspects

method, the following post-condition holds:

Post-condition 5.1

[identify-suspects]
{(VEi, - suspect(Ei,) = —path(Roots, z)) A

(VEz, - suspect(Ex,) = —path(Roots, Exy))}

After identify-suspects, entry and exit-items are suspect if and only if they are
not reachable locally. For every suspect entry-item FEi,, a second method, compute-
graph, computes the list of all suspect exit-items Ez, recursively reachable from E,.
This information is recorded in Ei,.exits. In the absence of mutator concurrency the

following post-condition is always true.

Post-condition 5.2

[identify-suspects]

{(VEi, - suspect(E1,) = —path(Roots, z)) A
(VEz, - suspect(Ex,) = —path(Roots, Exy))}
[compute-graph]

{VEiy, Ex, - (suspect(Ei,) A suspect(Ez,) A path(Eiy, Fx,)) = FEx, € Eiy.exits}

However, as we said, due to mutator activity between two computations of the
cut-references graph, suspect information may change. In this case, we say that the

cut-references graph is not accurate.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 111

The cut-reference graph represented in figure 18 would be described by the following

set of variables:

Eig.exits = {Ez.}
FEic.exits = {Fz.}
Eic.exits = {FExg, Exy}

Eig.exits = {Fxzq}

Additionally we define three further components of each entry and exit-item:

mark holds the identifier (see below) of the first active partial tracing to reach that

entry or exit-item.

marks holds the identifiers of other partial tracings simultaneously active in the same

entry or exit-item.

colour holds the colour of the entry or exit-item. An entry or exit-item not involved
on any partial tracing is white. The mark-red phase paints suspect items red, and

the scan phase paints all live items green.

5.3 Multiple Partial Tracings

Partial tracings simultaneously active in the same suspect cycle or connected cycles
may meet each other during each other’s garbage collection cycle. We aim at defining a
co-operation between overlapping partial tracings. If the mark-red and scan phases of
simultaneous and connected partial tracings were to overlap, they may never terminate
because of race conditions between mark-red and scan requests. Thus, these partial
tracings are not allowed to proceed if they meet for the first time in different phases.
We only allow different partial tracings to co-operate when they meet at an entry or
exit-item for the first time in the mark-red phase. When they meet, the protocol for
co-operation will be established. Care must be taken to ensure that co-operative partial

tracings do not interfere with each other, i.e for the same reason as above, the different

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 112

Figure 19: Multiple Partial Tracings Co-operation

phases of each partial tracing should not overlap. This co-operation is informally defined
next.

Co-operation between simultaneously active partial tracings relies on the fact that
each partial tracing has enough information to proceed. When the mark-red phase of
a partial tracing PT, meets the mark-red phase of another PT),, through a mark-red
step, we will say that PT, is dependent on PT, and PT, is responsible for PT,. The red
sub-graph defined by the responsible partial tracing will be conceptually merged with
the dependent tracing’s red sub-graph. Consequently, in subsequent phases, a depen-
dent partial tracing will not consider references to its red sub-graph from a respounsible
tracing’s red sub-graph to be external references. For that to be possible, red entry-
items with the field mark holding the responsible tracing’s identifier are not considered
roots for the dependent’s initial scan step. Moreover, in order for any remote reference,
from a red exit-item with the field mark holding the responsible tracing’s identifier, to
be considered a reference internal to the dependent tracing’s red subgraph, it must have
the source process inserted in the corresponding entry-item in the target process. For
that, by the time a mark-red remote step was taken, it should have inserted the sending
process’s identifier into the target entry-item’s red list, even if that item already belongs
to another partial tracing. In this way a reference from the responsible tracing’s red

sub-graph will be considered to be an internal reference.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 113

Co-operation must be extended to the scan phase. Consider the simple example in
figure 19. Suppose that the sub-graphs were merged and PT), finishes its scan phase and
proceeds to the sweep phase without any co-operation from PTj. Consequently, PT,
does not count red external references to its red sub-graph from PT),’s red sub-graph.
Consider now the external reference from X, which would cause the entry-item for v to
be repainted green during PT,’s scan phase. Consequently, PT,’s subgraph should be
repainted green. If PT), has proceeded to the sweep phase before PT), has completed its
scan phase, live objects would be reclaimed unsafely. We conclude that PT, must wait
for PT,’s scan phase to terminate before it proceeds to the sweep phase.

If partial tracings do meet for the first time in different phases, they should retreat.
Notice that we want to avoid this situation. Partial tracings simultaneously active on
the same cycle or connected cycles are dependent on each other. This means that
dependent partial tracings will fail to collect garbage as we explained in section 4.2.1.
This situation is particularly undesirable for partial tracings simultaneously active in
the same sub-graph because, if we do not synchronise the beginning of each scan phase,
completeness is compromised. In the example of figure 19, suppose that PT, encounters
PT, at y, defines the required co-operation and returns. If PT, starts the scan phase
before PT},’s mark-red reaches object z, PT} will retreat and the two partial tracings will
fail. A similar situation may occur in two connected cycles, A and B, if the dependent
cycle, for example A, finishes its mark-red phase before B’s mark-red has encountered
it. The partial tracing active on A will fail. However, in this situation we do not
compromise completeness, because a partial tracing at B would eventually collect B or

meet A.

5.3.1 Initiating a partial tracing

We now define the behaviour of the collector more precisely. A suspect entry-item FEi,
at process P may initiate a partial tracing if it is not already involved in another one.
We call process P the initiator process. Recall that, during the mark-red phase, a red
sub-graph is formed by entry and exit-items identified by that partial tracing. A group
of processes that we call the participants is also formed. While in this phase, a partial
tracing may meet other partial tracings and establish a dependency /responsibility re-

lationship. In this case they are called co-operative partial tracings. For every partial

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 114

tracing, we capture this information in an object of type PTobj.

Definition 5.3

PTobj = (1d, Initiator, Participants, EI, EX, Dependents, Responsibles)

where the components are defined as follows:

Id is a unique identifier. A partial tracing will be identified by the starting suspect
entry-item. We consider that entry-items are unique and identify the initiator

process'. We use the notation PT, for Ei,.
Initiator is the initiator process.
Participants is the set of the partial tracing’s members (recall section 4.5.2).
FET is the set of entry-items such that Fi.mark = Id or Id € Ei.marks.
EX is the set of exit-items such that Ex.mark = Id or Id € Ex.marks.
Dependents is the set of partial tracings that are dependent on this partial tracing.

Responsibles is the set of partial tracings that are responsible for this partial tracing.

A partial tracing can be defined by the tuple on definition 5.3. This partial tracing
has images (approximations) in each participant. When a partial tracing with identity
z — PT, — visits a participant process P for the first time in a collection cycle, it
constructs a new partial tracing object of type PTobj — ptop,. The partial tracing
images have concrete representations as those partial tracing objects. The whole partial
tracing information is distributed across PT),’s images in each participant.

There is a time, as we see below, that the whole partial tracing information must
be known by the initiator. We defined the partial tracing value as the union of every
image in each participant.

For P,Q) € PT,.Participants and the corresponding ptop, and ptog,, we define the

union of the two images as union(ptop,, ptog;).

'If we are considering network partitions, the pair (entry-item,collection number) could be used for
identifying each partial tracing.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 115

Definition 5.4 union(ptop,, ptog,) = ptog.
Where,

® ptog,.Id = ptop,.Id = ptog,.1d

ptog,.Initiator = ptop,.Initiator = ptog,.Initiator

ptor,.Participants is not defined because PT,.Participants is determined at the

end of mark-red phase at PT,.Initiator.

ptog,.E1 = ptop,.EI U ptog,.EI

ptog,.EX = ptop,.EX U ptog,.EX

ptog,.Dependents = ptop,.Dependents U ptog..Dependents

ptog,.Responsibles = ptop,.Responsibles U ptog,. Responsibles

The whole partial tracing value is defined as:

PT, = U ptop:
PePT..Participants

During a run (mark-red — scan — sweep), most communication between partial
tracings is handled through the local partial tracing objects and does not require remote
communication.

For the present, we are not interested in when the union of the partial tracing
objects in every participant will be effectively performed, we will come back to this
later. Instead, next we describe the different phases of a partial tracing, accounting for
co-operative partial tracings: how a partial tracing object is constructed in every phase
of a partial tracing and which information different partial tracings need to exchange
between themselves and their participants in order to proceed to the next phase.

From now on, we identify a partial tracing object PT, on each participant by using
the notation PT,. When relevant, instead of using PT,, we may use the image of PT),

in a particular participant P — ptop,.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 116

5.3.2 Mark-red Phase

Recall the mark-red steps from section 4.3.1. We now redefine the mark-red steps for
PT), in order to account for co-operative partial tracings. Every participant executes
alternate local (ML) and remote steps (MR), colouring items that it reaches. It performs
a local mark-red step from each entry-item Fi, newly marked red, where Ei,.mark =

PT,, to each exit-item Ez; in Ei,.exits as follows:

(ML.1) If Ex} is white, then it is reddened and its mark set to PTy, that is, Exy.mark =
PTy: we call Exy, red,.

(ML.2) If Exy is already red,, then no further action is necessary.

(ML.3) If Exp is red, where z # y, then two partial tracings have met in the same
phase. We merge the partial tracings and say that z is dependent on y and y is
conversely responsible for z. PTy is appended to Exy.marks, PTy is added to the
PT,.Responsibles, and PT, to the PT,.Dependents. Both these interactions take

place between the partial tracing objects in this process — no messages are sent.

(ML.4) If Exy is green, it must have been marked by another group operating in a later

phase so the red wave-front retreats from this object.

A remote step executed by PT), propagates a colour from an exit-item FEx; in a
participant P to entry-items FE7, in a remote process (). A new PT, image ptog, is
constructed in) to represent this partial tracing (unless one already exists for this

partial tracing as a result of an earlier mark-red request in this collection cycle).
(MR.1) If Eiy, is white or is red,, P is added to Eiy.red-list and Fiy, is marked red,,.

(MR.2) If Eiy is red, and z # y, P is still added to Eiy.red-list. Once again two par-
tial tracings have met and, as in the local step, PT), is appended to Ei,.marks
and to PT,.Responsibles, PT, to PTy.Dependents in process J; no messages are

exchanged.

(MR.3) If Ei, is green, no further action is taken and the mark-red phase retreats.

Figure 20 shows an example in which two objects, y in process A and z in process

D, have initiated independent distributed collections which have met at Ei, in process

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 117

po[yJA[A Bly[u [[|
E|y Exy
entry-list B
red-list B
mark Y Y
A
poly[A[B July [[7] /yQ
/
po[z[D[B [u] [y] |
Eiy Exy D ,
entry-list [AC —)
red-list | AC e
mark Y2 y C
v)
u I entry-list g
Tt . red-list
By Be By mark L2 z
entry-list | D
rec-list | D pto[z[D[DCB[z[v [[|
mak LZ | z | z
po[z[D[BC [v]u z[| |

po [[1 [0 [/]/]
Responsibles
Dependents

Ex
Ei
Participants
Initiator
Unique identifier

Figure 20: End of the mark-red phase

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 118

B. Note that process B contains pto’s for both partial tracings PTy and PT,. When
PT, performs the remote step from FEx, at C to Ei, at B, the following action is
taken at B: PT,.Responsibles = PT,.Responsibles U {PT,} and PT,.Dependents =
PT,.Dependents U { PT,}. More precisely, ptop,.Responsibles = ptop,.Responsibles U
{PT,} and ptop,.Dependents = ptop,.Dependents U { PT}}.

Mark-red Termination

As we described in section 4.5, termination of the mark-red phase for a single partial
tracing PT, is detected by its initiator when it receives acknowledgements for all the
mark-requests it has generated. At this time, the termination protocol described in sec-
tion 4.5 guarantees that no item in PT,.EI U PT,.EX will receive a mark-red request
generated by PT) itself. Those items may only receive mark-red requests generated by
other partial tracings trying to enter some co-operation. If the corresponding partic-
ipant had already entered the scan phase, such requests may be safely refused (ML.4
and MR.3) because the mark-red phase does not need to visit the complete referential
transitive closure of a suspect object. Otherwise, co-operation between the two partial
tracings would be engaged and the mark-request properly acknowledged.

We conclude that termination of the mark-red phase of co-operative partial tracings
are independent of each other. Consequently, we can detect mark-red termination as

described in section 4.5.

5.3.3 Scan Phase

Recall the definitions of scan steps and the local-scan-root-set in section 4.4.1. We
redefine them now to account for co-operative partial tracings. Any partial tracing
recorded in PT),.Responsibles must co-operate with PT,. A redy-subgraph is alive if it
is accessible from a root or from outside the merged subgraphs. The scan phase must
therefore take into account the scan-requests generated by every co-operative partial
tracing.

Each partial tracing determines the liveness of its own red subgraph. However, it
also has to take into account requests from co-operative partial tracings. We present
a set of rules that must be obeyed by each participant of a partial tracing in order to

proceed to the scan phase. These rules ensure safety and termination of mark tracings.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 119

However, they do not of themselves ensure completeness as we have already mentioned
in section 5.3. Nevertheless, as we discuss in section 9.1, our systems do allow a complete

solution.

1 A process P € PTy.Participants may safely enter the scan phase when it re-
ceives the report message (recall section 4.5) from PT,.Initiator. Recall that the
acknowledgement system allows the Initiator to know the identity of each partic-

ipant.

2 When P € PTy.Participants receives a scan request from PT, where PT, €
PT,.Responsibles, it may safely green the target entry-item. However it may not
have received the report message yet from PT,.Initiator. By rule 1, it should wait
for that message before it enters the scan phase. To avoid race conditions between
PT, mark-red requests and the responsible process’s scan requests, a mark-red

only paints red white entry-items.

3 The local-scan-root-set(PTy) in each P € PT,.Participants is formed by:

e P’s local roots, as suspect information may have changed since the last time

it was computed.
e white entry-items, as they do not belong to the suspect sub-graph,
e green entry-items, as they have already been found to be live,

e any red entry-item marked by either PT; or PT, € PT,.Responsibles whose
entry and red-lists differ, as they are reachable from outside the suspect sub-
graph, and

e any other red entry-item marked by another PT, ¢ PT,.Responsibles, as they
are not part of PT}’s suspect subgraph. Recall that PT, € PT,.Responsibles
is a co-operative partial tracing. Thus, references from the PT,’s suspect
sub-graph are not considered as external references to PT),’s suspect sub-

graph.

Again, after an initial step (SI) to colour green any entry or exit-item reachable
from the local-scan-root-set, the scan phase proceeds by an alternating series of local

(SL) and remote scan steps (SR). The initial scan step of each PT), greens any objects

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 120

directly reachable from the local-scan-root-set that PT, had previously visited: these

will be the starting points for the ‘rescue’ trace.

(SL.1) Mark green any red entry or exit-item E in the local-scan-root-set for which
E.mark = PT,. Mark green any red exit-item Fx; for which Ex,.mark = PT,

and which is reachable from the local-scan-root-set. These are green,.

The local scan phase step for PT), propagates the green colour from a green, entry-
item Fi, to those exit-items Ex; in the same process reachable from Ei, that PTj had

previously visited in the mark-red phase:

(SL.1) Green Ew; if it is red, reachable from a green Fig,, and either Exy.mark = PT,
or PT, € Exy.marks. That is, we green only those exit-items reddened by co-

operative partial tracings.

The remote step from a green exit-item FEx;, propagates the green colour to the

corresponding entry-item Fiy:

(SR.1) If Eij is red and Eiy.mark = PT, or PT, € Eiy.marks, mark Fij, green.
(SR.2) If Eij is red but neither Ei,.mark = PT, nor PT, € Eiy,.marks, retreat.
(SR.3) If Eip is not red, retreat.

(SR.4) Request a local step from every greened Eij if Eiy.mark has entered the scan

phase.

Remote steps do not invoke local steps directly. Rather, the partial tracing object that
‘owns’ the entry-item (identified by its mark) will execute a local step once it has started
its scan phase. Note that an entry-item may be part of more than one partial tracing
(if the length of its marks list is greater than one). If a partial tracing receives a scan-
request before it receives the instruction to start the scan phase, it simply marks the

entry-item green but does not yet take a local step?.

2 Actually, the greening operation may be queued up instead of being taken immediately. It may be
better to leave the item red, as it can accept more mark-red requests, leaving more opportunities for
co-operation.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 121

A PT, may only proceed to the sweep phase when it has finished the scan phase
and when every co-operative partial tracing in PT,.Responsibles has also finished its
scan phase. Next we explain how the termination protocol is modified to cope with

co-operative partial tracings.

Scan Termination

Intuitively, we may conclude that the scan phase of a partial tracing cannot finish while it
is possible for that partial tracing to receive a scan request from another partial tracing
on which it is a dependent. This scan request may be generated by the responsible
partial tracing or as a consequence of a third partial tracing on which the responsible
partial tracing in turn is dependent. Consequently, the scan phase of a partial tracing is
only terminated when the scan phase of every partial tracing on which it is transitively
dependent has terminated.

Recall the termination protocol presented in section 4.5. In the non-scalable model,
any partial tracing object member of PT),, after having changed to passive-quiet, may
be re-activated by a remote step (i.e. a mark-request) from another partial tracing
object that is also member of PT,. This means that there is at least one process
which is active-disquiet, hence that the tracing phase has not terminated. Our solution
accounting for co-operative partial tracings introduces a new action that may re-activate
a process in the passive-quiet state. This is a consequence of a remote step executed by
a PT, € PT,.Responsibles. This means that the co-operative PTj has not finished its
scan phase, that is, there is at least one process involved in PT), which is active-disquiet.
This process may be an element of PT,.Participants or an element of PT,.Participants
where PT, € PT),.Responsibles.

We now define the relation Dependent, which identifies for a given partial tracing

those partial tracings that are directly dependent on it. Given a PT,,
Definition 5.5 Dependent(PT,, PT,) = PT, € PT,.Responsibles.

Now, let Dependent* be the reflexive transitive closure of relation Dependent, that

is Dependent” (PT,, PT,) holds if and only if one of the following holds:

e PT, = PT,

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 122

B B

. a,i Active
Inactive Disquiet
J f
g
Passive Passive
Disquiet h Quiet

U b,c,d e

a..l: Events

Figure 21: State transition diagram for termination detection of PT, accounting for
co-operative partial tracings.

e Dependent(PT,, PT,)

e or there is a PT;, such that Dependent(PT,, PT,) A\ Dependent” (PT,, PTy);

The new state transition diagram for termination detection of a PT,’s scan phase is
shown in figure 21. The events illustrated in the figure are summarised in figure 22.
Compared with figure 15 on page 97, notice that there is one new event, [— related
to actions from co-operative partial tracings — and event ¢ is modified to account for
co-operative partial tracings. That is, an Inactive but Dynamic process may only start
the scan phase when it receives a scan request if that request is sent by PT,. These
events are related to actions from co-operative partial tracings. Events ¢ and g may
now be originated by co-operative partial tracings.

Intuitively, the condition of stability defined in section 4.5:
X is not active-disquiet;

must be now satisfied for every process X in PT..Participants U PTy.Participants for
all PT, where Dependent”(PT,, PT,) holds. When such a state is known by each par-

ticipant of a partial tracing, it may enter the sweep phase safely.

CHAPTER 5.

A SCALABLE CYCLIC GARBAGE COLLECTOR

123

Event ‘ Action
a || start-phase e initialise local-steps
e responsible = self
e state = active-disquiet
b || send scan request(exit-item) e grey-set = grey-set U { exit-item}
c || receive scan request(exit-item) from e local-steps + +
p € PT,.Participants U PTy.Participants | e send acknowledgement(exit-item)
where PT, € PT,.Responsibles top
d || receive acknowledgement(exit-item) e grey-set = grey-set \ { exit-item}
e || perform local step e [ocal-steps — —
f || grey-set = 0 A local-steps = 0 e responsible = none
e state = passive-quiet
g || receive scan request(exit-item) from e local-steps + +
p € PT,.Participants U PT,.Participants | responsible = other(p)
where PT, € PT,.Responsibles o reply-set = reply-set U exit-item
e state = passive-disquiet
h || grey-set = 0 A local-steps = 0 e for exit-item in reply-set send
acknowledgement(exit-item)
to responsible
e responsible = none
e state = passive-quiet
i || receive scan request(exit-item) from e initialise local-steps
p € PT,.Participants A dynamic e set responsible = self
e send acknowledgement(exit-item)
to p
e state = active-disquiet
j || receive scan request(exit-item) from e local-steps = 1
p € PT,.Participants A non-dynamic | e responsible = other(p)
o reply-set = reply-set U exit-item
e state = passive-disquiet
1 || receive scan request(ezit-item) e local-scan-root-set(PT,) =

at entry-item Fi, from
PT, € PT,.Responsibles

local-scan-root-set(PT,) U {Ei,}
e send acknowledgement(ezit-item)

Figure 22: State changes for termination detection of PT, accounting for co-operative
partial tracings.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 124

po[YJA[A Bly[u [[Z]
By Exy
entry-list B
recHist | B token y
mark y y
A
y
poly[A[B_ July [[7] /Q
/
po[z[D[B Ju] [y[|
By Exy o
s —
entry-list
redliss | AC e
mark Y2 y C
\") .
B /Q/“’/ﬂ Bz By
u L~ entry-list g
i By By By e =
mark
entry-list D
rec-list | D po[z[D[DCB[z[v | | |
mark z z z

pto[zZ[D[BC [v]u z[| |

po [[L [[[/]}]

LL Responsibles
Dependents
Ex
Ei
Participants
Initiator
Unique identifier

Figure 23: End of the scan phase

We have defined a new global state in which termination is achieved. We now require
a report phase that allows every process involved in a partial tracing to be notified of
such a global state. For that, it is useful to have some definitions relating to the state

of every process and such a global state.
Definition 5.6 Given P € PT,.Participants, stable(P) = —active-disquiet(P).

We also say that a PT, is partial-terminated if and only if all its participants are

stable:
Definition 5.7 partial-terminated(PT,) = VP € PT,.Participants - stable(P).

PT,’s report phase implements the algorithm to compute partial-terminated(PT,)

for PT,.Initiator. We described it in section 4.5.2: every participant P € PT,.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 125

Participants sends a report message to PT,.Initiator when stable(P). PT,.Initiator
detects Partial-terminated(PT,) when it has received report messages from all its par-
ticipants and it is stable itself. Additionally, every participant ptop, reports (in the
same report message) to the initiator a list of all partial tracings on which it is depen-
dent: ptop,.Responsibles. At this time the initiator knows the identity of every partial

tracing PT, on which it is dependent (recall definition 5.4 on page 115):

PT,.Responsibles = U ptop,.Responsibles
PePT,.Participants

Figure 23 shows the example at the end of the scan phase. ptop, in process B has
reported to ptoay in process A that initiated the collection that PT) is dependent on
PT,.

The predicate partial-terminated(PT),) is a locally stable predicate (akin to a locally
stable condition — recall section 4.5). Once this property becomes true, the state
of the partial tracing over which the property holds will not change with respect to
the property, that is, the property never becomes false again during this collection.
Once a process becomes passive, it never changes to active-disquiet again (recall section
4.5) during this collection. Our termination property for PT, when accounting for co-
operative partial tracings is that all partial tracings on which it depends are partially

terminated.

Definition 5.8 terminated(PT,) is defined as follows:

terminated(PT,) = (VPT, - Dependent” (PT,, PT,) = partial-terminated(PTy))

Consequently, we define a report phase algorithm — the Token Algorithm — that,
given PT,, determines if, for all PT, where Dependent*(PT,,PT,),
partial-terminated(PT,) is true. It is only at this moment that we need remote communi-
cation between co-operative partial tracing objects. Furthermore, this communication
is only between initiators. The basic idea of the Token Algorithm is to calculate
Dependent*. We adopt the simple protocol of passing a token around a ring formed by
each initiator of the co-operative partial tracings (Rana 1983), so that when a token has

returned to the initiator that created it, the scan phase is known to be complete. The

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 126

requirement is that a PT), is only added to Dependent” when partial-terminated(PT,).
As soon as PT,.Initiator partially terminates, it constructs a token. The token has

two parts:

terminated a list that represents Dependent” in so far as it has been calculated; initially
this is < PT, >. The head of the terminated list is the partial tracing that started

the token.

next a set that holds initiators not yet visited; initially this is PT,.Responsibles.
Propagation of the token around the ring is simple:

Starting the token(PT,): The starting condition is that partial-terminated(PT,). If
PT,.Responsibles # () then create a terminated list containing element PT, and
create a next set, PT,.Responsibles; PT,.Initiator may send this token to any

element of the next set.

