
CYCLIC DISTRIBUTED GARBAGE COLLECTION
a thesis submitted toThe University of Kent at Canterburyin the subject of computer sciencefor the degreeof doctor of philosophy.

ByHelena Cristina Coutinho Duarte RodriguesNovember 1998

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To Lu��s and my family

ii

Acknowledgements
I warmly thank my supervisor, Richard Jones, for his care, encouragement and patience.I greatly appreciate the guidance he has given me over the course of my studies.I thank everyone in the computing laboratory for providing such a pleasant workingenvironment. Especially, all the members of the TCS group, and in particular HowardBowman, for their encouragement of my participation in the TCS seminars.I have made many friends during my stay in Canterbury. I warmly thank them all.To my o�ce mates Eduardo Rojas-Vegas, Eduardo Albuquerque and Carlos Ferraz fora wonderful o�ce (latin) atmosphere. To the group that joined everyday for a relaxingand joyful lunch break. To Jason and Vince for being so wonderful o�ce mates andfor all the fun we have together. To Catarina, Jo~ao Corte-Real, Maria, Paula, Regina,J�ulia and Pedro, Paul and Val�eria, for their care, support and constant friendship. ToManel and Helena and Filipe, Miguel and Francisco for making me feel more close toPortugal.I warmly thank Geraldina for her friendship and constant companionship.I thank my family and all my friends in Portugal for always being so supportive andcaring.Finally, I thank Lu��s for all his love and encouragement.I acknowledge the �nancial support of JNICT, Portugal, without whom this workwould not have been possible.

iii

Abstract
With the continued growth of distributed systems as a means to provide shared data, de-signers are turning their attention to garbage collection, prompted by the complexity ofmemory management and the desire for transparent object management. Garbage col-lection in very large address spaces is a di�cult and unsolved problem, due to problemsof e�ciency, fault-tolerance, scalability and completeness. The collection of distributedgarbage cycles is especially problematic. This thesis presents a new algorithm for dis-tributed garbage collection and describes its implementation in the Network Objectssystem. The algorithm is based on a reference listing scheme, which is augmented bypartial tracing in order to collect distributed garbage cycles. Our collector is designedto be exible, allowing e�ciency, promptness and fault-tolerance to be traded againstcompleteness, albeit it can be also complete. Processes may be dynamically organisedinto groups, according to appropriate heuristics, in order to reclaim distributed garbagecycles. Multiple concurrent distributed garbage collections that span groups are sup-ported: when two collections meet they may either merge, overlap or retreat. Thischoice may be done at the level of di�erent partial tracings, of processes or of individ-ual objects. The algorithm places no overhead on local collectors and does not disruptthe collection of acyclic distributed garbage. Partial tracing of the distributed graphinvolves only objects thought to be part of a garbage cycle: no collaboration with otherprocesses is required.

iv

Contents
Acknowledgements iiiAbstract ivList of Figures xi1 Introduction 11.1 Why Garbage Collection? . 31.2 Distributed Object-based Programming Systems 61.2.1 Actors . 81.2.2 RPC-based Systems . 91.2.3 Object-Oriented Database Management Systems 101.2.4 Distributed Shared Memory . 111.3 RPC-based System Model . 121.4 Distributed Garbage Collection Goals 141.5 Cycles of Garbage . 181.6 Outline of the Thesis . 192 Classical Uniprocessor Algorithms 212.1 Principles . 222.1.1 Live and Garbage Objects . 222.1.2 Garbage Collection . 232.1.3 Safety and Liveness properties 242.2 Reference Counting . 252.3 Tracing . 292.3.1 The mark-and-sweep collector . 29v

2.3.2 The copying collector . 322.4 Advanced Techniques . 342.4.1 Incremental Garbage Collection 342.4.2 Generational Garbage Collection 392.4.3 Conservative Garbage Collection 402.5 Summary . 413 Distributed Garbage Collection Techniques 433.1 Partitioned vs Non-partitioned Collection 443.1.1 Model for Partitioned Garbage Collection 453.1.2 Road-map to the Remainder of this Chapter 483.2 Global Tracing . 503.3 Partitioned Tracing . 523.4 Reference Tracking . 563.4.1 Acknowledgement Messages . 583.4.2 Weighted Reference Counting . 603.4.3 Indirection, and Strong-Weak Pointers 613.4.4 Reference Listing . 623.4.5 Timestamp Packet Distribution 633.5 Hybrid Collectors . 643.5.1 Complementary Tracing . 673.5.2 Tracing in Groups . 673.5.3 Local Tracing . 683.5.4 Train Collection . 693.5.5 Object Migration . 713.5.6 Back-Tracing . 723.6 Garbage Collection in Distributed Shared Memory 753.7 Garbage Collection in Object-Oriented Database Management Systems 763.8 Summary . 784 A Cyclic Distributed Garbage Collector 804.1 General Overview . 814.2 Goals and Outline of Solutions . 84vi

4.2.1 Scalability and Completeness . 844.2.2 E�ciency . 864.2.3 Fault-tolerance . 874.3 Mark-red Phase . 874.3.1 Mark Steps and Red-list . 884.3.2 Mark-red Algorithm . 904.4 Scan and Sweep Phase . 904.4.1 Scan Steps . 914.4.2 Scan Algorithm . 924.4.3 Sweep Phase . 934.5 Termination . 944.5.1 Distributed Termination Protocol 944.5.2 Report phase . 1004.6 Heuristics . 1014.6.1 Heuristics for Suspect Objects 1014.6.2 How far to go? . 1024.7 Summary . 1035 A Scalable Cyclic Garbage Collector 1055.1 Scalability . 1055.2 Cut-references Graph . 1085.3 Multiple Partial Tracings . 1115.3.1 Initiating a partial tracing . 1135.3.2 Mark-red Phase . 1165.3.3 Scan Phase . 1185.4 Example . 1285.5 Synchronised Merging . 1315.6 Summary . 1366 Mutator Concurrency 1376.1 Synchronisation . 1376.2 Termination . 1486.3 Summary . 150vii

7 Proof of Correctness 1527.1 Summary of the Model . 1537.2 Safety . 1577.2.1 Partial tracing algorithm . 1577.2.2 Distributed Termination Protocol 1597.2.3 Mutator Concurrency . 1617.2.4 Co-operative partial tracings . 1657.3 Liveness . 1697.4 Summary . 1718 Implementation over Network Objects 1728.1 An Overview of Network Objects . 1738.1.1 Implementation of the Garbage Collection Model 1748.1.2 Local Garbage Collection . 1758.1.3 Network Objects Runtime System 1798.1.4 Remote Invocation and Marshaling of Network Objects 1798.1.5 Acyclic Garbage Collection . 1818.2 Prototype Implementation . 1838.2.1 Partial Tracing . 1848.2.2 Suspect Identi�cation . 1908.2.3 Remote Barrier . 1958.3 Prototype Extensions . 2008.3.1 Cut-references Graph . 2008.3.2 Dirty Barrier . 2008.4 Summary . 2019 Conclusions and Future Work 2039.1 Discussion . 2039.1.1 Scalability and Completeness . 2049.1.2 E�ciency . 2059.1.3 Fault-tolerance . 2189.2 Future Work . 2209.2.1 Prototype Implementation . 220viii

9.2.2 Performance Evaluation . 2209.2.3 Fault-tolerance . 2219.2.4 Related Areas . 222Bibliography 224

ix

List of Figures
1 Heap and Roots. 222 Reference Counting Algorithm. 263 Mark-and-sweep Algorithm. 304 Cheney's Algorithm. 325 Concurrent Mutator Activity. 376 Partitioned Garbage Collection Model 467 Partitioned vs Non-partitioned Distributed Garbage Collection 498 Decrement=increment race condition . 579 Increment=decrement race condition . 5710 Locality Spectrum . 6511 Inter-process Garbage Cycle . 8212 Cycle Dependency . 8513 Mark-red phase identi�es a subgraph suspect of being garbage 8914 Scan phase `rescues' any red objects that may be live 9215 State transition diagram for termination detection. 9716 State changes for termination detection 9917 Multiple Partial Tracings . 10618 Entry-item=Exit-item reachability . 10819 Multiple Partial Tracings Co-operation 11220 End of the mark-red phase . 11721 State transition diagram for termination detection of PTz accounting forco-operative partial tracings. 12222 State changes for termination detection of PTz accounting for co-operativepartial tracings. 123x

23 End of the scan phase . 12424 Token Algorithm. 12725 End of the mark-red phase . 12926 Mark-red phase events . 13027 End of the scan phase . 13228 Distributed termination detection . 13329 Reference mutations | local copy (dotted lines). 13930 Reference mutations | remote copy (dotted lines). 13931 Reference mutations (dotted lines) and Cut-references graph. 14332 State transition diagram for termination detection of PTz accounting formutator concurrency. 14933 State changes for termination detection of PTz accounting for mutatorconcurrency . 15134 Network Object Model for Garbage Collection 17435 Modula-3 local collector algorithm . 17836 System Architecture . 18537 Object: Object Table . 19238 Object Table Barrier . 19339 Modula-3 local collector algorithm for suspect identi�cation 19440 Implementation of Remote Barrier for transmission of a reference. . . 19741 Time-line showing the need for repeated piggy-backing of scan requestson barrier execution. 19942 Connected garbage structures . 21143 Double linked list . 21444 Searching tree with back references . 21645 Tree nodes pointing to cyclic garbage structures 217

xi

Chapter 1
Introduction
The development of computer and high-speed network technology has led to the in-troduction of computing systems composed of large numbers of processors connectedby high-speed networks that appear to users as a single computing system; these pro-cesses may co-operate in solving computational problems. Such distributed systemscan make e�ective use of loosely coupled multiprocessor systems. In these systems, thenetwork provides communication amongst several processors, which do not have accessto a common physical memory. Distribution allows multiple users to access the systemsimultaneously, regardless of their physical location. More importantly, it allows usersto share data. Another bene�t of distributed systems is fault-tolerance: a distributedsystem is able to continue despite the failure of one process.An essential part of tomorrow's computing world will be workers and organisationscarrying out cooperative tasks interacting via shared information. The need for darasharing is well known in applications such as interactive computer aided design, o�ceinformation systems, engineering databases, medical imaging systems, geographical in-formation processing systems, biological information systems, and others. Informationis shared either concurrently or at di�erent times, thus it must be available at di�erentlocations and may persist beyond completion of a particular application.Many recent distributed systems have been developed with objects as their mainstructuring concept, as this o�ers a suitable paradigm for distributed computing. An

1

CHAPTER 1. INTRODUCTION 2object-based programming language encourages a methodology for designing and cre-ating an application as a set of autonomous and co-operative objects, whereas a dis-tributed operating system permits a collection of workstations or personal computers tobe treated as a single entity. These two concepts together are the basis for distributedobject-based programming systems (Chin and Chanson 1991).In general, the objects in such systems are dynamically created, and persistent, i.econceptually they live forever. Such address spaces are usually composed of a largenumber of objects | Large Address Spaces. The implementation of such systems mustdeal with scalability problems. Accessing an object entails �nding its references bynavigation from the active part of the system | roots. Objects are considered garbageif they are not reachable from such roots. Garbage objects should be removed from thesystem. This can be done either via manual memory management, or automatically viaGarbage Collection (GC) (Wilson 1992, Jones 1996).A program that uses explicit deallocation rather than garbage collection needs tokeep track of object reachability to know when to deallocate an object. Keeping track ofobject reachability in a large shared address space where di�erent programs written bydi�erent programmers exchange references to objects, becomes impractical and error-prone as the number of programs increases. This is also true for uniprocessor systems.This is because objects are potentially shared among independent threads of control,none of which can have a comprehensive view of the overall object graph, and becauseobjects may outlive the thread of control that created them. Explicit object deallocationrequires all programs to agree explicitly when to deallocate an object.Distributed garbage collection is a di�cult problem. It should collect all the garbageof a system but still be prompt, that is, rates of collection should match rates of al-location of objects. Moreover, a distributed garbage collector must deal with lost, outof order and duplicated messages, process crashes, long lasting network failures, andproblems of scalability.There are many algorithms for distributed garbage collection in the literature (Plain-foss�e and Shapiro 1995). Each of these algorithms solves some problems but leaves otherproblems unresolved. For example, there are algorithms that collect cycles of garbageusing some form of complementary tracing but require global synchronisation (Hudak

CHAPTER 1. INTRODUCTION 3and Keller 1982, Augusteijn 1987, Derbyshire 1990, Juul and Jul 1992) making the al-gorithm unscalable. Other algorithms are e�cient at passing references, but are notfault-tolerant (Bevan 1987, Watson and Watson 1987, Piquer 1991, Dickman 1992).Other are scalable and deal with process and message failure, but do not handle cyclicdata (Shapiro, Dickman and Plainfoss�e 1992, Plainfoss�e and Shapiro 1992, Birrel, Ev-ers, Nelson, Owicki and Wobber 1994, Maheshwari and Liskov 1994). Others migrateobjects until an entire garbage cyclic structure is eventually held within a single pro-cess where it can be collected by the local collector (Shapiro, Gruber and Plainfoss�e1990, Maheshwari and Liskov 1995), but migration is communication-expensive.However, unreclaimed garbage is particular undesirable in long-lived systems, espe-cially persistent systems, where even small amounts of uncollected garbage can accu-mulate over time to cause a signi�cant storage loss.In the next sections we will introduce the background from which garbage collectionis investigated in this thesis. First we introduce distributed object systems and di�erentsolutions for object sharing. We intend to briey acquaint the reader with the di�erent�elds of garbage collection in large address spaces. Next, we describe in more detail theRPC-based computational model, as this is the target of our system.We also present the generic goals of distributed garbage collection, and state ourprimary goals. Finally we explain the structure of this thesis.1.1 Why Garbage Collection?Heap allocation is required for objects that may survive the procedure that createdthem. If these objects are passed to further procedures or functions it may be impossiblefor the programmer or compiler to determine at compile-time at which point it is safeto deallocate them. The prevalence of sharing and delayed execution of suspensionsmeans that some programming languages have unpredictable execution orders. Forthem garbage collection is mandatory (Jones 1996).Garbage collection has been a research topic for more than 40 years (McCarthy1960, Collins 1960). It was �rst investigated in the domain of symbolic programminglanguages, for example Lisp. Applications written in such languages had complex datagraphs. In such applications, memory management is an intricate problem. Today,

CHAPTER 1. INTRODUCTION 4object-oriented languages and systems face the same problem. With the advent ofdistributed and persistent systems, the need for GC has increased even further. Insuch systems, manual memory management becomes a complex task as the number ofobjects, references and users scales up.Automatic garbage collection is to be preferred to user-controlled memory manage-ment for many reasons. Programmer-controlled memory management is error-prone.The programmer tends to make two mistakes. One mistake is that he fails to free aresource when it is no longer used. This leads to storage leaks and performance degra-dation. The second mistake is that he returns a resource that is still in use, leading todangling references. Both mistakes are di�cult to detect and recover from, especiallyin systems managing persistent data. Garbage collection relieves the programmer fromthe burden of discovering memory management errors by ensuring they cannot hap-pen. A considerable proportion of development time may be spent on bugs of this kind(Rovner 1985). Object-oriented or object-based programming languages typically allo-cate a greater proportion of program data structures in the heap and generate complexdata structures. This only increases the complexity of explicit memory management.Consequently, garbage collection also provides a better division of responsibility.The task of programming becomes easier and productive increases when memory man-agement is no longer a concern. Programs become shorter and simpler.Other issues relate to abstraction and modularity. Garbage collection is necessaryfor fully modular programming, to avoid introducing unnecessary inter-module depen-dencies (Wilson 1992). If objects must be deallocated explicitly, some modules mustbe responsible for knowing when other modules are not interested in a particular ob-ject, to prevent one module from causing the failure of another through space leaksor premature reclamation of storage. This introduces nonlocal book-keeping: the be-haviour of a module is no longer independent from the context in which it is used. Thisreduces abstraction and extensibility, because when new functionality is implemented,the book-keeping code must be updated. Manual reclamation is often tightly coupledto the application, making any further modi�cation di�cult.All these reasons apply equally to distributed object-based systems. Moreover, aswe have already said, explicit garbage collection is a complex task in distributed systemswhere objects are highly shared among di�erent programs. The design of an e�cient

CHAPTER 1. INTRODUCTION 5distributed algorithm for managing distributed data is complex: local collectors mustbe coordinated to consistently keep track of changing references between address spaces.Distributed garbage collection contributes to transparency in distributed systems:just as modern distributed systems support transparent, uniform placement and invo-cation of both local and remote objects, so should they also support transparent objectmanagement, including reclamation.With the advent of persistent programming languages and database systems thatprovide general purpose programming capabilities, garbage collection issues are be-coming more relevant to designers of systems that manage persistent data (Franklin,Copeland and Weikum 1989).Persistent Object stores, also known as a stable heap, are found in many objectdatabases, persistent programming languages and environments, and distributed sharedmemory systems. Garbage collection is an important issue in persistent object stores.First, the object graphs of applications over persistent stores are complicated, whichmakes manual storage management increasingly di�cult and error-prone, often resultingin dangling pointers and storage leaks. This is because objects are potentially sharedamong independent programs that cannot have a comprehensive view of the overallobject graph, and because objects outlive the program that created them.Second, garbage collection is necessary to support the property of persistence byreachability. This approach provides true orthogonality of object types and persistence| objects of any type become persistent and operations can be applied to an objectregardless at whether it is persistent or not. Any object that is reachable from apersistent object becomes persistent itself (Atkison, Bailey, Chisholm, Cockshott andMorrison 1983).Third, compaction and clustering of objects improves e�ciency. Databases maycontain gigabytes of data. Garbage is expensive. If disk blocks contain a large percentageof garbage, disk I=O tra�c may be drastically increased. Deferring garbage collectionmay adversely a�ect performance (Franklin et al. 1989).Garbage collection does not, however, guarantee perfect utilisation of memory; theprogrammer may still, for example, construct ever-expanding data structures that �llthe address space. Furthermore, there are costs involved in garbage collection which,although comparable with the cost of manual memory management (Zorn 1992), are

CHAPTER 1. INTRODUCTION 6non-trivial and which might exceed the cost of doing no recycling of memory in small,short-lived applications. However, garbage collection has advanced rapidly and is nowa robust, mature technology (Wilson 1992, Jones 1996).1.2 Distributed Object-based Programming SystemsDistributed object-based programming system attempts to hide the underlying distri-bution thus giving the programmer the illusion of a non-distributed system. Usingthis model, programmers interact with a single conceptual system which fully man-ages distribution. Examples of such systems include Emerald (Jul, Levy, Hutchin-son and Black 1988), IK Platform (Sousa, Sequeira, Z�uquete, Ferreira, Lopes, Pereira,Guedes and Marques 1993), Network Objects (Birrel, Evers, Nelson, Owicki andWobber1993), CORBA (Vinoski 1993), JAVA Remote Method Invocation protocol (Gosling andMcGilton 1995), Microsoft DCOM, Thor (Liskov, Day and Shrira 1992) and Larchant(Ferreira and Shapiro 1996).The main advantage of distributed object-based programming systems is a simpleconceptual framework that normally translates to a simple programming environment.The programmer does not need to understand the complexity necessary to manage dis-tribution, deal with partial failures, optimise the placement of objects, or locate compu-tations. In a distributed system all of these are intended to be performed automatically| and transparently | by the support system.The most important challenges for garbage collection in these systems are that theyfeature:Concurrency A distributed system provides inherent concurrency, i.e. it is possible tohave more than one part of an application running at the same time. In particular,we may have the application program and the garbage collector running at thesame time.Asynchrony A large class of problems in distributed systems can be cast as execut-ing some noti�cation or reaction when the global state of the system satis�es aparticular condition. Thus, the ability to construct a global state and evaluate apredicate over such a state constitutes the core of solutions to many problems indistributed systems (Babaoglu and Marzullo 1993).

CHAPTER 1. INTRODUCTION 7The global state of a distributed system is the union of the states of the individualprocesses. Given that the processes of a distributed system do not share memorybut instead communicate solely through the exchange of messages, a process thatwishes to construct a global state must communicate with the other processesthrough message exchanges, which are expensive and unreliable.Partial failures Distributed systems may be partitioned by break-downs of processorsor communication links.Availability In theory, distributed systems can be more reliable than centralised ones,since if a machine crashes others may keep functioning. This property should notbe ignored if we want to increase availability and reliability. When independentfailure is properly harnessed by replicating functions on independent components,multiple components failures are required before system availability and reliabilitysu�er (Schroeder 1993).Scalability Distributed systems may be augmented easily by any number of processors.Remote communication at the programming language level may be accomplishedthrough any number of paradigms including message-passing, e.g. Remote ProcedureCalls (RPC) (Birrel and Nelson 1984, Jul et al. 1988, Sousa et al. 1993, Vinoski 1993,Birrel et al. 1993, Gosling and McGilton 1995), transactions (Ozsu, Daylal and Valduriez1994, Liskov et al. 1992) and distributed shared memory (Nitzberg and Lo 1991, Ferreira1996). This results in di�erent computation models and solutions for data sharing indistributed systems as RPC-based systems, Object Oriented Database Managementsystems and Distributed Shared Memory systems respectively.Also, the relationship between the processes and the objects of a distributed object-based programming system characterises the composition of the objects. Processesmay either be separate and temporarily bound to the objects they invoke, or theymay be coupled and permanently bound to the objects in which they execute. Thesetwo approaches correspond to the passive object mode and the active object model,respectively (Chin and Chanson 1991):Passive Object Model Passive objects store data and the computational thread ofcontrol is external to them. Once a passive object is no longer referenced from

CHAPTER 1. INTRODUCTION 8any other object it is garbage and its memory is free to be re-allocated.Active Object Model Whenever an object controls its computational thread it iscalled an active object. Their management is more complex than the passiveone, because reachability and state may need to be analysed simultaneously. Apassive garbage object wastes space only, while an active garbage object consumesprocessing power and may also waste unbounded amounts of memory.All these factors inuence the job of a garbage collector. In the next sections wewill introduce Actor systems, a computational model of active objects, RPC-based sys-tems, Object Oriented Database Management systems and Distributed Shared Memorysystems and outline their garbage collection job. Only the Actor model is of ActiveObject model type. In the remainder of this section and the rest of this thesis we areonly concerned with the Passive Object model.1.2.1 ActorsActor systems (Agha 1986) are of Active Object Model type. In an Actor systemeach object contains a thread of control and a message queue, as well as encapsulatedbehaviour and state, including references to other Actors. Actors exchange messagesbetween each other and this is the only way that one Actor can inuence the actionsof another Actor. The processing of messages by the embedded thread within an Actormay cause the Actor to change its subsequent behaviour.The key distinction, for the purpose of garbage collection, between Actor systemsand passive objects systems is that Actors contain a thread of control at all times.Traditionally, the de�nition of `roots' used by garbage collection algorithms includesthe stack associated with every thread in the system. If this was done in an Actorsystem, every object would have to be considered as live, which is inappropriate. Onethe other hand, an Actor A which holds a reference to another Actor B that is livemight send a message to B which contains a self-reference. In this case, B would thenhold a reference to A, and since B is live A must also be live. If A was not considereda root at the time of the garbage collection, A would not be reachable from any rootand hence would be unsafely discarded. Consequently, Actors with at least one activebehaviour or with a non-empty message queue are also included in the system roots.