Receiving the token(PTy): if PT} receives token, it either passes it on or retains it

according the following rules:

Rulel: if not partial-terminated(PTy) then PT,.Initiator retains the token until
partial-terminated(PT,), at which time it sends the token to any element of

the token’s nezt set according to rules 2 and 3.

Rule2: if partial-terminated(PT,) then PT,.Initiator sends the token (see below).
If PT, = PT,, that is, PT} is the head of the terminated list, the scan phase
has terminated. The initiator reports this to its participants (recall section

4.5.2).

Rule3: as an optimisation, if terminated(PT,) then remove all PT, € PT,.
Responsibles from the nezt set and append them to terminated list, as since, if
terminated(PT,), all PT,’s responsibles must have already terminated. This
may happen when a partial tracing that has also started a token has received

it back by the time another token belonging to another initiator arrives.

Sending the token(PTy): remove PT, from the next set and append it to the termi-
nated list. If any PT, € PTy.Responsibles is not in the terminated list, then insert

PT, it into the next set. Then proceed according the following rules:

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 127

PTz
Ty
PTV
—= Dependent relation
partial-terminated(PT) terminated(PT ,)
PTZ .
token(<PT, >, { PTy})
partial-terminated(PT ;)
PTy , . Y
token(<PT 2, PTy >, {PTy, PT(})
PTU partial—teirminated(PT u) token(<PT ,, PTy’ PTy PT 2 {})
token(<PT 2, PTy, PT, >, {PT})

partial-terminated(PT ;)

I:jTV f 7 Y

time

Figure 24: Token Algorithm.

Rule4: if the next set is empty then send the token to head of the terminated list.

Rule5: if the next set is not empty then send the token to any member of the

next set.

In order to proceed to the sweep phase, each initiator has to initiate a token.
PT,.Initiator initiates the token when partial-terminated(PT,) itself. When PT,.Initiator
receives the token back it may proceed independently to the sweep phase; the suspect
sub-graph held by the corresponding group is collected.

Figure 23 on page 124 shows the token sent by ptos, at process A — the initiator
— to its responsible, ptop, at process D; ptop, will return the token with an empty
nezt-set to the head of the terminated-list, PT,. As ptop, has an empty responsibles

set, it does not need to wait for any other partial tracing to terminate.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 128

Consider figure 24. It shows a more general example. We show a Dependent relation
and the token initiated at PT,, when partial-terminated(PT,). PT, is dependent on
PT,. Consequently, it appends PT), to the next set, and sends it to the first element
of the next set, in this case PT,. After having received the token, PT, must wait until
partial-terminated(PT,). At this moment it appends itself to the terminated list and
appends its responsibles to the nezt set. These actions are repeated by every partial
tracing receiving the token. Notice that PT, does not append PT), to the next set,
because it is already in the terminated list. Following our algorithm this means that
partial-terminated(PT,). When PT, receives the token, it sends it immediately to PT,
because partial-terminated(PT,) and next = (). When PT, receives the token back, it

may proceed to the sweep phase.

5.4 Example

In this section we present an example. We aim to illustrate in more detail the start
of a partial tracing, the creation of a partial tracing object, the mark-red phase steps,
the scan phase steps, the co-operation between different partial tracings and the corre-
sponding distributed termination detection protocol. We consider the graph in figure
25.

Suppose that =, v and r initiate PT,, PT, and PT, respectively, independently. We
describe in table 26 the most relevant events for one possible sequence of events of PT,,
PT, and PT,. The result of mark-red is shown in figure 25.

Observe the event “PT,: remote_step from Fz, at B to Ei, at D”. FEi, receives
a mark-red request. FEi, is red,. Two partial tracings, PT, and PT,, have met and
must establish a responsible/dependent relation. (MR.2) is applied. B is added to
Ei,,.red-list; PT, is appended to Ei,.marks and inserted to ptop,,.Responsibles; PT), is
inserted in ptop,.Dependents.

Observe that pto,, generated a mark-request from A to B. After have received
the mark-red request, ptog, generated two mark-red requests: one from B to A and
another from B to D. After ptog, have received those mark-red requests acknowl-

edgement, ptog, acknowledged the mark-red request, sent by pto,,, to ptoy, (event

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 129

pto |X|A y x | AIBD 1Y |lux pto
Eiy Exy Eiy By B

entry-list | B A entry-list

red-list [B A red-list
mark/marks X X X X X mark/marks

A [I B
(@ ‘;@y
_

pto |U|p| cE |z luv pto |U|p|pcElulz X
B, By BEx pto [x|AlD .
entry-list |- DX Ei, Ex;
red-list LD BC entry-list
mark/marks LU u u BC red-list
X///x ux u mark/marks

I

Efi\v:ﬁ i

I

“@/f/

Eiy
entry-list | CE Ei, Exy
red-list CE E entry-list
mark/marks | g E red-list
r r mark/marks
pto |y |[ElE lvir
pto DIE v r ol [plpe [r[v [[]
po [l o [[[[
LL Responsibles
Dependents
Ex
Ey
Participants

Initiator
Unique identifier

Figure 25: End of the mark-red phase

CHAPTER 5.

A SCALABLE CYCLIC GARBAGE COLLECTOR

130

Event

‘ Action

r initiates PT, at A

® ptoa, = (PTxaAa {A}a {x}awamvw)

o Fi,.mark =x

u initiates PT, at D

d ptoDu = (PTua D7 {D}7 {u}7 @, 0)7 @)
o Fiy.mark=u

r initiates PT; at F

® ptopy = (PTraFa {F},{T},(Z),@,@)

o Bi..mark=r

PT,: local-step from Ei, to Exy e (ML.1) ptoa, =
(PTy, A, {A}, {=z}, {y},0,0)
o Bxy.mark=x
PT,: local-step from Ei, to Ez, e (ML.1) ptop, =
(PT,, D,{D}, {u}, {z},0,0)
e Fx,.mark=u
PT,: local-step from Ei, to Ex, e (ML.1) ptop, =
(PT, F {F} At {v}, 0,0)
o Ex,.mark=r
PT,: remote-step from Ez, at A to Eiy, at B | e (MR.1) Ei,.red-list = { A}
PT,: local-step from Ei, to Ex, e (ML.1) Ex,.mark = x
PT,: local-step from Eiy, to Ex, e (ML.1) Exy.mark = x
® ptogy = (z, A, {B},{y}, {u, z}, 0,0)
PT,: remote-step from Ex, at B to Ei, at A | ¢ (MR.1) ptos, =
(PTy, A, {A}, {z}, {y},0,0)
o Eiy.red-list = { B}
PT,: remote-step from Ex, at B to Ei, at D | ¢ (MR.2) Ei,.red-list = {B}
o Eiy.marks = {z}
e ptopy = (u, D, {D}, {u},{z},0,{z})
e ptop, = (z, A, {D}, {u},d,{u},0)
PT,: remote-step from Ex, at D to Ei, at C | ¢ (MR.1)
PT,: local-step from Ei, to Ex, e (ML.1)
PT,: local-step from Ei, to Ex, e (ML.1)
PT,: local-step from Ei, to Ex, e (ML.1)
PT,: remote-step from Ex, at F to Ei, at E | ¢ (MR.1)
PT,: local-step from Ei, to Ex, e (ML.1)
PT,: remote-step from Ex, at E to Ei, at F | ¢« (MR.1)
PT,: remote-step from Ex, at C to Fi, at £ | ¢ (MR.2)
remote-step from Ex, at C to Ei, at D | ¢ (MR.1)

PT,:

PT, at A receives mark-red
acknowledgement from B

d ptOAz =

(z,A,{A, B, D}, {x},{y},0,0)

PT, at D receives mark-red
acknowledgement from C

L4 ptoDu =

(u, D,{D,C, E}, {u}, {2}, 0, {z})

PT, at F receives mark-red
acknowledgement from F

d ptOFr =

(r, FAF, B} {r}, {v},0,0)

Figure 26: Mark-red phase events

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 131

“PT, at A receives mark-red acknowledgement from B). This acknowledgement in-
forms PT,’s initiator of its participants: A, B and D. This information is recorded in
pto 4,..Participants.

When receiving the mark-red acknowledgements, ptoa, instructs A, B and D to
enter PT,’s scan phase, ptop, instructs D, C and E to enter PT,’s scan phase and
ptop, instructs F' and F to enter PT,’s scan phase.

The initial step of PT), at C discovers Fi, whose entry and red-list differ. The initial
step generates remote steps to Ei,, Fi, and Ei, which are coloured green, as well as
the corresponding exit-items. Note that PT, remote step from Ez, to Ei, at E will
colour Ei,. The algorithm will request a local step from £, if/when the partial tracing
identified by FEi,.mark entered the scan phase. The result of scan phase is shown in
figure 27.

When every member of PT,’s, PT,’s and PT,’s participants finishes its initial scan
step, it informs the corresponding initiator, pto4,, ptop, and ptop, respectively, of the
corresponding responsible partial tracings. Observe that ptor, receives from ptog, the
information that PT), is responsible for PT;. Note the Responsibles fields in ptog, (in
which the responsible/dependent relation was established) and in ptog,.

In order to proceed to the sweep phase, each initiator has to initiate a token.
PT, .Initiator, process F', initiates token, as shown in figure 27. The token, is sent
to PT,’s initiator, process D, because PT, is dependent on PT,. P71, may initiate a
token, token,, independently as it is dependent on PT,. Figure 28 shows our exam-
ple dependent relation and a possible sequence of steps in order to detect termination.
Lighter lines describe PT, termination detection and darker lines describe PT; termi-
nation detection.

Notice that if token, arrived at PT,’s initiator after terminated(PT,), it would be

immediately sent back to PT,’s initiator.

5.5 Synchronised Merging

We do not claim that the solution presented up to now in this chapter is complete. As
we remarked in section 5.1 (c.f. figure 19 on page 112), a partial tracing may finish its

mark-red phase, and consequently turn to the scan phase, without the co-operation of

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR

pto | X |AaBD |x 1Y x | AIBD 1Y |lux pto
Eiy Exy Eiy Ex, BEx
entry-list | B A entry-list
red-list L B A red-list
mark/marks X X X X X | mark/marks
A [I B
”ij\’\v/?@y
pto |U|p| cE |z luv pto |U|p|pcElulz rlx
Ei; By By <u>{x} pto [y |alD .
entry-list tokenu i
red-list 4 entry-list
mark/marks 4; red-list
Y <r,u>{x} mark/marks
c \z A
f T T token— |/ \\\zj D
r]
E
A/ F
\
Ei
entry-list
red-list entry-list
mark/marks red-list
mark/marks
pto | |ElE vir
pto ple v r r po|, [glpE Ir] v
po [l o [[[
t " Responsibles
Dependents
Ex
Ei
Participants
Initiator

Unique identifier

Figure 27: End of the scan phase

132

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 133

PT _ PT _ PT
r u X

—— Dependent relation

PTX terminated(PT)
token, (<PT,>{PTy })
tokeny (<PT; ,PT,>XPTy})
token,,(<PT>{PTy})
PT,
partial-terminated(PT), terminated(PT,)
token (<PT ,PT,,,PTy >, {})

tokenr (<PT, >{PT,;})

PT
partial-terminated(PT) terminated(PT ;)

Figure 28: Distributed termination detection

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 134

other partial tracings active in the same cycle. This leads to the undesirable situation in
which the cycle is not collected. The reason is that the garbage cycle is neither covered
by a single partial tracing nor by a set of co-operative partial tracings. Thus, there may
always be a reference external to the suspect subgraph. The condition for a garbage
cycle to be collected is that it must be covered by a partial tracing — single-group —
or by a set of co-operative partial tracings — super-group.

We claim, however, that our system does provide adaptability, because the mark-red
phase only determines entry and exit-items suspected of being garbage. Consequently,
it does not make any decision about such items’ liveness. As we have just said, our
system offers the choice between long-running overlapped collections and more frequent
faster collections over small groups.

However overlapping partial tracings leads to repeated work and space overhead.
Between these two opposing solutions, a compromise that still achieves completeness is
possible, at the cost of another level of synchronisation: synchronisation of the beginning
of the scan phases — Synchronised Merging We describe this solution next.

Now, we show how the start of the co-operative partial tracings scan phase can be
synchronised to obtain a complete solution.

We define the relation Responsible (akin to definition 5.5 on page 121). The aim of
this relation is to identify, for a given partial tracing, those partial tracings for which it

is directly responsible. Given PT),,
Definition 5.9 Responsible(PT,, PT,) = PT, € PT,.Dependents.

Now, consider Responsible* as the reflexive transitive closure of relation Responsible,

that is Responsible* (PT,, PT,) holds if and only if one of the following holds:
o PT, = PT,
e Responsible(PT,, PT,)

e there is PT, such that Responsible(PT,, PT,) A\ Responsible*(PT,, PTy);

Given a PT,, the synchronisation of the begining of PT),’s scan phase and the begin-
ing of PT,’s scan phase, where Responsible*(PT,, PTy), is implemented by the Token

Algorithm described in section 5.1. We give the following definitions:

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 135

Definition 5.10 partial-terminated-mark-red(PT,) is true if and only if PT,.Initiator

has received all the acknowledgements for the mark-red requests it generated.

Now, we require that every initiator should know which partial tracings it is respon-
sible for. This may be determined by the same acknowledgement system that allows
the initiator to be aware of all participants. For that, the acknowledgement of a mark-
request by an entry-item belonging to another partial tracing should return the partial
tracing’s identity. The acknowledgement system would propagate it to the initiator. At
the stage where partial-terminated-mark-red(PT,), PT,’s initiator knows the identity of

every partial tracing it is responsible for (recall definition 5.4 on page 115):

PT,.Dependents = U PT,p.Dependents
PePT,.Participants

The following definition captures the state where the synchronisation of the start of
PT,” scan phase and the start of PT,’s scan phase, where Responsible*(PT,, PTy), is

achieved:

Definition 5.11 terminated-mark-red(PT,) is true if and only if, for all PT, where
Responsible*(PT,, PT,), partial-terminated-mark-red(PT,) is true.

The Token Algorithm detects such a state. PT.,’s initiator retains the token until
partial-terminate-mark-red(PT,). Then, if the head of the token’s terminated list is PT,,
terminated-mark-red(PT,). Otherwise, PT,’s initiator (i) removes itself from the next
set to the end of to the terminated list, (ii) inserts any of its dependent partial tracings
that are not members of the terminated list into the next set, and (iii) passes the token
to any member of the next set. If this set is empty, all PT, where Responsible(PT,, PT,)
have terminated and the token is returned to its owner, the head of the terminated list.

Intuitively, we conclude that if the system synchronises the start of the scan phase of
the multiple partial tracings active in the same cycle, that cycle will be eventually cov-
ered by a super-group and eventually collected. We prove that this solution is complete
in section 7.3.

In the absence of measurements we cannot conclude that this complete solution is
preferable to the first that we presented. Although it achieves completeness, it also

presents an extra synchronisation phase.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 136

5.6 Summary

We have presented a scalable solution for garbage collection on distributed large address
spaces. Scalability is achieved in our system by having each process collected indepen-
dently from the rest of the system through the reference listing protocol. Additionally,
cycles of garbage are collected by the three-phase partial tracing. This is a scalable
solution, because it does not involve the whole distributed system. The mark-red phase
forms groups of processes dynamically that will co-operate in the collection of garbage
cycles. Our solution is incomplete in the sense that a partial tracing may not cover
the whole transitive closure of a suspect subgraph. However, the merger of concurrent
partial tracings ensures completeness.

We transformed the garbage collection of a distributed suspect subgraph to the
garbage collection of the corresponding distributed suspect cut-references graph. We
benefit from less space overhead, and from cheap local steps. When two partial tracings
meet in an entry or exit-item, they establish a protocol for the co-operation through
partial tracing objects in each process. This co-operation is extended until the end of
scan phase.

The establishment of the Dependent/ Responsible relation between two partial trac-
ings is a fundamental aspect of our algorithm. The termination detection protocol is
dependent on such a relation. The scan phase of a partial tracing is only terminated
when the scan phase of every partial tracing on which it is transitively dependent has

terminated.

Chapter 6

Mutator Concurrency

Until now, we assumed that a partial tracing executes without intervening mutations.
In practice, while a partial tracing is executing, a mutator may change the object graph
so that a partial tracing no longer has a consistent view of the distributed graph. We
give now a detailed description of techniques for preserving safety and liveness in the
presence of concurrency and show how we benefit from features that reduce the costs
introduced by the need for synchronisation. This problem was discussed in section 2.4.1,
in the context of uniprocessor garbage collection. The parameters by which we can judge
incremental algorithms are their degree of conservatism, synchronisation overheads and
termination cost.

We present our solutions for synchronisation between the mutator and a partial
tracing here. In chapter 7 we prove that our solution is safe and live. We also show
that mutator synchronisation actions do not interfere with the termination detection

protocol described in section 4.5.

6.1 Synchronisation

Recall that the mark-red phase only aims at identifying those entry and exit-items
suspected of belonging to a garbage cycle. It does not make any decision about entry
and exit-items’ liveness. Thus, the mark-red phase does not need to be accurate. In
contrast to the mark-red phase, the scan phase must be complete with respect to the

red suspect subgraph, since it must ensure that all live red entry and exit-items are

137

CHAPTER 6. MUTATOR CONCURRENCY 138

repainted green'.

Mark-red Phase

The mark-red phase does not have any need for synchronisation with mutators. One
benefit of this is that the mark-red phase does not delay mutator activity, since it
does not require any synchronisation. Additionally, we gain cheap termination because
there is no need to account for mutator actions that may violate the local condition
of section 4.5 and there is no need for uninterruptible actions of mark-red to check
for termination. Consequently, the mark-red phase preserves the termination protocol

invariants, irrespective of concurrency.

Scan Phase

Mutator activity may prevent a root (any member of the local-scan-root-set) from ever
being seen by the scan phase, because of scan phase initial steps not being synchro-
nised in each process, and processes rapidly exchanging and deleting references between
spaces. This may happen because a mutator message could arrive after the initial step
had been taken. We illustrate this problem in figure 29 and figure 30 (for simplicity, we
represent entry and exit-items as common objects, and we do not represent the corre-
sponding objects). Process A is involved in a partial tracing. Suppose that, after the
initial step has finished at process A, a mutator message arrives at object a. As a result
of the method invocation, Ezx; is now reachable from the local-scan-root-set at process
A. Also, suppose mutator and local collector activity at process B results in the deletion
of the external reference to object a. Consequently, without any co-operation from the
mutator, exit-item Fz;, would be missed by the scan phase and wrongly reclaimed by
the subsequent sweep phase.

Also consider figure 30. Suppose that process A transmits a b-reference to process C.
Entry-item E1j, receives an insert message (recall section 3.4.4) such that Eidy.entry-list =
Eiy.entry-list U {C'}. In this way, Fip’s red-list and Fip’s entry-list differ. If the insert
message arrived after initial step has been taken at B and b does not receive a scan

request from A — FEux; is garbage or the b-reference at A is deleted — Ex;, would be

1Tt may also suggest that garbage items are live, hence it is conservative

CHAPTER 6. MUTATOR CONCURRENCY

@

local-scan-root-set A

w notred cut-reference graph

. red cut-reference graph

Figure 29: Reference mutations — local copy (dotted lines).

A
A transmits b_reference
toC EXp,
C
o

B

Eip

i
|
A

Figure 30: Reference mutations — remote copy (dotted lines).

139

CHAPTER 6. MUTATOR CONCURRENCY 140

missed by the scan phase and wrongly reclaimed by the following sweep phase.

We first consider the effect of mutator actions on the scan phase initial step and then
on scan phase remote steps. Recall that the local-scan-root-set is part of the global root
set in each processor. The initial step starts from the local-scan-root-set and colours
green all local entry and exit-items reached from it. A local mutator may only change
the connectivity of the graph by overwriting references to objects. Such writes can be
detected by a write barrier (section 2.4.1). Subsequent scan requests at entry-items are
propagated (local step) atomically to the corresponding exit-item. Although local steps
could also be protected with a write barrier, we believe that such a implementation
would be expensive. We describe our implementation in section 8.

On termination of the initial step in a process P, the local red subgraph will be
isolated from the live object graph (green or white) held in that process. The reason
is intuitively explained as follows: the initial step colours green any local entry or exit
item reachable from the local-scan-root-set, that is from references external to the red
suspect subgraph graph. Thus any remaining red entry-item Ei, and its red descendent
exit-items were not initially reachable from the local-scan-root-set.

A red entry-item FEi, at process P not belonging to the local-scan-root-set at the
beginning of the initial step has its entry-list equal to its red-list. By our algorithm,
this means that all processes) holding an exit-item Ex, must have coloured red Ex,
with a mark-red local step. If z is not being transmitted to any process, that is, any
process @ holding a z-reference is not involved in an incomplete transmission operation
(recall section 3.4), only actions through such red exit-items — members of the red
suspect cut-reference graph in other processes — may change the reachability of the
red entry-item Fi, and its red descendent exit-items after initial step has finished at P.

Consequently, this reachability may only be changed if:
e process () makes a remote invocation on red Ei,’s corresponding object;
e process () transmits the z-reference through a red exit-item Ez,;

e process () transmitted the z-reference before Ex, has been coloured red and z-

reference is in transit;

In order to ensure that no item at process P is missed by the scan phase, we ensure

CHAPTER 6. MUTATOR CONCURRENCY 141

that the following invariants always hold after the end of the scan phase initial step at

P:

Invariant 6.1 After SI(P), no red ezit-items are reachable by the local-scan-root-set at

P.

Invariant 6.2 After SI(P), no red entry or ezit-items become new members of the

local-scan-root-set.

We also define the auxiliary invariant:

Invariant 6.3 A red entry-item Ei,, where Ei,.red-list = Ei,.entry-list, cannot receive
a message that inserts a process into Ei,.entry-list unless there is a scan request in

transit to that Ei,.

To preserve the above invariants, mutator actions through red exit-items require
synchronisation operations (akin to read and write barriers described on chapter 2) —
before the mutator can perform such an operation, it must activate the garbage collector
(scan phase) to perform some action.

We introduce a read barrier on red exit-items: Remote Barrier.

Remote Barrier When a mutator at process () invokes or transmits a remote ref-
erence to an object z at process P through a red exit-item Ez,, it performs a remote
step (scan request) to FEi, at P. The remote step colours green Fi, and all exit-items
locally reachable from Ei, atomically, before the mutator can change the connectivity
of red exit-items.

Notice that, as a consequence of the scan phase not being synchronised in each
process, an exit-item FEx, that corresponds to an entry-item E%, may have been coloured
green by the initial step at) or by a scan remote step (scan request). In this case, a
scan remote step must have been executed to colour Ei, green, but one of the mutator
actions described above may be performed on Ei, before the remote step reached Ei,
because of network latency. For now we assume that messages are to arrive in the same
order as they are generated in point to point connections. This may be effected, as
we show in chapter 8, by only colouring green an exit-item after colouring green the

corresponding entry-item. In this way, the following invariant is maintained:

CHAPTER 6. MUTATOR CONCURRENCY 142

Remote-step invariant 6.4 V FEz,.(green(Ex,) = green(FEi,))

The Remote Barrier preserves the invariant 6.1 at process P by not allowing the
mutator to read references to objects corresponding to red entry-items. In this way,
the mutator cannot change the reachability of red exit-items. The Remote Barrier is
effectively a read barrier (Baker 1978).

Invariant 6.2 is preserved by the Remote Barrier and invariant 6.3. The reason is
intuitively as follows: to be a new member of the local-scan-root-set after the initial step,
a red entry-item Fi, must receive an insert message adding a reference to its entry-list,
so that Ei,.red-list # Ei,.entry-list. If such a message was sent after the source Ez, has
been painted red, the Remote Barrier ensures that Ex, is greened. By invariant 6.4,
Ei, is green. Consequently the new member of the local-scan-root-set and the exit-items
from which it is reachable are green.

We now have to make sure that such an insert message is not sent before Ezx, is

marked red. For that we introduce the following restriction on mark-red.

Mark-red Restriction Do not perform remote steps through exit-items correspond-
ing to references being transmitted. Following the terminology in (Ladin and Liskov

1992), do not perform remote steps through references in the translist>.

Cut-references

Until now, scan phase initial and local steps ignored the cut-reference graph as it may
have changed since the last computation. Because of this the initial step has to include
local roots in the local-scan-root-set as the reachability of the local graph, and conse-
quently the reachability of suspect items may have changed. For the same reasouns,
local steps have to perform an (atomic) trace from entry to exit-items, as reachability
between those items might also have changed.

However, we would benefit substantially from a system that kept cut-references up

to date. That is, an initial step would compute which items were reachable from outside

2We have chosen to model our problem using the translist model, since it is implemented by the Net-
work Objects system. However, there is a correspondence between this problem and the race conditions
problem described in section 3.4. Consequently, other solutions could be applied.

CHAPTER 6. MUTATOR CONCURRENCY 143

Figure 31: Reference mutations (dotted lines) and Cut-references graph.

the suspect cut-references graph, and a local step would simply follow a cut-reference
accurately.

First, let us illustrate how a non-accurate cut-reference graph may lead to an unsafe
scan phase. Consider figure 31 (again, for simplicity, we represent entry and exit-items
as common objects, and we do not represent the corresponding objects). Suppose that
an external mutator message arriving on process A at object a creates a new path from
object a to object d in process B and that this is followed by the deletion of a reference
in the old path to d at process B. The cut-references graph is no longer accurate. Also
suppose that the cut-references graph is involved in a partial tracing so that all entry
and exit-items become red. Now suppose process B computes a new cut-reference graph
to reflect the deletion, but process A does not update its cut-reference graph to reflect
the new reference. In this way, a scan local step on entry-item Fi,, generated by the

external reference to entry-item Fiy, will miss exit-item Exg.

Cut-references — Dirty Barrier

Let us define the local-scan-root-set assuming an accurate cut-reference graph. By post-

condition 5.1 on page 110, the nodes of a cut-reference graph are not reachable locally.

CHAPTER 6. MUTATOR CONCURRENCY 144

Consequently, one may remove the local roots from the local-scan-root-set defined on
page 119: it suffices for the initial step to check that the red suspect cut-references
graph is not reachable from external entry-items (any non-red entry-item or red entry
whose entry and red-lists differ). Moreover, by post-condition 5.2 on page 110, it would
be enough for the initial step as well as for every local step to follow the cut-references
graph, because, if there is a path between a suspect Ei, and a suspect Ez,, then
Ex, € Ei,.exits. As we said, after this simplification, the initial scan step and the local
scan steps are simpler and cheaper. Recall that we do not perform a scan from the
local roots anymore. Moreover, the local scan steps just follow the references in the
cut-references graph.

In this way, the local-scan-root-set for a PT, would be formed by:

e white entry-items, as they do not belong to the red suspect sub-graph,
e green entry-items, as they have already been found to be live,

e any red entry-item marked by either PT, or any PT, € PT,.Responsibles whose
entry and red-list differ, as they are reachable from outside the suspect sub-graph,

and

e any other red entry-item marked by other PT;, such that PT, ¢ PT,.Responsibles,

as they are not part of PT}’s suspect subgraph.

However, as we showed, if suspect items turn to be live, the cut-references of those
items may change due to creation and deletion of local references®. We ignore deletions
since doing so does not affect safety, but simply makes the algorithm overly conservative.
Also they do not affect collection of garbage cycles because deletions are reflected in
the next computation of cut-references. On the other hand, reference creations must
be handled so that the scan phase does not miss live exit-items (as illustrated by the
example in figure 31.).

A partial tracing needs co-operation from the mutator in order to provide the scan
phase’s initial step with accurate information about which cut-references may have

changed in the system and to always provide cut-references for safe local steps.

3None of these events can occur unless those items are still alive.

CHAPTER 6. MUTATOR CONCURRENCY 145

By post-condition 5.1 on page 110, we conclude that in order to create a new path
to a suspect exit-item, the mutator must have traversed an old path to it. This traversal
must have included traversing an inter-process reference to a suspect entry-item, since
post-condition 5.1 states that suspect entry-items and suspect exit-items are not locally
reachable. Consequently, only external mutator actions may change their connectivity.
In the example (figure 31 on page 143), the mutator must have traversed the reference to
object b. In this way, it is possible to protect the cut-references graph by a read-barrier

on suspect entry-items: a Dirty Barrier.

Dirty Barrier When a mutator traverses a remote reference to an object z at process
P, if P has a suspect entry-item E7, for z, it dirties Fi, and the exit-items in Fi,.ezits.

The following post-condition is then true.

Post-condition 6.5

Dirty Barrier(Ei,)

{dirty(Fi,) A (VEz, € Ei,.exits - dirty(Ezy))}

Dirty entry-items are cleared when an entry-item’s ezits are re-computed (as de-
scribed in section 5.2). For simplicity, we assume that if the mark-red phase visits a
process during such a computation, it waits until it terminates. This condition may be
easily relaxed by allowing mark-red to read the old copy while a new copy is being com-
puted. We proceed as follows. After method identify-suspects, all dirty information
is cleared. After this point, and until the next cut-references graph computation, every
remote invocation on suspect objects will trigger a Dirty Barrier.

As we have described in section 5.2, compute-graph computes the list of all suspect
exit-items reachable from each suspect Fi,. Assuming concurrency, the following post-

condition holds:

CHAPTER 6. MUTATOR CONCURRENCY 146

Post-condition 6.6

{3Exy - (suspect(Ei,) A suspect(Exy) A path(Ei,, Exy)}
compute-graph(FEi,)

{Ex, € Ei,.ezits}

This post-condition asserts that if there is a path between a suspect entry-item FEi,
and a suspect exit-item Ex, before method compute-graph’s iteration for Ei,, Ex,
will be a member of Ei,’s exits. This is ensured by any ‘snapshot-at-the-beginning’
incremental tracing.

Compute-Graph is performed concurrently with the mutator Dirty Barrier.
When the component exits is computed for an entry-item FEi,, if during this com-
putation a Dirty Barrier is triggered on Fi, such that dirty(Fi,), all exit-items in

FEi,.exits must be dirtied at the end of the computation. Thus,

Post-condition 6.7

compute-graph(FEi,)

{dirty(EFi,) = (VEz, € Ei,.exits - dirty(Ex,))}

During compute-graph iteration for Fi, (recall that dirty information is cleared
after identify-suspects), if a Dirty Barrier is applied on Ei,, we remember Fi, and
dirty the exit-items in exits at the end of compute-graph.

We are now ready to define a set of invariants that must hold in every process P, be-
tween the last computation of the cut-reference and the initial step at P. Consequently,
we are able to redefine a new local-scan-root-set, and scan initial step (SI) and local
steps (SL) in order to preserve safety. In section 7 we will prove that Dirty Barrier

ensures safety in the presence of mutator concurrency.

Invariant 6.8

VEz, - (path(Roots, Ex,) A suspect(Ex,) = dirty(Ez,))

CHAPTER 6. MUTATOR CONCURRENCY 147

If a suspect exit-item is locally reachable then it must be dirty.

Invariant 6.9

VEi,, Ex, - path(Ei,, Exy) A suspect(Exz,) =

Ezxy € Ei,.exits V dirty(Ez,)

If there is a path between an entry-item and a suspect exit-item, then either there
must be a cut-reference from the entry-item to that exit-item, or that exit-item is dirty.
The local-scan-root-set of a PT,, taking account of co-operative partial tracings, may

now be defined as the set of:
e white entry-items, as they do not belong to the suspect sub-graph,
e green entry-items, as they have already been found live,

e every entry-item Ei, where dirty(FEi,), since no Fx, (where Ex, € Ei,.exits) may

be suspect any longer,
e every dirty red exit-item Fz,, as it may no longer be a suspect,

e every red exit-item Ez, that have been found non-suspect by the last computation

of find-suspects,

e any red entry-item marked by either PT, or any P11}, € PTy.Responsibles whose
entry and red-lists differ, as they are reachable from outside the suspect sub-graph,

and

e any other red entry-item marked by other PT, where PT, ¢ PT,.Responsibles, as
they are not part of PT,’s suspect subgraph.

We can now redefine the scan phase initial step (SI) and scan phase local steps (SL)
using an accurate cut-references graph. The Dirty Barrier ensures that no local roots
or external entry-items are missed by the scan phase initial step in any participant. It

also ensures that the cut-reference between entry and exit-items is consistent.

(Conc-SI.1) Mark green any red entry or exit item E of the local-scan-root-set for which
E.mark = PT,. For all entry-item FEi, in the local-scan-root-set, green any red

exit-item Ex, where Ex, € Fi,.exits and Exzy.mark = PTj: they are green,.

CHAPTER 6. MUTATOR CONCURRENCY 148

Notice that there may be new members added to the local-scan-root-set by external
mutator messages while the initial step at P is being executed. Consequently, this
process must be repeated for any new members. Termination is ensured because there
is a finite number of red items that may be added to the local-scan-root-set.

The local scan phase step for PT, propagates the green colour from a green, entry-
item Fi, to those exit-items Ex, € Ei,.exits that PT, had previously visited in the

mark-red phase:
(Conc-SL.1) Green Ex, € Ei,.exitsif it is red and either Fxy.mark = PTy or PT, € Ex,.marks.

As we prove in chapter 7, invariants 6.8 and 6.9 ensure the safety of scan phase

initial and local steps.

6.2 Termination

In section 4.5 we described a distributed termination protocol for detecting termina-
tion of each phase of the distributed partial tracing. However we did not account for
synchronisation actions due to to mutator-collector concurrency during the scan phase.

Correct termination detection requires that each remote step (scan request), and
subsequent local and remote steps, has an active-disquiet process ultimately responsible
for it. We need to show that the Remote Barrier preserves this condition.

In order to show that the Remote Barrier preserves the termination detection
protocol, we analyse each case of every possible process state and show that a passive
process cannot execute the Remote Barrier, thus there must always be a active-

disquiet process responsible for it.

Inactive P has not taken the initial step. This means that it has not received the
report phase message yet. However, it might install a Remote Barrier, when
the mutator invokes a remote object or transmits a remote reference, in any red
exit-item Ez, because P does not know the state of the target process. Since P
is a dynamic process because it is a participant, it eventually turns to active-
disquiet. The exit-item Fx, should then be inserted on the local-scan-root-set as

a new root for the initial step.

CHAPTER 6. MUTATOR CONCURRENCY 149

I, m,n b,c,del b
. ai Active
Inactive Disquiet
J f
g9
Passive Passive
Disguiet " Quiet

U b,c,d eb

a .. n: Events

Figure 32: State transition diagram for termination detection of PT, accounting for
mutator concurrency.

Active-disquiet P has not yet received all the acknowledgements for the scan requests
generated by its initial step, thus it will take responsibility for any Remote Barrier

scan request.

Passive-disquiet P has already completed its initial step. Any remaining red exit-
item Kz, € P can only have been reachable from a red entry-item Ei, € P. By
invariant 6.4 we conclude that all exit-items Ex, in all other processes () must
still be red. Consequently, a mutator message to Ei, € P must have been sent
through a red Ez, € () # P. In this case a Remote Barrier must have been

executed on Fx,. As a result, Ei, and Fz, must have been coloured green.

Passive-quiet Similar arguments to above.

We conclude that a Remote barrier must ultimately have an active-disquiet pro-
cess responsible for it. Note that the responsible process may be the one that generated
the barrier.

We may now complete the state transition diagram introduced in section 4.5 (figure
15). The new events reflect the execution on a red exit-item and reception on a red entry-

item of a Remote Barrier, and reception of an acknowledgement for each possible

CHAPTER 6. MUTATOR CONCURRENCY 150

state. The new transaction diagram and new events are described in figures 32 and
33. Events b/, and ¢’ and ¢’ represent the execution on exit-items and reception on
entry-items of the Remote Barrier respectively. The actions are the same as sending

and receiving scan requests.

6.3 Summary

In this chapter we have presented techniques for preserving safety and liveness in the
presence of mutator/collector concurrency. We conclude that since the mark-red phase
does not need to be accurate, it does not delay mutator activity and it does not require
any synchronisation.

The scan phase must be accurate. Mutator activity may prevent a root from being
seen by the scan phase. Moreover, the cut-references graph may change since it last
computation and consequently the reachability of suspect items may also change.

We defined two synchronisation actions in order to make our algorithm safe in the
presence of mutator concurrency. The Remote Barrier ensures safety by not allowing
the mutator to read references to objects corresponding to red entry-items. In this way
the mutator cannot change the reachability of red exit-items.

The Dirty Barrier keeps the cut-references graph up to date. It ensures that it is
always provides accurate information about those cut-references that may have changed
in the system to the scan phase’s initial-step. In this way, the algorithm can always

perform safe local steps, directly, from entry to exit-items.

CHAPTER 6. MUTATOR CONCURRENCY

151

Event ‘ Action
a || start-phase e initialise local-steps
e responsible = self
e state = active-disquiet
b || e send scan request(exit-item) e grey-set = grey-set U { exit-item}
b’ || e trigger a Remote Barrier(ezit-item)
c || receive scan request(exit-item) e local-steps + +
¢’ || receive Remote Barrier(exit-item) e send acknowledgement(ezit-item)
from to p
p € PT,.Participants U PTy.Participants
where PTy € PT,.Responsibles
d || receive acknowledgement(exit-item) e grey-set = grey-set \ { exit-item}
e || perform local step e [ocal-steps — —
f || grey-set =0 A local-steps = 0 e responsible = none
e state = passive-quiet
g || ® receive scan request(exit-item) e [ocal-steps + +
g’ || ® receive Remote Barrier(exit-item) e responsible = other(p)
from e reply-set = reply-set U exit-item
p € PT,.Participants U PT,.Participants | e state = passive-disquiet
where PTy € PT,.Responsibles
h || grey-set = 0 A local-steps = 0 e for exit-item in reply-set
send acknowledgement(exit-item)
to responsible
e responsible = none
e state = passive-quiet
i | receive scan request(exit-item) from e initialise local-steps
p € PT,.Participants A dynamic e set responsible = self
e send acknowledgement(exit-item)
to p
e state = active-disquiet
j || receive scan request(exit-item) from e local-steps = 1
p € PT,.Participants A non-dynamic | e responsible = other(p)
e reply-set = reply-set U exit-item
e state = passive-disquiet
1 || receive scan request(exit-item) on e local-scan-root-set(PT,) =
entry-item Fi, from local-scan-root-set(PT,) U {Ei, }
PT, € PT,.Responsibles e send acknowledgement(exit-item)
m || trigger a Remote Barrier(ezit-item) e [ocal-scan-root-set =
local-scan-root-set U { exit-item}
n || receive a Remote Barrier(exit-item) e local-scan-root-set(PT,) =
on entry-item Fi, local-scan-root-set(PT,) U {Eiq }
e send acknowledgement(exit-item)

Figure 33: State changes for termination detection of PT, accounting for mutator con-
currency

Chapter 7

Proof of Correctness

In this chapter we outline a proof of the correctness of some aspects of the partial tracing
algorithm. First we summarise our model, rewriting the steps, definitions, invariants and
post/conditions relevant for the proof. Then, we proceed to the proof itself. We divide
the proof into two sections: safety (section 7.2) and liveness (section 7.3). When proving
safety, we assume that the distributed tracing is correct providing it terminates. We
first use a simplified model that does not account for mutator concurrency or concurrent
partial tracings, and we assume that distributed termination is correctly detected. Then,
we extend the proof to the distributed termination protocol. We prove that once a
partial tracing’s initiator has received a report message from every participant, the scan
phase has terminated, that is, there can be no mark requests in transit. Consequently,
no red object can receive a scan request in the partial tracing’s sweep phase. Next,
we extend the proof to the mutator concurrency model and prove that mutator actions
do not affect termination detection and safety. Finally, we extend the proof to the
case where different partial tracings may be simultaneously active in the same or a
connected sub-graph. In this case we show that two partial tracings may co-operate
without compromising each other’s safety and liveness properties.

When proving liveness, we reason about the termination of mark-red and scan trac-
ings, and show that all garbage objects eventually become suspect objects and that

garbage cycles within a suspect subgraph are eventually collected by our system.

152

CHAPTER 7. PROOF OF CORRECTNESS 153

7.1 Summary of the Model

Mark-red phase

Definition 4.1

FEi,.red-list =

{p € processes : Ex, € exit-table(p) A colour(Ez;) = red}

Mark-red steps

For a partial tracing PT,, a local step goes from each red entry-item FEi,, where

Ei,.mark = PT,, to each exit-item Ez; in Ei,.exits as follows:

(ML.1) If Ex} is white, then it is reddened and its mark set to PTy, that is, Exy.mark =

PT,: we call it red,.
(ML.2) If Exy is already red,, then no further action is necessary.

(ML.3) If Exy is red, where z # y, then two partial tracings have met in the same phase.
We merge the partial tracings and say that z is dependent on y and y is responsible
for z. PT, is appended to Exy.marks, PTy is added to the PT,.Responsibles,
and PT), to the PT,.Dependents. Both these interactions take place between the

PTobj’s in this process — no messages are sent.

(ML.4) If Exy is green, it must have been marked by another group operating in a later

phase so the red wave-front retreats from this object.

A remote steps executed by PT, propagates colours from an exit-item Ez; in a

participant P to entry-items i, in a remote process Q:
(MR.1) If Eiy, is white or red,, P is added to Eiy.red-list and Eiy, is marked red,.

(MR.2) If FEiy is red, and z # y, P is still added to FEiy.red-list. Once again two par-
tial tracings have met and, as in the local step, PTy is appended to Eiy.marks
and to PT,.Responsibles, PT, to PTy.Dependents in process J; no messages are

exchanged.

(MR.3) If Eip, is green, no further action is taken and the mark-red phase retreats.

CHAPTER 7. PROOF OF CORRECTNESS 154

Scan phase
Scan steps

An initial-step:

(SI.1) Mark green any red entry or exit-item E in the local-scan-root-set for which
E.mark = PT,. Mark green any red exit-item FEx; for which Exy.mark = PT,

that is reachable from the local-scan-root-set. These are green,,.

The local scan phase step for PT} propagates the green colour from a green, entry-
item Fi, to those exit-items Ex; in the same process reachable from Ei, that PTj had

previously visited in the mark-red phase:

(SL.1) Green Ewy if it is red, reachable from green a Fi,, and either Exy.mark = PT,
or PT, € Exy.marks. That is, we green only those exit-items reddened by co-

operative partial tracings.

The remote step from a green, exit-item Ex;, propagates the green colour to the

corresponding entry-item Ei;:

(SR.1) If Eiy is red and Eiy.mark = PT, or PT, € Eiy.marks, mark Eij, green.
(SR.2) If Eij is red but neither Eiy.mark = PT, nor PT, € Eiy.marks, retreat.
(SR.3) If Eij is not red, retreat.

(SR.4) Request a local step from Eiy, if Fiy.mark has entered the scan phase.

Advanced scan steps

The advanced scan steps follow the cut-references graph. It suffices for the initial scan
step to check that the red suspect cut-references graph is not reachable from exter-
nal entry-items (any non-red entry-item or red entry whose entry and red-lists differ).
Moreover, it is enough for the initial step, as well as for every local step, to follow the
cut-references graph, because, if there is a path between a suspect Ei, and a suspect

Ex,, then Fx, € Ei,.erits.

CHAPTER 7. PROOF OF CORRECTNESS 155

(Conc-SI.1) Mark green any red entry or exit item E of the local-scan-root-set for which
E.mark = PT,. For all entry-item Ei, in the local-scan-root-set, green any red

exit-item Ex, where Ex, € Fi,.exits and Exy.mark = PT,: they are green,.

(Conc-SL.1) Green Ex, € Ei,.exitsif it is red and either Fxy.mark = PTy or PT, € Ex,.marks.

Termination detection

Invariant 4.4

Vp; - p;.state = passive-disquiet =

Ip;.(i # j) A Ancestor™(p;, p;) A p;.state = active-disquiet

Cut-references graph

Post-condition 5.1

[identify-suspects]
{(VEi, - suspect(Ei,) = —path(Roots, z)) A

(VEz, - suspect(Ex,) = —path(Roots, Exy))}

Post-condition 5.2

[identify-suspects]

{(VEi, - suspect(Fi,) = —path(Roots, z)) A
(VEz, - suspect(Ex,) = —path(Roots, Exy))}
[compute-graph]

{VEiy,, Ex, - (suspect(Eiy) A suspect(Ex,) A path(Eiy, Ex,)) = FEx, € Eiy.exits}

Advanced termination detection

Definition 5.5 Dependent(PT,, PT,) = PT, € PT,.Responsibles.

CHAPTER 7. PROOF OF CORRECTNESS 156

Definition 5.6 Given P € PT,.Participants, stable(P) = —active-disquiet(P).
Definition 5.7 partial-terminated(PT,) = VP € PT,.Participants - stable(P).
Definition 5.8

terminated(PT,) = (YPT, - Dependent” (PT,, PT,) = partial-terminated(PTy))

Mutator concurrency

Invariant 6.1 After SI(P), no red ezit-items are reachable by the local-scan-root-set at

P.

Invariant 6.2 After SI(P), no red entry or ezit-items become new members of the

local-scan-root-set.

Invariant 6.3 A red entry-item Ei,, where Ei,.red-list = Ei,.entry-list, cannot receive

an insert message unless there is a scan request in transit to that Et,.

Remote-step invariant 6.4 V FEz,.(green(Ex,) = green(FEi,))

Mark-red Restriction Do not perform remote steps through exit-items correspond-
ing to references being transmitted. Following the notation in (Ladin and Liskov 1992),

do not perform remote steps through references in the translist.

Post-condition 6.5

Dirty Barrier(Ei,)

{dirty(Fi,) A (VEz, € Ei,.exits - dirty(Exy))}

Post-condition 6.6

{3Exy - (suspect(Ei,) A suspect(Exy) A path(Ei,, Exy)}
compute-graph(FEi,)

{Ex, € Ei,.exits}

CHAPTER 7. PROOF OF CORRECTNESS 157

Post-condition 6.7

compute-graph(Ei,)

{dirty(EFi,) = (VEz, € Ei,.exits - dirty(Ex,))}

Invariant 6.8
VEz, - (path(Roots, Fx,) A suspect(Ez,) = dirty(Ez,))
Invariant 6.9

VEi,, Ex, - path(Ei,, Exy) A suspect(Ex,) =

Ezy € Ei,.exits V dirty(Ezy)

7.2 Safety

Safety Invariant

The partial tracing algorithm must satisfy the following safety invariant:
Safety property 1 No live objects are reclaimed.

In the sweep phase only red entry-items are collected, so the invariant is equivalent

to:

Safety property 2 At the begining of the sweep phase no red entry-items involved in
a PT, are reachable from any root inside or outside the group containing the suspect

subgraph.

7.2.1 Partial tracing algorithm

In this section we prove that the partial tracing algorithm works safely in conjunction
with the reference listing protocol. We consider neither mutator-collector concurrency,
nor multiple partial tracings nor termination detection.

We want to prove that at the begining of the sweep phase of PTj,

CHAPTER 7. PROOF OF CORRECTNESS 158

VEiy(red,(Fiy) = —live(Eiy)) (1)

Suppose that red,(Eiy) A live(Ei,) at the begin of sweep phase. Thus, Fi, must be
reachable from outside the group or from a live exit-item inside the suspect sub-graph.
Notice that an entry-item is never locally reachable, although the corresponding object

may be locally reachable itself. Thus,

VEi, - (red,(Eiy) A live(Eiy) = (2)
(3Q ¢ PT,.Participants N IEx, € Q.exit-table A path(Ex,, Fiy) (3)

V(3R € PT,.Participants AN AEx, € R.exit-table A\ path(Ex,, Ei,) A live(Ex,))4)

Now suppose that (3) holds but (4) does not. By the reference listing protocol,

path(Ex,, Eiy) = Q € Eiy.entry-list (5)
That is, Q must have been inserted in Fi,.entry-list when path(Ezx,, Fi,) was created
(recall that we assume a safe reference listing protocol). Also,

Q ¢ PT,.Participants = —redq(Ex,) (6)

because Ezx, was not visited by PT,’s mark-red phase. If it had been visited, @ would
have been made a member of PTy.Participants by the acknowledgements system.