CHAPTER 1. INTRODUCTION 9Such Actors are called active.Conceptually, an Actor can be considered garbage if its absence from the systemcannot be detected by external observation, apart from its consumption of memory andprocessor resources. Kafaru et al. (Kafaru, Washabaugh and Nelson 1990) have giventhe de�nition of liveness of objects in the �eld of Actor garbage collection, that hasbecome a standard: An Actor may be de�ned as garbage if it lacks either one (or both)of the properties below:Computable the Actor is active or can become active hereafter.Reachable the Actor can send information to, or receive information from, a root.Garbage collection in such systems concentrates in �nding e�cient techniques fordetermining the liveness of objects following the above de�nition of the system roots.These kinds of system are not addressed in this thesis.1.2.2 RPC-based SystemsOne possibility in a programming language to support distributed computing is to pro-vide a distributed heap with parts at di�erent processes; each individual object residesat a single process, but it can refer to objects at other processes. They communicate byRemote Procedure Call (RPC). RPC (Birrel and Nelson 1984) is a basic communicationmechanism that forms the basis for the client-server model (Jul et al. 1988, Linington1992, Sousa et al. 1993, Vinoski 1993, Birrel et al. 1993).Mutator processes perform local computations independently of other mutators inthe system, although they may periodically exchange messages and allocate objects inlocal heaps. These mutator messages transfer data, which may include references toobjects. The mutator sending the message is referred to as the sender, the mutatorreceiving it, the receiver. The object to which a reference in the message points maybe on yet another process, usually called the owner. On receipt of the message, thereceiver's mutator may store the reference in a local object, thus creating a new inter-process reference. In some systems, mutator messages may also transfer objects fromone process to another; this is called migration.The rôle of garbage collection in such systems is usually divided into:

CHAPTER 1. INTRODUCTION 10Local garbage collection is performed in individual processes. It regards inter-processreferences as roots for garbage collection, in addition to the local roots. It is re-sponsible for detecting and deallocating local garbage. Further, depending on theexact scheme employed, the local garbage collectors may be required to store extrainformation and do extra work to assist the distributed garbage collection.Distributed garbage collection is a protocol to exchange information between localgarbage collectors. It is responsible for detecting distributed garbage and makeit be recognised as garbage by the local collectors, as well as protecting objectsreachable from a remote root against local collection.Garbage collection in such systems mainly addresses problems of inter-process com-munication, global synchronisation, scalability and fault-tolerance, while achieving safetyand completeness. These systems are the main target of this thesis.1.2.3 Object-Oriented Database Management SystemsObject-Oriented Database Management Systems (OODBMS) provide persistent storageof objects with complex inter-relationships (Ozsu et al. 1994). They support atomictransactions (Tanenbaum 1992), a mechanism that allows client applications to groupa set of reads and writes to objects as an atomic unit.In a client-server system, objects reside in a stable heap on secondary storage. Ap-plication clients navigate by starting at some persistent root object and may access theobjects in the heap through a memory cache. Persistence is determined by reachabilityfrom the persistent root. A client fetches objects from the server, and keeps them ina local cache. It works upon these objects by copying data between objects, removingdata from objects and creating new objects, in its private space. In other words, objectsare gathered from their servers and the transaction works upon them at the client.Servers keep a log where read, new and modi�ed objects are written. The log ismaintained in secondary storage or in main memory, but replicated, in order to allowrecovery after a crash. When the transaction commits, modi�cations are installed intothe stable heap.The address space of such systems is maintained in the stable heap, usually calleda persistent object store. Garbage collection in such systems is usually implemented by

CHAPTER 1. INTRODUCTION 11a server-based garbage collector. This is because object-oriented database technologytakes the view that data resides mostly on secondary storage, with main memory beingused as a temporary scratch bu�er.Garbage collection in such systems supports persistence by reachability. The rôleof garbage collection is to reclaim storage allocated to objects that are useless becausethey are not reachable from the persistent root or any application variables. The rootsfor the local collection at the persistent store include its persistent root, applicationroots and references from other persistent stores, if they exist. To allow concurrency,the roots also include the modi�ed versions and new objects in the log that are yet tobe installed.Garbage collection in such systems mainly addresses problems of concurrency, re-covery and disk tra�c. It borrows some ideas from garbage collection on RPC-basedsystems. We discuss an adaptation of the solution presented in this thesis for suchsystems.1.2.4 Distributed Shared MemoryThe concept of distributed shared memory (DSM) provides a shared memory abstractionfor a physically distributed memory architecture. The simple abstraction provided tothe application programmer by the DSM model has made it the focus of recent studyand implementation e�orts (Nitzberg and Lo 1991).DSM systems maintain the illusion of a distributed shared memory by synchronis-ing data access and moving objects between processes when required, transparently toapplications. The address space is distributed amongst the processes. Processes eitherhave no, read or write access to data. Conceptually, data can be replicated on multi-ple processes to increase data locality, reducing access times. Each process can accessany memory location in the shared address space at any time and read or write valuesaltered by any other process. Objects' replicas are kept consistent by a consistencyprotocol (Tanenbaum 1992).This model can be extended to distributed applications with persistent objects (Fer-reira 1996), providing the illusion of a shared address space across the network, includingsecondary storage. This model o�ers transparent distribution and persistence. Applica-tions have uniform access to any object in the system independently of its location. The

CHAPTER 1. INTRODUCTION 12model hides both the distinction between local and remote data, and the distinction be-tween short-term and long-term storage. Applications navigate through the shared storeby following pointers in virtual memory. The system moves the necessary data betweenmain and secondary storage or between the main memory of remote sites, according toapplication needs.Garbage collection in such systems also supports persistence by reachability. Bytraversing the objects graph starting from persistent roots, the collector is able to dis-tinguish live objects from garbage objects which can then be safely collected.The most interesting problem for garbage collection is consistence interference.Garbage collection algorithms must not compete with applications for holding con-sistent object replicas. Such competition would interfere with application's consistencyneeds. For example, if the collector on some process requires access to a consistent ob-ject, that would prevent an application from writing into another replica of that sameobject at the same time (Ferreira 1996).We �nd in the garbage collection literature both server-based and client-basedgarbage collectors for persistent object stores. The former are used by object-orienteddatabase technology (section 1.2.3). The latter are used by distributed shared memorytechnology extended with persistent objects where applications need high performancedata manipulation in main memory.Garbage collection in such systems mainly addresses problems of scalability, e�-ciency, disk tra�c and consistence interference. It also borrows some ideas from garbagecollection on RPC-based systems. We believe that these systems also may bene�t fromthe ideas presented in this thesis.1.3 RPC-based System ModelThe main goal of this description of the RPC-based model is to establish the environmentin which the cyclic distributed garbage collection algorithm executes (later, in chapter8 we will describe the implementation of this model in the Network Objects system).Our cyclic distributed garbage collector is presented for a classical distributed sys-tem, that is, RPC communication, no shared memory, partial failures, and unreliableand costly messages.

CHAPTER 1. INTRODUCTION 13Process ModelEach process has an independent object space. It may contain any number of threads.It performs local computations independently of other processes in the system.Processes may fail. Processes are fail-stop, that is, they will either deliver the correctresult or no result at all. Processes recover from crashes eventually, but objects are lostin crashes.Network ModelCommunication between di�erent processes occurs via message passing. Communica-tions channels are potentially unreliable. Consequently, messages may be lost, dupli-cated or arrive out of order.Processes may be disconnected temporarily because of a network failure. Processcrashes cannot be di�erentiated from long term communication failures.Memory ModelWe assume a large scale object space distributed amongst a set of processes in a dis-tributed system. Each address space supports a large number of objects. An object maycontain any number of references to other objects. The implementation of a reference isnot considered for now (in section 8 we will describe the implementation in the NetworkObjects system).We distinguish between a local reference (to an object known to be in the sameprocess) and a remote one (to an object thought to be in another process).Mutator ModelMutators modify the pointer graph: they create objects, and assign and delete refer-ences. Reference assignments modify objects' reachability. Any distributed garbagecollection algorithm must detect the objects which are not remote referenced from anyother processor. For this, every remote pointer operation must be considered:1. Creation of an o-referenceA process P where an object o resides, the owner, transmittes an o-reference toanother process Q. Process Q has now a remote reference to o.

CHAPTER 1. INTRODUCTION 142. Transmission of an o-referenceA process Q, which already has an o-reference to an object on another processP , transmittes the o-reference to a third process R. This operation di�ers fromcreation because the owner of the object (P) is not involved. So, it does notnecessarily know that a new o-reference was created. Process R has now a remotereference to o.3. Deletion of an o-referenceA process q, holding an o-reference to an object located on a remote process P ,discards it.1.4 Distributed Garbage Collection GoalsIn this section we describe the issues in designing a garbage collector for large persistentand=or distributed address spaces. We have identi�ed e�ciency, concurrency, fault-tolerance and scalability as the main issues, apart from safety and completeness, forlarge address spaces. Persistence introduces other issues like low I=O tra�c, recoveryand clustering, but they are not considered in this thesis.SafetyOnly garbage should be reclaimed.CompletenessAll objects that are garbage at the start of a garbage collection cycle should be reclaimedeventually. In particular, it should be possible to reclaim distributed cycles of garbage.ConcurrencyDistributed garbage collection should not require the suspension of mutator or localcollector processes. Concurrency allows the collector to work in small mutator pausesmaking it possible for several processes to change the connectivity of the graph simul-taneously in an autonomous way. However, inconsistencies in the object graph may beintroduced. This leads to the need for some form of synchronisation between mutator

CHAPTER 1. INTRODUCTION 15and collector actions in order to avoid live objects being missed by the collector (safety),and in order to allow progress of the collector (liveness).In a distributed environment, this problem is more serious given the asynchrony ofdistributed systems. Consider for instance the following example. Process A holds thelast reference to object x, sends a copy of it to process B, then deletes this reference.Suppose B collects before receiving the reference to x, and A collects after havingremoved it. Then it would appear that x is unreachable although a reference to it is intransit.Concurrency may interfere with garbage collection algorithm termination: consecu-tive changes of the object graph may delay termination of the collector in a large addressspace system. This is true for algorithms that need to visit every object in the system.Another issue concerning concurrency is the possible existence of multiple collectors.In this situation, global synchronisation between the di�erent collectors may be required.Fault-toleranceIn a distributed system partial failures occur. Partial failures include crashes of indi-vidual nodes and failures in message delivery. Crashes are fail-stop, therefore the onlyconsequence of a crash is temporary disconnection, loss of volatile memory, and haltingof computation. Messages can be delayed, lost, duplicated, and delivered out of order,or there might be a network failure, in which a group of nodes becomes virtually dis-connected from the rest. The memory management system should be robust, i.e. worke�ciently and be safe, in spite of message delay, loss or duplication, or process failure.It should also prevent the dangling references that are caused by failures.Failures in message delivery can be dealt with by using a generic reliable messageprotocol, but this is a costly solution that often requires multiple round trips per reliablemessage. The goal then is to design a garbage collector where messages are idempotent(so that duplicated messages are harmless), and non-essential (so that the loss of amessage does not violate correctness, and is expected to be taken care of by latermessages or on demand).A robust garbage collection scheme must cope with unavailable nodes of the system:� Wherever possible, garbage should be reclaimed despite the unavailability of partsof the system, without interaction with the crashed nodes.

CHAPTER 1. INTRODUCTION 16� The garbage collection algorithm must adapt its behaviour to the situation, ex-hibiting graceful degradation of service, in order to guarantee safety and liveness:processes need to disregard references from processes that have failed, since theywould otherwise be unable to collect garbage objects that were `referenced' bysuch processes; if a process has not communicated for a long time and does notrespond to repeated query messages, other processes assume that it has failed.Failure detection based solely on time-outs is inconsistent because (for instance) atransient overload could cause some processor be considered terminated, whereasit continues to execute. This introduces the problem of dangling references thatmay interfere with safety: a process may hold references to deallocated objects,and these references must be prevented from corrupting objects in the referencedprocesses. Consistent failure detection is however harder to achieve (Ricciardi andBirman 1993).Failures and their recovery must be handled e�ciently and should scale. Additionaloverheads due to fault-tolerance must be limited and mainly incurred when failures arepresent.Persistent servers are however expected to recover from failures (see Recovery below).ScalabilityDistributed garbage collection algorithms should scale to networks of many processorswithout incurring non-linear cost overheads due to computation and synchronisation(Ferreira and Shapiro 1996). This requires that the chosen mechanisms have mini-mum dependence on limited resources that do not grow as the system gets bigger. Inparticular, the collection of the whole graph in a single phase is clearly not scalable.E�ciencyThere are two main issues concerning e�ciency:Promptness Collector e�ciency: garbage should be reclaimed promptly. Having thecollector run concurrently with the user application may not resolve the e�ciencyproblem: it disperses a long garbage collection pause into shorter ones, but it doesnot reduce the total work to be done before garbage can be collected. If a garbage

CHAPTER 1. INTRODUCTION 17collection takes too long, the garbage collection may e�ectively fail as the systemmay run out of storage. If too much garbage accumulates, and must be paged todisk, the system may slow down even more.Correctness of concurrent solutions often requires costly synchronisation methods.Moreover, global synchronisation between multiple garbage collectors may also berequired in distributed environments, contributing to the system overhead. Inparticular, a consistent view of the object graph is very expensive (Babaoglu andMarzullo 1993)The garbage collector may need to manage speci�c data to guarantee safety orfault-tolerance aspects. This may be specially signi�cant for e�ciency when someextra data, like log records, needs to be stored on stable storage.User Application Overhead performance overhead due to garbage collection mustbe minimised. Two factors may slow down applications: the extra load expe-rienced by the system and the potential synchronisation between mutators andgarbage collectors.Low I=O tra�cAs we have already pointed out persistent object stores may consist of a huge objectgraph. Algorithms which frequently analyse most or all of the objects in the system arenot feasible. Disk I=O is costly: only a small part of the heap may be cached in mainmemory. Garbage collection has to minimise disk tra�c.RecoveryIn persistent object stores the e�ects of committed transactions survive crashes. In thiscase the safety requirement that an object remain in existence as long as it is accessiblemust be satis�ed even if the only node that holds a reference to that object is down orunavailable. This requirement is needed since the heap is stable and once the crashednode recovers it should contain valid references in order to avoid objects being corrupted.Some of the information that supports garbage collection must survive crashes too,while the rest can be recomputed on recovery. Updates of the garbage collection in-formation may therefore incur stable-storage writes in addition to those required for

CHAPTER 1. INTRODUCTION 18durability of transactions (Tanenbaum 1992). The challenge is to reduce the amount ofgarbage collection information that must be kept stable, without incurring a long waiton recovery to re-establish the remaining information.Also, the possibility of recovering implies that it no longer means that when anobjects becomes garbage, it remains garbage.ClusteringClustering | the action of putting together related objects | is important. The per-formance of persistent object stores is often dominated by disk access. Clustering datathat is likely to be accessed together is a major consideration in such systems. Garbagecollection must take clustering (rather than merely compaction) into account (Franklinet al. 1989).1.5 Cycles of GarbageCycles on uniprocessor systems are common, both at the application level and at thesystem level (Jones 1996). Cycles are typically created by programmers when they useback-pointers or they aim to express domain-speci�c problems in a natural manner.When using a system that does not provide cyclic distributed collection, program-mers must either modify their style, or break cycles explicitly by deleting pointers.However, it is not always apparent which pointer should be cut. Manual intervention isboth burdensome and unsafe. We know of no good large-scale methodology of avoidingcycles.We believe that cycles also occur in large shared address spaces (Godard 1994).In distributed systems for example, in client-server systems, objects that communicatewith each other remotely are likely to hold references to each other, and often thiscommunication is bidirectional (Wilson 1996). Many object-based systems are longrunning (persistent stores), so oating garbage is particularly undesirable as even smallamounts of uncollected garbage may accumulate over time to cause signi�cant memoryloss (Maheshwari and Liskov 1995). Since cyclic distributed garbage collection is notwidely available, there are few applications that make full use of distributed garbagecollection. As in uniprocessor systems, programmers tend to either modify their style,

CHAPTER 1. INTRODUCTION 19or break cycles explicitly by deleting pointers. As we have already shown, this is evenmore complex in distributed systemsIn distributed systems cycles may also be formed as a consequence of replication(Louboutin and Cahill 1995). Hypertext documents often form large, complex cycles(Maheshwari and Liskov 1997a). Recently, programming models for mobile computingapplications seem to be a potential source for distributed cycles, as they allow arbitrarytransmission and copies of data graphs that preserve sharing and circularities (Bharatand Cardelli 1995).Some solutions for distributed garbage collection trade o� completeness, that is,the ability to collect all garbage in a system, including distributed cycles of garbage,for weaker inter-process synchronisation constraints and a higher degree of concurrencyunder the assumption that distributed cycles are rare (Bevan 1987, Watson and Watson1987, Shapiro et al. 1992, Ferreira 1996, Birrel et al. 1993). Such acyclic techniquesonly work if cycles are rare enough to be neglected. This approach may be acceptableif servers are short-lived, if su�cient memory is available to support the storage leaksand any additional paging cost due to memory fragmentation is bearable.We do not make any assumption about topology of the overall distributed objectgraph, and more speci�cally about the rarity of distributed cycles. That is, we do notignore them. However, we assume that local and acyclic distributed garbage are formedmore frequently, hence they should be given the higher priority for reclamation.1.6 Outline of the ThesisThe contribution of this thesis lies in the design of a distributed garbage collectionalgorithm that accounts for the collection of distributed garbage cycles.Our goal is an expedient and complete, scalable, e�cient and fault-tolerant cyclicdistributed garbage collector for large address spaces (Rodrigues and Jones 1996, Ro-drigues and Jones 1998).As we argue, compromises inevitably must be made between these goals. For exam-ple, scalability, fault-tolerance and e�ciency may only be achievable at the expense ofcompleteness, and concurrency introduces synchronisation overheads.

CHAPTER 1. INTRODUCTION 20We propose a garbage collection scheme that collects cycles on RPC-based sys-tems without compromising the e�cient reclamation of local and distributed garbage,it requires little synchronisation with applications and avoids global synchronisation.Additionally, it provides a technique that can be adapted to some solutions for garbagecollection in persistent stores that are usually found in Object Oriented Databases Man-agement systems and Distributed Shared Memory systems.In chapter 2 we describe uniprocessor garbage collection. This description will helpthe reader to understand why the simple extension of these techniques to distributedenvironments does not match our goals.In chapter 3 we survey the main techniques for partitioned collection. We will focuson techniques for RPC-based distributed systems as our work targets these systems. Wewill also present extensions for Object Oriented Databases Management systems andDistributed Shared Memory systems.In chapter 4 we introduce our basic cyclic scheme. We do not account for con-currency, scalability, completeness or fault-tolerance. In chapter 5 and chapter 6, wedescribe the advanced features of our algorithm such as scalability, completeness andconcurrency. In chapter 7 we present a proof of correctness of several aspects of ouralgorithm.In chapter 8 we describe the implementation of our system over the Network Objectssystem.Finally, in chapter 9 we conclude and discuss how we have met our primary goals,and present some ideas for future work.

Chapter 2
Classical UniprocessorAlgorithms
In this chapter, we briey overview classical uniprocessor garbage collection techniquessince most distributed garbage collectors are built upon them. For a more completedescription of such techniques, readers are recommended to refer to (Wilson 1992, Jones1996).In section 2.1 we de�ne the basic principles of garbage collection and introducesome terminology. Then we describe the three classical techniques for garbage collection:reference counting (section 2.2), mark-sweep and copying collection (section 2.3). Thesetechniques are �rst described in the stop-the-world mode, that is, they suspend all usercomputation during garbage collection. This latency is sometimes unbearable for real-time or interactive applications which have strong responsiveness requirements.We discuss, in section 2.4, advanced uniprocessor garbage collection techniques thatdecrease user program pause times: incremental and generational garbage collection.Section 2.4.1 introduces incremental garbage collection techniques, which allow the costof garbage collection to be spread incrementally throughout the computation. Section2.4.2 overviews generational garbage collection, a paradigm that has proved e�ective atreducing garbage collection pause times by segregating objects into regions accordingto their age, and concentrating garbage collection e�ort in a single collection cycle onjust one region of the heap.Finally, section 2.4.3 addresses garbage collection issues speci�c to environments in21

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 22
x y

z

uv

Heap

global
variables

roots

stack

registersFigure 1: Heap and Roots.which there is no support from the language compiler.2.1 Principles2.1.1 Live and Garbage ObjectsMost high-level programming languages are able to allocate storage in a dedicated areacalled the heap. An individually allocated piece of data in the heap will be called anobject. An application dynamically creates, in any order a number, of objects in theheap. An object embodies a mixture of regular data and internal pointers or referencesto other objects. The whole set of objects allocated in the heap forms a directed(potentially cyclic) graph whose nodes are the objects and whose arcs are referencesto heap objects. Each object in the graph may be referenced by a number of parentsand may refer to a number of descendantsThe values that an application can directly manipulate are those held in processorregisters, the application's stack and global variables (static area). Such locations thathold references to objects in the heap form the set of roots of the computation. Otherobjects are reachable indirectly by following chains of internal pointers. The roots andheap are shown in �gure 1.By de�nition an object reachable from a root is live, that is, an object in the heapis live if its address is held in a root, or there is a pointer to it from another live heapobject. More formally, ! is de�ned as the `refers-to' relation (Jones 1996): for any

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 23object or root M and any heap object N , M ! N if and only if M holds a referenceto N . The set of live objects in the heap is the transitive closure of the set of the rootsunder this relation, i.e. the least set1 live where:live = fN 2 Objects j (9r 2 Roots:r ! N) _ (9M 2 live:M ! N)gWhen an object is no longer referenced from other reachable objects it becomesunreachable and cannot become reachable again2, at least for well-behaved programs. Itis called garbage. Since a garbage object remains garbage forever, it should be reclaimedin order to reuse the corresponding memory for further allocation.Consider �gure 1. Objects x, z and v are live since they are directly reachable from aroot. Object y is also live since it is referenced by the live object x. Object u is garbagesince it is neither reachable from any root and nor referenced from a live object. Butnote that if this were an actor system u might be live.2.1.2 Garbage CollectionManual reclamation of dynamically managed storage is often unsatisfactory. The al-ternative is to still allow the programmer to request dynamically allocated storage tobe reserved but no longer ask him/her to determine when that memory is no longerrequired: it is recycled automatically. Garbage collection is the automatic reclamationof dynamically heap-allocated storage after its last use by a program.The garbage collection literature distinguishes the mutator and collector rôles (Di-jkstra, Lamport, Martin, Scholten and Ste�ens 1978). The mutator encompasses allapplication activities. Its sole rôle is to change or mutate the connectivity of the graphof active data structures in the heap. The collector detects and reclaims garbage objects.Conceptually, garbage collection operates in two distinct phases. Garbage detectiontries to distinguish the set of garbage objects from the set of live objects, whereas garbagereclamation disposes of memory occupied by objects previously detected as garbage. Inpractice, garbage detection and garbage reclamation can be interleaved temporally andthe garbage reclamation technique is usually strongly coupled to the garbage detection1Mathematical note: such a least set exists by Tarski's theorem, which says that any equation of theform S = fS, where f is a monotonic operation on sets, has a least �xed point.2This is not true on persistent stores in the presence of recovery.