By definition 4.1,

(path(Ex,, Eiy) N —red,(Ex,)) = Q ¢ Eiy.red-list (7)

That is, since exit-items are unique, () cannot be a member of Eiy.red-list because it

does not hold a red exit-item to Ei,. Consequently,

(path(Ex,, Eiy) A Q ¢ PT,.Participants) = Difference(Eiy.entry-list, Ei,.red-list) #
(8)

CHAPTER 7. PROOF OF CORRECTNESS 159

From this it follows that E7, must have been painted green by the scan initial step.
Thus, live(Ei,) and red,(Ei,) is a contradiction. Now suppose proposition (4) holds,
that is, there is an exit-item Ez, belonging to R € P1T,.Participants from which K,
is reachable and live(Ez,). Since Ei, was not painted green by the scan phase initial

step,

redq(Eiy) N (Eiy.red-list = Eiy.entry-list) 9)

because, entry-items whose red and entry-lists are painted green by the initial scan step.
So, since path(Exz,, Fi,), R € FEiy.entry-list. Hence, R € FEiy.red-list. Thus,
redy(Ex,) by definition 4.1. By hypothesis Fx,, is live. Thus,

live(Ex,) = (10)
(3r € Roots(R) A path(r, Exy)) V (11)
(3Ei, € R.entry-table A path(Ei,, Ex,) A live(Fi,)) (12)

Ignoring concurrency, if (11) holds, Ez, would have been painted green by the scan
initial-step (SI.1). So live(Ex,) and red,(Ex,) is a contradiction. Thus (12) must hold.

We have path(Ei,, Ex,). Once we are at the begin of sweep phase, Fi, must be
red. If not, Fz, would have been painted green by the initial step. Thus any red
‘live’ entry-item is only reachable from other global roots which are red. Any red ‘live’
entry-item is reachable from the actual roots or from outside the red subgraph. This
contradicts our definition of liveness, hence there are no red live entry-items at the start

of the sweep phase.

7.2.2 Distributed Termination Protocol

Now we outline the proof of the distributed termination detection protocol described in
section 4.5. We want to show that the distributed termination protocol detects safely
the end of the mark-red and scan phases, in order for a partial tracing to proceed to the
scan and sweep phases respectively. Consequently, no object may receive a mark-red or

scan request at the begining of scan and sweep phases respectively. In order to safely

CHAPTER 7. PROOF OF CORRECTNESS 160

proceed to the next phase, each process P involved in a PT, must receive a report
message from PT,’s initiator. As we stated in section 4.5.2, this means that there are
no P € PT,.Participants such that P.state = active-disquiet. This property is captured

by the following theorem:

Theorem 7.1

(VP € PT,.Participants P.state # active-disquiet) =

(VP € PT,.Participants - P.grey-set = () A P.local-steps = 0)

The proof of this theorem is based on the validity of invariant 4.4. If we apply this

invariant to the set of PT,’s participants, it states that:

VP € PT,.Participants (P.state = passive-disquiet =

3AQ € PT,.Participants N Ancestor*(Q, P) A Q.state = active-disquiet)

The proof of this invariant is based on the state transition diagram on figures 15 on
page 97 and 16 on page 99. The proof follows by induction on the number n of ancestors
of a participant P. This number is finite and it is at least one, because, from the state

transition diagram, it follows that:

e at the start, there is always at least one active-disquiet process,

e two disquiet processes never establish a Ancestor relation, because a disquiet pro-
cess receiving a scan request immediately acknowledges it. The responsibility is

then inherited by the process responsible for the receiver disquiet process.

Case n = 1, by definition, P is the only ancestor of P and so P cannot be passive-
disquiet. Thus, the implication holds.

Case n =m + 1. It follows from the state transition diagram that,

P.state = passive-disquiet = Q) € PT,.Participants

(Q.state = active-disquiet V Q.state = passive-disquiet) A Ancestor(Q, P))

CHAPTER 7. PROOF OF CORRECTNESS 161

Let us assume that P.state = passive-disquiet. If Q.state = active-disquiet, then,
as from Ancestor(Q, P) we have Ancestor®(Q, P), the result we want to prove holds
immediately.

Otherwise, Q.state = passive-disquiet and, since Ancestor(Q, P), the number of

ancestors of @) is less or equal to m, and then by the induction hypothesis,

dR € PT,.Participants

R.state = active-disquiet A\ Ancestor* (R, Q))

So, the participant R has the desired property: R is active-disquiet and, because
Ancestor* (R, Q)) and Ancestor(Q, P)), Ancestor*(R, P)). O

Now, we proceed with the proof of theorem 7.1. Suppose that VP € PT,.Participants-
P.state # active-disquiet and 3P € PTg.Participants such that P.grey-set # 0 or
P.local-steps # 0, that is, there may be a scan-request in transit. From the state transi-
tion diagram, this implies that P.state = passive-disquiet V P.state = active-disquiet. If
P.state = passive-disquiet, by invariant 4.4, there must be an active-disquiet participant.

So we have a contradiction. O

7.2.3 Mutator Concurrency

In this section we extend the proof to the model allowing for mutator concurrency. We

prove that:

1 The Remote Barrier allows correct distributed termination detection of the scan

phase.

2 Safety property 2 on page 157 holds.

The proof that the Remote Barrier preserves the invariant 7.1 follows immediately
from the state case analysis in section 6.2. We showed that a Remote Barrier can only
be triggered by an active-disquiet process. Hence, at least that process is responsible
for all subsequent requests generated by the barrier. From this it follows that theorem

7.1 is trivially true.

CHAPTER 7. PROOF OF CORRECTNESS 162

Next we prove safety property 2. Recall the proof of the partial tracing algorithm
on page 157. Let us turn to prove proposition 1 on page 158 and account for mutator
concurrency. To show that concurrent mutator activity preserves this proposition, and

consequently the safety property, we prove first invariants 6.1, 6.2, 6.3, 6.8 and 6.9.

Proof of Invariant 6.1 This invariant states: After SI(P), no red exit-items are
reachable from the local-scan-root-set at P.

Suppose that after the initial step at process P there is an exit-item Ez, such that
red(Ez,). By mark-red local steps, Ex, must be reachable from a red entry-item FEi,,
where Fi,.red-list = Ei,.entry-list. By mark-red remote steps and definition 4.1, all
FEzx, from which FEi, is reachable must be red. In order for Ei, to be referenced from
the local-scan-root-set, some process P holding a red Exz, for Ei, must have invoked
Ei,’s corresponding object. In that case, a Remote Barrier must have been triggered
in Fi, through Ez, and painted Ei, and all exit-items in Ei,.exits green, including
Ex,. Consequently, the invariant is true. O

Before proving invariant 6.2, we prove the auxiliary invariant 6.3.

Proof of Invariant 6.3 Such invariant states that: A red entry-item Fi,, where
Ei,.red-list = Ei,.entry-list, cannot receive an insert message unless there is a scan
request in transit to that Ei,.

We have FEi, such that FEi,.red-list = FEi,.entry-list. By mark-red remote steps
and definition 4.1, all Ez, from which Ei, is reachable must be red. By the mark-red
restriction, at the time every Ex, was marked-red, Ex, ¢ translist. This implies that
there were no messages in transit holding a reference to Fi,’s corresponding object.
Consequently, for Ei, to receive an insert message, some process P holding a red Fx,
for Fi, must have transmitted a reference to Fi, to another process. But, in this case
a Remote Barrier would have been triggered on Fz, and a scan request would have

been sent and received (by invariant 6.4) at Ei,.

Proof of Invariant 6.2 This invariant states: After SI(P), no red entry or exit-items
become new members of the local-scan-root-set.
Suppose that after the initial step at process P there is an entry-item FE7, such

that red(Ei,). Hence, Fi,.red-list = Ei,.entry-list. For Ei, to become a new member

CHAPTER 7. PROOF OF CORRECTNESS 163

of the local-scan-root-set, it must receive an insert message such that Ei,.red-list #
FEi,.entry-list. By invariant 6.3, there must be a scan request in transit to Ei,. Hence,
Ei, and all exit-items in Ei,.exits will be painted green. Consequently the invariant is

true. O

Proof of Invariant 6.8 This invariant states that:

VEz, - (path(Roots, Ex,) A suspect(Exy) = dirty(Ex,))

This invariant is true immediately after identify-suspects because, by post-condi-
tion 5.1, path(Roots, Exy) N\ suspect(Ex,) is a contradiction. After identify-suspects,
only external messages may change the reachability of suspect exit-items, so there must
have been Ei, such that path(Ei,, Ex,). By post-condition 6.6, Ex, € Ei,.ezits.

In order to make a new path to Ez,, an external mutator message must have ar-
rived at Fi, after identify-suspects. By post-condition 6.5 and post-condition 6.7,
dirty(Ei,) A dirty(Exy).

We conclude that the invariant is always true. O

Proof of Invariant 6.9 This invariant states that:

VEi,, Ex, - path(Ei,, Ex,) A suspect(Exy) =

Exy € Ei,.exits V dirty(Ex,)

By post-condition 5.1, Ex, was not reachable locally in the last identify-suspects.
If path(Ei,, Exy) existed before compute-graph, by post-condition 6.6, Ex, € Fi,.exits.
If not, as above, after identify-suspects only external messages may change the reach-
ability of suspect exit-items, so there must have been Ei, such that path(Ei,, Ex,). By
post-condition 6.6, Ex, € Ei,.exits. In order to make a new path to Ex,, an external
mutator message must have arrived at Ei, after identify-suspects. By post-condition
6.5 and post-condition 6.7, dirty(Fi,) A dirty(Ex,).

We conclude that the invariant is always true. O

CHAPTER 7. PROOF OF CORRECTNESS 164

Recall the partial tracing algorithm proof on page 157. Here we want to prove the

property:
VEi, - (red,(Eiy) = —live(Eiy))

Suppose that red,(Fiy,) A live(Eiy) at the begin of sweep phase. Then,

VEiy(red,(Eiy) A live(Eiy) =

(13)

(3Q ¢ PT,.Participants N IEx, € Q.exit-table A path(Ex,, Eiy) V (14)
(3R € PT,.Participants A AEx, € R.exit-table A (15)
(16)

path(Ex,, Ei,) A live(Ez,))

Suppose (14) holds, but ((15) A (16)) do not, and suppose path(Ezx., Ei,) existed
before the initial scan step. As we showed in the non-concurrent model (see page 157),
Ei, is a member of the local-scan-root-set and painted green by scan initial step. Thus,
redq(Eiy) A live(Eiy) is a contradiction.

Now, suppose path(Ezx, Ei,) did not exist before the initial scan step. Once red, (£,),
by invariant 6.2, Ei, could not be a new member of the local-scan-root-set after initial
step. A Remote Barrier on Ei, preserves the invariant.

Now suppose (15) and (16) hold, but (14) does not hold. As we have already shown,
Ezx, is red and by hypothesis Ex, is live. Hence

live(Exy,) = (17)
(3r € Roots(R) A path(r, Exy)) V (18)
(3Ei, € R.entry-table A path(Ei,, Ex,) A live(Fi,)) (19)

Suppose (18) holds, but (19) does not. Thus, 3r € Roots(R) A path(r, Ez,).
Suppose such a path existed before the initial step at R. If —suspect(Fx,), Exy,

would have been a member of the local-scan-root-set and painted green. If suspect(Ex,,),

CHAPTER 7. PROOF OF CORRECTNESS 165

by invariant 6.8, Ex, is dirty, and so Ex, would have been a member of the local-scan-
root-set and painted green. Thus, red,(Fiy,) A live(Eiy) is a contradiction.

If such path did not exist before the initial step at R, by invariant 6.1, and assuming
safety of ‘Advanced local steps’, Fx, would have safely been greened by a Remote
Barrier.

Now, suppose that (19), but (18) does not hold. As we have shown in the proof of
the partial tracing algorithm on page 157, Ez, must be red. Thus red live items are
only reachable from other red live items, and not from any root. So they are not live.

To conclude this proof, we have to prove that the ‘Advanced local steps’ are safe.

That is, after initial step at process P:

VEi,, Ex, - red(Ei,) A red(Exy) A path(Ei,, Exy) = Exy € Ei,.exits

From invariant 6.9, Ex, € Ei,.exits V dirty(Ez,). By definition of the local-scan-
root-set, if dirty(Exy,), Ex, would have been painted green by the initial step. Thus, we
have that Ex, € Ei,.exits.

We conclude the proof that no red objects are live at the begining of the scan phase.

7.2.4 Co-operative partial tracings

In this section we extend the proof to the scalability model, that is, to the model that

allows co-operative partial tracings. We prove the following safety properties:

Co-safety.1 The Token Algorithm safely detects termination of scan phase. That
is, when the initiator PT, receives back the token it has initiated, token,, PT,

may safely switch to the sweep phase.
Co-safety.2 Safety property 2 on page 157 holds.

First we prove property Co-safety.l, which is described by the following theorem:
Theorem 7.2

VPT,(receive-token, (token,) = “no scan requests in transit for P71y ")

If PT, receives back the token it initiated, token,, there are no more requests in transit

for PT,.

CHAPTER 7. PROOF OF CORRECTNESS 166

The proof of this theorem is based on the proof of the following theorem:

Theorem 7.3

VPT, - (VP € PARTICIPANTS(PT,) - P.state # active-disquiet

= “no scan requests in transit for P71, ")

Where,

PARTICIPANTS(PTy) PTy.Participants

= Upr eDependent”(P1;)

If no participant of PT, and no participant of any PT;, transitively responsible for
PT, is active-disquiet, there cannot be any scan request in transit for PTj,.

We first prove the following invariant:

Invariant 7.4

VP € PT,.Participants (P.state = passive-disquiet =

dPTy - Dependent™(PT,, PTy) A —partial-terminated(PTy))

The proof follows by induction on the number n of partial tracings in the Dependent*
relation of PTy,.

Case n = 1, that is | Dependent”(PTy, PTy) |= 1, PT, is the only partial trace re-
sponsible for PT,. The formula is trivially true by definition of partial-terminated(PTy).

Case n =m + 1. It follows from the state transition diagram that,

P.state = passive-disquiet = Q) € PTy.Participants-

(Dependent(PT,, PTy) A (Q.state = active-disquiet V Q.state = passive-disquiet))

Let us assume that P.state = passive-disquiet. If Q).state = active-disquiet, then
—partial-terminated(PTy) by definition 5.7. As from Dependent(PT,, PT,) we have
Dependent*(PTy, PT}), the result we want to prove holds.

Otherwise, Q).state = passive-disquiet, and since Dependent(PT,,PT}), by the in-

duction hypothesis,

CHAPTER 7. PROOF OF CORRECTNESS 167

APT. - Dependent” (PTy, PT,) A —partial-terminated(PT,)

Then,

APT. - Dependent”(PT,, PT.) A\ —partial-terminated(PT,)0

Let us prove theorem 7.3. By the state transition diagram, if there are scan-requests
in transit for PT,, there must be P in PT, or P1}, € PT,.Responsibles where P.state =
passive-disquietV P.state = active-disquiet. By invariant 7.4 this leads to a contradiction.
Thus, this theorem holds.

To complete this proof we have to prove theorem 7.2. Recall that in each individual
PT, scan report phase, the initiator = determines the condition
partial-terminated(PTy) (definition 5.7). So, it suffices for the Token Algorithm to
detect this condition for all PT}, such that Dependent®(PT,, PTy) holds. PT, receives

token, back when tokeny.next is empty. Thus, we show that

VPT, - (tokeng.next =) = (20)

(VPTy - Dependent” (PT,, PTy) = partial-terminated(PT}))) (21)

From its definition and Dependent® definition (page 121), the Token Algorithm
builds PT,’s Dependent® such that

VPTy.Dependent* (PT,, PT,) =
(partial-terminated(PTy) N PTy € tokeng.terminated)
V(partial-terminated(PTy) A\ PTy ¢ token,.terminated A
(3PT..Dependent” (PT,, PT,) A PT, € token,.next))
V(—partial-terminated(PTy) A (PT) € tokeng.next V

(3PT..Dependent*(PT,, PTy) A PT, € tokeng.next))

CHAPTER 7. PROOF OF CORRECTNESS 168

Suppose that there is PT, such that Dependent*(PT,, PT,) and
—partial-terminated(PTy) and tokeng.next = (. By definition of the Token Algo-
rithm, PTj; is only inserted in tokeng.terminated, if partial-terminated(PTy). Thus,
PTy ¢ token,.terminated. Consequently, by the above proposition, PTy, € token,.nextV
(3PT..Dependent* (PT,, PT,) A\ PT. € tokeng.next). In either case, tokeng.next # .
Thus, by the assumption of proposition 20, we have arrived at a contradiction.

Next we prove property Co-safety.2. We rewrite propositions 3 on page 158 and 4 on
page 158 accounting for co-operative partial tracings. We introduce the term super-group,

for the union of PTy.Participants such that Dependent* (PT,, PTy).

VEiy(red,(Eiy) A live(Eiy) = (22)
(3Q ¢ super-group, A IEx, € Q.exit-table A\ path(Ex,, Eiy)) (23)

V(3R € super-group, \ Ex, € R.exit-table A\ path(Ex,, Fi,) A live(Ex,)) (24)

Suppose that (23) holds but (24) does not. As we have already shown, by the

reference listing protocol, proposition 5 on page 158 holds. Also,

Q ¢ super-group, = (VPT, € super-group, - —redy(Ex,)) (25)

because, Ex, was not visited by by the mark-red phase of any member of super-group,, .

By definition 4.1,

(path(Ex,, Eiy) N (VPTy, € super-group, - ~redy(Ex,))) = Q ¢ Eiy.red-list (26)

That is,) cannot be a member of Ei,.red-list because it does not hold a red exit-
item signed by any PT} € super-group, to Ei,. Consequently, proposition 8 on page 158
holds. From this it follows that Ei, must have been painted green by scan initial step.
Thus, live(Eiy) and redq(Eiy) is a contradiction. In this case, proposition (24) must
hold, that is, there must be an exit-item Ex,, belonging to super-group, from which Ei,

is reachable and live(Ex,,).

CHAPTER 7. PROOF OF CORRECTNESS 169

We rephrase the conclusion from 9 on page 159 as “FEx, must be red, for some PTy
and by hypothesis Ex, is live”. But, by mark-red step, P1, € PT,.Responsibles and
hence a member of the responsibles set of the initiator of PT, (every P € PT,.Participants
reports a list of responsibles it is aware of to its initiator at the end of mark-red phase).
PT, does not enter sweep phase until PT}, (and other responsible partial tracings) are
partial-terminated (recall Token Algorithm). Assuming correctness of Token Algo-
rithm, PT, has detected this condition (once it is at the begining of sweep phase).

Consequently, Ei, cannot receive one scan request through Ex,,.

7.3 Liveness

We want to show that our system cannot deadlock or livelock. Mark-red and scan
phases do not have any critical regions or exclusive holding of resources. Consequently,
they cannot deadlock.

The mark-red phase does not need to visit the complete transitive referential closure
of suspect entry-items, hence it is guaranteed that it terminates. On the other hand,
the scan phase must paint green all red live objects. We guarantee that it performs
a finite number of steps because there are a finite number of red items. Also, the
token algorithm performs a finite number of steps. Finally, the colouring process is
monotonic, that is, the colour of an item may change only from white to red and from
red to green. This prevents the responsible’s scan phase and the dependent’s mark-red
phase from chasing each other, that is, it avoids race conditions between mark-red and
scan requests. We conclude that our system also does not livelock.

Now, we show that a complete solution can be achieved, that is, all garbage objects
are eventually collected. The completeness argument is that every garbage object is
eventually a suspect object. Both, the locally reachable and distance heuristic are com-
plete heuristics as every garbage object is non-locally reachable, and the distance of
every garbage object increases infinitely. Hence, assuming that every process performs
a local collection regularly, every garbage object will become non-locally reachable or
every garbage object will eventually cross the distance threshold.

Now we define which conditions must be met for a garbage object (member of a

garbage cycle) to not be collected.

CHAPTER 7. PROOF OF CORRECTNESS 170

Consider a distributed garbage cycle. Suppose that PT), is initiated at any object z
which is member of that cycle. For an object z to not be collected, there must be an
external reference to the cycle. That is, there must be an object y that is not involved
in PT,, and z is transitively reachable from y. Object y must be garbage, otherwise
z would not be garbage. In this case, we may say that y will eventually be a member
of a partial tracing, for example PT,. Conceptually, one of these three situations will

happen eventually:

1 PT, covers z, and there are no external references to PTy’s suspect subgraph. z

will be eventually collected by PT,.

2 PT, transitively dependent on PT}, and there are no external references to PT),’s
suspect subgraph. PTj will eventually succeed and collect object y. If Dependent
(PT,, PTy), there are no more external references to z. Consequently z will be col-
lected by PT,. If Dependent*(PT,, PT,), there is PT, such that Dependent*(PT,,
PT,) and Dependent(PT,, PT,). PT, will eventually succeed, and by induction

on the number of PT,’s responsibles, object z will eventually be collected by PT,.

3 PT, is transitively responsible for PT, and PT, is transitively responsible for PT,,
and there are no external references to PT’s suspect subgraph and PT}’s suspect
subgraph. If Responsible(PT,, PT,) and Responsible(PT,,PT,), PT, and PT,
eventually meet each other. If the beginning of PT,’s scan phase and PT’s scan
phase are synchronised, there are no more external references to z. Consequently

z will be collected by PT,. Now assume that:

(a) If there is PT,, such that Responsible*(PT,, PT,) and Responsible(PT,, PT},),
PT, will eventually meet PT,. As Responsible*(PT,, PT,), we conclude that
PT, will eventually meet PT,.

(b) If there is PT;, such that Responsible* (PT,, PT,) and Responsible(PT,, PTy),
PT, will eventually meet PT,. As Responsible* (PT,, PT,), we conclude that
PT, will eventually meet PT,.

By induction on the number of partial tracings between PT, and PT,, if the
beginning of PT}’s scan phase and PT.,’s scan phase are synchronised, there are

no more external references to z. Consequently z will be collected by PT.

CHAPTER 7. PROOF OF CORRECTNESS 171

7.4 Summary

In this chapter we presented a proof of several aspects of our algorithm. We first used
a simplified model that does not account for mutator concurrency or concurrent partial
tracings, and we assumed that distributed termination is correctly detected. Then, we
extended the proof to the other aspects. We showed that the distributed termination
protocol detects safely the end of the mark-red and scan phases, in order for a partial
tracing to proceed to the following phase.

Then, we extended the proof to the mutator concurrency model and proved that
mutator actions do not affect termination detection and safety. Finally, we showed that
two partial tracings may be simultaneously active in the same or a connected sub-graph,
that they may co-operate without compromising each other’s safety property.

Finally, we showed that our algorithm is live in the sense that all garbage cycles
within a suspect subgraph are eventually collected, and that eventually all garbage
objects are suspect objects, thus, that eventually all garbage cycles are covered by one

or more co-operative partial tracings.

Chapter 8

Implementation over Network

Objects

We have implemented and tested a prototype of the concurrent version of the cyclic
garbage collector algorithm presented in chapter 4. The implementation was carried
out to test its feasibility and identify its weaknesses and strengths. We mainly focus on
implementation strategies related to our efficiency goals.

We chose the Network Objects system as a vehicle because it provides an imple-
mentation of the reference listing protocol (section 3.4.4), on which our system is based.
However, our algorithm can be adapted to other systems that provide an acyclic garbage
collector based on reference listing.

First we give an overview of the architecture of Network Objects system, mainly
focusing on the local and acyclic distributed garbage collector, remote invocation and
marshaling of network objects. This is important, to understand the implementation
strategies of our system. Then, we briefly report on our prototype implementation. We
start by describing the modules of the implementation and overviewing some solutions.
Then, we explain each solution, reporting the main problems encountered.

We also discuss the implementation of extensions, mainly to cover those aspects of

our system introduced in section 5.

172

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 173

8.1 An Overview of Network Objects

Network Objects is a distributed object-based programming system for Modula-3 that
allows the development of programs that communicate over a network, while hiding the
details of network programming (Birrel et al. 1993).