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 24technique: an object's liveness may be determined either directly or indirectly. Directmethods require that a record be associated with each object in the heap, recording allreferences to that object from other heap objects or roots. The most common directmethod is reference counting. It stores a count of the number of references to an object,its reference count, in the object itself. In its simple form, these records must be keptup to date as the mutator alters the connectivity of the graph in the heap. When therecord reaches zero, the object is immediately made available for recycling.Indirect or tracing collectors typically determine the set of live objects whenever arequest by the mutator for more memory fails. They actually detect garbage objectsby infering that they are not members of the set of live objects. The collector startsfrom the roots and, by following pointers, visits all reachable objects. These objects areconsidered to be live and all memory occupied by other objects is made available forrecycling in a second phase.It is di�cult to compare di�erent garbage collection algorithms either in principleor in practice. While formulae for algorithmic complexity can be determined, their con-stants and implementation details often have substantial impact on actual performance(Jones 1996). We do not deeply address this problem in this thesis. We aim at makinga simple description of the three classical methods of storage reclamation: referencecounting, mark-and-sweep and copying. As the techniques and ideas behind these al-gorithms form the basis of many more complex schemes, including distributed garbagecollection schemes, it is important to understand how they work, and their strengthsand weaknesses.2.1.3 Safety and Liveness propertiesThere are two goals that we have to take into account when choosing a garbage col-lection algorithm: it must reclaim every garbage object as soon as possible withoutcorrupting the integrity of references. The liveness property guarantees that all garbageis eventually reclaimed, and the safety property ensures that only garbage objects arereclaimed.Garbage collection should be comprehensive: garbage should not be allowed to oatunreclaimed in the heap. However collectors vary in their approach to comprehensive-ness collection with di�erent e�ciency tradeo�s: most collectors based on reference

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 25counting cannot reclaim garbage cycles. A system that uses a tracing garbage collectordelays garbage detection to the next collection: garbage collection introduces a latencybetween the moment an object becomes garbage and the moment it is eventually re-claimed. Generational collectors (as explained in section 2.4.2) and other partitionedcollectors (as explained in chapter 3) concentrate their e�orts in a single collection cycleon just one partition of the heap, rather than collecting the entire heap.2.2 Reference CountingAlgorithms based on reference counting have been adopted for many languages and ap-plications (for example, early versions of the Smalltalk object-oriented language (Gold-berg and Robson 1983) and Modula-2+ (DeTreville 1990)). It is also the method usedby the operating system Unix to determine whether a �le may be deleted from the�le-store.The basic idea of the reference counting algorithm is to count the number of refer-ences to each object from other live objects (Collins 1960). Each object has an additional�eld, the reference count, denoting the number of references to it. When a new objectis created, a single reference points to it, and its reference count is set to one. Eachtime a reference is duplicated the object's reference count is increased by one. When areference to an object is deleted, its counter is decreased by one. Therefore, the refer-ence counting algorithm preserves the invariant that the value of an object's referencecount is always equal to the number of references to it.When a reference count drops to zero, the reference counting invariant implies thatthere are no remaining references to the corresponding object. This means that theobject is no longer required by the mutator and it can be safely reclaimed. Forinstance, in �gure 2-(i) object u's reference counter is equal to zero. Therefore u isunreachable and u can be reclaimed. Upon reclamation of object u, v's reference counteris decremented by one, from two to one.One advantage of this algorithm is that it is simple to understand and straightfor-ward to implement. It is also a naturally incremental technique. Garbage detection

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 26
roots

2
x

Heap

y

z

v u
2 0

1

1

Heap

roots
1 1

1

1

x y

z

v

(ii) After pointer deletion(i) Before pointer deletion

Reference count
Object nameFigure 2: Reference Counting Algorithm.and reclamation are performed concurrently with the mutator, distributing the mem-ory management overheads throughout the computation. This contrasts with (non-incremental) tracing schemes in which the mutator is suspended while the algorithmruns. If the mutator has strong responsiveness requirements, short pauses may beimportant. Nevertheless, there are circumstances, for the simple algorithm describedabove, in which counter updating can suspend the mutator for a long while: the cost ofdeleting the last pointer to a sub-graph depends on its size. If any of the descendant'scounters happen to drop to zero then their own descendants must also be recursivelydecremented. This is likely to occur with long data structures such as linked lists.Therefore, the deletion of a single pointer may result in a large amount of reclamationactivity. Weizenbaum proposed a method to ameliorate the recursive freeing: Weizen-baum's lazy freeing (Weizenbaum 1963). Pointers in any reclaimed object with referencecounter equal to zero are only deleted when that object's memory is again allocated.This lazy method is as e�cient as the original method | the same instructions areused, but have moved from deletion to allocation of an object | but the algorithm isnot so vulnerable to delays caused by cascades of object releases.Another advantage of reference counting is its good locality of reference. It o�ers agood temporal locality of reference because an object is immediately reclaimed as soonit becomes garbage, that is, as soon as its reference count drops to zero. It also o�ers

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 27a good spatial locality of reference because a garbage objects is detected and reclaimed| as soon its reference count drops to zero | without access to objects in other pagesof the heap.However, the reference counting algorithm su�ers from a number of disadvantages.First is the high processing cost paid to update reference counts. The cost is propor-tional to the amount of work done by the mutator because reference counts must beupdated whenever references are assigned or deleted. This extra code imposes a severeoverhead to the mutator. It also restricts the portability of the garbage collector sincegarbage collector e�ciency is usually achieved by compiler support of the extra code.This overhead may be reduced by taking every safe opportunity to not adjust refer-ence counts. This problem is addressed by variants of this algorithm such as DeferredReference Counting (Deutsch and Bobrow 1976). Furthermore, it may exhibit poorlocality of reference in the sense that an old target object must have is reference countdecremented. Also, it may impose extra work on activities as simple as traversing alist, because it may require the list cells to be written on disk (in system with virtualmemory), to update their reference counts, even if their value were not altered.Another problem relates to the extra space in each object to store the referencecount and reference count overow. In the worst case this �eld should be large enoughto hold the total number of pointers contained in the heap. Since there are usuallyonly a small number of references between objects, a small number of bits could beused. Some authors have even suggested restricting the reference count �eld to a singlebit. One-bit reference counting concentrates reclamation e�orts on the unshared objectsthat typically make up the majority of the heap (Friedman and Wise 1977, Wise 1993).However, some \popular" objects may be referenced by many di�erent objects. Thiscan be handled safely by leaving the counter `stuck' at its maximum value: it cannot bereduced since the true count of pointers to the object may be greater than its referencecount. Hence, overows of reference counts results in increasing conservatism.Reference counting algorithms work badly with concurrency as each reference countmust be protected by a lock. This is a substantial disadvantage.Finally, the major problem of simple reference counting algorithms is their inabilityto reclaim cycles of unreachable objects. This algorithm is not complete. This problem

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 28appears because each object in a garbage cycle is referenced (at least) from its prede-cessor in the cycle. Therefore, each object in a cycle has a count of at least one evenif there are no more references to any of these objects outside the cycle. Figure 2-(ii)illustrates a garbage cycle composed of objects x, y and z after deletion of two rootpointers.Consequently, reference counting is e�ective only if the mutator cannot create cyclicdata structures. As we have shown in section 1, albeit in the context of distributedgarbage collection, garbage cycle reclamation is an important requirement for many sys-tems. Several authors have suggested combining reference counting with other garbagecollection algorithms that handle cyclic data structures (Weizenbaum 1969). These so-lutions consist of using reference counting until the heap has exhausted. At this pointa global garbage collector would be invoked in order to reclaim cyclic data structuresand restore reference counts in the case that small reference counts are used.However, some e�ort has been invested on solving the problem of reclaiming garbagecycles without using global garbage collection. Some of this work is speci�c to functionalprogramming languages (Friedman and Wise 1979) or it relies on information from theprogrammer (Bobrow 1980). This work suggested that all objects should be assigned togroups by the programmer and that these groups rather than individual objects shouldbe referenced count. In this way, intra- but not inter-group cycles could be reclaimed.David Brownbridge and others investigated the possibility of distinguishing cycle-closingpointers from other pointers (Brownbridge 1985). However, these proposals are eitherincorrect or ine�cient in the general case.Other proposals are generally applicable like the work by (Christopher 1984) and(Lins 1990). These algorithms are hybrid collectors. Most cells are freed by referencecounting but garbage cycles are reclaimed by a mark-and-sweep collector. The ideabehind these algorithms is to determine dynamically which data structures are onlyreferenced by those data structures' internal pointers. Lins' algorithm picks an objectthat may be member of a cycle and performs a local mark-and-sweep on the object'stransitive closure. In a �rst phase it removes reference counts that are due to pointersinternal to the sub-graph. Any non-zero reference counts in the traced subgraph canonly be due to external references and are considered live.

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 29The technique developed by Lins has showed to be promising in the context of dis-tributed garbage collection because it exhibits some locality: in the best case, only cyclicgarbage is traced. In chapter 3 we describe the adaptation of some of the techniquescited above and other techniques for distributed garbage collection.2.3 TracingTracing techniques use the reachability property to distinguish live from garbage ob-jects. There are two basic types of tracing algorithms: Mark-and-Sweep and Copy.Tracing algorithms occasionally traverse the reference graph, from the roots, to deter-mine which objects are reachable. An object is live if it can be reached from a root byfollowing pointers. Each object encountered during the traversal is marked as live andthe remaining unmarked objects are considered as garbage.Section 2.3.1 describes the Mark-and-sweep collector, a tracing technique whichhappens in two distinct phases.Section 2.3.2 introduces the Copying collector, a di�erent tracing technique whichmerges the garbage detection and garbage reclamation phases.2.3.1 The mark-and-sweep collectorUnder this scheme, objects are not reclaimed immediately they become garbage, butremain unreachable and undetected until all available storage is exhausted. A mark-and-sweep algorithm has two phases (McCarthy 1960). The �rst phase, known as marking,identi�es all reachable objects. The second phase, the sweep, reclaims all unmarkedobjects.The marking phase traverses all objects reachable from roots and marks them bysetting, for example, a bit in each object visited. This phase ends when there are nomore reachable but unmarked objects. Termination is enforced by not traversing fromobjects that have already been marked.During the sweep phase, the memory is swept to �nd all unmarked objects, andtypically to insert their memory in the free-list. Marked objects are unmarked in orderto make them ready for the next collection.Mark-and-sweep collectors have some advantages over reference counting. The most

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 30
roots

x y

z

v u

1

roots

1
v

m

m m

(ii) sweep phase(i) mark phase

w t w t

Heap Heap

free-list free-list

x y

z

u

Figure 3: Mark-and-sweep Algorithm.important of these is that no special action needs to be taken to reclaim garbage cycles(this also is true for copying collectors). They also have much lower overheads on theuser program than reference counting: the overall elapsed time of a tracing system willbe better.The interface between the user program and a non-incremental tracing garbagecollector is also much simpler than that of reference counting system. Under the later,care must be taken to ensure that reference count invariants are maintained. Thesimplicity of interface of tracing collectors makes them easier to maintain.On the other hand, the simple version of the mark-and-sweep collector is a stop-the-world collector: computation is halted while the garbage collector runs. The pausescaused by this algorithm may be substantial. We introduce some methods of reducingpause times in section 2.4.1 and 2.4.2, when we discuss generational and incrementaltechniques respectively.The simple mark-and-sweep algorithm presented above also tends to fragment mem-ory, as does reference counting, scattering objects across the heap. In a virtual memorysystem such fragmentation may lead to loss of locality between associated objects of adata structure and result in excessive swapping of pages to and from secondary storage.In a real memory system some bene�ts of caching can be lost. Fragmentation makesallocation more di�cult as suitable spaces must be found in the heap to store new

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 31objects.This problem can be ameliorated using a two-level allocator such as that used bythe Boehm-Weiser collector (Boehm and Weiser 1988). An additional compaction phasecan be also performed at the expense of a signi�cant overhead to the garbage collector.We refer the reader to (Jones 1996) for a description of several styles of compaction.The complexity of a mark-and-sweep collection is usually measured as being propor-tional to the size of the entire heap rather than to the volume of surviving data becausethe sweep phase must examine the whole heap. Analysis must also consider the algo-rithm's virtual memory and cache behaviour. More sophisticated implementations ofthe mark-and-sweep algorithm reduce the cost of sweep phase and improve the virtualmemory behaviour of both phases.Some implementations store mark-bits in a separate bitmap table rather than placedthem in the objects that they mark, for instance (Boehm and Weiser 1988). Mark bitshave several advantages for the virtual memory system. If the bitmap is comparativelysmall, it can be held in RAM so that reading or writing mark-bits will not incur pagefaults. Furthermore, no heap object need be written to during the marking phase. Pagefaults will only be incurred by the garbage collector when pointers need to be traced.Also, in the sweep phase live objects do not need to be accessed at all, although garbageobjects may have to be linked into a free-list.The e�ciency of non-incremental garbage collection may be improved if the sweepphase is done in parallel with mutator execution. This is possible because the mutatorcannot interfere with the collector's sweep phase since the mark-bits of live objects areinvisible to the user program. We refer the reader to (Jones 1996) for a description oftechniques of lazy sweep.A di�erent problem with mark-and-sweep is that it requires a strong synchronisationbetween phases. That is, generally, the mark and sweep phases cannot be interleavedsince all reachable objects must be marked before starting the sweep phase (this syn-chronisation is relaxed in (Queinnec, Beaudoing and Queille 1989)). This contrastswith reference counting where, as we have already said, the two phases are interleavedand an object is immediately reclaimed as soon as its reference count drops to zero |temporal locality of reference. This feature makes reference counting more attractivefor distributed systems since its communications are local to the objects involved in an

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 32
z

t u

v

Roots

x

y

yx

scan free

x y t z

scan free

x y t z

scan free

x y z v ut

scan
free

from-space to-spaceFigure 4: Cheney's Algorithm.update.2.3.2 The copying collectorThe second class of tracing algorithm is that of copying collectors (Minsky 1963, Cheney1970). Copying collectors merge garbage detection with garbage reclamation in a singlephase. This kind of algorithm divides the heap into two disjoint semi-spaces calledfrom-space and to-space. During normal mutator execution objects are allocated infrom-space. When there is not su�cient space to meet allocation requests, the algorithmcopies reachable objects to to-space. Unreachable objects are left in from-space. Oncethe copying is completed, the roles of the two spaces are reversed. This transition iscalled the ip.Cheney's algorithm (Cheney 1970) is a well known technique and it is usually pre-sented as the simplest form of copying reachable objects from from-space to to-space.Its major advantage is that it is iterative, hence elegantly avoiding recursive call costs,stack space overhead and stack overow.The copying collection is done iteratively using two pointers: a scan pointer anda free pointer (see �gure 4). Objects immediately reachable from the roots are copiedto to-space. Free points now to the �rst free address in to-space, and scan points tothe �rst object in to-space. The object pointed by scan is scanned for references intofrom-space. Each object reached is copied to to-space. In addition, the references in the

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 33scanned object are updated to refer to the new copy, and a forwarding pointer (pointingto to-space) is left in the object's old location. The free pointer is then advanced andthe scan continues to the next object. Eventually the scan pointer reaches the freepointer. This means that all the objects that have been copied have also been scannedfor descendents and that the algorithm is �nished.The complexity of copying is proportional to the size of the active data structurerather than the size of the heap. This makes copying particularly attractive if thesurviving data is a small proportion of the total heap. This is typical of many functionaland object-oriented programming languages. However, this measure of complexity is toosimplistic. The constants in the complexity formula are also important (Jones 1996).For instance, the cost of copying an object is likely to be more expensive than simplytesting and setting a mark-bit, particularly if the objects is large. Although mark-and-sweep must sweep the entire heap, in practice its real cost is dominated by the markphase. Furthermore, lazy sweep techniques and bitmaps (see section 2.3.1) can reducesigni�cantly the cost of the sweep phase.Copying collectors have the nice e�ect of compacting the heap since objects arecopied contiguously in to-space. This reduces heap fragmentation | by compacting liveobjects into the bottom of to-space | and improves allocation costs | new memoryis allocated simply by incrementing the free space pointer. Compacting the active partof the heap onto fewer pages should reduce the size of the program's working set, thatis the locality of reference of the user program. Consequently, it may perform betterthan mark-and-sweep with the virtual memory system, although reorganising data inthe heap may be undesirable in some environments. Unless care is taken with thisregrouping, the spatial locality of the resulting structures may be poor. We refer thereader to (Jones 1996) for a description of regrouping strategies.There is another issue of spatial locality, the locality characteristics of the garbagecollector itself. An immediate cost of copying garbage collection is the use of two semi-spaces: the address space required is doubled, compared to mark-and-sweep collectors.A copying garbage collector will touch every page in to-space and from-space in eachcollection cycle. Consequently it may su�er more page faults than mark-and-sweep fora �xed size of heap, as it uses twice as many pages.Although copying garbage collection has predominated in the past | its advantages

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 34of compaction, cheap allocation, low complexity and easier incorporation into incre-mental and generational systems gave it the advantage over mark-and-sweep garbagecollection | recent studies suggest that the choice between mark-and-sweep and copy-ing collectors may depend as much on the behaviour of the client program as on theinherent properties of the garbage collection algorithm.2.4 Advanced Techniques2.4.1 Incremental Garbage CollectionThe aim of incremental garbage collection is to avoid the pauses incurred by stop-the-world garbage collectors. In such collectors small units of garbage collection areinterleaved with small units of mutator execution. Each garbage collection pause timeis smaller than in the stop-the world garbage collection.The mutator and collector can also run concurrently. The usefulness of this modeis that collection adds no pauses on top of time-slicing. In the rest of this section, andwhen the di�erence is not relevant, we will use the term incremental to designate bothincremental and concurrent collectors. Several algorithms were originally designed formulti-processors but are easily adapted for serial machines.The simplest of incremental techniques is reference counting, which is naturallyincremental for all operations except the deletion of the last pointer to a sub-graph (seesection 2.2). However, it is expensive, it is closely coupled to the user program and itis unable to reclaim garbage cycles. These drawbacks discourage its use. It is thereforedesirable to make tracing techniques incremental.There are two potential conicts between the mutator operations and the collector.First, care must be taken to ensure that the collector makes su�cient progress to preventthe user program from running out of memory before the collection cycle is complete| mutator starvation. Several policies have been used to balance processing betweencollector and mutator in way that avoid such mutator starvation. For instance, Baker(Baker 1978) tunes the rate of collection to the rate of consumption of memory. Theidea is that a small amount of marking or copying can be done at each allocation.Others, for instance (Appel, Ellis and Li 1988) avoid the problem by triggering garbagecollection whenever the amount of free memory falls below a certain threshold, avoiding

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 35mutator starvation.Second, the main issue of incremental tracing is how to ensure the correct execu-tion of the collector when it competes, asynchronously, with the mutator for the samedata. This introduces a consistency problem: while the collector is tracing the graph ofreachable objects, the graph may change while the collector \isn't looking". This maylead the collector to failing to �nd (i) all garbage objects in a garbage collection cycleand (ii) all reachable objects and conclude wrongly that some live objects are garbage.Concerning situation (i), consider an object o reachable from the root. The markphase reaches the object and marks it live. Afterwards the mutator discards the pointerfrom the root to the object o. Since the object has been already marked live, it willnot be collected by the sweep phase. The reclamation of the object is only postponeduntil the next garbage collection. Such unreclaimed garbage objects are called oatinggarbage.Situation (ii) may occur when the mutator concurrently to the collector detaches areachable object o from a non-traversed part of the graph and attaches it to an alreadytraversed part of the graph. In this way, the mutator may hide object o from themarking process. At the end of the marking phase, object o is not marked as live andtherefore will be reclaimed, unsafely, by the sweep phase.To avoid situation (ii) some synchronisation is needed between mutator and collec-tor to indicate that the connectivity of the graph has changed. It is not necessary forthe mutator and the collector to share an identical view of the graph. The consistencyrequirement can be relaxed to allow the collector to work with a conservative approx-imation of the graph of live objects (Wilson 1992). If the mutator changes the graphof reachable objects, garbage objects may or may not be reclaimed at the end of thegarbage collection cycle depending on whether or not they have already been markedlive by the garbage collector. As consistency requirements are relaxed, the collector'sview of the graph becomes more conservative, and more oating garbage accumulates.Before going into more details concerning synchronisation, it is useful to see howincremental garbage collection can be described by the abstract tricolour marking algo-rithm (Dijkstra et al. 1978).Dijkstra's algorithm required the mutator to communicate with the collector bycolouring objects black, grey or white.