Network Objects provide a means to incorporate remote procedure call (Birrel and
Nelson 1984) in an object-based programming style. An object consists of a data record
and a set of methods that can be invoked on the object. The process that allocated
the network object is called its owner, and the instance of the object at the owner
is called the concrete object. A network object can be transmitted between processes
by reference and then shared by processes in a distributed system. Processes holding
a reference to a concrete object are called clients. The client and owner can run on
different machines or in different processes on the same machine. Network objects may
be transmitted from one client to another as well as from the owner to a client.

Network Objects allows a concrete object to be accessed from another process in the
same way as if it was local to that process. A remote reference in the client actually
points to a surrogate object. The surrogate contains an handler and has methods which
perform remote procedure calls on the concrete object in the remote owner process.

References for a network object may be marshaled from one process to another
during method invocation as arguments or results. A network object is marshaled by
transmitting its wireRep, which consists of a unique identifier for the owner process —
ProcessID — plus the index of the object at the owner — ObjID.

Each process maintains an object table that contains references to all its surrogates
and all its concrete objects for which some process holds a surrogate. If a concrete
network object is present in the object table, the runtime system says that it is exported,

otherwise is unezported.

The heap of a Modula-3 program is managed by garbage collection. Network objects
are managed by a distributed garbage collector based on the reference listing scheme
presented in section 3.4.4 (Birrel et al. 1993). In the following sections we will explain
how the the partitioned model presented in chapter 3 is implemented in the Network

Objects System, including the local collector for Modula-3.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 174

Partition A

Object Table

CS(xA)={B}

Legend
CS Client Set

Q Exported Object

" Surrogate

Figure 34: Network Object Model for Garbage Collection

8.1.1 Implementation of the Garbage Collection Model

The Network Object Model for garbage collection divides the distributed system global
address space into several partitions that are held by the different processes' of the
distributed system. Each process (or the corresponding partition) can be identified
unambiguously, and we identify processes (partitions) by upper-case letters, e.g. A, B,
..., and objects by lower-case letters suffixed by the identifier of the process to which
they belong, e.g. £A, =B,

From the garbage collector’s point of view, mutators periodically exchange messages
in addition to performing local computations independently of other mutators in the
system. They allocate objects in the local heaps and transfer data between processes,
which may include references to objects. An object referenced from another process
is called an exported object. Each process is garbage collected independently from the
other processes.

The Network Objects Model for garbage collection, represented in figure 34, consists
of:

e A set of processes containing objects that may point to objects on the same pro-

cesses or to objects in other processes.

e Surrogate objects that record an outgoing reference. A process may hold at most

' A Modula-3 process.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 175

one surrogate for a given object, in which case all references in the process to
that object point to the surrogate. In the Network Objects implementation a
surrogate object has other roles apart from garbage collection. It also encapsulates

a marshaler as we shall see.

A surrogate implements an exit-item described in chapter 3.

e An object table for each process that records references from outside the process to
objects within the process. If process B has a surrogate pointing to an object in
process A, the object table at A has an entry for the referenced object (see figure
34). To ensure this, a concrete object is entered into its owner’s table when it
is first marshaled; it remains there until the distributed garbage collector detects

the deletion of its last surrogate.

The object table also contains entries for all surrogates that exist in the process.
It maps the wireRep for a remote object to the unique local surrogate for that

object.

The entry table and exit table described in chapter 3 are implemented by the
Network Objects’s object table.

e A Client-set for each exported object which contains identifiers for all the processes
that have a surrogate for that object. The following invariant is always maintained

(see figure 34):

NO Invariant 8.1 If there is a surrogate for object xA at client B, then B €
xA.Client-set.

The client-set implements the entry-list described in chapter 3.

8.1.2 Local Garbage Collection

Local collections are based on tracing from local roots — the stack, registers, global
variables and also the object table. We shall refer to the object table entries as OT
roots. The object table is considered a root by the local collector in order to preserve

objects reachable only from other processes.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 176

The Modula-3 local collector is an adaptation of the algorithm presented in (Bartlett
1988) and modified to be incremental, generational, and VM-synchronised by John
DeTreville. The relevant features of this local collector for our implementation are its
conservative and incremental nature. The local collector is a mostly copying collector
(presented in section 2.4.3) that uses a page-wise black-only read-barrier supported by
the operating system’s memory protection hardware (Appel et al. 1988) to trap heap
accesses by the mutator.

The primary differences between the mostly copying algorithm and the classical
copying algorithm (recall section 2.3) lie in how it finds its root set and how it organises
the heap.

The heap of a Modula-3 process consists of a number of pages that may appear
anywhere in the heap. Associated with each page is a space identifier, which identifies
the “space” that objects on the page belong to: previous, current or free. Previous and
current spaces are equivalent to from-space and to-space of a classical copying collector
respectively. The free space represents the free pages. This level of indirection means
that there are two ways to move an object from the previous to current space. It can
be copied to a fresh current space page as in a classical copying algorithm, or the space
identifier of the page containing it can be changed to current. Since pages do not have
contiguous addresses, they are held in a list for each space.

As described in section 2.4.3 the mostly copying algorithm is a conservative collector.
It assumes no knowledge of registers, stack or global variables layouts, but it does assume
that all pointers in the heap can be found accurately. Using this distinction, the local
collector will divide all accessible objects in the heap into two classes: those which might
have a direct reference from the root set, and those which do not. The former objects
are left in place — the space identifier is changed for that page — and the latter objects
are copied into a compact area of memory.

The mutator works on pages identified with current space. The local collector oper-
ates in three phases. When a garbage collection cycle is initiated, in a first phase, the
current space becomes previous space, that is, the space identifier of pages in current
space is changed to previous. Next, the root set is scanned conservatively for potential
pointers in the heap. When a pointer into a heap page is found, that page is “promoted”

to the current space, that is, the space identifier of the page is changed to current. The

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 177

page is also added to the tail of the list of pages in current space. Thus, the objects
which might have references in the root set are now part of the current space, but their
address has not changed. Promoting pages is a conservative action, because garbage
objects may also be retained on promoted pages.

During the second phase, all pages in the current space list are scanned for references
into the previous space. Each object reached is copied into a fresh current space page
(recall section 2.3) that will also be queued and scanned. When the scanning is complete,
in a third phase, pages in previous space are freed, that is, they are appended to the

free-list for new allocations, and garbage collection is completed.

Until now, we have assumed a stop-the-world local collection, hence we did not
account for incremental mutator activity (recall section 2.4.1). The algorithm described
above is augmented with a page-wise black-only read-barrier supported by the operating
system’s memory protection facilities (Appel et al. 1988) in order to synchronise the
mutator and the collector. The result is showed in figure 35. We use the following

‘=" for assignment, ‘==’ for equality.

syntax:
Recalling the tricolour abstraction introduced in section 2.4.1, the following invariant

is maintained during the local collection:
NO Invariant 8.2 The mutator is only allowed to see black objects.

When the mutator allocates memory for an object, it checks the occupancy of the
heap. If it is bigger then a certain threshold (recall section 2.4.1), some amount of
garbage collection, depending on the collector’s state, is performed.

In figure 35 we represent three states for a local garbage collection cycle. The
Modula-3 garbage collector has more states, but they are irrelevant for our purpose.
Whenever a local garbage collection starts — state zero — the space identifier of each
page in the current space is changed to previous (as we said, this means that the current
space becomes the previous space). Also, pages referenced from the stack are promoted

to the current space — promote(page). The promoted pages are inserted in a queue

*We simply assume a new page as a result of scanning an object. A nil page will be return if none
object is copied to the current space. The new page space is set to current.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 178

State == zero, one, two

Space == current, previous, free
State = zero

current_queue = empty

gc() =
State == zero => for page where page.space == current do
page.space = previous
for R in Roots do
promote (page(R))
State = one
State == one => page = pop(current_queue)
scanPage (page)
if current_queue == empty then
State = two
State == two => for page where page.space = previous do

page.space = free
State = zero
if current_queue # empty then
for page in current_queue do
protect(page)

fault_handler() =
forever
thread, page = WaitForTrappedThread()
LOCK memory
scanPage (page)
ResumeThread (thread)

promote (page) =
if heap_bottom < page < Heap_top
and page.space == previous then
page.space = current
push(page, current_queue)

scanPage(page) =
if gray(page) then

if protected(page) then
unprotect (page)

for obj on page do
newpage = scan(obj)?
if newpage # nil then

push(newpage, Tospace_queue)

allocate(n) =
LOCK memory

if threshold then
gc

Figure 35: Modula-3 local collector algorithm

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 179

to be scanned for pointers in the previous space. The mutator is then resumed by the
collector.

When the collector resumes the mutator, it sets the virtual-memory protection of
the unscanned area’s page to ‘no access’ (coloured grey) — protect (page). Whenever
the mutator attempts to access an object on a protected (grey) page, the page-access
trap is triggered and the fault is caught by the collector — fault-handler(). The
collector scans the objects on that page (colouring the page black). New current space
pages are then enqueued and protected as well. Then, the collector unprotects the page
and resumes the mutator. To the mutator all objects appeared to be in the current
space.

In state one the collector pops a page from the current space queue and scans it. If
the queue is empty, the collector moves to state two in the next call, otherwise, it stays
in state one. Again, pages in the current space queue are protected (greyed) to catch
mutator accesses on grey objects.

Finally, in state two — no grey pages — pages left in previous space are freed.

8.1.3 Network Objects Runtime System

The Network Objects runtime system is implemented by a special object that provides
methods to support, among other things, distributed garbage collection. There is one
such concrete object per process. In addition there are potentially many special object
surrogates used to invoke corresponding methods in different processes, that is, when
the runtime system of two different processes interact, they will do so through the

invocation of each others special object methods.

8.1.4 Remote Invocation and Marshaling of Network Objects

Argument and results values are communicated by marshaling them into a sequence of
bytes, transmitting the bytes from one process to another, and then unmarshaling them
into values in the receiving process, in a remote method invocation.

In this section, we will describe the implementation of remote methods invocation
and network object’s marshaling. For each network object there must be a client
and server stub to support remote method invocation using Remote Procedure Call

(Birrel and Nelson 1984). The client stub is a local surrogate object. The client process

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 180

actually invokes its methods, which in turn implement the remote invocation. On the
server side, the stub consists of a single procedure for that object — the Dispatcher —
that is called to dispatch remote invocations.

Next we describe a simplified sketch of the procedure calls performed by a client
to make a remote method invocation to a method of obj. A remote object invocation
can be viewed as an exchange of messages between client and server. The messages
are exchanged via a connection c established between the client and the server. The
contents of the message includes the number that identifies the method to be invoked
at the server-side, and the arguments of that method. On completion of the remote

invocation the server sends a message with the method results.

BEGIN SurrogateMethod
<marshal to c the number of the method>
<marshal to c the method arguments>
result := AwaitResult(c);
<unmarshal from c the method results>

END SurrogateMethod
Next we consider the server-side stub, which consists of a dispatcher procedure for
each network object. The dispatcher is called by the Network Object runtime system
when it receives a remote object invocation for a network object. The dispatcher proce-
dure is responsible for unmarshaling the method number and any arguments, invoking
the concrete object’s method, and marshaling any results.
Here is a simplified sketch of a typical dispatcher for an object obj through a con-

nection c:

BEGIN Dispatcher
<unmarshal from c the method number>
<unmarshal from c the method arguments>
<call the appropriate method of obj>
<marshal to c¢ the method result>

END Dispatcher

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 181

8.1.5 Acyclic Garbage Collection

The acyclic garbage collector is responsible for always safely maintaining the invariant
8.1. In this section we will describe the acyclic garbage collector operations responsible
for maintaining the object table entries and the client-sets of exported objects.

The insert and delete control messages introduced in section 3.4.4 are implemented
in the Network Objects system by a dirty-call and a clean-call respectively.

The potential race conditions between concurrent transmission and deletion of a
same network object (its wireRep) is avoided (recall section 3.4.4) by preventing the
remote reference from being reclaimed at the sender process. This is done by making sure
that the object’s client-set remains non-empty while its wireRep is being transmitted.
When the sending process P is the object’s owner, this is accomplished by putting P
into the object’s client-set until P has received the dirty-call. When P is not the object’s
owner, it must have a surrogate for it. This surrogate is kept reachable until it is known
that the object’s owner has received the dirty-call (recall section 3.4.1). This happen
when P receives an acknowledgement from the receiver process. In this overview we
skip implementation details, and concentrate on the implementation of the dirty-call
mechanisms since it is important for our prototype implementation.

Our system is then implemented above a safe reference listing protocol.

dirty call Whenever a process A exports a network object O to process B (as a result
of A marshaling O to B), (i) if A is the owner of O, O is inserted in A’s object
table; when B receives the imported wireRep, it creates a surrogate for O and
sends a dirty call to A; upon receipt of the dirty call, B is inserted in O’s client-
set, (ii) otherwise, when B receives the imported wireRep, it creates a surrogate
for O and sends a dirty call to the owner of O; upon receipt of the dirty call by

the owner of O, B is inserted in O’s client-set.

The following sequence of instructions implements the above actions for an object
obj with wireRep wireRep. MarshalObj is executed at process A. It sends object
obj’s wireRep wireRep to process B. Notice that A may be either the owner of
obj or have a surrogate to obj. concrete(obj) returns true if obj is a concrete

object.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 182

BEGIN MarshalObj
if concrete(obj) then
<insert obj in objTbl>
<send wireRep to receiving process>

END

Process B executes UnmarshalObj. It creates a surrogate for the new object
and sends a dirty-call to the owner of the object identified by the wireRep —
ProcessID. specialObj (ProcessID(wireRep)) .dirty-call(wireRep) correspo-
nds to the remote invocation of the dirty-call method of the owner’s special

object.

BEGIN Unmarshl0bj
<receive wireRep>
if not objtbl.find(wireRep, obj) then
<create surrogate with wireRep>
specialObj (ProcessID(wireRep)) .dirty-call(wireRep)
END

When the owner of obj? receives the dirty-call it inserts process B in obj’s client-

set.

BEGIN DirtyCall
<insert sending process in obj.clzent-set>

END

clean call Whenever a surrogate for O is reclaimed by the local garbage collector at
process B, B sends a clean call to O’s owner. Upon reception of the clean call,
B is deleted from O’s client-set. When an object’s client-set becomes empty, the
reference to the object is removed from the object table so that the object can be

reclaimed subsequently by its owner’s local collector.

3 As we explained it can be the sending process or other process to which the sending process holds
a surrogate.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 183

8.2 Prototype Implementation

In this section we describe the implementation of the partial tracing over the Network
Objects system. We start by taking an overview of the prototype. At a high-level, for
each process we define a set of threads that implement the partial tracing algorithm. At
a lower-level, we sketch the implementation of policies inherent in the algorithm and,
at a third level, we describe which implementation strategies we have adapted to the
runtime system of Network Objects. Then we look in more detail at the implementation
of the described prototype components.

We defined a tracing and a sweep thread that implement the mark-red, scan and
sweep phases, plus additional threads acting as event handlers driven by external events.
The event handlers are implemented as methods of a DGCobj (Distributed Garbage
Collector object) object that we have implemented as a part of the runtime system
object — the special object. Different DGC objects in different processes communicate
with each other by remote procedure call.

Each partial tracing is implemented by a PTobj (Partial Tracing object)*. The PTobj
state holds the state described in definition 5.3 on page 114 and the PTobj methods are
invoked by the DGCobj methods to perform the required action for each event handler.

The termination of each phase is detected by the distributed termination detection
protocol (recall section 4.5). The variables that define the termination condition in
each process are implemented as part of the PTobj state and are accessed by the PTobj
methods when invoked by the termination detection protocol event handlers.

The concurrency barriers, as described in section 6 are implemented in the Network
Objects runtime system. The partial tracing algorithm intercepts the transmission and
remote method invocation of a network object to implement the barriers.

Finally several implementation strategies were designed to support different require-
ments of the partial tracing algorithm. These include, suspect identification, implemen-
tation of mark-red and scan steps, implementation of mutator co-operation and, finally,
as extensions to our prototype, the computation of the cut-reference graph. The im-

plementation strategies we have defined require mainly the co-operation of the Network

“In our implementation we just have one PTobj per Network Objects process, since we have not
implemented the advanced cyclic garbage collector

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 184

Objects local collector. We have modified it in order to obtain the necessary information

for the partial tracing algorithm.

8.2.1 Partial Tracing

In this section we briefly describe each DG Cobj handler and its interaction with the
partial tracing state implemented by a PTobj, as they implement the partial tracing
algorithm described in chapter 4. We represent the system architecture in figure 36.
Next, we explain every element represented as well as every interaction, and which sys-
tem feature they implement. As we have already said communication between processes
is implemented by remote procedure call.

We first introduce the specification of PTobj:

PTobj =

State
Id = Initiator: processld
Participants: set of processld
parent: processId
reply-set: set of wireRep
local-steps: number
grey-set: set of wireRep
stack: stack of memory address

Methods
addStackMRrequest (obj: object): boolean
init-scan(participants: set of processId): boolean
addStackSrequest (obj: object): boolean
insert-greySet (wrep: wireRep): boolean
remove-greySet (wrep: wireRep): boolean
insert-replySet (wrep: wireRep): boolean
incLocal-steps(): boolean

decLocal-steps(): boolean

Mark-red Phase

The mark-red thread implements mark-red local steps. It transmits the red colour

locally from concrete objects to surrogates. In our implementation, local objects are

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 185

Process A ;/ DCGobj

markRedHandler

markRedAckHandler
prototype .~ . initScanHandl g{
jon : i initSweepHandler
exension / Protocol 1~ endinitStepHandler HANDLERS
' = andlers | scanAckHandler

scanHandler

scan
thread

Figure 36: System Architecture

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 186

recursively traced. In contrast, our solution described on section 6 would simply follow
the cut-references graph. Because this phase simply constructs a conservative estimate of
those objects that might be garbage, and therefore need not be accurate, red marks can
be disseminated without synchronisation with the mutator. The simplified algorithm of

mark-red thread is described next.

BEGIN mark-red thread
forever
while stack not empty do
pop(obj)
colour(obj, red)
push(descendants(obj))
for all surrogate s in objtbl do
if red(s) then
PTobj.insert-greySet (WireRep(s))
if DGCobj(ProcessID(s)) .markRedHandler(s) then
PTobj.remove-greySet (WireRep(s))
PTobj.decLocal-steps()
if PTobj.local-steps == 0 and PTobj.greySet empty then
if thisProcess == PTobj.Initiator then
for all P in PTobj.Participants do
DGCobj (P) .initScanHandler (PTobj.Participants)
else
DGCobj (PTobj.Responsible) .
markRedAckHandler (PTobj.Participants, PTobj.reply-set)
END

The recursive trace is implemented with a stack. The object seed of each local step
is pushed onto the stack. The mark-red trace repeatedly pops objects from the stack
until it is empty. Objects are marked red and any unmarked descendent is pushed in
the stack. When the stack is empty, a remote step to the concrete object is executed for
each red surrogate. For efficiency reasons, we chose to batch remote steps to the same
target process.

Notice that insert-greySet, and decLocal-steps contribute to implementing the
termination detection protocol (recall section 4.5). Termination detection protocol han-

dlers, initScanHandler (described in the context of scan phase) and markRedAckHandler,

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 187

implement the mark-red report-phase and acknowledging of a mark-red request respec-
tively. Notice that, if markRedHandler replies true, the surrogate is removed from the

PTobj.greySet. In this way, we reduce the number of explicit acknowledgements.

BEGIN markRedAckHandler(participants: ProcessID,
reply-set: set of wireRep)
PTobj.Participants = PTobj.Participants U participants
for all wrep in reply-set
PTobj.remove-greySet (wrep)
if PTobj.local-steps == 0 and empty PTobj.greySet then
if thisProcess == PTobj.Initiator then
for all P in PTobj.Participants do
DGCobj (P) .initScanHandler (PTobj.Participants)
else
DGCobj (PTobj.Responsible).
markRedAckHandler (PTobj.Participants, PTobj.reply-set)
END

A remote step is implemented as a remote procedure call of the markRedHandler
by the mark-red thread. The target object is pushed into the stack. Consequently,
local-steps is incremented. Additionally, the sending process is inserted into a struc-

ture called the red-set (akin to client-set (recall section 4.3)).

BEGIN markRedHandler (obj: object)

if PTobj.Responsible # NIL then
reply = true

else
reply = false
PTobj.insert-replySet (WireRep(obj))
responsible = sending process

PTobj.incLocal-steps()

obj.red-set = obj.red-set U sending process

PTobj.addStackRequest (obj)

return reply

END

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 188

Mark-red Restriction

As we have described in section 6 a mark-red remote step should not be performed
through a surrogate corresponding to a reference being transmitted. As we have de-
scribed in section 8.1, the Network Object system keeps track of incomplete reference
transmissions on behalf of the acyclic collector, until the object’s owner has received the
corresponding dirty-call. In the same way, the mark-red thread discards remote-steps

for surrogates in such conditions.

Scan Phase

A scan step may be a initial step, a remote step or a local step.
initScanHandler initiates the scan phase in every participant, that is, it initiates
the initial step by inserting into the mark stack (akin to mark-red phase), the local-

scan-root-set (in section 8.3 we describe the computation of the local-scan-root-set).

BEGIN initScanHandler(participants)
PTobj.Participants = participants
PTobj.incLocal-steps()
PTobj.addStacksRequest (local-scan-root-set)

END

The initial step is a local tracing. It must be accurate, that is, it must paint green all
surrogates reachable from the local-scan-root-set defined in section 5.1. Recall that this
version does include the local roots and performs a recursive tracing from the defined
local-scan-root-set. In contrast, the initial step defined in section 6 ounly follows the
cut-reference graph.

We perform an independent local tracing from the local-scan-root-set. We have
adopted Mostly Parallel garbage collection (Boehm et al. 1991) — an incremental update
algorithm — because it does not require compiler modifications to implement the write-
barrier and so can be used to support different languages, such as Modula-3.

The basic idea of the Mostly Parallel Garbage Collection algorithm is the following.
The traditional tracing operation of stop-and-collect collectors is performed in parallel
with the mutator. The mutator and collector are synchronised by the use of a write
barrier that catches all the mutator writes while the collector is running. The write-

barrier is implemented using a set of virtual memory dirty bits, which are automatically

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 189

set whenever the corresponding pages of virtual memory are written to. The virtual
memory bits are updated to reflect mutator writes. After tracing is complete, the
mutator is halted and tracing is restarted from all marked objects that lie on dirty
pages. At this point, all objects reachable from the local-scan-root-set are marked green,
which is the safety condition for our system.

This option introduces, however, synchronisation requirements between the local
collector and initial step as they both make use of the operating system virtual memory
system. Thus, we believe that implementing the initial step in the system local collector
could be a better compromise.

mark-red thread and scan thread implement recursive tracing using a stack from
seed objects to surrogates, disseminating the colour. New object seeds increment
PTobj.local-steps. When the stack is empty the same variable is decremented. A
remote step is implemented as a remote procedure call of the scanHandler by the scan
thread. The target object is then pushed into the stack. Consequently, the surrogate
at the sending process is inserted into PTobj.greySet.

A local step is also implemented by the scan thread. If the initial step has not
already finished, the target concrete object is a new root object for initial step and
the remote step is immediately acknowledged — scanAckHandler. If initial step has
already finished, the concrete object is a new object seed, is pushed into the stack and
PTobj.local-steps is incremented. As we have already said, the scan phase must be
accurate. In this way, mutator actions should also perform synchronisation actions.
However, due to the asynchronous nature of local steps (also generated by external
mutator messages — recall section 6) it would be inefficient for the Mostly Parallel
garbage collection algorithm to implement such synchronisation. This is because, for
every local step implementation, the memory would have to be protected and mutator
actions trapped. The simplest method of propagating marks from concrete objects to
surrogates is to ‘stop the world’ in the process and perform a standard recursive trace
from the concrete object. We expect that this would not cause excessive delay because
it is likely that objects reachable from a live concrete object are already known to be
live. Recall that local steps defined in section 6 only follow the cut-references graph.

When a process terminates its initial-step — PTobj.local-steps = 0 and

PTobj.greySet is empty — it reports to the initiator — PTobj.Initiator — through

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 190

endInitStepHandler. This state is detected by scan thread when local-steps = 0
and greySet is empty (akin to mark-red thread) or by scanAckHandler (akin to

markRedAckHandler).