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 36Black indicates that an object and its immediate descendents have been reached bythe collector. The garbage collector has �nished with a black object and need notvisit it again. At the end of garbage collection all live objects are black.Grey indicates that an object has been reached by the collector, but its immediatedescendents may not have been, or its connectivity to the rest of the graph hasbeen altered by the mutator behind the collector's back. Once a grey object hasbeen scanned its descendents are coloured grey and it becomes black.White indicates that an object has not yet been visited by the garbage collector andmay be garbage at the end of the tracing phase.A garbage collection cycle terminates when all reachable objects are coloured black,and hence when there are no grey objects left. Any objects left white at this point aregarbage and can be reclaimed.Intuitively, the traversal proceeds in a wavefront of grey objects, which separatesthe white objects from the black objects that have been passed by the wave | that is,there are no pointers directly from black objects to white ones. The importance of thisinvariant is that the collector must be able to assume that it is \�nished with" blackobjects, and can continue to traverse grey objects (Wilson 1992). If the mutator createsa pointer from a black object to a white one, it must somehow notify the collectorthat its assumption has been violated. Therefore, the collector must be capable ofkeeping track of graph changes resulting from mutator activity, and re-trace parts ofthe graph adequately. This ensures that the collector is aware of every signi�cant changeconcerning the pointer graph.Figure 5 demonstrates this need for synchronisation. Suppose that object x hasbeen completely scanned (and therefore blackened); its descendents (y and z) have beenreached and greyed. Now, suppose that the mutator copies the pointer from y to u intox, copies the pointer from x to z into y and deletes the pointer from y to u. The onlypointer to u is now in object x, which has already been scanned by the collector. Thisviolates the invariant we have stated: black object x pointing to white object u. If thetracing continues without any synchronisation, y will be blackened, z will be reachedagain and u will never be reached at all, and hence will be unsafely reclaimed.We describe below the two basic approaches to synchronising the collector with

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 37
z

u

y

x x

y z

u

Roots Roots

(i) initial graph (ii) graph modified incrementaly
 by the mutatorFigure 5: Concurrent Mutator Activity.the mutator: read barrier and write-barrier. Di�erent approaches lead to di�erent in-cremental algorithms that may be judged through several parameters. The degree ofconservatism is an important parameter because oating garbage fragments the heap,increasing the e�ective residency of the program. The pauses incurred on mutator ac-tivity are a second parameter. Incremental collection should delay computation onlybriey at each step. Pause time depends on how much work is done by the synchro-nisation action | the barrier. Incremental collectors may also contain uninterruptiblesections: processing the root set and checking for termination of a garbage collectioncycle. If pauses are too great, the incremental nature of the algorithm is compromised.The time and space costs of the barrier also depend on its selectivity and frequency,and how it is implemented.Write-barrierWhenever the mutator attempts to write a pointer into a black object, the write-barriertrap or records the write so that the object can be visited or revisited by the collector.In order to falsely reclaim a live object, a white object must become invisible to thecollector but still be reachable by the mutator. For this to happen, both of the followingtwo conditions must hold at some point during the marking phase:

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 381. A pointer to the white object is written into a black object. If this condition doesnot hold, there will not be any black-white pointer during the marking phase. Inthis case, there must be a path to each reachable white object from a (black) rootthat passes through a grey object. The marking phase will eventually reach thewhite object from the grey one.2. The original reference to the white object is destroyed. If a pointer to a live whiteobjects is written into a black object during the marking phase and the originalreference to that white object is not lost, the white object will still be reached bythe marking phase through that original reference unless this pointer is destroyed.Write-barrier methods are classi�ed as either snapshot-at-the-beginning or incre-mental-update. When a pointer to a white object is written into a black object, snapshot-at-the-beginning collectors prevent the loss of the original reference to the white object(because it might have already been copied into black objects), while incremental-updatecollectors catch the change to the connectivity of the graph (Wilson 1992). Snapshot-at-the-begining algorithms are more conservative than incremental-update ones. Noobjects that become garbage in one garbage collection cycle can be reclaimed in thatcycle. Actually, they allow the tricolour invariant to be broken, temporarily, duringincremental tracing. Rather than preventing the creation of pointers from black objectsto white ones, they ensure that the original path to the object is not lost, because alloverwritten pointer values are saved and traversed.There are many incremental collectors that use a write-barrier. For example, (Steele1975, Dijkstra et al. 1978, Boehm, Demers and Shenker 1991) use incremental-updatewrite-barriers, and (Yuasa 1990) uses a snapshot-at-the-begining barrier.Read-barrierA read-barrier ensures that the mutator never sees a white object: whenever a mutatorattempts to access a white object, the object is immediately visited by the collectorand coloured grey or black; since the mutator cannot read pointers to white objects, itcannot write them into black objects.Software read barriers are generally considered to be too expensive. Read barriers

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 39may also be implemented with support from the operating system's virtual memory pro-tection mechanisms to trap access to protected pages. Appel-Ellis-Li's collector (Appelet al. 1988) uses this last approach. Zorn's measurements suggest that its performancemay be inferior to software methods, although di�erent architectures and operatingsystems vary considerably (Zorn 1990).The expense of read-barriers means that they are rarely used with non-moving col-lectors. They are instead used with copying garbage collectors to trap mutator accessesto to-space. The best well known collectors using a read-barrier are (Baker 1978, Appelet al. 1988, Nettles, O'Toole, Pierce and Haines 1992).2.4.2 Generational Garbage CollectionGenerational collectors use the ages of objects to optimise the collection of younger,smaller partitions. They aim at reducing the garbage collection pause time by decreasingthe amount of memory that has to be collected. They take advantage of the followingempirical observations (Lieberman and Hewitt 1983, Ungar 1984):1. Newly created objects have a higher chance of becoming garbage than those thathave already survived many collections.2. There are more references from new objects to older objects than the other wayround. Older objects may refer to newer ones only if they have been updated.Mutations are comparatively infrequent in many systems.Objects are segregated into generations based on how long they have survived. Wetalk of just two generations, old and new, but the scheme can be extended to any numberof generations. Since the new generation is where most garbage is created, it is collectedmore frequently. Objects that survive a certain number of collections are moved to aless-frequently collected partition.In order for this scheme to work, it must be possible to collect the younger gen-eration(s) without collecting the old one(s). The collector must be capable of �ndingpointers into the young generation(s). This requires the use of a write-barrier similarto the one found in incremental collection (see section 2.4.1) to keep track of such inter-generational pointers. Each potential pointer write in the heap must be accompanied

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 40by some extra bookkeeping in case an inter-generational pointer is being created. Theimportant point is that all references from old to younger generations must be locatedat collection time, and used as roots for the collection. If the above assumptions hold,there would be few such references.Generational collectors only keep track of pointers from the old generation to theyounger generation (the converse would be expensive as there are typically many morereferences from new to old than from old to new generations (Wilson 1992)). Conse-quently, when the old generation is collected, the new and old generations are tracedtogether, starting from their roots. This also contrasts with other partitioned schemes,where any partition may be collected at any time.2.4.3 Conservative Garbage CollectionTracing algorithms need to traverse the reference graph. For this purpose, the garbagecollector must be able to �nd references inside any object, in registers, the stack, the heapor any other memory area. In other words it must distinguish pointer from non-pointerdata. This co-operation is usually di�cult to implement in unco-operative environmentsor programming languages such as C (Kernighan and Ritchie 1990) or C++ (Ellis andStroustrup 1990), which do not provide the necessary runtime type information.A possible solution, for these cases, consists of either a pre-processor (Edelson 1992)or the compiler (Samples 1992) statically generating type information. Normally this isaccomplished by maintaining tags. For example, pointers might be constrained to havea �xed bit pattern in the low-order bit positions. This kind of solution typically slowsdown some operations on integers, and brings a performance penalty for applicationprograms that rarely or never make use of garbage collection.Another solution receives no help at all from the compiler and assumes that anythingthat might be a pointer is a potential pointer unless it can be proved otherwise. It iscalled conservative garbage collection.The Boehm-Weiser collector (Boehm and Weiser 1988) is a conservative collectorwith no reliance on co-operation from the compiler, and that has no knowledge of thestack, registers or heap object layout. This approach relies on the use of a mark-and-sweep collector. In order to determine accessibility, it treats any data directly accessibleto the program as a potential pointer. The allocator ensures that given such a data

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 41value, it is possible to determine whether it points to a valid object or not. If so, it isassumed that the data value in fact was a pointer, and that the object it points to isaccessible. Similarly, it treats any data inside the objects as potential pointers, to befollowed if they, in turn, point to valid data objects.The Mostly Copying Garbage Collector (Bartlett 1988, Bartlett 1989) is a conserva-tive garbage collector that still assumes no knowledge of stack or registers layouts, butit does assume that all pointers in the heap can be found accurately. The collector is ahybrid conservative and copying collector. The algorithm divides all accessible objectsin the heap in two classes: those which might be referenced from the stack or registers(the root set), and those which are not. The former objects are treated conservativelyand are left in place, and the later objects are copied into a compact area of memory.The main disadvantage of such collectors is the risk of misidentifying data as heappointers (e.g, considering an integer as a pointer), thereby leading to the considerationof garbage objects as being reachable. This implies that memory is retained, whichcould otherwise be recycled | a space leak.2.5 SummaryIn this chapter we briey surveyed uniprocessor garbage collection techniques.There are two fundamental garbage collection strategies: reference counting andtracing. There are two tracing collectors: mark-and-sweep and copy. Stop-the-worldcollections are not suitable for real-time or interactive applications as they suspend alluser computation during garbage collection.Reference counting algorithms are inherently incremental and are scalable. However,they do not collect cycles of garbage. Consequently, tracing collectors had to be madeincremental. We described two techniques for synchronisation between mutator andcollectors in order to provide safe garbage collection: a read-barrier and a write-barrier.Another technique that decreases mutator pause times is generational garbage col-lection. The heap is divided in several generations. Young generations are collectedmore frequently as young objects tend to become garbage more rapidly than objectsthat survive several collections.Finally, we described a technique for garbage collecting unco-operative environments,

CHAPTER 2. CLASSICAL UNIPROCESSOR ALGORITHMS 42which do not provide runtime type information. Such collectors all are called conser-vative collectors as they may misidentify data as heap pointers, thereby leading thecollector to consider garbage objects as being reachable.

Chapter 3
Distributed Garbage CollectionTechniques
In this chapter we review the most relevant solutions for distributed garbage collection.We will emphasise distributed garbage collection solutions that collect cycles of garbage,showing the extent to which they meet the goals we have introduced in section 1. Wealso describe extensions of these techniques for persistent stores like Object-OrientedDatabase Management Systems and Distributed Cached Stores.The key to achieving an expedient, scalable and fault-tolerance distributed garbagecollection is to preserve the property of locality. The �rst step is to use a partitionedmodel, dividing a large address space into several partitions that can be collected some-what independently. We describe this model in section 3.1. Reclamation of garbage istypically done by a local collector that traces a single partition independently. Parti-tions track remote references by storing all incoming references in an entry-table, andall outgoing references in an exit-table. This is an abstract model; di�erent systems mayuse di�erent implementations of this model.Unlike non-partitioned collectors (we describe an example in section 3.2 | globaltracing), partitioned collectors collect local (to the partition) garbage without any coop-eration of the rest of the distributed system. The local collection makes a conservativeassumption that references in the entry-table are reachable, and counts them as rootsfor the local collection.Broadly speaking, techniques for distributed garbage collection fall under the same43

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 44two paradigms as uniprocessor techniques: tracing and reference counting (recall section2). In the following sections we survey a number of distributed garbage collectiontechniques that fall into one of this paradigms and show how they preserve the propertyof locality.In order to analyse these techniques we have recast the terminology used by theirauthors into the one we present in section 3.1. This helps to compare between algorithmsand allows better understanding of their fundamental contributions.3.1 Partitioned vs Non-partitioned CollectionA �rst step in the direction of the distributed garbage collection goals of expediency,scalability and fault-tolerance is to preserve the following property:Property of Locality The collection of garbage should not require the co-operationof any process other than those containing the garbage.This property is desirable for scalability and fault-tolerance in distributed systems.An algorithm that preserves such a property is scalable because it does not need the co-operation of every process in the system. Consequently, it does not require any protocolthat demands the co-operation of all the distributed system. Fault-tolerance is achievedbecause progress may be made even if some processes of the system are down. Thecollection of distributed garbage can only be delayed by those processes containing thegarbage.The key to preserving such a property is to sub-divide the address space into separateareas and collect each area independently. This idea was �rst proposed by Bishop(Bishop 1977) in the context of a virtual memory system, and is now generalised todescribe all decentralised distributed garbage collectors. This concept is supported bythe following advantages of partitioned approaches over non-partitioned ones:Scalability The collector does not need to wait for the collection of the entire addressspace. Only a subset of a potentially huge set of objects needs to be consideredat any point by a collector. Partitioned collection greatly improves the locality ofreference of the collection algorithm. In RPC-based systems local computation isused and message passing avoided. In persistent stores I=O operations are reduced.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 45This makes the collection more e�cient.Promptness Separate collections give control over how frequently to traverse di�erentparts of the object graph. Some parts of the graph may remain unchanged for along time, so that traversing them repeatedly is a waste, while other parts maychange rapidly, providing a rich source of garbage.Mutator Overhead The disruption caused by interfering with the application duringgarbage collection is reduced.On the other hand, partitioned schemes are not complete:Completeness The liveness of objects reachable from outside the partition cannot bedecided locally, hence these objects are conservatively considered as roots by thepartition garbage collection.In the remainder of this chapter we concentrate on solutions for collecting inter-partition garbage. We introduce a model for partitioned garbage collection. We describea general scheme | a hybrid of tracing and reference tracking (following the terminologyin (Maheshwari 1993)) | that is used to create arbitrary sized partitions that can becollected separately and concurrently.3.1.1 Model for Partitioned Garbage CollectionThe exact nature of partitions may vary, since di�erent models of distributed object-based programming systems allow di�erent implementations. On a RPC-based system,each site is a partition. On a persistent server, a set of logically related persistent objectsis a partition. Finally, in a cached distributed persistent store, each unit of memorycached is a partition.To correctly collect one partition without entirely scanning the others, informationmust be kept about object pointers that cross partition boundaries. We distinguishbetween intra-partition references (to an object known to be in the same partition) andinter-partition ones (to an object in another partition). For garbage collection purposes,an inter-partition reference is described by an exit-item in the source partition and an

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 46
root

entry
table

exit
table

entry-list

Partition P Partition Q

Partition R

x

y z

u

w

v

k

i j

r

x:{root}

w

u:{R}

w:{P,Q}
r:{Q}

u
k

i:{P}
k:{R}

r
wi

Ei
Ei

Ei

Ei
Ei

Ei
Ex
Ex

Ex
Ex

Ex
Ex

x
u

w
i

u
k

r
w

i
k

Figure 6: Partitioned Garbage Collection Modelentry-item in the target partition1.Entry-items are collected in a structure called the entry-table and exit-items arecollected in a structure called the exit-table. They are represented in �gure 6. Partitionsare identi�ed by capital letters P , Q,..., etc. Objects are identi�ed by lower case lettersy, z,..., etc. An exit-item for object z is noted by Exz and the corresponding entry-itemby Eiz .Additionally, we group together all inter-partition references in a partition that pointto the same object. We model this by having each exit-table store a single item for eachoutgoing inter-partition reference. The importance of this will become clear during therest of this section.The entry-table of a partition is maintained by co-operation between the local col-lector and an inter-partition reference tracking protocol.1Generally, in RPC-based systems, an inter-partition reference is represented as a local referenceto a structure called a surrogate, which in turn contains necessary remote information. This remoteinformation may, in turn, point to the entry-item which points to the actual object, or point directly tothe object.In garbage collection schemes for persistent object stores, entry and exit-items are simply auxiliarydata structures; they are not seen by application code.We will use the entry-item=exit-item abstraction whenever we may abstract from system-dependentissues. We will explicitly describe such issues whenever it is signi�cant for our scheme.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 47Intra-partition collectionLocal garbage is collected independently in each partition. Usually a tracing algorithmis used because of the inability of the reference counting technique to reclaim circulargarbage and e�ciency considerations (recall section 2.2).The root set used for local garbage collection consists of local roots | the local rootset | that is, objects usually designated as roots (stack, registers and global variables),plus global roots | the global root set | that is, the entry-table: these are objectsknown outside this process; consequently, it is not possible to decide locally if they aregarbage or not. As we have already said, each entry-item refers to an object that isalleged to be referenced from other partitions.Once an inter-partition reference to some object is created, it is no longer possibleto determine locally whether or not it is still reachable from a root. The local garbagecollector must therefore conservatively consider it to be a global root. Until it is shownotherwise, all local objects and exit-items reachable from this root are considered to belive, as are any objects and exit-items reachable from local roots.An intra-partition collection updates the exit-table: unreached exit-items are re-moved.Inter-partition CollectionThe information maintained by the inter-partition protocol constitutes a conservativesnapshot of the actual object graph, built incrementally as the overall object graphevolves. The union of the local root set and global root set is a superset of the actualroot set2. The actual root set of a given partition contains only the roots from whichlive objects, and only live objects of that partition, are reachable. The actual root setof a partition is the union of the local root set and the set of global roots that arelive, that is, reachable from some root in the system. Only the inter-partition protocolcan determine whether or not a given global root is still referenced from outside thepartition.The inter-partition reference tracking protocol is responsible for maintaining theentry and exit-tables, that is, how they are created and how reachability information is2Following the terminology in (Louboutin and Cahill 1997).

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 48propagated. When the mutator creates a new inter-partition reference, or deletes one,extra messages may or may not be required to update the target entry-table. Followingthe terminology in (Maheshwari 1993), we call the part of the inter-partition protocolthat takes care of creation of references the increase protocol, and the one that takescare of deletion the decrease protocol. The increase protocol ensures the safety propertythat live objects will not be collected; it is therefore run by the mutator when creatinga new inter-partition reference in such a way that prevents the premature reclamationof objects. As we are going to see next, this is an issue related to the global order ofevents in distributed systems.On the other hand, the decrease protocol ensures the liveness property that garbagewill ultimately be reclaimed; therefore, it can be delayed and executed in the back-ground. If, in a partition, we represent every inter-partition reference to the same objectas a single item in the exit-table, then the decrease protocol must only be performedwhen the last intra-partition reference is deleted.Di�erent schemes result in di�erences in the message passing protocol and fault-tolerance.For the rest of this chapter we assume the mutator model described in sections 1.3,except for sections 3.6 and 3.7. For simplicity, we consider that one process correspondsto one partition. From now on, in this chapter, we will treat partition and process assynonymous.3.1.2 Road-map to the Remainder of this ChapterIn the following sections we describe di�erent distributed garbage collection techniquesfollowing the taxonomy shown in �gure 7.Section 3.2 discusses distributed algorithms based on tracing. We argue that thepure form of tracing is unacceptable for distributed systems as it is a non-partitionedalgorithm. We also describe an intermediate tracing solution that preserves the propertyof locality for local garbage (section 3.3).Section 3.4 describes a number of reference tracking techniques for inter-partitiongarbage collection, and compares them with respect to message passing and fault toler-ance.(Louboutin 1997) suggested that these schemes are called reactive schemes as they

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 49
Distributed Garbage Collection

partitionednon-partitioned

reference tracking
(section 3.4)

reference
weighted

counting

indirect
reference
counting

reference
listing

timestamp

distribution
hybrid collectors

(section 3.5)

tracing
train
collection

object
migration

back
tracingtracing

local
groups

global tracing
(section 3.2)

partitioned tracing
(section 3.3)

complementary

acknowledge
messages

packet

Figure 7: Partitioned vs Non-partitioned Distributed Garbage Collection\react" directly to some events of the mutator. These approaches make it possible toidentify a garbage object from information received from objects directly adjacent to itin the global object graph. Collection can therefore proceed without need of co-operationfrom all sites in the system. They preserve the property of locality.The most typical reference tracking based algorithms are those based on variationsof uniprocessor reference counting (Lermen and Maurer 1986, Bevan 1987, Watson andWatson 1987, Piquer 1991, Dickman 1992) or reference listing (Birrel et al. 1994, Shapiroet al. 1992, Plainfoss�e and Shapiro 1992, Maheshwari and Liskov 1994, Ferreira andShapiro 1996) that are not intrinsically complete, that is, that are not able to col-lect cycles of garbage. We also describe a new approach for reference tracking that isintrinsically complete (Louboutin and Cahill 1997, Louboutin 1997).Finally, we address hybrid approaches for distributed cyclic garbage collection. Sec-tion 3.5 describes a variety of schemes that collect inter-partition cycles of garbage.These schemes have the common feature of having been designed for the partitionedmodel. They usually combine a form of reference tracking with a second approachin order to collect cycles of garbage. We classify several approaches in this categorydepending to what extent they preserve the property of locality for cyclic garbage.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 503.2 Global TracingGlobal distributed tracing algorithms have the ability to collect garbage cycles. Themajority of the tracing collectors known are of the mark-and-sweep type (Hudak andKeller 1982, Augusteijn 1987, Derbyshire 1990, Juul and Jul 1992).Distributed mark-sweep algorithms visit all globally reachable objects. In the mark-phase each process marks the objects reachable from its local roots. Each object isscanned and for each remote reference found a marking message is sent to the targetprocess. The process receiving a marking message marks the corresponding object andcontinues the marking phase. When every process has marked all the reachable objectsit owns and there are no marking messages in transit, the sweep phase starts. Thesweep phase may be done by each process independently from any other process.Making a mark-and-sweep algorithm distributed adds the problem of global syn-chronisation. The main problem is to synchronise the distributed mark-phase withindependent sweep phases. During the mark-phase processes receive and send markingmessages. The collector in each process can be resumed if it receives a marking mes-sage for an object it owns. Therefore, processes are alternatively contributing to globalmarking | active state | and waiting for a marking message | idle state. The activeprocesses are those which are carrying out marking, and only they can send messages.An active process goes from active to idle when it �nishes its marking. An idle processcan only be reactivated on receipt of a message. When all the processors are idle, theglobal mark-phase is said to be terminated since no further marking is possible.This problem is even more di�cult if the global marking is concurrent with the muta-tor, since the mutator may turn an idle process to active as a result of the synchronisationwith the collector (section 2.4.1) (Hudak and Keller 1982, Augusteijn 1987, Derbyshire1990, Juul and Jul 1992).Global synchronisation can be detected by any existing distributed termination de-tection protocol (Dijkstra and Scholten 1980, Mattern 1987, Mattern 1989, Tel andMattern 1993). However, di�erent distributed tracing algorithms have presented theirown protocols, since the existing solutions may be either very expensive for the garbagecollection problem (Augusteijn 1987) or unco-operative with synchronisation betweenmutator and collector.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 51Finally, distributed tracing algorithms require the cooperation of all processes in thenetwork before it can reclaim any objects. This technique, is, thus, neither scalable norfault-tolerant.Below, we present a set of solutions that use the approach described above. Theseschemes have the common feature that garbage is only reclaimed with the co-operationof all processes in the system.Hudak and Keller (Hudak and Keller 1982) present a concurrent distributedmarking-tree collector based on the Dijkstra's concurrent mark-and-sweep collector 2.4.1. Mark-ing (mark an object, scan it and mark its descendents) comprises spawning a mark-task.In addition, a marking-tree is simultaneously built to provide mechanisms for cooper-ation and proper termination. The algorithm terminates when there are no more greyobjects in the system (cf. 2.4.1). Termination is detected by having each mark-taskspawn an uptree-task, which propagates upward in the marking-tree. When the root re-ceives an uptree-task for each mark-task it has spawned, the marking phase terminates.Each process can then proceed to the sweep-phase independently.This work leads to a large space overhead in providing space for recording themarking-tree. It also halts the mutator for a long period when a remote referenceto a potential white object is written into a black object as a mutator needs to execute(rather than just spawn) a mark-task on the white object. Thus the mutator must haltuntil the remote object has been marked and has spawned an uptree-task.Augusteijn (Augusteijn 1987) also presents a concurrent distributed collector basedon the Dijkstra's concurrent mark-and-sweep collector. The marking phase operates bycolouring objects. When there are no more grey objects the phase has terminated (cf.section 2.4.1). When a remote object must be greyed, a request message is sent to theowner process. The main problem is the detection of a global state in which there areno grey objects. This global state is detected by a termination detection algorithm asfollows.Each process can be active-disquiet, passive-quiet or passive-disquiet. Initially, allprocesses are active-disquiet. A process will turn from an active-disquiet into a passive-quiet state when it has no more local grey objects and it has received an acknowledge-ment for each request message it has sent. Once passive, it remains so, but it changes its