BEGIN endInitStepHandler(participant: processID)
PTobj.doneParticipants = PTobj.doneParticipants U participant
if PTobj.doneParticipants == PTobj.Participants then
for all P in PTobj.Participants do
DGCobj (P) . initSweepHandler ()
END
The initiator detects the end of scan phase when it PTobj.doneParticipants is
the same as PTobj.Participants. The scan phase report phase is implemented by the
invocation of the initSweepHandler in every participant.
We here skipped the description of scan thread, scanHandler and scanAckHandler,
as they are similar to the corresponding mark-red phase ones. initSweepHandler in-

structs every participant to proceed to the sweep phase.

Sweep Phase

The sweep thread is responsible for communicating to the local collector which object
table entries should be discarded from the global root set. In our implementation we have
coloured red and green concrete objects rather than object table entries. Our solution
consists of instructing the local collector to discard object table entries that point to red
concrete objects. However, the entries themselves are only removed when the client-set
of such concrete objects is empty. In this way, we do not interfere with the reference
listing scheme (recall section 3.4.4): discarding object table entries causes the cycle to be
deleted the next time the containing processes do a local trace. Discarded object table
entries are then removed through regular clean-calls. This solution can be implemented
in the Network Objects system because a concrete object’s client-set is implemented as

an auxiliary structure and not as a state variable of the object.

8.2.2 Suspect Identification

We describe our implementation strategy for identifying suspect entry-items. We focus

here on the locally reachable heuristic.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 191

In the partitioned model (recall section 3.1) the roots for a local collection include
the local root set — the local roots — and the global root set — the entry-table. In
the Network Object system the entry-table is implemented by a monolithic object table
(section 8.1.1), which is then considered part of the root set by the local collector. An
unmodified local collector would always mark all the exported objects and surrogates.
As a result, exported objects and surrogates would be always locally reachable and
therefore never collected. To solve this problem we have implemented a modified version
of the Modula-3 local collector (section 8.1.2) and a modified object table. This new

version implements a two-phase local collection that defines two kind of objects:

soft objects are not locally reachable other than from the global root set — the object
table. They are suspect objects, and candidates for a partial tracing. A soft mark
identifies a seed for a partial tracing, while a red mark identifies an object as a

member of a suspect subgraph (recall chapter 4).

hard objects are locally reachable. Consequently, they are not candidates for a partial

tracing.
The two phase local collector proceeds as follows:

e A first tracing is performed from the local roots. This first root set does not
include the object table. The objects reached by this first tracing are marked hard.
The object table is marked soft.

e A second tracing is performed starting from the object table. This second tracing
completes the first. Any object reached by this second tracing is marked soft if it

is not already marked hard.

Special actions are needed to prevent the first tracing from including the object table
in the first root set. The modified local collector treats the object table as a special
root. To allow this, we modified the object table as shown in figure 37: the object table
state includes a fixed size array hash table of pointers to network objects. This allows

the collector to identify unambiguously which pages the object table uses®.

Here, for simplicity, we assume the object table fits in one page. In our implementation, this
restriction does not apply. We just ensure that object table pages do not contain any other objects.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 192

Object
Table
State
77777 | Entries
Key R
Network
Object

Figure 37: Object: Object Table

Now we require the allocator to allocate the object table in a separate page. No

other objects share this page with object table, and the collector proceeds as follows:

1 at the begin of a local collection promote the object table page. In this way we

prevent tracing from the objects in the object table in the first phase.

2 at the end of the first phase, start a second trace from the object table. The objects

reached by this second trace are marked soft if not reached by the first trace.

The two phases of the local collection execute concurrently with the mutator. Cer-
tain actions have to be taken in order to maintain invariant 8.2 on page 177 — the
mutator is not allowed to see black objects — when the object table is accessed by the
mutator. The unmodified local collector (section 8.1.2) would protect the object table
page when promoted, but this would result in a page scan by the fault-handler (see
figure 37) whenever the object table fault is trapped. This would result in the same
problem mentioned above: every exported object, even those only reachable from the
object table, would be marked hard. We resolve this problem as follows. As above,
the object table page is promoted at the begining of the local collection, but it is not
protected. Instead, each entry in Entries is protected with a black-only read barrier
implemented in the object table methods. Hence, in terms of the tricolour abstraction
for incremental collection, object table entries are grey. We illustrate this situation in
figure 38 and describe it in figure 39. When an object table search method is invoked, the
entry found in Entries is scanned and the object pointed by it is copied to the current
space (coloured grey in terms of the tricolour abstraction) — objTbl_method(). In its
turn, the entry is coloured black, and hence allowed to be read by the mutator. The

network object pointed to this entry is marked hard during the first phase.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 193

Barrier
Current Space Current Space
Object Object
Table Table
State State
l Previous
S Space
Previous Space’ , Current Space
; | \ v
Lo
¥
Object Table Method

Figure 38: Object Table Barrier

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 194

State == zero, one, two, three
Space == current, previous, free
State = zero

current_queue = empty

gc() =
promote_objtbl()
State == zero => for page where page.space = current do
page.space = previous
for R in Roots do
promote (page(R))
State = One
State == One => page = pop(current_queue)
scanPage (page)
if current_queue == empty then
State = two
State == Two => scanPage(objTblpage)

if current_queue == empty then
State = three
State == Three => for page page.space = previous do

page.space = free
State = zero
if current_queue # empty then
for page in current_queue do
protect(page)

promote_objTbl() =
objTblpage.space = current

objTbl_method() =

entry = findEntry(Q);
newpage = scan(entry)
push(newpage, current_queue)

Figure 39: Modula-3 local collector algorithm for suspect identification

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 195

At the end of first phase, object table pages are scanned. Grey entries are coloured
black in terms of the tricolour abstraction, while the corresponding network objects are
marked soft in terms of suspect identification. The omitted details are as described in

figure 39.

8.2.3 Remote Barrier

As we have described in section 6 a Remote Barrier is executed whenever a mutator
at process A invokes or transmits a remote reference to a remote object at process B
through a red exit-item. In the Network Objects system model this means whenever a
mutator at process A invokes or transmits a remote reference to an object yB at process
B through a red surrogate yB, a scan request is sent to yB entry in B’s object table.
We combine the implementation of the Remote Barrier described in section 6
with the implementation of remote methods invocation and the implementation of the
distributed garbage collector operations described in section 8.1.4 and 8.1.5 respectively,
thus not incurring any extra remote messages. We explain how in the remaining of this

section.

Method Invocation

A client does not directly invoke the methods of a remote object. Instead, it invokes
the corresponding methods of a surrogate object. Our implementation intercepts the
surrogate methods invocation and sends a scan request piggy-backed on the remote
method invocation whenever this surrogate is red.

The Network Objects system generates the stubs for remote method invocation
automatically. We modified those in order to provide piggy-backed scan requests. Recall
the simple sketch of a typical surrogate method in section 8.1.4. The modified sketch

to account for piggy-backed scan requests is:

BEGIN SurrogateMethod
if red(self) then
PTobj.insert-greySet (WireRep(self))
<marshal to c (barrier = true)>
<marshal to c process(self)>

<marshal to c PTobj.Id>

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 196

else <marshal to c¢ (barrier = false)>
<marshal to c the number of the method>
<marshal to c the method arguments>
result = AwaitResult(c);
<unmarshal from c the method results>
END SurrogateMethod
red(self) tests the colour of the surrogate and process(self) identifies the send-
ing process. The sending process is the respounsible for such request.
insert-greySet (self) implements the communication with the termination detec-
tion protocol, that is, it communicates a new element for greySet (recall section 4.5).
Finally, the boolean value barrier indicates a scan request for object obj at the server
side.
Recall the sketch of a typical dispatcher described on section 8.1.4. At the server

side the encoded information is interpreted as follows.

BEGIN Dispatcher

<unmarshal from c barrier>
if barrier == true then

<unmarshal from c process>

<unmarshal from c Id>

<execute barrier with Id from process>
<unmarshal from c the method arguments>
<call the appropriate method of obj>
<marshal to c the method result>

END Dispatcher
When unmarshaling the method arguments, if barrier = true a barrier should be

executed. This is equivalent to a scan local step described in section 8.2.1. Id identifies

the partial tracing and process the responsible for such request.

Transmission of a Reference

As we have already described, network objects are transmitted from one process to an-
other during method invocation as arguments or results of remote method invocations.
Our implementation intercepts such actions on the MarshalObj and UnmarshalObj pro-

cedures described on section 8.1.5. When a process A, with a red surrogate for an

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 197

Process A

<wireRep(yB), barrier = true, PTid, process A> .

Process C @ ;

<wireRep(yB), barrier = true, PTid, process A>K *
Process B

<> message

---= new reference
O concrete object
. surrogate object

_—7-7 reference transmissson
_--7--7 dirty-call

‘ red object/surrogate

Figure 40: Implementation of Remote Barrier for transmission of a reference.

object obj with wireRep wireRep at process B, marshals it as an argument or result
of a remote method invocation to process C, we piggy-back a scan request to obj at
process B (the owner) in the transmission message and acyclic garbage collector oper-
ations: the dirty-call to obj. We illustrate this procedure in figure 40 and present a

simple sketch next:

BEGIN MarshalObj
if concrete(obj) then
<insert obj in objTbl>
msg = <wireRep, barrier = false>
else (* surrogate *)
if red(obj) then
PTobj.insert-greySet (WireRep (obj))
msg = <wireRep, barrier = true, PTobj.Id, process(obj)>
else msg = <wireRep, barrier = false>
<send msg to receiving process>

END

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 198

Recall section 6, Remote Barriers are only executed through red surrogates. Con-
sequently, we concentrate on reference transmissions through surrogates. red(obj) tests
the colour of the surrogate. When marshaling a reference through a red surrogate, our
implementation instructs the receiver process to send a scan request piggy-backed on
the dirty-call to the object owner. The sending process is the responsible of such scan
request. insert-greySet(obj) implements the communication with the termination
detection protocol, that is, it communicates a new element for greySet (recall section
4.5). As above, the boolean value barrier indicates a scan request for object obj at
the owner process.

When unmarshaling the network object reference, the receiver process instructs the
dirty-call to the owner process to execute a barrier, if barrier = true. However,
it may happen that the reference was transfered to the owner process. In this case,
objtbl.find(wireRep, obj) and concrete(obj) return true, and the barrier should
be executed immediately on obj. As above, this is equivalent to a scan local step
described in section 8.2.1. Id identifies the partial tracing and process the responsible

for such request.

BEGIN UnmarshalObj
<receive msg>
with msg
if barrier == true then
if objtbl.find(wireRep, obj) then
if concrete(obj) then
<execute barrier with Id from process>
else
<create surrogate with wireRep>
specialObj (ProcessID(wireRep)) .dirty-call
(wireRep, barrier = true, Id, process)
else
if not objtbl.find(msg.wireRep, obj) then
<create surrogate with msg.wireRep>
specialObj(ProcessID(wireRep)).dirty-call
(wireRep, barrier = false)

END

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 199

FIFO transmission

Process A e
scan-request(xB) \ remot-invocation(xB)
or marshalling(xB)
+ scan-request(xB)
acknowledged(xB)
Process B
time

Figure 41: Time-line showing the need for repeated piggy-backing of scan requests on
barrier execution.

If barrier = true, a dirty-call should execute a barrier. As above, this is equivalent
to a scan local step described in section 8.2.1. Id identifies the partial tracing and

process the responsible for such request.

BEGIN DirtyCall
if objtbl.find(wireRep, obj) then
<insert sending process in obj client-set>
if barrier == true then
<execute barrier with Id from process>

END

Remote-step Invariant

In section 6 we introduced a restriction of point to point communication in order to
maintain the invariant 6.4. We assumed that messages are to arrive in the same order
as they were generated in point-to-point communications, that is, point to point com-
munication channels are FIFOs. In this way, a mutator message sent through a green
surrogate would always arrive after the scan request generated when that surrogate was
painted green. As we no longer assume messages are delivered in the order they were
sent in point-to-point communications, we implement it by repeatedly piggy-backing
scan requests onto mutator messages until one such request is acknowledged. This is
illustrated on figure 41 for two processes, A and B, and a scan request to object zB.
Any remote invocation of B, or transmission of B to other processes on the bold
time-line, requires a piggy-backed scan request.

In the absence of failures, one request will be eventually acknowledged, resulting in

the effective greening of the surrogate.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 200

8.3 Prototype Extensions

8.3.1 Cut-references Graph

In this section we discuss the implementation of cut-references graph in the Network
Objects system, described in section 5.3.

Several authors have proposed techniques for computing the cut-references graph
in the context of back-tracing algorithms (Rodriguez-Riviera 1995, Maheshwari and
Liskov 1997a). The solution proposed in (Maheshwari and Liskov 1997a) has some
advantages over the solution proposed in (Rodriguez-Riviera 1995). Locally reachable
surrogates of suspect concrete objects (akin to variable ezits) may be computed bottom
up during a depth-first local collection using Tarjan’s algorithm (Tarjan 1972). This
method requires objects to be traced just once, in contrast with the solution described
in (Rodriguez-Riviera 1995) that may require objects to be traced many times.

However, as mentioned in the same work, breadth-first copying collectors need to
perform a separate trace from suspect objects in order to compute the cut-references
graph. We argue that this would not be expensive because suspect objects are expected
to be few and such traces would be able to proceed concurrently with the mutator at
low cost. Moreover, the frequency with which the cut-references graph is computed may
be controled: if suspect items are not dirty, compute the cut-references only for new
suspects.

Recall section 5.3. We introduced identify-suspects that computed suspect ob-
jects. As we have already shown in section 8.2.2, such a method may be implemented
by the Modula-3 local collector, albeit slightly modified. compute-graph may now
implement Tarjan’s algorithm concurrently with the mutator. The Dirty barrier we
have introduced in section 6 allows one partial tracing to use the cut-references graph
safely, as we have proved in section 7. As we will explain next, the Dirty Barrier is

only applied when the mutator invokes a remote method and it is inexpensive.

8.3.2 Dirty Barrier

The implementation of the Dirty Barrier is simple and inexpensive. In the Network
Objects system we would need a new field for every concrete object that would be cleared

every time identify-suspects is performed and set every time the concrete object is

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 201

invoked: the dirty field. Such invocations may only be made by an external mutator,
as we have shown in section 6. The typical dispatcher described on section 8.1.4 would

be modified as follows:

BEGIN Dispatcher

<dirty obj>
<unmarshal from c barrier>
if barrier = true then

<unmarshal from c process>

<unmarshal from c Id>

<execute barrier with Id from process>
<unmarshal from c the method arguments>
<call the appropriate method of obj>
<marshal to c¢ the method result>

END Dispatcher

<dirty obj> would set the object’s dirty field until the next local collection.

8.4 Summary

The main goal of this chapter is to identify the potential problems and propose solutions
when mapping the system we have described in chapters 4 and 5 onto the Network
Objects system.

We presented an overview of the Network Objects system, namely its implementation
of the model described in chapter 3, and implementation details that were important
to the implementation of our system. These included the Modula-3 local collection
algorithm, methods for marshaling, unmarshaling and remote invocation, and finally
the acyclic garbage collection operations.

We described our prototype implementation. The prototype description included
the system architecture and interaction between the different components. We looked,
in more detail, at the implementation strategies of several aspects of our system, namely,
how to identify suspect objects and how to implement the mutator co-operation over
the remote invocation system.

We also discussed the viability of implementing the extensions to our system de-

scribed in chapter 5, namely the implementation of the cut-references graph and dirty

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 202

barrier.

Chapter 9

Conclusions and Future Work

In this chapter we summarise our primary goals for garbage collection in distributed
systems, for which we proposed an innovative solution and offer a qualitative analysis

of our algorithm. We conclude this chapter with some perspectives for future research.

9.1 Discussion

We have addressed the following fundamental goals faced by cyclic distributed garbage
collection: correctness, efficiency, scalability, completeness and fault-tolerance. A com-
mon thread to our solution, described in chapters 4 and 5, is that we approximate the
property of locality. That is, we rejected global tracing as a means for cyclic garbage
collection in a large, distributed address space, because it is neither scalable nor fault-
tolerant. Instead, we have adopted a solution that tries to confine the collection of a
distributed garbage cycle to those processes that contain it.

Our approach combines tracing within one partition and reference listing (across
partition boundaries) with partial tracing (within a group of partitions) in order to
collect distributed garbage cycles. We use heuristics to form groups of processes dy-
namically (the mark-red phase) that co-operate to perform partial traces of subgraphs
suspected of being garbage.

We support multiple, independently-initiated distributed garbage collections and
allow the collection of garbage cycles that span groups.

Our scheme operates in three phases:

203

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 204

Mark-red phase We identify as red the inter-process transitive closure of an object
heuristically suspected of belonging to a garbage cycle, starting from a suspect
entry-item. We also form a group of processes that will collaborate in the subse-

quent phases.

Scan phase We try to isolate self-contained red subgraphs, i.e., garbage cycles. We
perform a group collection that aims at painting green any red object reachable
from outside the red subgraph, i.e., red objects reachable from a non-red global
root. A group collection involves a local trace in each partition. However, to trace
a group: (i) red entry-items are not considered as members of the local roots, and
(i) tracing continues across boundaries internal to the group, when red exit-items

are repainted green.

Sweep phase We make remaining red objects available for collection by the next local

collection, because they must be garbage.

In this section we offer a qualitative analysis of our algorithm. We discuss several

aspects of our system in order to analyse how it meets the goals stated in section 4.2.

9.1.1 Scalability and Completeness

The first feature that makes our system scalable is its lack of need for global synchroni-
sation. A partial tracing is potentially scalable in that it uses asynchronous communi-
cation and has no protocols that demand the involvement of all processes in the system.
Each partial tracing only needs the co-operation of those processes that either partici-
pate in the partial tracing itself or participate in some responsible partial tracing. This
co-operation is engaged through the initiators of each partial tracing. Synchronisation
actions imply communication between each partial tracing participant and its initiator,
and between an initiator and its responsibles’ initiators.

We showed that our algorithm is complete (section 7.3). It allows different actions

to be taken when two concurrent partial tracings meet:

Overlapping of suspect subgraphs. Different partial tracings are active in the same
subgraph. This allows long-running complete collections, although at a cost of

wasted work and space overhead.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 205

Synchronised merging of suspect subgraphs. Different co-operative partial tracings
are active and synchronised in the same subgraph. They allow complete collec-
tions at space and synchronisation low costs. Although, depending on the graph

topology, they may compromise promptness.

Merging of suspect subgraphs. Different co-operative and independent partial tracings
are active in the same subgraph. They allow more expedient collections although

compromising completeness.

This policy decision may be determined by the collector itself or by the user program,
globally or on a per-process or even per-object basis. Heuristics based on geography,
process identity, distance from the suspect originating the collection, minimum distance
from any object known to be live, or time constraints may be used to restrict the ex-
tent of mark-red or the decision whether to merge with, overlap or retreat from other
distributed collections. In the absence of knowledge of the problem being computed,
it is unclear what action should be taken when two groups meet. A merger may not
always be desirable. Instead it may be preferable to run multiple overlapping partial
tracings. For example the best compromise may be to combine simultaneously occa-
sional long-running but complete collections over very large groups with more frequent
faster completing collections over small object graphs. Our algorithm offers the imple-
menter the choice between completeness and promptness at the level of partial tracings,
processes and individual objects. Partial tracings can decide whether or not to merge,
processes can decide whether to allow partial tracings to merge, to overlap or to retreat
from one another, and objects can decide on merger or retreat.

The efficiency of this algorithm is greatly affected by this policy decision. We analyse

its efficiency when discussing promptness next.

9.1.2 Efficiency

We have identified three efficiency concerns: message complexity, space complexity,

promptness/progress and mutator overhead.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 206

Message Complexity

The message complexity of our system depends entirely on number of interprocess edges
and the topology of the graph. We can measure this by considering the number of times
an inter-process reference might be traversed, where each traversing is a message.

Call the number of inter-process edges in the subgraph visited by mark-red e, and
the number of participants in this group n. Note that e < the number of edges in the
transitive referential closure of the suspect objects, because the mark-red phase does

not need to visit the complete transitive referential closure of suspect entry-items.

e The mark-red phase for each group issues e mark-request remote procedure calls,

by definition.

e The number of mark-red acknowledgement calls depends on whether the request is
sent to a quiet or a disquiet participant, and this in turn depends on the topology
(degree of sharing) of the subgraph. An acknowledgement from a disquiet par-
ticipant can be piggy-backed onto the remote procedure call acknowledgement;
that from a quiet participant requires a separate call. Thus, between n — 1 (one
acknowledgement for each participant-creating request) and e (one per edge) calls

are required.

e Each acknowledgement message has a length < n, the maximum number of pro-

cesses to which the request message can have been forwarded.

Thus the number of remote procedure calls Cysr caused by mark-red is:

e+n—1§CMR§Ze

e Scan phase initiation requires n — 1 messages: one message from the initiator to
each participant. Additionally, scan phase initiation for synchronised co-operative
partial tracings (recall section 5.5) requires d, calls for each PT, where d, =

| Dependent™ (PT,)|.

e The number of scan requests sent depends on the accuracy with which suspects are
identified. In the best case, no requests are sent but each participant must report

termination to the initiator; in the worst case, the number of remote procedure

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 207

calls is the same as that for mark-red!. Let p be the probability that our suspect

identification heuristic is accurate.

e Scan termination for co-operative partial tracings requires d, calls.

Thus the expected number of remote procedure calls Cgc caused by the scan phase is:

(1—ple+2(n—1)+2d, <Csc <2(1—ple+ (1 +p)(n—1)+2d,

e The sweep phase requires n — 1 messages.

The total number of remote procedure calls Cp; required is:

2—ple+4(n—-1)+2d, <Cp <22 —-ple+ (2+p)(n—1)+2d,

The cost of our algorithm is determined by the parameters n, e, d, and p. p depends
on our choice of suspect; n, e and d, are partly determined by the topology of the
subgraph and the dynamics of distributed collections but can also be controlled by policy
decisions on the extent of mark-red’s coverage of the graph. Because little is known of
the demographics of distributed objects, flexibility is a key goal of our collector. Our
collector can be seen as a framework within which policy decisions can be implemented.
Policy guides the choice of suspects, the choice of processes forming each partial tracing
and the merger of partial tracings.

The better the heuristic the greater the chance p that our algorithm traces only

garbage subgraphs thereby:
1 decreasing the number of times a partial tracing is run,
2 limiting the mark-red trace to just garbage items,
3 reducing the number of messages for the scan phase to the best case, and

4 decreasing the chance of wasted and repeated work.

As we have already said in section 4.6 a more sophisticated heuristic — the distance

heuristic — may improve the algorithm’s efficiency.

!The intermediate case occurs when a subset of the red sub-graph is found to be live.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 208

p and n can be controlled by bounding the amount of work done by mark-red. Recall
that this phase needs only make a conservative estimate of the transitive referential
closure of suspect objects — it need not visit the whole closure. This policy decision

can be taken statically by prior negotiation or dynamically by mark-red.

Back-tracing Algorithm

Let us turn to the analysis of the algorithm presented in (Maheshwari and Liskov 1997a).
This is an algorithm of the same class as ours, as they identify heuristically objects
suspect of being garbage. Back-tracing, as opposed to forward tracing, follows the
“refers-to” relation on the inverse reference graph (IRG) (recall section 3.5.6). It starts
a back-tracing on the transitive closure, of this new relation, of a suspect object in order
to find out if it is transitively reachable from a root.

Call the number of inter-process edges in the transitive closure of a suspect entry-
item e, and the number of involved processes n. In its first phase, back-tracing involves
two messages for each inter-process reference it traverses — one for the call when tracing
back to the root, and another for its response when returning. Finally the report phase
involves a message from the initiator to each participant. Thus, independently of the

suspect choice, the total number of calls required is

Cbt:€+(n—1)

Cpi is greater than Cp;. However they are both O(n). Moreover, if multiple collections
start on several objects of a suspect subgraph, say m, Cp; will be the same because the

multiple partial tracings will co-operate. On the other hand, Cp; will turn to

Cot = me +m(n—1)

As in the partial tracing algorithm, the better the heuristic the greater the chance
that the back-tracing algorithm traces only garbage subgraphs thereby decreasing the
number of times a back-tracing is run and decreasing the chance of wasted and repeated
work. Moreover, this algorithm guarantees that if a back-tracing is started in a garbage

structure, only garbage objects will be traced. On the other hand, our system may trace

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 209

live objects if a garbage structure points to live data. As we said, our system relies on
the heuristic to find suspect objects. The more accurate the heuristic the greater the
chance that our algorithm traces only garbage subgraphs thereby limiting the mark-red
trace to just garbage items.