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 52state from quiet to disquiet on receipt of a request message. This request message canonly be sent by another disquiet process. This means that once all processes are quiet,they remain so in a stable state. This state is determined by having each process sendto a synchroniser process a message informing it of the change from active to passive.A process may also turn to a disquiet state when a remote mutator sends a requestmessage to preserve the \no references from black objects to white ones". This mayhappen when a grey object sends a message to a black object with potential whitedescendents. If its descendents are not local, a request message must be sent, possiblydisturbing quiescence. This is no problem, since the sender must be disquiet (it holdsa grey object). The mutator sending the message needs to wait until the objects inremote nodes are shaded. This may disrupt the mutator.The global distributed tracing algorithm presented in (Derbyshire 1990) uses a sim-ilar termination detection protocol.3.3 Partitioned TracingIn this scheme, the only information kept by the entry-table is which local objects arereferenced by one or more remote references. Such objects are distinguished by thepresence of an entry-item; the entry does not contain any other information. The entry-item is created when a process �rst sends a mutator message containing a referenceto the object. When the reference is passed on to other processes, the entry-item isnot a�ected. Thus, it cannot be removed without help from a global tracing (Hughes1985, Juul and Jul 1992, Ladin and Liskov 1992).The Emerald SystemThe Emerald garbage collection scheme (Juul and Jul 1992) consists of two sets of col-lectors, which are applied concurrently. The global scheme is achieved by concurrentmark-and-sweep collectors on each process, which cooperate as one global garbage col-lector across the entire network. This global collector tries to achieve completeness eventhough various parts of the distributed system may be temporarily unavailable. Thelocal scheme consists of an independent partial local collection on each process that col-lects local garbage. These local collectors do a more expedient collection of local garbage

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 53without being complete. Note that, in this solution, global tracing is needed for col-lecting both acyclic and cyclic distributed garbage. This is because the inter-processcollector is not reference counting-based.Any site in the system may initiate a global garbage collection cycle. All messagesin the system are identi�ed with the the current cycle number, making it possible forthe receiver to join the current cycle.The algorithm is based on a concurrent variant of the mark-and-sweep collector.The mark-phase is done concurrently with the mutator using an object-fault mechanismsimilar to a page-fault mechanism in a virtual memory system (Appel et al. 1988).This mechanism implements a read-barrier | the mutator processes can only accessblack objects. All grey objects are protected (cf. section 2.4.1). The object protectionmechanism ensures that whenever the mutator attempts to access a grey object, a faultoccurs, causing the collector to mark and traverse, that is colour the object black, whichentails shading all the objects reachable from it. Unlike Augusteijn's algorithm, thisdistributed version of the mark-and-sweep algorithm allows a black object to temporarilyhold a reference to some remote object that has not yet actually been shaded at its ownsite. Each site maintains a set of non-resident grey objects that makes it possible topostpone the actual shading of these remote objects. The remote shading involvessending a message to the remote site. When the site at which the remote grey objectis located acknowledges the message, the reference denoting the remote object may beremoved from the non-resident grey set. A black object is prevented from invoking aremote white object because objects that are remotely invoked are implicitly markedand traversed before the invocation is actually performed.Marking is complete when there are no longer any grey objects in the system. Ev-ery process in the system needs to cooperate to determine when the mark-phase has�nished. For this purpose the algorithm uses a a two-phase commit protocol based onacknowledgement messages and pairwise availability. This protocol is robust to processand message failures, but depends on each process being aware of all other processes inthe system, hence not being scalable.As local and global garbage collection operate concurrently on the same objects,conicts may arise. To prevent the two collectors from conicting with each other, theiractivities become mutually exclusive on a given site.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 54This algorithm violates the desirable property of locality for distributed garbage: allprocesses in the system need to co-operate in order to collect distributed garbage.Tracing With TimestampsThe algorithm described in (Hughes 1985) is similar to the basic distributed mark-and-sweep algorithm except that it uses timestamps instead of mark bits. The mainidea of this algorithm is that the timestamp of a live object keeps increasing while thetimestamp of a garbage object eventually stabilises. A global timestamp threshold iscomputed. When this threshold exceeds the timestamp of an object, that object isgarbage and can be collected.This algorithm performs many global garbage collections in parallel. Each processormakes a contribution to all currently active global garbage collections every time itperforms a local garbage collection. Each process has a clock that is used to recordthe time when the garbage collection started locally | the GC-time. A local collectionpropagates the roots' timestamps to the exit-items. The local roots are timestampedwith the GC-time, while entry-items retain the timestamps last put into them. Whenan entry-item is created, it is time-stamped with the local process' current timestamp.The local collection in a process is expected to timestamp an exit-item with the largestlocal timestamp of any root from which is reachable. To ensure this, references in theroots are selected for tracing in decreasing order of timestamp.At the end of the local collection, exit-items' timestamps are sent to the corre-sponding entry-items on the target processes in timestamping messages (similar to themarking messages of the basic distributed mark-and-sweep algorithm). When a pro-cess receives a timestamping message, it updates the timestamps of the correspondingentry-items to the maximum of their current value and that received in the message.When a process increases the timestamp of an entry-item, it records the fact that it hasnot propagated the increased timestamping. For this purpose, each process maintainsa timestamp called redo whose value is equal to the greatest timestamp already locallypropagated. Thus, when an entry-item's timestamp is increased, the redo is set to theentry-items's old timestamp if that is lower than its current value. When a process hasprocessed the timestamping message, it sends back an acknowledgement to the sender.When the sender has received all the acknowledgements of all messages it has sent, it

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 55can update its own redo to the local GC-time, provided it did not receive timestampingmessages from other processes itself.It can be shown that an entry-item timestamped below the global minimum ofthe redo's of all processes | the threshold | is garbage. However, it is tricky andcostly to compute this threshold at any time. Such computation depends on any globaltermination algorithm (Dijkstra and Scholten 1980, Rana 1983, Mattern 1987, Mattern1989, Tel and Mattern 1993).This algorithm does not preserve the property of locality: it does require all processesto co-operate in order to collect distributed garbage. Additionally, if a process thatcrashes does not recover, the entire global tracing will eventually come to a halt, as theglobal minimum redo's will be stuck at the crashed process's value.Logically Centralised TracingLadin and Liskov (Ladin and Liskov 1992) describe a variant of distributed tracing.The idea is to compute the global accessibility of objects on a single centralised service.This service is used to store information about the inter-process references. Each pro-cess performs asynchronous local collections and communicates periodically with thecentral service providing it with its inter-process references. From time to time, eachprocess asks the central service about the reachability of its objects that are not locallyreachable. The answer may indicate that an object is no longer remotely reachable,thus it can be deleted.Since each process garbage collects asynchronously, the service never has a consistentview of the reachability of every object. Thus, the central service adopts a conservativeapproach that can be used safely. For this purpose, it uses a timestamp protocol in-volving loosely synchronised clocks at each process and a bounded delay for messages intransit. Messages containing references to objects also contain the time at which theyare sent.To reclaim cycles they also timestamp objects as Hughes. Each public object istimestamped with the latest time at which it was accessible from some process, andthe algorithm is based on the premise that timestamps of accessible objects continue toincrease, while those of garbage objects eventually become constant. These timestampsare also kept in the central service and the threshold is also computed in the central

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 56service (avoiding a termination detection protocol). In contrast with (Hughes 1985),only garbage objects in cycles will be identi�ed and collected by this technique. Mostobjects will be found to be inaccessible earlier (without using timestamps).In this service the processes do not have to communicate with each other for thepurpose of garbage collection. The communication with the service can be performedin the background. The drawback, however, is that the server, albeit replicated, canbecome a bottleneck in a large system. Also, the processes have to transfer a fair amountof information to the server in order to have it detect all garbage.Although this algorithm ameliorates some drawbacks of Tracing with Timestamps, itstill requires the co-operation of all processes in the system in order to collect distributedgarbage.3.4 Reference TrackingThe reference counting algorithm is promising to distribute for the following reasons:� It is performed in small steps interleaved with the mutator, allowing concurrencywithout the need of synchronisation and hence presenting lower communicationcosts.� There is no need to scan global data structures.Distributed reference counting is a simple extension to uniprocessor reference count-ing. Each entry-item stores a count of the number of exit-table items that point to it.Duplicating or deleting a reference to an object requires, as part of the increase anddecrease protocol, increment and decrement messages to be sent to the owner of theobject in order to increment or decrement, respectively, the corresponding entry-item'sreference count.Distributed reference counting, however, poses some problems: it is vulnerable toout-of-order delivery of reference counter manipulation messages, leading to prematurereclamation of live objects | race conditions. There are two types of race conditions,both possibly leading to the unsafe reclamation of a reachable object. We call themdecrement=increment and increment=decrement race conditions.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 57
Process P Process Q

Process R

mutator message(z)

z

decrement increment

Figure 8: Decrement=increment race condition
Process P Process Q

Process R

mutator message(z)

z

increment decrement

Figure 9: Increment=decrement race conditionFigure 8 illustrates the decrement=increment race condition. Suppose process Pholds a reference to object z in process R, and sends a message to process Q containinga reference to z. Process Q receives this message and sends an increment message toR concerning object z; concurrently, process P deletes its reference to z and sends thecorresponding decrement message to R. If the decrement message arrives �rst at R,then z is considered to be unreachable and is unsafely reclaimed.On the other hand, suppose process P sends the increment message before sendingthe reference to z to Q. This also results in a potential race condition. Figure 9illustrates the increment=decrement race condition. Suppose thatQ receives the messageand immediately discards it. Therefore it sends a decrement message to R. Once again,if the decrement message arrives �rst at R, z is unsafely reclaimed.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 58This scheme is also less fault-tolerant then the �rst. If the increment message toR succeeds, but the mutator message does not arrive to Q, the reference count of Eizwould be erroneously incremented, compromising the liveness of the algorithm.We model the transmission of a z-reference as an incomplete transmission.Incomplete transmission The transmission of a z-reference is incomplete while theowner of z does not receive the corresponding increment message. A potential racecondition may occur when a decrement message is sent during this period.Race conditions can be resolved by imposing a global order on message delivery,which is expensive. Moreover, distributed reference counting is not resilient to messagefailures because increment and decrement messages are not idempotent and must neitherbe duplicated nor lost.A number of variations of the standard distributed reference counting algorithm im-prove resilience to either race conditions, message failures or process failure. These vari-ants can be grouped in the following categories: acknowledgement messages, weightedreference counting, indirect reference counting and reference listing.3.4.1 Acknowledgement MessagesAcknowledgement messages suppress those potential race conditions described in thesection above.Lermer and Maurer (Lermen and Maurer 1986) describe a communication protocolbased on acknowledgement messages that provides a correct distributed reference count-ing algorithm. This protocol assumes that point-to-point communication links can bemodeled as in�nite length FIFO queues (and hence do not allow loss or duplication ofmessages). The protocol is based on four kinds of messages: delete messages, acknowl-edge messages, copy messages and acknowledge request messages; and two attributesper object in a processor, giving the number of acknowledge references to that objectand the number of `incomplete' references to it. A copy of a reference to an objectpassed to a process P is complete when P receives a copy message (with the reference)and an acknowledgement message from the process holding the object (this messageacknowledges the increment of the object's reference counter). This process sends thisacknowledge message after receiving an acknowledge request message from the process

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 59doing the copy. A process P can only delete a reference to an object if that referenceis an acknowledged reference. This algorithm eliminates race conditions, and allows apartial detection of lost messages, at the expense of a signi�cant overhead in messagetra�c for each reference copied.This algorithm is still not completely resilient to message failures | increment anddecrement of reference counts is still a non-idempotent operation and messages cannotbe lost or duplicated | nor, as with standard reference counting, to process failure. Asreferences (counts) cannot be identi�ed with processes, it is not possible to associatethem with crashed processes, hence to be disregard.Birrel et. al. (Birrel et al. 1994) describe a variant of the reference counting techniquefor reclaiming Network Objects (Birrel et al. 1993). We explain this technique in greaterdepth in section 3.4.4, but we introduce it here because it also uses acknowledgementmessages to prevent race conditions.References to Network Objects are created as a side-e�ect of marshaling references inremote invocations. The potential race condition between concurrent copy and deletionof the same reference is avoided by preventing the remote reference from being reclaimedin the sender process until this process receives an acknowledgement from the targetprocess indicating that the operation has been completed, that is, the target process hasalready reported the creation of the new reference to the owner of the object. Followingthe terminology in (Ladin and Liskov 1992, Maheshwari 1993), the transmitted referenceis kept in a translist. The references in the translist are seen as roots for the localcollection, preventing the collection of the exit-item correspondent to the transmittedremote reference.This extra acknowledgement is only needed when a reference is sent as a result ofa remote method invocation. If it is sent as an argument, the method's return servesas the acknowledgement that the operation is completed. It seems that performance isnot seriously a�ected by this extra message, because the wait for the acknowledgementis asynchronous with the mutator: for safety, the object is kept locally reachable untilthe acknowledgement arrives. However it still doubles the number of messages for theworst case.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 603.4.2 Weighted Reference CountingBevan (Bevan 1987) and Watson (Watson and Watson 1987) independently proposed anew algorithm | Weighted Reference Counting | that eliminates increment messages,and hence the potential race conditions.To each reference is associated a weight and to each object a standard referencecounter. The algorithm should maintain the following invariant:The reference counter of an object is equal to the sum of the weights of thereferences to it.When a remote reference is �rst created, a weight equal to the reference counterof the object is assigned to it. Each time a reference is duplicated to another process,its weight is halved and the remainder is sent to the target process. When the processreceives it, it associates the weight with the new reference. Thus the sum of the weightsis kept unchanged. The increment message is thus not necessary.When a process deletes a remote reference, it sends a decrement message with theassociated weight to the target process. When the process receives the message, itsubtracts the received weight from the object reference counter. The object may bereclaimed, if it is not reachable locally, when its reference counter becomes zero.This algorithm has extra space associated with each remote reference. Bevan (Bevan1987) proposed using weights that are power of two, in order to store only the logarithmin the references. In addition, this algorithm has the following problem: the number oftimes a reference may be sent to another process is limited by its initial weight. Thisproblem can be solved with the use of an extra indirection object. This solution maycreate remote indirections (if the indirection object is not created on the same processorholding the object pointed by the reference being duplicated) which are expensive, andalso a�ect the access to the data.Weighted Reference Counting avoids race conditions and improves communicationoverhead, but is not resilient to message loss or duplication, or process failures, in orderto ensure safety and completeness.Dickman (Dickman 1992) improves on Weighted Reference Counting in two aspects:resilience to message loss and indirection objects. He de�nes a new weaker invariantthat is compatible with message loss. The new invariant states:

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 61The reference counter of an object is greater or equal to the sum of theweights of the references to it.A lost or miss-ordered message does not violate this weakened invariant. In contrast,a duplicated decrement message remains problematic because it could make the sum ofthe weights of the references to an object greater than the object's reference counter.This algorithm avoids the use of indirection objects when weights cannot be split,by using a special null weight value. In this case, the reference counter is always greaterthan the sum of the partial weights, thus preventing the object from being reclaimed atall. In this case, this algorithm generates memory leaks. The author assumes that somecyclic distributed tracing collector is used in conjunction with the Optimised WeightedReference Counting, in order to reclaim such objects and cycles of garbage.3.4.3 Indirection, and Strong-Weak PointersPiquer (Piquer 1991) suggests an algorithm that improves on Weighted Reference Count-ing by avoiding the indirection objects at the expense of some memory overhead. It alsoavoids the use of increment messages by maintaining a distributed reference counter foreach remotely referenced object. Increments are performed locally, therefore withoutcommunication. This is achieved by always maintaining enough information on eachprocess to do the increments locally.The key observation is that the process that sends a reference already has an entry-item that protects the remote entry-item at the owner of the object. If the remotereference sent to the target process is made to protect the exit-item at the sender,the entry-item at the owner will be protected indirectly. The basis of the algorithm isto maintain a tree structure representing the di�usion tree of a reference throughoutthe system. For this purpose, remote references are extended with two �elds: theidenti�cation of the process that sent the reference and a counter recording the numberof times the reference was copied from the local process. The latter is incremented everytime the reference is copied. This means that a new (remote) reference was created tothe target object. A reference may be deleted if its reference counter is zero. When thishappens the process sends a decrement message to the process from which the referencecame. In its turn, this process decrements the counter of the reference it holds.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 62As for the other proposals based on reference counting, Piquer's proposal is notresilient to message or process failures. However, this technique may be used in con-junction with another variant of reference counting. The work on SSP chains (Shapiroet al. 1992, Plainfoss�e and Shapiro 1992) combines reference listing | a fault-tolerantvariant of reference counting (see section 3.4.4) with indirection.A further problem with the indirection method is that if the receiver accesses thereference, it is indirected through the sender. The work in (Shapiro et al. 1992, Plain-foss�e and Shapiro 1992) proposes the use of weak and strong pointers. An exit-itemencapsulates two pointers: a strong and a weak one. The strong pointer indicates thenext entry-item in the above di�usion tree. It is used only for garbage collection. Theweak pointer short-cuts ahead of the strong pointer and allows direct access to the ob-ject. As an optimisation, the strong pointers can be short-cut in the background topoint directly to the object after the owner has created a corresponding entry-item.One drawback of using strong-weak pointers is that every reference included in muta-tor messages actually occupies the size of two references. As pointed out by (Maheshwari1993), if the mutator message is carrying an object that contains references, the objectwould have been marshaled into a di�erent format wherein the contained references aretwice as big.3.4.4 Reference ListingReference Listing (Shapiro et al. 1992, Plainfoss�e and Shapiro 1992, Birrel et al. 1994,Maheshwari and Liskov 1994, Ferreira and Shapiro 1996) di�ers from standard referencecounting in the way the reference counter of a remotely referenced object is managed.Instead of maintaining a simple reference counter, recording the number of remote ref-erences for each object, the entry-item for an object keeps a list of the process identi�ersthat refer to the object. The following safety invariant is maintained in such systems:If process P refers to an object z in process Q, then P is in Eiz's referencelist.Increment and decrement messages are replaced, respectively, by insert and deletecontrol messages, which include the process' identity. To preserve the invariant, when-ever a reference is copied, the process acquiring the new remote reference must be

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 63inserted in the target object's reference list. When a process P no longer refers to aremote object, the owner must remove it from the object's reference list. There aretwo ways of doing this. P may send a delete message to the owner (Birrel et al. 1994)or may periodically send the complete list of references that it holds for objects inthe owner (Shapiro et al. 1992, Plainfoss�e and Shapiro 1992, Maheshwari and Liskov1994). A failed deleted message needs to be remembered and retried, while a lost list iscompensated for by the subsequent one.Race conditions may be avoided by using acknowledgement messages (Birrel et al.1994) (as explained in section 3.4.1) or using any other variation of reference countingthat avoids the sending of synchronous insert messages; (Shapiro et al. 1992, Plainfoss�eand Shapiro 1992) uses indirection and weak-strong pointers (as explained in section3.4.3).Reference Listing has two important advantages over the standard reference countingvariants: it improves resilience to message and process failures, albeit at the expense ofsome memory overhead. Insert and delete control messages are idempotent, in contrastwith the increment or decrement messages in standard reference counting, and thereforecan be retried on failure. However, a straggler delete message is potentially unsafe.Suppose that an insert message was sent after the delete message to re-create the entry-item. If the delete message arrives before the insert message, the entry-item may bedeleted for good. One way to avoid this problem is to use timestamped insert and deletemessages. A process stores the timestamp from the insert message in the entry-item. Adelete message is e�ective only if it is timestamped higher than the entry-item (Shapiroet al. 1992, Plainfoss�e and Shapiro 1992, Birrel et al. 1994).Tolerance of process failures relies on the ability of each process to compute the setof processes holding references to an object it owns, by looking through the object'sreference list, so it can prompt one of those to proceed with any communication.3.4.5 Timestamp Packet DistributionThe work presented in (Louboutin and Cahill 1997) is based on the work describedin (Schelvis 1989) that is often overlooked in the literature because of its complexity,and message and space overhead. It describes a new approach to cyclic garbage col-lection that entails reconstructing the vector-times (Dependency Vector | DV) that

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 64characterise the causal history of relevant events of the mutator processes' computa-tion. These events are those that result in modi�cations to the inter-process paths inthe global object graph. The global root graph is formed by the global roots and thelocal roots of each individual process. It is shown that knowing the causal history ofthese events makes it possible to identify garbage objects that are not identi�able bymeans of per-process garbage collection alone.The global graph's edge-destruction events' dependency vectors are constructed bypropagating increasingly accurate approximations of these vectors along the paths ofthe global root graph.This algorithm preserves the property of locality. Detection of garbage only requiresthe co-operation of those processes that contain the cycle. The underlying reference list-ing scheme is responsible for repeatedly circulating approximations of the dependencyvector until the complete transitive closure, that is, the full vector-time of events respon-sible for the creation of all the paths to an entry-item, has been determined. Wheneveran entry-item receives a dependency vector, a new approximation can be computed.If this newly computed dependency vector is the actual full vector-time and indicatesthat the entry-item is no longer reachable from an actual root (recall section 3.1), theentry-item is removed.This algorithm is very complex, however, and, as pointed out by (Maheshwari andLiskov 1997a), its space overhead is large. It requires full reachability informationbetween all entry-items and exit-items, and each entry-item Eii stores a set of vectortimestamps; each vector corresponds to a path Eii is reachable from. At present weargue that some issues need more clari�cation, in particularl, the maintenance of theglobal root graph in the presence of mutator concurrency.3.5 Hybrid CollectorsDistributed reference counting based algorithms cannot collect cycles of garbage span-ning processes. Collecting interprocess cycles of garbage is, however, an importantissue especially for long running distributed systems (e.g. distributed databases), whereoating garbage is particularly undesirable as even small amounts of uncollected garbagemay accumulate over time to cause signi�cant memory loss (section 1.5).