In addition to an increasing message complexity, multiple collections active in the
same cycle lead to a greater amount of repeated and wasted work. We expect a par-
tial tracing to be more efficient than a back-tracing, and vice-versa, depending on the
topology of the applications graph. We come back to this analysis when discussing

promptness next.

Space Complexity

Compared to other algorithms based on reference-listing (recall section 3.4.4), our al-
gorithm requires extra space for the red-lists and for the cut-reference graph. However,
this space is not proportional to the application’s graph.

Consider the space occupied by the cut-reference graph. After a local collection, the
structure ezits retains, for each suspect entry-item Fi,, a list of the suspects’ exit-items
reachable from FEi,. Call the number of suspect entry-items n¢;, and the number of
suspect exit-items ne,. The space occupied by the cut-reference graph is O(ne; X Neg)-
This extra space is only required between the time an entry-item becomes suspect and
the time the entry-item is collected or turns to non-suspect. Moreover, this extra space
is the same required by the back-tracing algorithm, as it also builds a suspect cut-
references graph.

Compared to the back-tracing algorithm, our algorithm requires extra space for
the red-lists. During a partial tracing, a red entry-item Fi,, member of a suspect
sub-graph, retains a list of which processes have a red Ez,. Call the number of red
entry-items r¢;, and the number of red exit-items r.,. The space occupied by the red-
lists is O(7¢; X Tz). Recall, however, that Ei,.red-list C Ei,.entry-list. Thus, the red-list

may be implemented in the entry-lists just by setting a bit on the entry-list’s elements.

Promptness/Progress

Our algorithm achieves promptness in two ways. First, it does not compromise the recla-

mation of local and acyclic distributed garbage: local collection and acyclic distributed

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 210

collection are not hindered. Second, the promptness of the cyclic distributed collection
is potentially improved by restricting the target object graph to suspect objects graphs
— property of locality. Moreover, as we have already shown in section 4.6, the amount
of work done by mark-red can be bounded, hence potentially improving the promptness
of our system. We need, however, to make a stronger case about the likely behaviour
of our algorithm: how much progress it makes, how great can be the ineffective and
wasted work, which are the good cases and which are the bad cases.

Consider a distributed garbage cycle and suppose that PT), is initiated at any object
z, which is member of that cycle. For that cycle to not be collected there must be an
external reference to it; that is, there must be an object y that is not involved in PT},
and z is transitively reachable from y. We have showed that our system is complete: y
must be garbage, otherwise z would not be garbage; a partial tracing will be initiated
at y eventually. However we want to show that its efficiency depends greatly on the

suspect choice. Recall that one of these three situations will happen eventually:

1 PT, covers z, and there are no external references to PT),’s suspect subgraph.

2 PT, is transitively dependent of PT),, and there are no external references to PT),’s

suspect subgraph.

3 PT, is transitively responsible for PT), and PT, is transitively responsible for PT,,
and there are no external references to PT.’s suspect subgraph and PT}’s suspect

subgraph.

As we showed, z is eventually collected independently of which situation occurs.
Suppose however that PT), initiates at z and terminates before PT), has initiated at
y, and that PT, does not cover y. As there is an external reference to PT,’s suspect
subgraph, PT, will fail in collecting z. We show this situation in figure 42. We show in
the figure two connected cycles. The lines represent an arbitrary number of objects. We
explicitly represent objects x, z and y. Before one of the above situations can happen,
any partial tracing initiated in the bold cycle in the figure will fail to collect z, hence
not making any progress. Also, if two partial tracings, PT, and PT,, start and PT,
finishes before PT, encounters y, PT, will fail because there is an external reference

to PTy’s suspect subgraph. These two situations lead to wasted and repeated work.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 211

Figure 42: Connected garbage structures

This happens because, as we said in section 4.2.1, the mark-red phase may not trace
the whole set of connected garbage objects.

Notice that these situations do not occur in the back-tracing algorithm. A back-trace
that starts at a garbage object will always succeed in the absence of failures. Hence, we
could expect a better promptness/progress in this situation.

We may bound the wasted and repeated work of the partial-tracing algorithm, based
on the fact that if the bold cycle in figure 42 is garbage, the lighter cycle in the same
figure must be garbage. Consequently, by our completeness argument, every object in
the garbage structure is eventually suspect and may potentially initiate a partial tracing.

We now define two parameters that determine, as we show below, the success of our

algorithm, that is, its promptness:

T is an estimated time interval during which all garbage objects within a garbage
structure become suspect. Assuming that our system is implementing the distance
heuristic, T would be the time needed for every object in the garbage structure
to cross the distance threshold. Assuming that processes perform local garbage
collections regularly, we expect that every garbage object will cross the threshold

in a bounded time.

Tpt is an estimated time for a mark-trace to cover the whole transitive closure of a

suspect object.

Now consider that object z becomes a suspect object. It then starts a PT,. It may

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 212

reach some object that, although being garbage, may have not become suspect. The

solution would be to follow the following rule:
rule a start PT, at the time given by adding 7 to the time z became a suspect.

At this time, all objects in the garbage structure are likely to be suspect.

Now suppose that PT,’s mark-red phase has finished and PT,’s initiator is going to
start PT,’s scan phase. As we have already said, it fails because there is an external
reference to PT,’s suspect sub-graph. We show now how our algorithm can reduce the

probability of such a problem to happen using the values of 7 and 7,;. The rule is:
rule b delay the beginning of PT.,’s scan phase by 7.

Recall that, by rule a, when PT, started, the objects in the garbage structure are
likely to be suspect, hence are likely to have started a partial tracing. In the example,
PT,. T, is an estimated time for a mark-trace to reach the transitive closure of a
suspect object. If PT, delays the beginning of the scan phase by 7, it is likely that
by the time PT, initiates the scan phase PTj has encountered PT, and defined a
dependent /responsible relation. We may generalize this assumption and say that the
more accurate the estimations of 7 and 7, the greater the probability of different
garbage structures to be covered by one, or more, partial tracings.

These values may be estimated after measurements of real applications and may be
tuned each garbage collection cycle. That is, these values may be adapted as the system
evolves.

How can these values be estimated? We expect our system fails to collect a suspect
cycle because garbage, not involved in the partial tracing, points to garbage, and not
because the cycle garbage is live. In our example, PT, always fail until there is a partial
tracing, for example PT,, that also covers the PT,’s suspect sub-graph, or meets PT,
or deletes the external references to PT,’s suspect sub-graph. We may measure the
time between a PT,’s failure and the PT,’s success. As we expect that this time is the
time necessary for the whole garbage structure to be covered by one, or more, partial
tracings, we accept it as an estimation of 7 + 7Tp;. Expecting that, in a real application,
one garbage structure may be formed often, we could use the estimated time to tune

future collection cycles.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 213

Notice that PT,’s failure or success may be measured by which action — delete or
no delete — is applied to the initiator object, the object z, every time PT), is finished.
We believe this may improve the success of a partial tracing and then the promptness

of the system.

On the other hand, we are also interested in avoiding unnecessary multiple collec-
tions, for example, collections initiated in the bold cycle in figure 42, that increase both
d (see above) and the number of processes where the collections have to meet. To this
end, the system could only propagate distances over a certain threshold through mark-
red requests. In this way, when the objects’ distances cross the distance threshold, the
corresponding objects would be already involved in a partial tracing. In this way we
could avoid synchronising the start of scan phase as we would reduce the risk of multiple
distributed collections in the same garbage cycle. It is important to say however that if
the system neither propagates distances through the mark-red phase nor synchronises
the begin of scan phase, multiple collections on the same cycle may abort indefinitely
(recall section 4.2.1).

We consider now the behaviour of our algorithm when handling large and complex
structures, for example, chains of multiple garbage structures such as the ones repre-
sented in figure 42.

Recall that if we delay the beginning of a partial tracing by 7, there is a large chance
that all objects in the garbage structure turn to suspect. This situation may lead to one
in which multiple partial tracings would start and co-operate in the collection of large
structures.

As we have already said (recall section 4.6), heuristics can be used for restricting
the extent of the mark-red phase. Depending on the shape of the garbage structure,
this may compromise the algorithm’s progress as the mark-red phase may not include
the whole connected garbage structure, hence failing to collect the garbage structure.
Only measurements of real applications can say how much this type of heuristic may
improve the promptness of the algorithm.

Consider now the back-tracing algorithm. It is difficult to understand how the
algorithm behaves in such garbage structures. If multiple back-tracings start, they

may lead to repeated and wasted work. On the other hand, multiple back-tracings may

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 214

Figure 43: Double linked list

independently collect any part of the garbage structure. In the absence of measurements,
it is difficult to know which action would be taken.

Moreover, a back-tracing has to find a root or a garbage object in order to determine
the liveness of a suspect object. The process/object that initiated a back-tracing must
receive back an answer of type “live” or “not live”. Back-tracing may always stop at
any time. However, if the back-tracing algorithm gives up at any path, it returns “live”
to the initiator. In this way it cannot decide about the liveness of suspect objects.
Thus, we say that it lacks of the property of flexibility, hence make difficult the use of

heuristics to improve promptness of garbage collection of large and complex structures.

Examples Consider now some examples of typical structures such as double linked
lists and searching trees, with back references, of an arbitrary size. We describe how we
expect our algorithm to behave with those structures.

We show in figure 43 a double linked list of N elements, in which each element
is located in a different process, and E inter-process references. After the deletion of
the list entry reference, every object will become a suspect object as a consequence of
multiple local collections in each process. The behaviour of the partial tracing algorithm

depends on which garbage object starts a partial tracing:

e Suppose that object z initiates a partial tracing PT;. It propagates the mark-red
to the other objects before they start a partial tracing. This may be achieved for
example, as we said, by propagating the distances through the mark-red phase.
The whole structure would be covered by PT, and entirely collected. The message

cost corresponds to the best case of the message complexity formula.

e Suppose that object x initiates a back-tracing algorithm. It propagates the back-
tracing messages to the other objects before they start a back-tracing. The whole
structure would be covered by P71, and entirely collected. The message cost

corresponds to the best case of back-tracing message complexity.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 215

In this situation, the back-tracing algorithm would present a lower cost than the

partial tracing algorithm.

e Suppose that several objects initiate a partial tracing. In the worst case, every
object starts a partial tracing. In this situation every partial tracing must co-
operate in order to collect the garbage structure. If the co-operation is not set,
the collection fails. The message cost corresponds to the worst case of the message
complexity formula and represents a wasted effort. If the co-operation is set, and
this depends on the values estimated for 7, the whole structure would be covered
by the co-operating partial tracings and entirely collected. The cost for each
partial tracing is defined by the best case of the message complexity formula. The
total cost depends on the number of partial tracings co-operating on the collection
of this structure, d, that is the number of participants that have initiated a partial

tracing. The message complexity formula would be:

2d° + Zd:ei +4(n; — 1)
i=1
The formula is an overestimate as some of the token passing that implement the
distributed termination protocol could be short circuited. e; and n; are related
to each co-operative partial tracing. Generally, for each partial tracing ¢; < E
and n; < N. For this particular case, for each partial tracing d = N because
every object started a partial tracing. However, as we said when reasoning about

multiple simultaneous collections, we may expect d < .

e Suppose that several objects initiate a back-tracing algorithm. In the worst case,
every object starts a back-tracing. The whole structure is entirely collected. The
message cost corresponds to the worst case of the message complexity. The mes-

sage complexity formula would be:

For each initiated back-tracing, e = F and n = N. In this particular case m = N.

As in the partial tracing algorithm, it is expected m < N.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 216

Figure 44: Searching tree with back references

Comparing the two formulae, 3¢ ; ¢; < ¥ eand Y0 | 4(ni—1) < X7, (n—1).
The partial tracing algorithm also presents the cost 2d? that in this particular
situation equals 2N2. But, as we said, we expect d < N in the majority of the
cases. Thus, even if m and d have the same order of complexity, it is likely that

the partial tracing algorithm would present a better message complexity.

How can Ty be estimated? The system may estimate 7T, as the time needed to
propagate the mark-red tracing through a conservatively estimated (large) list’s
length. In this way, if every partial tracing delays the beginning of the scan phase
by T + Tpt, the partial tracings initiated in every object of the linked list are likely

to meet.

We show in figure 44 a searching tree, with back references to the root, of N nodes,
each located in a different process, and E inter-process references. After the deletion
of the reference to the root of the, every object will become a suspect object as a
consequence of multiple local collections in each process. In the same way, the behaviour
of the partial tracing algorithm depends on which garbage object starts a partial tracing.

The analysis of the behaviour of the partial tracing and back-tracing algorithm in
the collection of this structure is essentially the same as the analysis of the double linked
list. This comes from the fact that, as in the double linked list, we may find a path
between any two different objects in the structure. It can happen that an object in the
tree initiates a partial tracing and propagates it to the other objects in the tree. In

this case, the whole structure is entirely collected by that partial tracing. Alternatively,

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 217

Figure 45: Tree nodes pointing to cyclic garbage structures

several objects may start a partial tracing. In this case, the partial tracings must co-
operate in collecting the garbage structure.

A different behaviour would arise if the nodes of the tree structure point to any
arbitrary structure such a linked list, as represented in figure 45.

Every partial tracing initiated in a linked list, pointed by a node in the tree, will
fail. The wasted effort is measured by the worst case in the message complexity formula.
However, recall that the whole tree structure is garbage. A partial tracing initiated in
any node of the tree would cover the linked list or would meet any partial tracing
that had initiated in the linked list. The system may estimate 7,; as the time need to
propagate the mark-red tracing through a conservatively estimated (large) length of the
path between the root and a leaf of the tree. In this way, if every partial tracing delays
the beginning of the scan phase by 7 + 7, the partial tracing initiated in the linked
list is likely to be encountered by a partial tracing initiated in some node of the tree.

A back-tracing initiated in any element of the tree or linked list structures would
discover the target suspect sub-graph to be garbage. Again, the back-tracing algorithm
cost depends on the number of objects that initiated a garbage collection cycle. The
cost of the back-tracing algorithm increases substantially as the number of objects that

initiate simultaneous back-tracings increases.

Mutator Overhead

Mutator overhead due to garbage collection must be minimised. Our system performs

garbage collection concurrently and asynchronously with respect to mutators. All partial

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 218

tracing steps are performed concurrently with the mutator. In particular, the scan phase
initial step requires atomic execution with respect to cut-references updating, but this
does not affect the mutator activity.

As we stated in section 4.2.2, mutator actions may generate synchronisation actions
in order to ensure safety. Our system has two synchronisation points as we described
in section 6: a Dirty Barrier every time a remote object is invoked and a Remote
Barrier every time a red remote object is invocated through a red exit-item or trans-
mitted. As our implementation showed, these barriers are cheap. The Dirty Barrier
only involves setting an entry-item FEi., and every exit-item where Fz, € Ei,.exits,
dirty. Dirty items are considered members of the local-scan-root-set for the scan phase
initial step.

The Remote Barrier causes the mutator to generate a scan request only on the
first occasion in a collection cycle that a message is sent from a red exit-item. This
scan request is piggy-backed onto the reference listing protocol operations or mutator
messages (see section 8.2.3). Additionally, the probability of mutating objects corre-
sponding to red entry or exit-items decreases with better heuristics.

In order to scan phase to terminate, all scan requests must be acknowledged. Mu-
tator actions on red exit-items spawn new scan requests, however. The number of
red entry and exit-items is finite, hence, a finite number of scan requests is generated.

Consequently, mutator actions do not delay scan phase termination.

9.1.3 Fault-tolerance

Until now we have assumed that processes do not crash, and that they communicate by
messages which are guaranteed to be delivered. As we have already said, in a distributed
system a message may be lost, duplicated or delivered out of order. Processes may
become disconnected for a long period of time and may also crash.

In this section we extend our partial tracing to realistic distributed system behaviour.
We assume that messages may be lost, duplicated or delivered out of order. We further
assume that crashes are fail-stop, therefore the only consequence of a crash is discon-
nection, loss of volatile memory and the halting of computation. In this section we do
not address recovery, that is, all objects contained in a process at the time of the crash

are assumed to be deleted.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 219

Our partial tracing is built on top of the reference listing mechanism described in

section 3.4.4. Consequently we inherit the following features (Birrel and Nelson 1984):

e a protocol for maintaining entry and exit-items which is robust in the face of lost,

duplicated and out of order messages.
e a protocol for detecting those objects that are referenced by crashed processes.

e a protocol for handling dangling references from objects to processes that appear

to have crashed.

Message failure

We identify four types of messages in our system: mark request messages, acknowl-
edgement messages, report messages and token messages. These messages may be lost,

duplicated or delivered out of order, without compromising the safety of our system.

mark requests messages(entry-item) perform two kind of actions: (i) insert source
exit-item in the grey-set; and (ii) send a mark-request to the target entry-item:
colour the entry-item and, for the mark-red phase case, insert the source process in
the entry-item’s red-list; if the target process is passive, insert the source exit-item

in the reply-set.

These actions are idempotent because set insertion is an idempotent operation,
and we do not perform any removal operations. The acknowledgement system

protects our system from lost messages.

acknowledgement messages(exit-item) remove the exit-item from the grey-set. This
is an idempotent message because set removal operations are idempotent, and, for
a particular partial tracing, an item is never re-inserted into a grey-set. The loss
of a message is detected because an exit-item is not removed from the grey-set

until the corresponding acknowledgement is received.

report messages inform the initiator of the end of the initial step and respective
responsibles. By their nature, these messages are idempotent. The initiator is
aware of the participants in a partial tracing and, consequently, the loss of such a

message will be noticed by it.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 220

token messages may be safely retried. The initiator process just discards any copy it

is already aware of.

Finally, these messages may be delivered in any order. There are no potential race
conditions between them. Race conditions with mutator messages are safely handled
by our concurrency model as we have proved in chapter 7.

Messages delay is handled by the acknowledgement system. A non-acknowledged
request will make a partial tracing PT, to fail. A message from PT,’s cycle n may
interfere with PT,’s cycle n + 1. A sequence numbering for each message handles such

delays.

Process failures

As we showed, our system is fault-tolerant to message failures. Additionally, we tolerate
process crashes in the sense that a partial tracing may start even if other processes in
the system are down. Hence, we trade completeness against promptness.

We do not handle a failed participant. We propose such a research as a future work.

9.2 Future Work

9.2.1 Prototype Implementation

An obvious step for future work is to improve the current prototype implementation. It
should be extended with the scalable version described in section 5.1.

With the advent of new object-based distributed programming systems, including
mobile computing technology, applications may make more use of cyclic distributed
garbage collection. As an example, researchers are turn their attention to distributed
garbage collection, including cyclic garbage collection, for distributed standards such as
CORBA (Vinoski 1993), as recent “Request for Proposals” have shown (Carlini 1997),
and to the Java Remote Method Invocation protocol (Gosling and McGilton 1995).

9.2.2 Performance Evaluation

Another future direction is to analyse the performance of our system. We do not know

of any performance measurements of cyclic distributed garbage collection algorithms.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 221

Unfortunately, since cyclic distributed garbage collection is not currently widely avail-
able, there are few applications that make full use of distributed garbage collection.
Hopefully, the number of these applications will start growing once distributed garbage
collection is widely spread.

We decided not to produce synthetic benchmarks for the following reasons. As
(Wilson 1995) states, to build a benchmark important characteristics of workload must
be known. In our case, the probabilities of relevant characteristics of the behaviour
of distributed applications must be known. However, for the reasons above we do not
have that knowledge. Also, synthetic benchmarks usually make false assumptions, for
example that memory allocation by programs is random. (Wilson 1995) shows that
real programs do not generally behave randomly. They are designed to solve actual
programs, and the method chosen to solve these problems has a strong effect on their
pattern of memory usage. Until much deeper understanding of program behaviour is
available, the only reliable method for simulation is to use real applications.

These statements enforce the need for studying real distributed applications and
using them to test garbage collection systems. In the distributed memory management
case, this means that there is an urgent need for studies of topology or demographics
of distributed object systems.

These studies should answer questions like: At what rate is garbage, including cycles,
formed? How common are distributed cycles? What is their shape? Is there some degree
of locality, or are they randomly spread through the distributed system?

If it is the case, as stated by (Wilson 1995), that the patterns of memory usage
are related with a specific method, our system would benefit from such a study. The
mark-red phase could be supported by hints from the programmer or compiler, or from

an event history, improving the efficiency of our cyclic algorithm.

9.2.3 Fault-tolerance

Our system is fault-tolerance to message failures and process failures: it handles safely
loss, duplication and out of order delivery of messages; and it does not need the co-
operation of all processes in the system to perform cyclic collections.

Another issue related to fault-tolerance needs further research, however. This issue

is how to handle a failed participant, that is, garbage collection must remain safe and

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 222

live under adverse conditions.

We intend to study more deeply the relation between our system and fault-tolerant
reference listing, to produce a more fault-tolerant cyclic distributed garbage collector.
We intend to produce a solution based on identifying every garbage collection cycle
message with a sequence number generated by the initiator process. This technique
would allow our system to always be safely able to turn participant processes on non-

participant processes.

9.2.4 Related Areas

Partitioned garbage collection in persistent stores has much in common with indepen-
dent collection in RPC-based distributed systems. Large persistent object stores are
usually divided into partitions that are collected independently, for example (Mahesh-
wari and Liskov 1997b, Printezis, Atkinson, Daynes, Spence and Bailey 1997).

To trace a partition independently of the others, each partition must remember
references to its objects from other partitions and use them as roots. So, our partitioned
garbage collection model described in chapter 3 may be adapted to garbage collection
in persistent object stores.

Partitioned garbage collection introduces two problems in the context of garbage
collection in persistent object stores (Maheshwari and Liskov 1997b). One is perfor-
mance: maintaining information about inter-partition references has a space and time
overhead. The other is completeness: tracing from inter-partition references does not
collect garbage cycles that span partitions. Again, the second problem has much in
common with the completeness problem for garbage collection in RPC-based systems.

We shall concentrate on the second problem. The work of (Maheshwari and Liskov
1997b) proposes a global marking scheme to ensure the collection of cycles of garbage
that span partitions. Global marking is piggy-backed on partitioned collection, but
cyclic garbage can still only be collected when the whole persistent store is marked. We
propose PTs on suspect objects (entry and exit-items may be assigned with a distance).
We will outline in which way our PT system may improve completeness while preserving
the localised nature of partitioned garbage collection and improving promptness.

The global marking is piggy-backed on regular tracing of partitions. A marked trace

marks from persistent roots, application roots and marked entry-items. Objects reached

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 223

during this trace are marked, while inter-partition references reached are recorded to be
marked when the target partition is garbage collected.

Our scheme may improve promptness in two ways. A first solution would use the
mark-red phase as a group-formation heuristic. Mark-red phases may be piggy-backed
on partition collection starting from suspect objects and build a group of partitions that
may contain garbage cycles. A group marking could then be performed on a group of
partitions that have resulted from the mark-red phase. Such information could even
contribute to partition selection policies.

Second, we could try a more dynamic solution and perform PT's as we have described

in chapter 5:

e Mark-red and scan phases could be piggy-backed on partition collection. A mod-
ified partition collection could implement Tarjan’s algorithm, and propagate red
and green marks from entry to exit-items. At the end of a collection red and green
marks for inter-partition references would be updated, providing red or green roots
for other partitions and updated red-lists. Additionally, the participants must be
recorded in some PT object akin to PT'Obj of definition 5.3.

e For detecting termination, in each phase, a mark bit would be assigned to every
participant partition to denote whether the red or green marks of its items had
been propagated. Marking-red or scanning a partition causes it to become marked,
but may cause other partitions to become unmarked, because more entry-items
are marked and such mark must be propagated. Termination would be detected

when all participants would had been marked.

e PTs that encounter each other in the mark-red phase would be allowed to join.
Different policies could be adopted as we have discussed in section 9.1 depending

on how far completeness may be relaxed.

e Synchronisation with mutator activity and scan phase can be avoided during
one partition collection, if garbage collection is run as an optimistic transaction
(Tanenbaum 1992), that aborts in case of concurrent writes by an application
(Shapiro and Ferreira 1995). However, synchronisation is still needed to detect
reachability changes of red items (local reachability as well as inter-partition reach-

ability) in a partition P after the scan Initial-step(P) has been taken, since the

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 224

Initial-step is not synchronised in every partition. Recall that after the Initial-
step, red exit-items are only reachable from outside the partition. This allows us
to check at commit time the transaction’s read-write log. If an object correspond-
ing to a red entry-item has been read, the entry-item is marked green. For this
check to be allowed to be done lazily at commit time, termination must only be

detected when all partitions stay unmarked after the log has been checked.

e As in (Maheshwari and Liskov 1997b), colour information may be maintained on
entry and exit-items that are stored as regular persistent objects, as well as mark
bits. They would be updated after tracing a partition. This, in conjunction with
transaction recovery methods, would allow the restoration of the state of a PT

after recovery.
The main benefits of applying a PT system instead of a global marking are:

e termination is fast. Only the scan phase needs mutator synchronisation. There
are a finite number of red objects, so a partition can only be unmarked a finite
number of times. Additionally, if the PT is working in garbage objects, partition

unmarking will not happen.

e PTs work only in a subset of the object store. Consequently we achieve better

promptness.

From this analysis we conclude that, although needing further investigation, our

scheme looks promising for garbage collection on persistent object stores.

Bibliography

Agha, G. (1986). Actors: a Model of Concurrent Computation in Distributed Systems,
MIT Press.

Amsaleg, L., Franklin, M. and Gruber, O. (1995). Efficient incremental garbage collec-
tion for client-server object database systems, Proceedings of the VLDB Interna-

tional Conference on Very Large Data Bases.

Appel, A. W., Ellis, J. R. and Li, K. (1988). Real-time concurrent collection on stock
multiprocessors, ACM SIGPLAN Notices 23(7): 11-20.

Atkison, M. P., Bailey, P. J., Chisholm, K. J., Cockshott, W. P. and Morrison, R. (1983).

An approach to persistent programming, Computer Journal 26(4): 360-365.

Augusteijn, L. (1987). Garbage collection in a distributed environment, PARLE’87 Par-
allel Architectures and Languages FEurope, Vol. 259 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, pp. 75-93.

Babaoglu, O. and Marzullo, K. (1993). Consistent global states of distributed systems:
Fundamental concepts and mechanisms, in S. Mullender (ed.), Distributed Systems,

Addison-Wesley, pp. 55-96.

Baker, H. G. (1978). List processing in real-time on a serial computer, Communications

of the ACM 21(4): 280-294. Also AI Laboratory Working Paper 139, 1977.

Bartlett, J. F. (1988). Compacting garbage collection with ambiguous roots, Technical
Report 88/2, DEC Western Research Laboratory, Palo Alto, California. Also in
Lisp Pointers 1, 6 (April-June 1988), pp. 2-12.

225

BIBLIOGRAPHY 226

Bartlett, J. F. (1989). Mostly-Copying garbage collection picks up generations and
C++, Technical note, DEC Western Research Laboratory, Palo Alto, CA. Sources
available in ftp://gatekeeper.dec.com/pub/DEC/CCgc.

Bevan, D. I. (1987). Distributed garbage collection using reference counting, PARLE
Parallel Architectures and Languages Europe, Vol. 259 of Lecture Notes in Com-
puter Science, Springer-Verlag, pp. 176-187.

Bharat, K. A. and Cardelli, L. (1995). Migratory applications, Proceedings of the 8th

Annual ACM Symposium on User Interface Software and Technology.

Birrel, A. D. and Nelson, B. J. (1984). Remote procedure call, ACM Transactions on
Computer Systems 2(1): 39-59.

Birrel, A., Evers, D., Nelson, G., Owicki, S. and Wobber, E. (1993). Network objects,
Technical report SRC 115, Digital Systems Research Center.

Birrel, A., Evers, D., Nelson, G., Owicki, S. and Wobber, E. (1994). Distributed garbage
collection for network objects, Technical report SRC 116, Digital Systems Research

Center.

Bishop, P. (1977). Computer systems with a very large address space and garbage
collection, Technical Report MIT Rep, LCS/TR-178, Laboratory for Computer
Science, M.I.T., Cambridge, Mass.

Bobrow, D. G. (1980). Managing reentrant structures using reference counts, ACM

Transactions on Programming Languages and Systems 2(3): 269-273.

Boehm, H.-J. and Weiser, M. (1988). Garbage collection in an uncooperative environ-

ment, Software Practice and Ezperience 18(9): 807-820.

Boehm, H.-J., Demers, A. J. and Shenker, S. (1991). Mostly parallel garbage collection,
ACM SIGPLAN Notices 26(6): 157-164.

Brownbridge, D. R. (1985). Cyclic reference counting for combinator machines, Record
of the 1985 Conference on Functional Programming and Computer Architecture,

Vol. 201 of Lecture Notes in Computer Science, Springer-Verlag, pp. 256-272.

BIBLIOGRAPHY 227

Carlini, G. (1997). Anyone interested in reviewing a dgc rfp for CORBA?, gclist

(gclist@iecc.com).

Cheney, C. J. (1970). A non-recursive list compacting algorithm, Communications of

the ACM 13(11): 6-8.

Chin, R. S. and Chanson, S. T. (1991). Distributed object-based programming systems,
ACM Computing Surveys 23(1): 91-124.

Christopher, T. (1984). Reference count garbage collection, Software Practice and Ez-
perience 14(6): 503-507.

Collins, G. E. (1960). A method for overlapping and erasure of lists, Communications

of the ACM 3(12): 655-657.

Cook, J., Klauser, A. W., Wolf, A. and Zorn, B. (1996). Semi-automatic, self-adaptive
control of garbage collection rates in object databases, Proceedings of the ACM SIG-
MOD International Conference on Management of Data, ACM SIGMOD, pp. 377—
388.

Cook, J., Wolf, A. and Zorn, B. (1994). Partition selection policies in object database
garbage collection, Proceedings of the ACM SIGMOD International Conference on
Management of Data, ACM SIGMOD, pp. 371-382.

Derbyshire, M. H. (1990). Mark scan garbage collection on a distributed architecture,
Lisp and Symbolic Computation 3(2): 135 — 170.

DeTreville, J. (1990). Experience with concurrent garbage collectors for Modula-2+,
Technical Report 64, DEC Systems Research Center, Palo Alto, CA.

Deutsch, L. P. and Bobrow, D. G. (1976). An efficient incremental automatic garbage
collector, Communications of the ACM 19(7): 522-526.

Dickman, P. (1992). Optimising weighted reference counts for scalable, fault-tolerant

distributed object-support systems, Unpublished.

Dijkstra, E. W. and Scholten, C. (1980). Termination detection for diffusing computa-

tions, Information Processing Letters 11: 1-4.

228

BIBLIOGRAPHY

Dijkstra, E. W., Feijen, W. and van Gasteren, A. (1983). Derivation of a termination

detection algorithms for distributed computations, Information Processing Letters.

Dijkstra, E. W., Lamport, L., Martin, A., Scholten, C. and Steffens, E. (1978). On-the-

fly garbage collection: An exercise in cooperation, Communications of the ACM

21(11): 965-975.
Edelson, D. R. (1992). Precompiling C++ for garbage collection, Proceedings of Inter-
national Workshop on Memory Management, St. Malo, France, Vol. 637 of Lecture

Notes in Computer Science, Springer Verlag, Berlin.
Ellis, M. A. and Stroustrup, B. (1990). The Annotated C++ Reference Manual, Addison-

Wesley.
Ferreira, P. (1996). Larchant: ramasse-miettes dans une mémoire partagée répartie avec

persistance par atteignabilité, PhD thesis, L’Université Pierre & Marie Curie - Paris

VL.
Ferreira, P. and Shapiro, M. (1996). Larchant: Persistence by reachability in distributed

shared memory through garbage collection, Proceedings of the 16th International

Conference on Distributed Computing Systems (ICDCS), Hong Kong.

Franklin, M., Copeland, G. and Weikum, G. (1989). What’s different about garbage
collection for persistent programming languages, Technical Report ACA-ST-062-89,
MCC Information Center, 3500 W. Balcones Center Drive, Austin, TX 78759-6509.

Friedman, D. and Wise, D. S. (1977). The one-bit reference count, BIT 17(3): 351-359.

Friedman, D. and Wise, D. S. (1979). Reference counting can manage the circular
environments of mutual recursion, Inf Process. Lett. 8(1): 41-45.

Fuchs, M. (1995). Garbage collection on an open network, IWMM95, Vol. 986 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, pp. 251-265.

Godard, I. (1994). Re: Collecting distributed cycles of garbage, USENET comp.object.
Goldberg, A. and Robson, D. (1983). Smalltalk-80: The Language and its Implementa-

tion, Addison-Wesley.

BIBLIOGRAPHY 229

Gosling, J. and McGilton, H. (1995). The java language environment: A white paper,

Available from http://www.javasoft.com/whitePaper.

Gupta, A. and Fuchs, W. K. (1993). Garbage collection in a distributed object-oriented
system, IEEE Transactions on Knowledge and Data Engineering 5(2): 257-265.

Hudak, P. R. and Keller, R. (1982). Garbage collection and task deletion in distributed
applicative processing systems, Conference Record of the 1982 ACM Symposium
on Lisp and Functional Programming, Pittsburgh, Pa., pp. 68-78.

Hudson, R. L., Morrison, R., Moss, J. E. B. and Munro, D. S. (1997). Garbage collecting
the world: One car at a time, OOPSLA’97 ACM Conference on Object-Oriented
Systems, Languages and Applications, Vol. 32 of ACM SIGPLAN Notices, ACM,
pp. 162-175.

Hughes, R. J. M. (1985). A distributed garbage collection algorithm, Proceedings of
the 1985 FPCA, Vol. 201 of Lecture Notes in Computer Science, Springer-Verlag,
pPp. 256-272.

Jones, R. E. (1996). Garbage Collection: Algorithms for Automatic Dynamic Memory
Management, John Wiley & Sons. With a chapter on Distributed garbage collection
by R. Lins.

Jones, R. E. and Lins, R. D. (1993). Cyclic weighted reference counting without de-
lay, in A. Bode, M. Reeve and G. Wolf (eds), PARLE’93 Parallel Architectures
and Languages FEurope, Munich, Vol. 694 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin.

Jul, E., Levy, H., Hutchinson, N. and Black, A. (1988). Fine-grained mobility in the
Emerald system, ACM Transactions on Computer Systems 6(1): 109-133.

Juul, N.-C. and Jul, E. (1992). Comprehensive and robust garbage collection in a
distributed system, IWMMY2, Vol. 637 of Lecture Notes in Computer Science,

Springer-Verlag, Berlin.

Kafaru, D., Washabaugh, D. and Nelson, J. (1990). Garbage collection of actors, OOP-
SLA/ECOOP ’90 Workshop on Garbage Collection in Object-Oriented Systems,
ACM.

BIBLIOGRAPHY 230

Kernighan, B. W. and Ritchie, D. M. (1990). The C Programming Language, Prentice
Hall.

Kolodner, E. and Weihl, W. (1993). Atomic incremental garbage collection and recovery
for a large stable heap, Proceedings of the ACM SIGMOD International Conference
on Management of Data, ACM SIGMOD, pp. 177-186.

Ladin, R. and Liskov, B. (1992). Garbage collection of a distributed heap, International

Conference on Distributed Computing Systems, Yokahama.

Lang, B., Quenniac, C. and Piquer, J. (1992). Garbage collecting the world, ACM
Symposium on Principles of Programming, Albuquerque, pp. 39-50.

Lermen, C.-W. and Maurer, D. (1986). A protocol for distributed reference counting,
Conference Record of the 1986 ACM Symposium on Lisp and Functional Program-
ming, ACM SIGPLAN/SIGACT/SIGART, Cambridge, Massachusetts, pp. 343—
350.

Lieberman, H. and Hewitt, C. (1983). A real-time garbage collector based on the
lifetimes of objects, Communications of the ACM 26(6): 19-29. Also report TM-
184, Lab. for Computer Science, M.I.T., Cambridge, Mass.,July 1980.

Linington, P. F. (1992). Introduction to the open distributed processing basic refer-
ence model, Open Distributed Processing, Elsevier Science Publishers B. V. (North
Holand).

Lins, R. D. (1990). Cyclic reference counting with lazy mark-scan, Technical Report 75,
The University of Kent at Canterbury Computing Laboratory, The University,
Canterbury, Kent. Also Information Processing Letters 44(4):215-220, 1992.

Lins, R. D. and Jones, R. E. (1993). Cyclic weighted reference counting, in K. Boyanov
(ed.), Procedings of WP € DP’93 Workshop on Parallel and Distributed Processing.
Also Computing Laboratory Technical Report 95, University of Kent, December
1991.

Liskov, B., Day, M. and Shrira, L. (1992). Distributed object management in Thor.,
Proc. Int. Workshop on Distributed Object Management, Edmonton(Canada),
pp. 1-15.

BIBLIOGRAPHY 231

Louboutin, S. and Cahill, V. (1995). On comprehensive global garbage detection, Pro-
ceeding of the European Research Seminar on Advances in Distributed Systems
(ERSADS ’95), INRIA /IMAG, Grenoble, pp. 208-213. Also technical report TCD-
CS-95-11, Dept. of Computer Science, Trinity College Dublin.

Louboutin, S. R. Y. (1997). A Reactive Approach to Comprehensive Global Garbage
Detection, PhD thesis, University of Dublin, Trinity College.

Louboutin, S. R. Y. and Cahill, V. (1997). Comprehensive distributed garbage collection
by tracking causal dependencies of relevant mutator events, Proceedings of the 17th

International Conference on Distributed Computing Systems (ICDCS), IEEE Press.

Maeda, M., Konaka, H., Ishikawa, Y., TomoKiyo, T., Hori, A. and Nolte, J. (1995).
On-the-fly global garbage collection based on partly mark-sweep, Proceedings of
International Workshop on Memory Management, Kinross, UK, Vol. 986 of Lecture

Notes in Computer Science, Springer Verlag, Berlin.

Maheshwari, U. (1993). Distributed garbage collection in a client-server, transactional,
persistent object system, Master’s thesis, Department of Electrical Engineering and

Computer Science, Massachusetts Institute of technology.

Maheshwari, U. and Liskov, B. (1994). Fault-tolerant distributed garbage collection in
a client-server objected-oriented database, Proceedings of the third International

Conference on Parallel and Distributed Information Systems, pp. 239-248.

Maheshwari, U. and Liskov, B. (1995). Collecting cyclic distributed garbage by con-
trolled migration, Proceedings of the Symposium on Principles of Distributed Com-

puting.

Maheshwari, U. and Liskov, B. (1997a). Collecting distributed garbage cycles by back

tracing, Proceedings of the Symposium on Principles of Distributed Computing.

Maheshwari, U. and Liskov, B. (1997b). Partitioned garbage collection of a large object
store, Proceedings of the ACM SIGMOD International Conference on Management
of Data, ACM SIGMOD.

BIBLIOGRAPHY 232

Marzullo, K. and Sabel, L. S. (1994). Efficient detection of a class of stable properties,
An earlier version of this paper appears in the Proceedings of the 5th International

Workshop on Distributed Systems, October 1991, Spring-Verlag LNCS Vol. 579.

Mattern, F. (1987). Algorithms for distributed termination detection, Distributed Com-
puting 2: 161-175.

Mattern, F. (1989). Global quiescence detection based on credit distribution and recov-

ery, Information Processing Letters 30(4): 195-200.

McCarthy, J. (1960). Recursive functions of symbolic expressions and their computation

by machine, Communications of the ACM 3: 184-195.

Minsky, M. L. (1963). A Lisp garbage collector algorithm using serial secondary storage,
Technical Report Memo 58 (rev.), Project MAC, MIT, Cambridge, MA.

Moss, J. E. B., Munro, D. S. and Hudson, R. L. (1996). Pmos: A complete and coarse-
grained incremental garbage collector for persistent object stores, Proceedings of

the seventh Workshop on Persistent Object systems.

Nettles, S. M., O’Toole, J. W., Pierce, D. and Haines, N. (1992). Replication-based
incremental copying collection, in Y. Bekkers and J. Cohen (eds), Proceedings of
International Workshop on Memory Management, Vol. 637 of Lecture Notes in
Computer Science, Springer-Verlag, Carnegie Mellon University, USA.

Ng, T. C. T. (1996). Efficient garbage collection for large object-oriented databases,
Master’s thesis, Department of Electrical Engineering and Computer Science, Mas-

sachusetts Institute of technology.

Nitzberg, B. and Lo, V. (1991). Distributed Shared Memory: A survey of Issues and
Algorithms., IEEE Computer pp. 52—60.

Ozsu, M. T., Daylal, U. and Valduriez, P. (1994). An introduction to distributed object

management, Distributed Object Management, Morgan Kaufmann Publishers.

Piquer, J. (1991). Indirect reference counting: A distributed garbage collection al-
gorithm, in Aarts et al. (ed.), PARLE’91 Parallel Architectures and Languages

Europe, Vol. 505 of Lecture Notes in Computer Science, Springer Verlag, Berlin.

BIBLIOGRAPHY 233

Plainfossé, D. and Shapiro, M. (1992). Experience with fault-tolerant garbage collection
in a distributed Lisp system, Proceedings of International Workshop on Memory
Management, St. Malo, France, Vol. 637 of Lecture Notes in Computer Science,
Springer Verlag, Berlin.

Plainfossé, D. and Shapiro, M. (1995). A survey of distributed garbage collection tech-
niques, Proceedings of International Workshop on Memory Management, Kinross,

UK, Vol. 986 of Lecture Notes in Computer Science, Springer Verlag, Berlin.

Printezis, T., Atkinson, M., Daynes, L., Spence, S. and Bailey, P. (1997). The design of a
new persistent object store for PJama, Technical report, Department of Computer

Science, University of Glasgow, Glasgow G12 8QQ.

Queinnec, C., Beaudoing, B. and Queille, J.-P. (1989). Mark during sweep rather than
mark then sweep, PARLE’89 Parallel Architectures and Languages Europe, Vol.
365 of Lecture Notes in Computer Science, Springer-Verlag, Berlin.

Rana, S. P. (1983). A distributed solution to the distributed termination problem,

Information Processing Letters 17: 43—-46.

Ricciardi, A. M. and Birman, K. P. (1993). Process membership in asynchronous envi-
ronments, Technical Report TR 93-1328, Department of Computer Science, Cornell
University, Ithaca NY (USA).

Rodrigues, H. and Jones, R. E. (1996). A cyclic distributed garbage collector for network
objects, in O. Babaoglu and K. Marzullo (eds), Tenth Iternational Workshop on
Distributed Algorithms (WDAG), Vol. 1095 of Lecture Notes in Computer Science,

Springer-Verlag, Berlin.

Rodrigues, H. and Jones, R. E. (1998). Cyclic distributed garbage collection with group
merger, European Conference on Object-Oriented Programming (ECOOPY8), Lec-

ture Notes in Computer Science, Springer-Verlag, Berlin.

Rodriguez-Riviera, G. (1995). Cyclic distributed garbage collection without global syn-

chronization, PhD Preliminary Examination Report.

BIBLIOGRAPHY 234

Rodriguez-Riviera, G. and Russo, V. (1997). Cyclic distributed garbage collection with-
out global synchronization in CORBA, Presented at International Workshop on
Memory Management OOPSLA’97.

Rovner, P. (1985). On adding garbage collection and runtime types to a strongly-typed,
statically checked, concurrent language, Technical Report CSL-84-7, Xerox PARC,
Palo Alto, Ca.

Samples, A. D. (1992). Garbage collection-cooperative c++, in Y. Bekkers and J. Cohen
(eds), Proceedings of International Workshop on Memory Management, Vol. 637

of Lecture Notes in Computer Science, Springer-Verlag, Berlin.

Schelvis, M. (1989). Incremental distribution of timestamp packects: A new approach

to distributed garbage collection, ACM SIGPLAN Notices 24(10): 37-48.

Schroeder, M. D. (1993). A state-of-the-art distributed systems computing with BOB,
in S. Mullender (ed.), Distributed Systems, Addison-Wesley, pp. 1-26.

Shapiro, M. and Ferreira, P. (1995). Larchant-rdoss: a distributed shared persistent
memory and its garbage collector, in J.-M. Hélary and M. Raynal (eds), Interna-
tional Workshop on Distributed Algorithms (WDAG), Vol. 637 of Lecture Notes in

Computer Science, Springer-Verlag, Berlin, pp. 198-214.

Shapiro, M., Dickman, P. and Plainfossé, D. (1992). Robust, distributed references
and acyclic garbage collection, Proceedings of the Symposium on Principles of Dis-

tributed Computing.

Shapiro, M., Gruber, O. and Plainfossé, D. (1990). A garbage detection protocol for a
realistic distributed object-support system, Rapports de Recherche 1320, INRIA-
Rocquencourt. Also in ECOOP/OOPSLA’90 Workshop on Garbage Collection.

Shivaratri, N. G., Krueger, P. and Singhal, M. (1992). Load Distributing for Locally
Distributed Systems, Computer 25(12): 33-44.

Sousa, P., Sequeira, M., Ziquete, A., Ferreira, P., Lopes, C., Pereira, J., Guedes, P. and
Marques, J. A. (1993). Distribution and persistence in the IK platform: Overview
and evaluation, Computing Systems 6(4): 391-424.

BIBLIOGRAPHY 235

Steele, G. L. (1975). Multiprocessing compactifying garbage collection, Communications

of the ACM 18(9): 495-508.
Tanenbaum, A. S. (1992). Modern Operating Systems, Prentice Hall.

Tarjan, R. (1972). Depth first search and linear graph algorithms, STAM Journal of

Computing.

Tel, G. and Mattern, F. (1993). The derivation of distributed termination detection
algorithms from garbage collection schemes, ACM Transactions on Programming

Languages and Systems 15(1): 1-35.

Ungar, D. M. (1984). Generation scavenging: a non-disruptive high performance storage
reclamation algorithm, ACM SIGPLAN Notices 19(5): 157-167. Also published as
ACM SIGPLAN Notices 19, 5 (May 1984) and ACM Software Engineering Notes
9, 3 (May 1984).

Vestal, S. C. (1987). Garbage Collection: An Ezercise in Distributed, Fault-Tolerant

Programming, PhD thesis, University of Washington.
Vinoski, S. (1993). Distributed object computing with CORBA, C++ Report pp. 33-38.

Watson, P. and Watson, I. (1987). An efficient garbage collection scheme for parallel
computer architectures, PARLE’87 Parallel Architectures and Languages Europe,
Vol. 259 of Lecture Notes in Computer Science, Springer Verlag, pp. 432-443.

Weizenbaum, J. (1963). Symmetric list processor, Communications of the ACM

6(9): 524-544.

Weizenbaum, J. (1969). Recovery of reentrant list structures in slip, Communications

of the ACM 12(7): 370-372.

Wilson, P. R. (1992). Uniprocessor garbage collection techniques, Proceedings of Inter-
national Workshop on Memory Management, St. Malo, France, Vol. 637 of Lecture

Notes in Computer Science, Springer Verlag, Berlin.

Wilson, P. R. (1995). Dynamic storage allocation: A survey and critical review, Pro-
ceedings of International Workshop on Memory Management, Kinross, UK, Vol.
986 of Lecture Notes in Computer Science, Springer Verlag, Berlin.

BIBLIOGRAPHY 236

Wilson, P. R. (1996). Distr. gc general discussion for faq, gelist (gelist@iecc.com).

Wise, D. S. (1993). Stop-and-copy and one-bit reference counting, Technical Report 360,

Indiana University, Computer Science Department.

Yong, V.-F., Naughton, J. and Yu, J.-B. (1994). Storage reclamation and reorganisa-
tion in client-server persistent object stores, Proceedings of the ICDE International

Conference on Data Engineering, pp. 120-133.

Yuasa, T. (1990). Real-time garbage collection on general-purpose machines, Journal

of Software and Systems 11(3): 181-198.

Zorn, B. (1990). Barrier methods for garbage collection, Technical Report CU-CS-494-
90, University of Colorado at Boulder, Department of Computer Science, Boulder,

Colorado.

Zorn, B. (1992). The measured cost of garbage collection, Technical Report CU-CS-573-
92, University of Colorado at Boulder, Department of Computer Science, Boulder,

Colorado.