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 65
Complementary Tracing

Tracing in groups
Train Collection

Local Tracing

Better Locality

Object Migration
Back Tracing(3.5.1)

(3.5.2)

(3.5.3)

(3.5.4)

(3.5.5)
(3.5.6)

Figure 10: Locality SpectrumSeveral techniques have been proposed for cyclic distributed garbage collection. Inthis section we will provide a brief description of each, and discuss how they meet ourprimary goals of completeness, e�ciency and fault-tolerance as we stated in section 1.The degree of locality is the metric we have chosen for judging distributed garbagecollection. For cyclic distributed collection, this is de�ned as follows (Maheshwari 1993):Property of Locality The collection of distributed cycles should not require the co-operation of any process other than those containing the cycle.For the same reasons described in section 3.1, we judge cyclic distributed garbagecollection techniques on the extent to which they meet this property. We summarise aset of cyclic distributed garbage collection techniques found in the literature in �gure 10(the enumeration represents the section in which they are described). ComplementaryTracing methods do not preserve the property of locality. As we move to the right, thetechniques improve, in some way, the locality of the algorithms.Some hybrid approaches are based on the choice of suspect objects: objects thatmay be garbage. Those objects are identi�ed by heuristics. Heuristics are not accuratebecause, although are able to identify garbage objects as suspects, they may identify liveobjects as well. This fact may result in the performance of wasted work that directlyinuences factors like message passing, local computation overhead and space overhead.It is then necessary to trade locality against these factors.We have identi�ed two heuristics in the literature: local reachability (Bishop 1977,

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 66Shapiro et al. 1990, Gupta and Fuchs 1993, Rodriguez-Riviera 1995) and distance heuris-tic (Maheshwari and Liskov 1995).Local reachability An objects is suspected of being garbage if it is not reachablelocally.This heuristic is weak if we consider, as is suggested by (Maheshwari and Liskov1995, Gupta and Fuchs 1993), that in a long-lived distributed systems it is likely thatobjects are not locally reachable, but still live. (Gupta and Fuchs 1993) suggests that asuspect object must not have been used for some time period. But, again, in long-liveddistributed systems it is likely that live objects may not be accessed for long periods.Distance heuristic The Distance Heuristic (Maheshwari and Liskov 1995) is basedon the \distance of objects" from a root. The distance of an object is the length ofthe shortest path from any root to the object, that is, the minimum number of remotereferences in any path from any root to the object.Suspects are found by estimating distances. A distance �eld is associated witheach entry-item. When a new process is added to an entry-item list, its distance isconservatively set to one. A root is modeled as an entry-item with zero distance. Thelocal collector propagates distances from entry-items to exit-items. Changes in thedistances of exit-items are sent to target processes, where they are reected in thecorresponding entry-items. The estimate of the the distance of a cyclic distributedgarbage objects keeps increasing without bound; that of a live object does not.The following theorem is de�ned: If all processes containing a cycle perform at leastone local collection in a certain period of time, called a round, then n rounds after thecycle became garbage, the estimated distances of all objects in the cycle will be at leastn. Therefore, they select a suspicion threshold distance, D. Objects with estimateddistances greater than D are highly likely to be garbage. Such objects (entry-items) arecandidates for suspect objects. The choice of the threshold depends on the expecteddistance of live objects. Although estimated distances of live objects may temporarilydeviate signi�cantly from their actual distances, this is not expected to be common.The threshold can be chosen to be a small multiple of the expected maximum distance.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 673.5.1 Complementary TracingThe idea of complementary tracing is to provide periodically a global tracing collector(cyclic collector) to collect circular garbage (Dickman 1992).This algorithm violates the desirable property of locality: all processes in the systemneed to co-operate in order to collect distributed garbage cycles. Indeed, the drawbacksof this scheme are the same as those of global tracing itself (section 3.2), except withreduced severity because the responsibility of tracing as a complementary scheme is tocollect cycles of garbage.3.5.2 Tracing in GroupsLang et. al. (Lang, Quenniac and Piquer 1992) present an algorithm for tracing withingroups of processes. They combine reference counting and mark-and-sweep in order toreclaim inter-group cycles of garbage. A group is a set of processes that may overlap orinclude other groups. Multiple collections on di�erent groups can run in parallel.A group collection begins with group negotiation. The next phase | initial marking| distinguishes inter-group from intra-group references. For this purpose they use atechnique inspired by Christopher (Christopher 1984). At the end of this phase all theentry-items of processes within the group are marked with respect to the group. Themarks on entry-items depend on whether they are referenced from inside or from outsidethe group. In the following phase | local propagation | local collectors propagate themarks of the entry-items towards the exit-items. Then, in the next phase | globalpropagation | the group garbage collector propagates the marks of the exit-itemstowards the entry-items they reference, when within the group. The preceding twophases are repeated until marks of entry or exit-items of the group no longer evolve.When this is completed, any dead cycles can be collected. Objects referenced fromoutside the group are considered to be reachable. Group stabilisation | when there areno more marks to propagate locally | can be detected, in the absence of failures, byany distributed termination detection protocol (the paper does not describe how it canbe done).This algorithm approximates the property of locality in the sense that the collectionof intra-group cycles does not need co-operation of other processes in the system, but

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 68only of the members of the group. In this way, it tolerates process failures in the sensethat if some process is down (or unreachable due to communication problems) the setof accessible processes can still form a group, hence the group collection is not blockeddue to a crashed process. However, the new group collection is restarted almost fromscratch. Also, a small distributed cycle can be collected quickly by a small group insteadof having to wait for a global tracing.Although it is suggested that a process may be removed or added during garbagecollection, knowing which processes should be grouped (and when) in order to reclaimthe maximum amount of inter-process cycles of garbage is still a di�culty of this al-gorithm. Some groups could be large enough so that cycles can be collected, but thelarge they are the longer the group collection takes. The authors propose a tree-likehierarchy of embedded groups. Multiple group collections can be activated at the sametime. Groups may overlap, though this puts more burden on local collections. Thisensures that each cycle is covered by some group, but the smallest group covering, forexample, a two-process cycle may contain many more processes.Unfortunately, this algorithm is very di�cult to evaluate because of the lack of detailpresented. Dynamic con�guration of processes into groups that succeed in collectingcircular garbage is not trivial.3.5.3 Local TracingLocal tracing techniques basically combine reference counting based techniques (acyclicalgorithm) with distributed tracing (cyclic algorithm). Usually the cyclic algorithm istriggered at a low rate and most garbage is assumed to be reclaimed by the acyclic one.Jones' and Lin's approach (Jones and Lins 1993) combines the ideas behind weightedreference counting with mark-and-sweep in order to collect interprocess cycles of garbage,as was �rst proposed in (Lins and Jones 1993). This idea may be seen as based on thetrial deletion technique proposed by Vestal (Vestal 1987).The mark-and-sweep algorithm does not trace the whole distributed graph. Insteadit traces locally from an object suspected to be part of a garbage cycle. Every time areference to a shared object is deleted, it is inserted on a control-set of suspect objects.When a distributed garbage collection is triggered, it picks an object from the control-setand the object's transitive referential closure | the suspect subgraph | is inspected.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 69The suspect graph is traced in order to decrement the object's counter (previouslycopied). At the end of tracing, if the object's counter has dropped to zero, it meansthat this object belonged to a garbage cycle and it can be safely reclaimed.Tracing may discover objects that cannot be proved to be garbage. Thus it mayinvolve live objects, leading to wasted work. The e�ciency of this algorithm dependson the accuracy of the heuristic for choosing the seed object. So, this algorithm ap-proximates the property of locality. It is thus more scalable than global tracing be-cause it eliminates the need for global synchronisation. However, it has three maindisadvantages. First, this algorithm assumes that local collections are also referencecounting-based; second, each phase of the local mark-and-sweep must be sure that thepreceding phase has �nished before starting; �nally, the corresponding phases of di�er-ent distributed collections must synchronise in order to allow concurrency.Maeda et. al. presented (Maeda, Konaka, Ishikawa, TomoKiyo, Hori and Nolte1995) a new algorithm that borrows the ideas of Jones' and Lins' algorithm. The mainadvantage is that it does not require the local collections to be reference counting-based. However, as above, if multiple processes on the same cycle initiate separate localtracings, the collection of the cycle will fail.3.5.4 Train CollectionHudson et al. have adapted their Mature Object Space `train' algorithm for distributedgarbage collection (Moss, Munro and Hudson 1996, Hudson, Morrison, Moss and Munro1997). This algorithm is complete, non-disruptive, incremental and scalable.Like the other partitioned collectors, it divides the address space into a numberof disjoint partitions called cars. To collect cyclic garbage that spans more than onecar, cars are grouped together in trains. Partitions are grouped in processes. Each carresides on a single process but a train may span more than one process. By ensuringthat all the cars in a train are collected by copying the reachable objects into othertrains, cyclic garbage will be left behind and can be collected when marshaled into thesame train.This algorithm also uses a reference listing scheme (recall section 3.4.4). It main-tains for each entry-item, corresponding to an object o at process P , a set of those

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 70cars that have pointers to o at P | the remembered set of o. The protocol that imple-ments the insert and delete messages introduced in section 3.4.4 is asynchronous, onlyassuming FIFO channels between any two processes. When a reference to an object ois transmitted from a process P to process Q, process P informs the process holding o.As noticed by (Birrel et al. 1994), this approach is not fault-tolerant. The sender maynotify the process holding the object, but, for some reason, process Q may not receivethe reference to o. In this case, Q will be inserted in o's remembered set, compromisingthe liveness of the protocol. The same protocol is used to update the references to anobject that has been moved to a di�erent car=train.Joining a train requires a distributed termination protocol, that only involves theprocesses that belong to the train the process wants to join. Those processes form aring that is identi�ed and managed by the process that creates the train | the master.A process that wants to join the train communicates with the train's master. Leavingthe ring is more subtle. The algorithm provides a technique that propagates the leaveintention around the ring. The technique works for any number of simultaneous deletionsfrom the ring. However, it depends on the fact that messages owing around the ringcannot pass one another.This algorithm depends on being able to detect when there are no references into atrain from outside of the train, allowing the whole train to be reclaimed at once. Forthis purpose, it uses a distributed termination protocol that, as above, only involvesthe processes that belong to the train. The basic idea in detecting that there are noreferences into a train is to pass a token around the train's ring. The protocol describedin (Hudson et al. 1997) accounts for objects being created in the train or added to thetrain during detection.This algorithm shares the features of any partitioned solution for distributed garbagecollection. It is scalable in that it is decentralised, uses asynchronous communication,and has no protocols that demand the involvement of all nodes. It reclaims objectsincrementally without global knowledge of reachability. However, it requires an objectsubstitution protocol to ensure that all old references to an object are updated to referto the new copy, when it is moved to another car=train. This seems to add a signi�cantmessage overhead to the system.The number of trains and the creation of new trains may inuence the degree of

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 71locality of this algorithm. A garbage train may include more than one garbage cycle.Consequently, collection of garbage cycles may delay the collection of other garbagecycles. Moreover, this implies that the token technique may visit processes not belongingto a garbage cycle in other to be able to collect that cycle. However, the extent of theseproblems may only be known after measurements of real applications. Intuitively, thisalgorithm exhibits a good locality, however at a cost of the message overhead requiredby the substitution protocol.Finally, although this algorithm is fault-tolerant in the sense that it does not requirethe participation of all processors in the system, the authors suggest an extension totolerate process failure and communications failures.3.5.5 Object MigrationThe idea of object migration is to consolidate a distributed garbage cycle on a singleprocess in order to transform a distributed cycle into a local cycle that can be easilyreclaimed by a tracing local collector.This idea was �rst proposed by Bishop (Bishop 1977). In his thesis he proposesthat a local collector be broken into two parts, in order to �nd which objects are onlyreferenced remotely. These objects are then considered to be migrated to the processfrom which they are being referenced. This will bring the bene�t of consolidating anunaccessible interprocess cycle into a single process where it can be reclaimed. Thistechnique was followed by (Maheshwari and Liskov 1995, Shapiro et al. 1990, Guptaand Fuchs 1993).Migration techniques have, however, some practical problems: they may tend tomigrate live objects along with garbage and they may need to migrate objects multipletimes before they converge on the same node. Migration of live objects is undesirablebecause it wastes process and network bandwidth, and also interferes with load bal-ancing. The de�nition of heuristics may help to distinguish which objects are likelyto belong to a garbage cycle. Some schemes use the \local reachability" heuristic foridentifying suspect. Such suspects are migrated either immediately or if they are notinvoked for long periods (Gupta and Fuchs 1993, Shapiro et al. 1990).A recent work (Maheshwari and Liskov 1995) uses the \distance heuristic". It pro-poses to limit migration to those objects with distances above some threshold because

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 72they have a high probability of being garbage. This technique reduces highly the prob-ability of migrating live objects, reducing wasted heavy work.The consolidation of a garbage cycle may be very ine�cient if it involves migratingobjects multiple times before they converge on the same process. The work presentedin (Maheshwari and Liskov 1995) also presents a simple way of selecting one of theprocesses containing a garbage cycle as the destination, avoiding multiple migrations.This algorithm is fault-tolerant and scalable because it does preserve the propertyof locality: the collection of a cycle only requires the co-operation of those processescontaining the cycle. The better the heuristic that identi�es candidates for migration,the greater the probability of migrating only garbage objects. However, it still presentssome problems:� Migration requires support for object migration. Some heterogeneous systemseither do not allow migration or make it rather cumbersome.� Migrating an object is a communication-intensive operation, not only because ofits inherent overhead but also because of the time necessary to prepare an objectfor migration and to install it in the target process. It may also interfere withother object management goals such as load balancing (Shivaratri, Krueger andSinghal 1992).3.5.6 Back-TracingRecent works (Fuchs 1995, Rodriguez-Riviera 1995, Maheshwari and Liskov 1997a) pro-pose an original technique based on back-tracing, instead of forward tracing, in order tocollect interprocess cycles of garbage. Call the traditional reference graph the forwardreference graph (FRG). The inverse reference graph (IRG) is obtained by switching thedirection of all the references in the FRG (Fuchs 1995). Back-tracing, as opposed toforward tracing, follows the references in that inverse graph. When an entry-item issuspected to be garbage, the references that point to it are recursively back traced.The back-tracing continues until the closure of all the objects from which the suspectentry-item can be reached is found | the suspect subgraph. If this closure does notcontain any root, then all objects in the closure are reclaimed. This algorithm does notneed global synchronisation and scales well to a distributed system of many processes

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 73since it only involves the processes containing the garbage cycle.However, this algorithm imposes an extra overhead on the local collector in orderto determine the local backwards references. It also needs some kind of synchronisationto allow concurrency between the mutator and collector, and between multiple back-tracings running at the same time in the same cycle in order to avoid duplication ofe�orts. Finally, although the collection of a garbage cycle only needs the co-operationof the processes that contain the cycle, and thus preserves the property of locality, thee�ciency of the algorithm depends on heuristics in order to avoid wasted work.The solution presented in (Rodriguez-Riviera 1995) computes the backward ref-erences during the local garbage collection. However, local objects may be tracedmore than once, which imposes a great overhead on the local collector. To resolvethe �rst synchronisation problem, this solution uses a barrier against new references ormethod invocations on remotely referenced entry-items to detect modi�cation in theback-references after the last local collection. Then, a second pass through the sus-pect subgraph, done to inspect the barrier, will state if the back-tracing is still validor not. This second step requires the state of the �rst back-tracing to be recorded ina single token-message or maintained in the processor that has started the back-trace(Rodriguez-Riviera and Russo 1997). The former solution is fault-tolerant in the sensethat, if a processor is known to have crashed, it is just ignored (references from thecrashed process are deleted); if not, a network failure is assumed and the token is safelydiscarded. Later, another suspect would start another back-tracing. The later solutionis less fault-tolerant because if the starter process fails, the back-trace must be aban-doned. However, recording the back-tracing state in a single message may lead to hugemessages if the suspect graph includes too many objects.Fuchs (Fuchs 1995) does not su�er from this problem since he assumes that thereare only remote references, and uses Piquer's or Birrel's algorithm. Consequently, anentry-item always knows about new references to it. But this situation is unrealistic.Maheshwari and Liskov (Maheshwari and Liskov 1997a) present an e�cient methodfor computing local backward references that uses Tarjan's algorithm (Tarjan 1972). Themethod computes the backward references during the local forward trace during a localgarbage collection for every suspect entry-item. Each local object is only traced once.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 74To resolve the �rst synchronisation problem, they use the same barrier as (Rodriguez-Riviera 1995). However, in contrast with (Rodriguez-Riviera 1995) it does not performa second pass through the suspect sub-graph. This has the advantage of not needing torecord the state of the back-trace. Instead, it creates a chain of activation frames foreach call on each entry or exit-item | a call returns garbage if it reaches an item thathas been already visited or returns live if it reaches a root. A back-trace is active at anitem if it has a call pending there. Thus, the algorithm safely ensures that if there is anyoverlap in the periods when a barrier is performed in an item and when a back-trace isactive there, the trace will return live.As for the second synchronisation problem, (Rodriguez-Riviera 1995) and (Mahesh-wari and Liskov 1997a) do not present any solution. However, (Maheshwari and Liskov1997a) argues that, using the distance heuristic, it is likely that one suspect item willcross the distance threshold �rst.Fuchs (Fuchs 1995) present an algorithm that uses a total partial order in the back-tracings identi�ers. If two di�erent back-tracings arrive on the same object, the onewith the `biggest' identi�er will proceed, and the other one is blocked until the higherpriority back-tracing terminates. If the encounters are in order of decreasing priority,his solution may still lead to repeated work.Fuchs (Fuchs 1995) and Maheshwari and Liskov (Maheshwari and Liskov 1997a) sug-gest the use of back-tracing in conjunction with the \distance heuristic". This decreasessigni�cantly the probability of performing wasted work. Rodriguez-Riviera (Rodriguez-Riviera and Russo 1997) suggest the use of the \local reachability" heuristic in conjunc-tion with generational back-tracing and back-tracing factoring. The idea is to improvethe accuracy of the \local reachability" heuristic by taking into account the ages of theobjects. He tries to decrease the number of redundant back-tracings by collecting lessfrequently objects that have survived collections. Back-tracing factoring improves thisheuristic by propagating the output of a failed back-tracing to every object involved inthe back-tracing.The three algorithms presented are fault-tolerant. If processes crash, the �rst twoalgorithms abort very cheaply (this is not true for the solution in (Rodriguez-Riviera andRusso 1997), as we said). They are also resilient to duplicated messages, relying on theidempotency of the algorithm operations and message identi�ers. Acknowledgements

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 75protect them against loss of messages.Back-tracing algorithms are promising for cyclic distributed garbage collection, al-though the problem of synchronising multiple back-tracings running at the same timein the same cycle in order to avoid duplication of e�orts still persist. Also, pathologicalcon�gurations | for example, the mutator may in�nitely create new back paths for aback-tracing | may compromise the liveness of the algorithm. A possible solution isto abandon the back-tracing, but this would lead inevitably to wasted work. However,this con�guration is not likely to happen.Only measurements of the behaviour of such algorithms in real applications maygive a better understanding of their e�ectiveness.3.6 Garbage Collection in Distributed Shared MemoryIn Distributed Shared Memory systems garbage collection is provided by adding func-tionality to the Distributed Shared Memory service, rather than built on top of it. Thework presented in (Ferreira and Shapiro 1996, Ferreira 1996), supports persistence byreachability in a distributed shared address space transparently and e�ciently. Themain issue in these system is coherence interference. This work addresses this issuewhile being scalable and e�cient.Garbage collection for persistent distributed shared memory systems borrows manyideas from the algorithms we have described. However, they must be extended toaccount for multiple replicas of objects. In addition, while in RPC-based systems thereis one partition per process, in such systems partitions and processes are orthogonal.The shared address space spans every process in a distributed system and it is in-herently large. Consequently, a scalable solution should be based in a partitioned modelof the address space. The solution in (Ferreira and Shapiro 1996, Ferreira 1996) ap-proximates a global trace with a series of non-synchronised, per partition, local traces.Each partition (a bunch) is collected independently at the process where it is cached.In addition, if a partition is replicated, each one of its replicas is also collected indepen-dently. Inter-partition garbage is collected using the reference listing protocol describedin section 3.4.4.The intra-partition collection does not compete with applications for coherent data,

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 76there is no synchronisation between collectors and mutators or between di�erent col-lectors, and the garbage collection messages are asynchronous and exchanged in thebackground. The price to pay for these features is some degree of conservativeness, andsome messages need to be delivered in causal order.In order to collect inter-partition cycles of garbage, this algorithm performs a groupcollection in partitions cached in the same processor. Here a group collection is simplerthan in (Lang et al. 1992) because this algorithm uses reference listing instead of ref-erence counting. In this way, references external to the group are easily determined bynot considering entry-items only reachable from inside the group as roots for the groupcollection. However, such groups may not contain all of a garbage cycle.3.7 Garbage Collection in Object-Oriented Database Man-agement SystemsGarbage collection in Object-Oriented Database Management systems borrows manyideas from the algorithms we have described. Usually they are extended to deal withthe speci�c safety problems posed by transactional systems. We survey here some ofthe work in the literature. However, we mainly focus on how high-level design decisions,such as partitioned v.s. non-partitioned garbage collection, a�ects garbage collection.The work on automatic garbage collection in these systems was mainly developedon a server-based basis for multiple client-single server architectures (Franklin et al.1989, Kolodner and Weihl 1993, Yong, Naughton and Yu 1994, Cook, Wolf and Zorn1994, Amsaleg, Franklin and Gruber 1995, Moss et al. 1996, Cook, Klauser, Wolf andZorn 1996). This is because here garbage collection takes the view that data residesmostly on secondary storage, with main memory being used as a temporary cachebu�er. They focus on garbage collection of persistent stores, which are the core ofObject-Oriented Database Management systems. The only work we know for multipleclient-multiple server architectures is (Maheshwari and Liskov 1994).The collector presented in (Kolodner and Weihl 1993) is an incremental copyingcollector and is correct in the presence of concurrency, concurrency control, and crashrecovery. This work was mainly concerned with devising correct algorithms, in the faceof concurrency and=or failures (Moss et al. 1996). This is a non-partitioned approach,

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 77thus, like other non-partitioned schemes, this collector makes random access to the heapand requires the traversal of the entire persistent address space in order to collect anygarbage.Other works were mainly concerned with e�ciency (Yong et al. 1994, Amsaleg et al.1995, Moss et al. 1996, Ng 1996, Maheshwari and Liskov 1997b). All of them approachthe garbage collection problem using a partitioned scheme. As in the algorithms de-scribed in this chapter, partitioned collection of a persistent store alone does not collectinter-partition cycles of garbage.(Yong et al. 1994) compared incremental copying, reference counting, and parti-tioned collection in Object-Oriented Database Management systems and found parti-tioned collection to perform the best. The partitioned scheme involves multiple clientsand a single server. It uses a remembered set for each partition that holds the identi�-cation of each object holding a reference to that partition. The remember set is createdand maintained by a write barrier. Every object in the remember set needs to be fetchedand scanned before tracing a partition.In contrast, the work in (Maheshwari and Liskov 1997b) provided an e�cient methodthat allows partitions to be collected independently. They remember the objects in thepartition that are referenced from other partitions in an entry-table. To keep track ofwhich partitions reference an object they use a scheme akin to the reference listing pro-tocol described in section 3.4.4. They also record information about outgoing referencesfrom a partition in an exit-table. Additionally they describe a global tracing scheme forcollecting inter-partitions cycles of garbage.PMOS by (Moss et al. 1996) is the persistent version of the DMOS described insection 3.5.4. They collect cycles of garbage and address e�cient maintainance ofinter-partition references. As noticed by (Maheshwari and Liskov 1997b), collectinga partition (a car) may involve accessing multiple target partitions.Work by (Cook et al. 1994) investigates heuristics for selecting a partition to collectwhen a garbage collection is necessary. Their results show that the partition selectionpolicy can signi�cantly a�ect application performance and proposed a new policy basedon the observation that when a pointer is overwritten, the object it pointed to is morelikely to become garbage.The garbage collection algorithm in Thor (Maheshwari and Liskov 1994) has been

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 78designed for a multiple client-multiple server architecture. Clients cache in memoryobjects that are being accessed. The complexity added to the algorithms above is thatthe persistent store is distributed, consequently, garbage collection of the persistentstore has to account for references in other servers. Also, clients may acquire referencesto servers through the fetching of objects in other servers.This algorithm is a fault-tolerant version of the reference listing scheme (recall sec-tion 3.4.4) that handles fetches of objects into clients and commits of transactions. Everyserver keeps entry-tables for clients | garbage collection between client and servers |and for other servers | garbage collection between servers.3.8 SummaryDistributed garbage collection poses a challenging problem: reclaiming all data struc-tures while achieving e�ciency, scalability, completeness, fault-tolerance and safety.Several proposals have been made to design a distributed garbage collection that ful�lsall these requirements. The great number of incomplete proposals reects the di�cultyof the problem.The most suitable algorithms are those based on reference counting. They can bemade fault-tolerant to message and process failures but they cannot reclaim cycles ofgarbage.The second family, tracing-based techniques, ensures better liveness but most ofthem make strong assumptions on the reliability of the network. They require all pro-cesses to co-operate in the distributed collection. Therefore, those techniques cannotprogress if a single process is crashed.The drawbacks of global tracing are not so severe if it only runs infrequently, andits responsibility is limited to collecting circular garbage. However, all processes mustbe up together for tracing to complete. This violates the desirable property that thecollection of a cycle not depend on processes other than those that contain the cy-cle. This drawback can be alleviated if the tracing is con�ned to a suspect subgraph.However existing solutions are either not fault-tolerant, or do not allow concurrency be-tween di�erent tracings, or do not provide methods to con�ne the sub-tracing to suspectobjects.

CHAPTER 3. DISTRIBUTED GARBAGE COLLECTION TECHNIQUES 79Another method to alleviate the drawbacks of global tracing is to trace within groups.The problem with group tracing is con�guring groups in order to collect inter-partitioncycles. Cycles may never be covered by any group and collection of larger cycles maydelay the collection of smaller ones.Migration schemes for collecting cyclic garbage have the locality property. Sincemigration is expensive it is important to use a good heuristic for �nding suspects.The distance heuristic alleviates unnecessary migration. However, some systems donot support migration due to security or autonomy constrains or due to heterogeneousarchitectures. Forced object migration may also result in load-imbalance.Recently, new techniques have been proposed: Back tracing, Train Collection, andCausal Dependencies (Timestamp Packet Distribution based). These techniques exhibitgood locality in collecting cycle garbage and look promising for distributed systems.However, real measurements would be necessary to know to what extent the messageand space overheads of the Train Collection technique and the Causal Dependenciestechnique are a problem.Back tracing is fault-tolerant, concurrent and scalable. However, how to controlmultiple back tracing in the same subgraph that could lead to repeated work is still anopen issue.

Chapter 4
A Cyclic Distributed GarbageCollector
In this chapter we describe a garbage collection technique for large address spaces thathas the potential to collect garbage cycles of objects e�ciently.In a RPC-based system, each process maintains its local address space as a partition(recall section 1.3). In this and the following chapters we will use process as synonymousfor partition. Our description is based on the partitioned model we provided in section3.1 and takes into account the mutator model described in section 1.3 for RPC-basedsystems.Our technique is designed to work with a partitioned solution for distributed garbagecollection: reference listing (recall section 3.4.4). In this chapter and the following onewe assume a safe reference listing protocol is provided. We augment the reference listingscheme with Partial Tracing (PT) in order to collect inter-process garbage cycles.A partial tracing is a tracing that only involves a subset of the processes in the sys-tem. This de�nition will be made clear in the next sections. This technique provides ane�cient, scalable and fault-tolerant solution for RPC-based systems and shows promisefor garbage collection of persistent stores. We want to provide completeness while notcompromising our primary goals of e�cient reclamation of local and distributed acyclicgarbage, low synchronisation overheads, avoidance of global synchronisation, and fault-tolerance. All these aspects raise interesting problems in terms of safety.As we have already pointed out, the challenge in collecting inter-process garbage80

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 81cycles is to preserve locality, that is, to involve only those processes containing thecycle. Our method belongs to the category of methods that approximate this property,in the sense that it relies on heuristics for identifying objects that may belong to agarbage cycle. A group of processes co-operates in the detection of garbage cycles.Group membership is determined by heuristics that improve inter-process garbage cyclecollection. Collection operates in three phases. First, it identi�es a subgraph suspect ofbeing a garbage cycle: subsequent e�orts are con�ned to this subgraph alone. This phasealso de�nes the group of processes that will collaborate to collect cycles. The secondphase determines whether objects of this subgraph are actually garbage. Finally, thelast phase makes those garbage objects discovered available for reclamation by localcollectors.This technique has the luxury of using techniques that are too costly if applied to allobjects or to uniprocessors, but are acceptable if applied only to a subset of distributedobjects we call suspects. More precisely, it may be seen as framework within which otherheuristics may be used.This chapter �rst presents an overview of our solution. Then, it describes our pri-mary goals and outlines some strategies, in the light of the overview, to meet them. Thefollowing sections describe in detail the di�erent phases of a partial tracing. First wegive a very simple description of the di�erent phases without considering termination.Then, we present the termination protocol. Finally, in section 4.6, we discuss heuristicsto discover suspect objects and to improve the algorithm's discrimination, and hence itse�ciency.4.1 General OverviewThe reference listing algorithm reclaims acyclic inter-process garbage. However, it isincomplete because does not collect inter-process garbage cycles. For example, considerthe inter-process cycle illustrated in �gure 11. It crosses processes A, B, C and D. Theentry-items for objects a, c, e and g are considered roots of A, B, C and D processes'local collection respectively. This condition does not allow the collection of exit-itemsreachable by the garbage objects. In this case, the corresponding entry-items' entry-listis never emptied by the reference listing protocol (recall section 3.4.4), that is, a cycle of

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 82
entry
table

exit
table

a

c

d

e

f

g

h

b

A

B

C

D

e:{B}
f:{B}

a:{D}

c:{A}
d:{A} h:{C,Root}

g
h

c
d

e
f

a

entry-list

X

x

g:{C}

Root

Root

Ei

Ex Ex
Ex

Ex
Ex

Ei Ei
EiEi

Ei
Ei

a

c
d

a

x

e
f

g

h

Ex
Ex

g

h

Ex
e

f

c

d

Figure 11: Inter-process Garbage Cyclegarbage is self-supporting with respect to reference listing (more precisely, with respectto every form of reference counting).Our scheme is based on the fact that an inter-process cycle of objects is garbage ifit is only reachable from global roots (recall section 3.1) internal to the cycle, that is,only from entry-items only reachable from exit-items on the cycle. Note entry-itemsEia, Eic, Eie and Eig in �gure 11. It �rst identi�es a distributed subgraph that may begarbage; secondly, it discovers whether members of this subgraph are actually garbageby determining if they are reachable from any global root external to the subgraph.Finally, it makes any garbage objects available for reclamation by local collectors.The distributed collector requires that each item in processes' entry and exit-tablehas a colour | red, green or white | and that initially all items are white. Red meansthat an item may be garbage; green means that we cannot conclude that an item isgarbage (although it may be). Entry-items also have a red-list of process names, akinto their entry-list.Partial tracing is initiated at suspect objects: objects suspected of belonging to adistributed garbage cycle. A new partial tracing may be initiated by any process notcurrently part of a tracing. There are several reasons for choosing to initiate such an

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 83activity: the process may be idle, a local collection may have reclaimed insu�cient space,the process may not have contributed to a distributed collection for a long time, or theprocess may simply choose to start a new distributed collection whenever it discovers asuspect object.The partial tracing operates in three phases:Mark-red phase We identify a red set of objects reachable from an object heuristicallysuspected of belonging to a garbage cycle, starting from the corresponding entry-item. This phase determines implicitly which global roots are reachable only fromthe suspect subgraph, and forms a group of processes that will collaborate in thesubsequent phases.Scan phase We try to isolate self-contained red subgraphs, that is, garbage cycles:the mark-red phase may lead to the discovery of entry-items in the suspect redsubgraph that are reachable from outside this subgraph. These items must beconsidered live1. We perform a group collection that aims at marking green anyred object reachable from outside the red subgraph, that is, red objects reachablefrom a non-red global root (recall that the global root set includes local roots ofeach process and process's entry-table). A group collection involves a local trace ineach process. However, to trace a group: (i) those red entry-items only reachablewithin the suspect subgraph are not considered as members of the local roots, and(ii) tracing continues across boundaries internal to the group, when red exit-itemsare marked green. The scan phase `rescues' any red object that may be live.Sweep phase Any objects remaining red are garbage. We make them available forcollection by the local collector.There is an important detail in the design of our system that concerns the reach-ability between entry and exit-items. A �rst approach invokes a trace from entry toexit-items every time reachability information is needed. In section 5.1 we show thatwe can always cache this information, and we describe a solution proposed in (Mahesh-wari and Liskov 1997a) that e�ciently computes the required information in chapter 8.1Although, they might be garbage.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 84The mark-red phase is able to use such information. However, the scan phase will stillperform a recursive trace until we introduce the concurrent model in section 6.4.2 Goals and Outline of SolutionsIn this section we describe the speci�c problems we want to solve and we outline ourcorresponding solutions. Our solution is directed at RPC-based systems, although itshows some potential for garbage collection of persistent stores. Our main goals arethen e�ciency, scalability and completeness, and fault-tolerance. In section 9.2.4 wedescribe a possible implementation in persistent stores.4.2.1 Scalability and CompletenessOur scheme combines reference listing (across process boundaries) with a subgraphtracing scheme. Reference listing does not collect inter-process cycles, thus it is notcomplete. However, it is scalable: it allows independent local garbage collection andonly involves processes containing objects suspected as garbage when collecting inter-process acyclic garbage. Partial tracing is also a scalable technique since it only involvesprocesses that may contain garbage objects and does not require the co-operation of allprocesses in the system.Ideally, a cyclic garbage collector would reclaim all cycles of garbage objects. Weclaim that our solution has the potential to reclaim all garbage cycles in a large addressspace without need for global synchronisation. Our solution provides some degree ofadaptability and can take advantage of heuristics to improve completeness, includinghints from the user program. However, as we show in the next chapter, our �rst systemdesign decision is to trade completeness for promptness.Collecting cycles by tracing within arbitrary groups may be a heavyweight mecha-nism in that it may never collect all cycles. Suppose there are disjoint cycles betweenpairs of sites A, B, C, and D. Then if A and B and C and D always pair up, cyclesbetween B and C will never be collected. The problem is more serious in a largernetwork. Our scheme has a �rst phase that de�nes which processes should be involvedin collecting cyclic garbage. Thus, we use heuristics to form groups opportunistically.Ideally, this heuristic would guarantee that B and C eventually would pair up.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 85
X

Cycle A Cycle B

y

z

Partial T racingFigure 12: Cycle DependencyThe key to this problem is to allow processes to co-operate, simultaneously butindependently, in the detection of garbage cycles. In the case of disjoint garbage cycles,and assuming that each one would be covered by a separate partial tracing, this wouldbe possible and would result in the independent collection of each one. For example, twoprocesses containing a two-process cycle may also contain part of a bigger cycle. Thosetwo processes may participate, independently and simultaneously, in the collection ofthe two cycles, without having to synchronise to organise the collection of each di�erentcycle.Moreover, by allowing each partial tracing to work independently and to use pri-vate information, di�erent partial tracings may operate on the same cycle (this will beexplained in section 5.1) and then co-operate in the collection of that cycle.Some problems may also arise concerning shape of cycles of garbage. Cycles mayreference other cycles, possibly of di�erent dimensions (number of edges and objects).Depending on the chosen suspects, collection of one cycle may either delay or abortcollection of other one. This is because the mark-red phase may not trace a wholeset of connected garbage objects. Delays may be acceptable assuming cyclic garbagespanning processes is generated slowly. In its turn, aborted collections lead to ine�ectiveand wasted work.Consider �gure 12. It represents a graph formed by two cycles A and B. Forsimplicity, each circle represents an object and each object is allocated to a di�erentprocess. We call A and B connected cycles. Cycle B is dependent on cycle A, becausecycle B is reachable from cycle A, even if cycle A is garbage. X's liveness dependson information from cycle A. The partial tracing shown in the �gure will fail without

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 86A's cooperation. This cooperation may be through the reference listing scheme orthrough a partial tracing on A. One the other hand, cycle A may be collected withoutcooperation of processes containing cycle B. Objects on cycle A are not accessible fromobjects on cycle B, thus their liveness may be determined without cooperation of cycleB. However, a partial tracing initiated by any process containing cycle A may involvecycle B as well. In this case, all the represented processes would form a group andco-operate in the simultaneous collection of cycle A and B.A slightly di�erent problem arises from the fact that, z and y, being suspects ofthe same cycle, may initiate two di�erent partial tracings on the same cycle. Althoughthey are allowed to co-operate, the di�erent phases of each partial tracing might not besynchronised, thus preventing the collection of cycle A. These restrictions make evenmore di�cult the selection of suspect objects.We accept that our solution trades completeness for promptness. However, we allowco-operation of di�erent partial tracings and mark-red phases to provide some degreeof adaptability in the way that our system may decide when to stop mark-red, andpossibly restart another partial tracing, based on some heuristics or hints from the userprogram. We may also require the synchronisation of the begining of scan phase of eachco-operative partial tracing. These avenues are better discuss in section 9.1.4.2.2 E�ciencyAs stated in section 1.4, e�ciency is concerned with mutator overheads and collectorpromptness. There are two fundamentals di�culties concerning the mutator overheadof tracing partitioned schemes. First, how are low synchronisation overheads to beensured, in order to be unnoticed by the user independently of the size of the addressspace, and second, how to avoid the need for global barriers.To achieve the �rst goal, our scheme runs concurrently and asynchronously with themutator. To achieve the second, our scheme reduces the need for synchronisation withthe mutator in two ways. Firstly, it only requires mutator cooperation when accessingremote objects, i.e, in the concurrent model, local mutator activity does not incur in anyadditional overhead to ensure safety. Synchronising action is associated only with newinter-process reference creation, and invocation of remote methods. Action is neededonly if a new inter-process reference to a red object is created and whenever any remote

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 87method is invoked. However, as we describe, these control actions are very cheap.Secondly, once red objects are suspected of being garbage, the probability of their beingmutated or new inter-process references to them being created is small. Clearly, thebetter the heuristic for identifying suspect objects the lower these overheads are.Our scheme achieves promptness in two ways. First, it does not compromise thereclamation of local and acyclic distributed garbage. Second, it approximates the prop-erty of locality: the �rst phase uses a strong heuristic to de�ne suspect subgraphs andthose processes that should co-operate in subsequent e�orts. This improves the prob-ability of success | reclaiming garbage | for the subgraph tracing, and reduces theneed for global synchronisation.4.2.3 Fault-toleranceA garbage collection scheme should be safe and complete in the presence of failures.In this thesis we assume fail-stop process semantics and accept communication failuresand=or delays. Whenever a process fails, all contained objects are inaccessible.As we described in section 3, inter-process reference listing is fault-tolerant in thesense that the detection of distributed garbage needs the cooperation of only thoseprocesses that the garbage was reachable from. Thus, if a processor is temporarilyunavailable, or otherwise slow in doing local collection, it will prevent the collection ofonly the garbage that is reachable from its objects.Our scheme approximates this feature: the collection of a garbage cycle is likely toonly require the cooperation of processes that contain the garbage cycle. In this way,our system allows garbage to be collected despite unavailability of parts of the system.Idempotent remote operation and a system of acknowledgements, between the pro-cesses involved in the partial tracing, are the basis of our fault-tolerant scheme withrespect to messages failures. We deal with lost, duplicated and out of order messages.4.3 Mark-red PhaseThe aim of the mark-red phase is to trace from an object suspected of being garbage,thereby de�ning an inter-process subgraph of objects that may be a garbage cycle. Thekey insight behind this idea is to alleviate the drawbacks of global tracing by con�ning

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 88the e�orts of tracing to a subset of the address space, approximating the property oflocality.The mark-red phase only identi�es objects suspect of being garbage. An entry-itemcorresponding to a suspect object is marked red. Entry and exit-items traced from thissuspect entry-item are also suspected of forming an inter-process cycle of garbage, andhence marked red. At the end of mark-red phase the set of red items may be a supersetof the set of garbage items, that is, some red items may be referenced by referencesexternal to the cycle and hence may be live. This condition will be discovered by thescan phase.In the following sections we describe the basic techniques for conducting the mark-red phase. For the moment we ignore concurrency, scalability and fault-tolerance. Weinclude an example for illustrating this phase and present the algorithm.4.3.1 Mark Steps and Red-listA initiator process | the process initiating the partial tracing | chooses a suspectobject and marks red the corresponding entry-item. The mark-red phase is a tracingtechnique. Traced entry and exit-items are coloured red. It takes two kinds of step:Local-step that goes from reddened entry-items to exit-items reachable from them inthe same process. Exit-items are reddened if not already red. For the present,local objects are traced recursively in order to reach exit-items. Local tracedobjects are marked red to allow termination of local steps.All reddened exit-items execute a remote-step.Remote-step that goes from reddened exit-items to the corresponding entry-items onthe target process. We call a remote step a mark-red request. Entry-items arereddened if not already red, and the source process is inserted in the red-list ofthe target entry-item. The red-list records which references are internal to thered closure by using the identi�er of the remote process (akin to the reference listprotocol). The red-list for an entry-item Eix contains those processes that have ared exit-item Exx. The formal de�nition of red-list is:

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 89
a

c

d

e

f

g

h

R

b R

A

B

C

D

h:{C,Root}

d

d:{A}
entry
table

f:{B}

exit
table f

h

entry-list red-list
c:{A}

e:{B}

g

a

g:{C}

c

a:{D}

e

{A}

{B}

{D}

{C}
{C}

Figure 13: Mark-red phase identi�es a subgraph suspect of being garbageDe�nition 4.1Eix:red-list =fp 2 processes : Exx 2 exit-table(p) ^ colour(Exx) = redgAll reddened entry-items execute a local-step.The mark-red phase consists of taking local and remote-steps alternately. Consider�gure 11 on page 82. Assume the suspect object is a in process A. For the present,let us consider an object to be suspect if it is not referenced locally, other than as anentry-item. A mark-red trace will start at entry-item Eia and will take a local stepto exit-item Exc. From there, it will generate a mark-red request to entry-item Eic inprocess B and so on.The result of the mark-red phase is illustrated in �gure 13. Shaded objects andshaded entry and exit-items denote red items. White denotes white items. Notethat object f in process C is not garbage although it has been marked red, as has thecorresponding entry-item: its liveness will be detected by the scan phase.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 904.3.2 Mark-red AlgorithmThe local and remote-steps described in section 4.3.1 are implemented by the algorithmbelow. A local-step (mark-red) generates a remote-step | mark-red request | for eachred exit-item. The mark-red request is sent to the corresponding entry-item. In its turn,every mark-red request received (handle-marked-request) generates a local-step.mark-red(entry-item Ei x) =if colour(Ei x) not redcolour(Ei x) = redfor exit-item Ex y in local-transitive-closure(Ei x) doif colour(Ex y) not red thencolour(Ex y) = redsend-markred-request(thisprocess,Ei y)endhandle-markred-request(process P, entry-item Ei y) =entry-table[Ei y].red-list = entry-table[Ei y].red-list [fPgmark-red(Ei y)endUntil now, we ignored the problem of distributed termination detection. To de-tect it, we use a scheme based on acknowledgements (not shown in the pseudo-codeabove) (Dijkstra and Scholten 1980): every mark-red-request generated waits for anacknowledgement. When the process that initiated the partial tracing has received ac-knowledgements for all mark-red request it has sent, the mark-red phase has terminated.It then reports to all processes reached during this phase, called the participants, thebegining of the next phase. To allow the initiator to determine the set of participants,each participant appends its identi�er to the acknowledgement of a mark-red request.This acknowledgement system will be explained in more detail in section 4.5.4.4 Scan and Sweep PhaseThe scan phase aims to isolate red cycles of garbage by colouring any red accessibleobject green to prevent it from being reclaimed. In this section we describe the basictechnique for conducting the scan phase. It ignores mutator concurrency, scalability

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 91and fault-tolerance. We include an example illustrating this phase and present thealgorithm.4.4.1 Scan StepsThe scan phase is performed concurrently on each participant. In each participant, �rstwe determine the members of the global root set that are not members of the suspectsubgraph. We will call them the local-scan-root-set. The local-scan-root-set does notinclude any entry-items that may be internal to the red sub-graph. Red entry-itemswhose entry and red-lists are equal are directly reachable only from the red sub-graph,and are kept red. Red entry-items whose entry and red-lists di�er must be accessiblefrom outside the suspect sub-graph, and so are marked green. We give the followingde�nition:De�nition 4.2 local-scan-root-set is a set, in each participant, consisting of the localroots, non-red entry-items and red entry-items whose entry and red-lists di�er.As for mark-red, the scan phase is a tracing technique. Traced entry and exit-itemsare marked green. It takes three kinds of step:Initial-step Mark green any red entry-item in the local-scan-root-set. Mark green anyred exit-item that is reachable from the local-scan-root-set. For the present, tracedlocal objects are coloured green to allow termination of local steps (akin to themark-red phase).All greened exit-items execute a remote-step.Remote-step Propagate the green colour from greened exit-items to the correspondingentry-item in the target process. Mark green the entry-item if red. We call aremote step a scan request.All greened entry-items execute a local-step.Local-step Propagate the green colour from greened entry-items to those locally reach-able exit-items. Mark green the exit-items if red. For the present, local objectsare traced recursively in order to reach exit-items. Traced local objects are alsomarked green to allow termination of local steps.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 92
a

c

d

e

f

g

h

R

b R

A

B

C

D

h:{C,Root}

d

d:{A}
entry
table

f:{B}

exit
table f

h

entry-list red-list
c:{A}

e:{B}

g

a

g:{C}

c

a:{D}

e

{A}

{B}

{D}

{C}
{C}

Figure 14: Scan phase `rescues' any red objects that may be liveAll greened exit-items execute a remote-step.The scan phase consists of taking an initial-step in each participant followed byalternate remote and local steps, until all potentially live red objects have been markedgreen. Continuing our example, each process performs an initial-step. For that, itdetermines the local-scan-root-set. Entry-item Eif is not red, so is marked green andbecomes a member of the local-scan-root-set. Object f and exit-item Exh are markedgreen by process C's initial-step. A remote-step from Exh marks green Eih in processD, which becomes a root for a local-step. h is marked green by the local-step. Figure14 illustrates the situation at the end of the scan phase. Darker grey objects and itemsrepresent green ones. Red objects are ready for collection through the sweep phase.4.4.2 Scan AlgorithmThe initial, remote and local-steps described above are shown below. Initial-step (main-scan) and local-step (scan) generate a remote step | scan request | for each exit-itemmarked green, and a request is sent to the corresponding entry-item. In its turn, everyscan request received (handle-scan-request) will generate a local-step.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 93main-scan() =for Ei y in local-scan-root-setif colour(Ex y) is red thencolour(Ei y) = greenfor exit-item Ex y intransitive-closure(local-scan-root-set) doif colour(Ex y) is red thencolour(Ex y) = greensend-scan-request(Ei y)endhandle-scan-request(entry-item Ei y) =scan(Ei y)endscan(entry-item Ei x) =if colour(Ei x) is redcolour(Ei x) = greenfor exit-item Ex y in local-transitive-closure(Ei x) doif colour(Ex y) is red thencolour(Ex y) = greensend-scan-request(Ei y)endEach participant detects termination of the distributed computation generated byits initial-step using the same scheme we introduced for the mark-red phase. However,in order to proceed to the next phase, each participant has to detect that all participantshave terminated. We describe a solution in section 4.5: group termination is detectedby the process that initiated the partial tracing | the Initiator.4.4.3 Sweep PhaseAt the end of the scan phase, any remaining red entry-items must be part of inaccessiblesub-graphs, and can thus be safely reclaimed.The sweep phase is performed in each participant independently. Our scheme isdesigned not to interfere with the reference listing scheme, which is responsible for thecollection of entry and exit-items (recall section 3.4.4). Such red entry-items are not

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 94removed immediately in order to maintain referential integrity between exit and entry-items. Thus, we keep the red entry and exit-items. However, in the next local collection,red entry-items corresponding to a �nished (scan phase) partial tracing will not be usedas roots in the local collection. Consequently, objects belonging to the garbage cycle willbe collected the next time the containing processes do a local collection. Additionally,the sweep phase resets the colour of green items to white.When red exit-items are deleted, the corresponding entry-list is updated by thereference list scheme. When the entry-list is empty, the entry-item may then be removed.4.5 TerminationIn this section we will address the problem of termination detection. We will de�nethe distributed termination detection problem, present a solution initially proposed by(Augusteijn 1987), and describe a report phase for both mark-red and scan phase. Forthe present, we do not consider concurrency, scalability or fault-tolerance. In chapter 5we present variants of our solution which cope with the advanced features of our system.4.5.1 Distributed Termination ProtocolA partial tracing is a multi-phase algorithm. It needs to determine the end of each phasein order to progress from one phase to the following one, namely, from mark-red to scanand from scan to sweep. This requires some kind of synchronisation between processesco-operating in a given partial tracing. This need for synchronisation is much lessrestrictive than the need for synchronisation in global tracing solutions: it only involvesprocesses involved in a partial tracing; this approximates the property of locality.In a distributed system where processes communicate only via messages, in generalno process has a consistent and up-to-date view of the global state. As a result, it isdi�cult to decide whether or not the global state is one in which a distributed compu-tation has terminated. This is particularly true in our context, where some processesmay have �nished their local steps, while others are still working. New remote steps(mark requests2) may be generated and result in new local steps. As a consequence,`�nished' processes may later have to compute local steps again.2We will use the notation mark requests to refer to both mark-red requests and scan-requests

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 95However, termination is a locally stable property. Locally stable properties are thosefor which once the property becomes true, the state of the processes over which theproperty holds do not change with respect to the property, i.e., the property neverbecomes false again (Marzullo and Sabel 1994).Returning to our problem, it is not possible for a process to decide whether it willlater generate new mark requests. Therefore, it is always assumed that for each processa local condition of stability exists (Tel and Mattern 1993). When this condition holds,no local steps will be generated by the process, and no initiative of the process itselfwill falsify the condition of stability. It now follows that if a global state is reached inwhich that condition of stability is satis�ed, simultaneously, in every process and nomark requests are in transit, the computation is terminated.Several classes of solutions to the termination detection problem are known. (Teland Mattern 1993) identi�ed those based on probes (Dijkstra, Feijen and van Gasteren1983) and those based on acknowledgements (Dijkstra and Scholten 1980) as the mostimportant ones. We adopt an acknowledgement based approach because it deals withmark requests in transit. Additionally, our system is opportunistic | it identi�es dy-namically a suspect subgraph and those processes that will co-operate in collectingdistributed garbage. Consequently, we have chosen an acknowledgement based termi-nation detection protocol that does not require the processes involved to be known apriori. This is one of the features of our scheme that make it scalable. Our mark-redphase detects on-the-y processes that will co-operate in the partial tracing.In order to de�ne the required condition of stability, we �rst describe some require-ments of our system. We require every mark request to be acknowledged. We introducethe notation grey-marked3 to identify exit-items that have generated mark requestswhich have not yet been acknowledged. Those exit-items are inserted in a grey-set. Itis required that whenever a process acknowledges a mark-request it identi�es the exit-item. To achieve this, whenever a process receives a mark request it inserts the sourceexit-item in a reply-set. Grey-set and reply-set are de�ned below. Intuitively, we caninfer that if no process has local steps to perform and all grey-sets are empty, then thedistributed computation is �nished.3grey-marked actually means grey-red-marked or grey-green-marked depending on which phase weare in.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 96Following (Augusteijn 1987) we introduce three possible states for a process: active-disquiet, passive-disquiet, or passive-quiet. We additionally introduce a new state, Inac-tive, to model the situation when a process, not yet participating in a phase, receives amark request. We also introduce a process condition to describe when a process may,by itself, generate mark requests in respect to a instantiation of a phase:a dynamic process may generate mark requests by itself; it may also generate markrequests as a consequence of receiving mark requests from other processes;a non-dynamic process only generates mark requests as a consequence of receivingmark requests from other processes.Initially every process is inactive. It may participate in a phase by receiving a< start-phase > event or by receiving a mark request. An inactive process receivinga < start-phase > message enters the phase and its state turns to active-disquiet. Aninactive process receiving a mark request turns to:� active-disquiet if it is a dynamic process. When it has no more local steps toperform and its grey-set is empty, it changes to passive-quiet. If it is subsequentlyreactivated by receiving mark-requests, it switches to passive-disquiet and thenreverts back to passive-quiet when it has performed all its local steps and itsgrey-set is again empty.� passive-disquiet if it is a non-dynamic process. When it has no more local stepsto perform and its grey-set is empty, it changes to passive-quiet.Thus, it is clear that once a process has become passive it remains so.The state transaction diagram for each phase is illustrated in �gure 15. The eventsillustrated in the �gure are summarised in �gure 16 on page 99.When a disquiet process receives a mark request it sends the acknowledgement im-mediately, but when the receiver is quiet it becomes disquiet and it delays the acknowl-edgement until it becomes quiet again. In this case, from the receiver's point of view,the process sending the mark request is responsible for any further mark requests, i.e, itis the process responsible for detecting the termination of computing activity generatedby such requests. We call it the]em parent. In its turn, the sending process must

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 97
b, c, d, e

Active
Disquiet

Inactive
a,i

Passive
Disquiet

Passive
Quiet

b, c, d, e

fj

g

h

a .. j: EventsFigure 15: State transition diagram for termination detection.be a disquiet process because it has not received all the acknowledgements for everymark request it has generated. It may have a process responsible for it or it maybe theresponsible process itself, if it has initiated the phase, that is, if it is an active-disquietprocess. Clearly a process may be switched from quiet to disquiet a number of timesbefore termination is detected, and on each occasion it may have a di�erent processresponsible for it. Given that only a disquiet process may send a mark request, thisscheme ensures that, if any process is disquiet, there is at least one process which isactive-disquiet.The stability condition that must be satis�ed simultaneously in every process X isthus: X is not active-disquiet;We now de�ne formally the events that model the two phases and the terminationprotocol. The local state of a process pi with respect to termination is de�ned by thefollowing state variables:� pi:condition 2 fdynamic;non-dynamicg.� pi:state 2 finactive; active-disquiet; passive-quiet; passive-disquietg.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 98� pi:grey-set: Set of exit-item; grey-set = ; i� all acknowledgements have beenreceived; an exit-item recorded in grey-set represents an unacknowledged request.� pi:local-steps: Integer; local-steps = 0 i� there are no local steps to perform.� pi:reply-set: Set of exit-item; an exit-item recorded in reply-set represents theexit-item to be acknowledged.� pi:parent 2 fself; other;noneg.{ self : pi is responsible for mark requests it has generated;{ other(pj) : there is pj(i 6= j) such that pj has sent a mark request to pi andpi has not yet acknowledged such request;{ none : pi is passive-quiet.Before de�ning the invariant that must hold in each state in order to detect termi-nation, we �rst make the following de�nition:De�nition 4.3 The relation Ancestor(pj ; pi) holds for two processes pj and pi if andonly if pi:parent = pj.Now, consider Ancestor� as the reexive transitive closure of relation Ancestor, thatis Ancestor�(pj ; pi) holds if and only if one of the following holds:� Ancestor(pj; pi)� or there is pk such that Ancestor(pk; pi) and Ancestor�(pj ; pk);Invariant 4.4 then holds:Invariant 4.48pi � pi:state = passive-disquiet)9pj:(i 6= j) ^Ancestor�(pj ; pi) ^ pj:state = active-disquietThis invariant means that if there is a passive-disquiet process (and hence termina-tion is not achieved) there must be an active-disquiet process. From this it follows thatif no process is active-disquiet, the phase has terminated.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 99
Event Actiona start-phase � initialise local-steps� parent = self� state = active-disquietb send mark request(exit-item) � grey-set = grey-set [fexit-itemgc receive mark request(exit-item) � local-steps ++from process p � send acknowledgement(exit-item)to pd receive acknowledgement(exit-item) � grey-set = grey-set n fexit-itemge perform local step � local-steps ��f grey-set = ; ^ local-steps = 0 � parent = none� state = passive-quietg receive mark request(exit-item) � local-steps ++from process p � parent = other(p)� reply-set = reply-set [exit-item� state = passive-disquieth grey-set = ; ^ local-steps = 0 � for exit-item in reply-set sendacknowledgement(exit-item)to parent� parent = none� state = passive-quieti receive mark request(exit-item) � initialise local-stepsfrom process p ^ dynamic � set parent = self� send acknowledgement(exit-item)to p� state = active-disquietj receive mark request(exit-item) � local-steps = 1from process p ^ non-dynamic � parent = other(p)� reply-set = reply-set [exit-item� state = passive-disquietFigure 16: State changes for termination detection

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 1004.5.2 Report phaseWe have presented a solution that allows a process initiating a distributed computationto detect termination of such computation. Next we complete our distributed termina-tion protocol describing a report phase for both mark-red and scan phases.Mark-redThe mark-red phase is initiated by a single process, hence in a mark-red phase instan-tiation there is only one dynamic process and consequently there is only one active-disquiet process. As soon as the initiating process turns to passive-quiet, the mark-redphase is complete. Processes join the mark-red phase when they receive a mark-redrequest. These processes are non-dynamic because they do not generate mark-redrequests on their own account. Consequently their �rst state transition is to passive-disquiet.In order to proceed to the scan phase, the initiator needs to report the end ofthe mark-red phase to processes that were involved in it | the participants. For theinitiator to know the group of participants, each participant appends its identity, andthe identity of those processes to which it has sent requests, to the acknowledgementof a mark-request. This feature is the key to our opportunistic scheme for identifyingthe suspect subgraph dynamically. Initially, it is not necessary to know which processeswill be involved in a partial tracing. Consequently, our system guarantees that onlyprocesses involved in a partial tracing will co-operate in garbage cycle collection. Thisapproximates the property of locality.ScanThe scan phase starts concurrently in each process holding a part of the suspect sub-graph (recall section 4.4). In this case, all participants are dynamic because theywill generate mark-green requests independently through the local initial-step. Conse-quently, all participants will be active-disquiet at the begining of this phase.A process will turn to active-disquiet when it receives the report message from theInitiator. However, a process may receive a scan request from another process that hasalready entered the scan phase, without having received the report message itself. In

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 101this case, it will enter the scan phase and become active-disquiet.Following our termination protocol, each participant may enter the sweep phasewhen it knows that every participant has changed to passive-quiet. The protocol requiresevery participant to inform the initiator process when it changes from active-disquiet topassive-quiet. In its turn, the initiator process will inform the participants of the end ofscan phase after having received the state change information from all the participantsand after it has changed from active-disquiet to passive-quiet itself.4.6 HeuristicsThe basic partial tracing algorithm we have described in the last three sections presentstwo potential challenges in order to provide e�ciency, scalability and promptness:1. Which objects should be suspects? Suspects should be chosen with care both tomaximise the amount of garbage reclaimed and to minimise redundant computa-tion or communication.2. What should be the extent of mark-red? Limiting the extent of mark-red to justgarbage items would make our algorithm preserve the property of locality andimprove promptness.4.6.1 Heuristics for Suspect ObjectsThe global cost of our algorithm depends on how frequently it is run. In particular,acyclic garbage will be collected by the acyclic collector, so the greater the delay, themore likely that acyclic garbage will have collected itself. Also, repeated and wastedwork would be minimised if our algorithm did not work on live objects.Until now we have adopted the Locally Reachable heuristic. But, as we have alreadysaid, this heuristic is very simplistic and may lead to undesirable wasted and repeatedwork. It may repeatedly identify an object as a suspect even though it is reachablefrom a remote root. Rather, our algorithm should be seen as a framework: any betterheuristic could be used.Heuristics for �nding objects determine on what extent our algorithm approximatesthe property of locality. The closer we approximate this property, the better the prob-ability of only triggering a distributed garbage collection on garbage objects. In this

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 102way we reduce the frequency with which our algorithm is run and reduce the overheadof a particular partial tracing by minimising the number of scan requests. We alsobene�t from the fact that mutators do not work on garbage objects, hence reducing thesynchronisation actions overhead.The distance heuristic described in section 3.5 is suitable for �nding suspect objects,because it allows the identi�cation of objects belonging to a garbage cycle with a highprobability of being correct. This increases the probability of a partial tracing workingin a garbage subgraph. Simpler heuristics may be used in conjunction with the \Gen-erational Heuristic" (Rodriguez-Riviera and Russo 1997). Instead of starting a partialtracing every time an object is found suspect, we start only at those suspect objectsthat have not been subject to a distributed collection recently. This reduces the numberof times the algorithm is run.We may also locally decide between grouping the suspect objects in one partialtracing and tracing independently from each suspect object. At �rst sight, the secondchoice would provide better promptness because it would involve a smaller group ofprocesses and objects. However, with the current solution, the collection of a garbagecycle would be compromised if di�erent suspects in the same cycle start an independentcollection.In section 9.1 we analyse the cost of our algorithm.4.6.2 How far to go?The mark-red trace may include more processes than necessary because a garbage cyclemay point to chains of garbage or live objects. Hence, a practical requirement on themark-red phase is to limit its spread to suspect objects. In this way, we may avoid amark-red trace from spreading to live objects by using the same heuristic that chosesuspect objects. This restricts the number of red objects that might to be rescued bythe scan phase. Recall �gure 13 on page 89. Note that object h in process D is locallyreachable, hence live. Based on this information, the mark-red trace should terminateat Eih: the represented garbage cycle points to a chain of live objects.The aim of the mark-red phase is to mark red a subgraph suspected of belonging toa garbage cycle. It does not make any decision about objects' liveness. Consequently,the red subgraph need not include the whole set of garbage objects. It su�ces that

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 103the red subgraph includes only a subset of the set of garbage objects su�cient to makeprogress| i.e. a conservative approximation4. Indeed, early termination of this phasetrades conservatism (tolerance of oating garbage) for expediency, and bounds on thesize of the graph traced, and hence, as before, on the cost of the trace.This policy decision can be taken statically by prior negotiation or dynamically bymark-red. It may be determined by the collector itself or by the user program, globallyor on a per-process or even per-object basis. Heuristics based on geography, processidentity, distance from the suspect originating the collection, minimum distance fromany object known to be live, or time constraints may be used to restrict the extent ofmark-red.In section 9.1 we make a qualitative analysis of our algorithm based on which heuris-tics are chosen for suspect identi�cation and mark-red phase extent.4.7 SummaryWe have described a basic algorithm for garbage collection on distributed large addressspaces that is scalable, e�cient and fault-tolerant, albeit not complete.It combines the reference listing scheme with an incremental, three-phase, partialtracing to reclaim distributed garbage cycles. Our algorithm operates in three-phases.The �rst, mark-red, phase identi�es a distributed subgraph that may be garbage, towhich subsequent e�orts are con�ned. The mark-red phase also dynamically identi�esgroups of processes that will collaborate to reclaim cyclic distributed garbage. Thesecond, scan, phase determines whether members of this subgraph are actually garbage.Finally the sweep phase makes any garbage objects available for reclamation by localcollectors.Fault-tolerance and e�ciency are achieved by requiring the co-operation of onlythose processes forming the group: progress can be made even if other processes in thesystem fail. Global synchronisation is avoided by partitioning the distributed systeminto groups, with multiple groups simultaneously but independently active for garbagecollection: communication is only necessary between members of the group.4Equally it does not matter if we mark too much.

CHAPTER 4. A CYCLIC DISTRIBUTED GARBAGE COLLECTOR 104Moreover, two kind of heuristics are de�ned, whose goals are to improve the algo-rithm's discrimination and hence its e�ciency: heuristics for suspect identi�cation thattry to maximise the amount of garbage reclaimed and to minimise redundant computa-tion or communication; and heuristics for the extent of mark-red that try to approximatethe property of locality and improve promptness.

Chapter 5
A Scalable Cyclic GarbageCollector
In this chapter we identify some de�ciencies of the solution presented in the previouschapter. We give a detailed description of techniques for improve scalability. Thereare two aspects of concurrency: collector/collector and mutator/collector concurrency.The �rst is concerned with scalability and the second with e�ciency. We address thescalability aspect in this chapter and leave mutator/collector concurrency to the nextchapter.5.1 ScalabilityAs we have already stated in section 4.2.1, the property of locality is the key to scal-ability. Whether our solution approximates this property depends primarily on theheuristic for �nding suspect objects. More accurate heuristics give better approxima-tions as we explained in section 4.6. However, the solution we have presented in theprevious chapter has de�ciencies in scalability and completeness in large address spaces.In practice, in a large address space, there will be multiple suspect entry-items, whichmay generate numerous concurrent and=or overlapping partial tracings, i.e., severalpartial tracings may be triggered concurrently at the same or di�erent processes and=ormultiple partial tracings may be active on entry-items in the same cycle.Until now we have ignored concurrency between di�erent partial tracings. A �rstsolution might require a partial tracing to retreat when it meets a di�erent partial105

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 106
A

B

a

b

c

d

e

PT
PT

C
a

e

Figure 17: Multiple Partial Tracingstracing or involves a process already participating in a di�erent partial tracing. Thiswill not achieve the completeness goals we presented in section 4.2.1:� Retreating introduces the problem of live-lock: di�erent partial tracings may in-de�nitely interrupt or restart, but never complete, preventing the collection ofcyclic garbage.� The collection of disjoint cycles is compromised. The collection of a larger cyclemay delay the collection of small cycles spread across the same processes.These two situations are shown in �gure 17. Cycle (a ! b ! : : : ! e ! a)would not be collected if partial tracings a and e start and retreat inde�nitely. Also,collection of the cycle (c ! d ! c) could be delayed until the end of the larger cyclecollection. In section 5.3 we will describe techniques for allowing partial tracings to co-operate in the collection of overlapping cycles. It will be shown in the next sections thatour solution does not always ensure completeness. However, although our �rst designchoice is to trade completeness for promptness, our solution does have the potential tobe complete at the cost of stronger synchronisation (see section 9.1).Recall the two problems arising from dependent cycles introduced in section 4.2.1.Concurrency of partial tracings is directly related to completeness: concurrent andindependent partial tracings could co-operate in the collection of cycles A and B in

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 107�gure 12 on page 85. Moreover, ideally a partial tracing should succeed independentlyof garbage cycles' dependencies.We would bene�t from a solution allowing disjoint partial tracings to proceed inde-pendently, ignoring events associated with a partial tracing with a di�erent identi�er.In this case, the mark-red phase would produce disjoint red closures. For example, thegarbage cycle (c ! d ! c) in �gure 17 could be collected independently from thelarger one.A di�erent situation arises if di�erent partial tracings are simultaneously active inthe same suspect cycle, or in connected cycles. This means that they would eventuallymeet in an entry or exit-item, and interfere with each other. Consider �gure 17. PTa andPTe are simultaneously active in the same suspect cycle. PTa eventually reaches entry-item Eie and PTe eventually reaches entry-item Eia (entry items are not representedin the �gure for simplicity). In this situation, as we have already said, live-lock mustbe avoided, hence any retreat should be avoided.We o�er two solutions for partial tracings that may overlap:Overlapping partial tracings The di�erent partial tracings are allowed to proceedconcurrently and independently in every element of the suspect subgraph. Eachpartial tracing would ignore any another. In e�ect, the partial tracings retaintheir own identity but overlap.Co-operative partial tracings Overlapping partial tracings are allowed to proceedand co-operate in collection of garbage cycles. A partial tracing working in a partof such a subgraph may contribute to partial tracings working in other parts of thesame subgraph. The result may be seen as the union of every partial tracing activein the same subgraph. However, this would mean that every partial tracing's phasetermination would be dependent on other partial tracings's phase termination andevery event of each partial tracing would contribute in some way to an event ofthe other partial tracing.A solution for overlapping partial tracings would be essentially the same as presentedin the last chapter. This requires that the partial tracings do not share any state (thecolour and red-list information held in the entry and exit-tables). This could be achieved

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 108
entry
table

exit
table

A

C

D

e:{B}
f:{B}

a:{D}

c:{A}
d:{A}

g:{C}
h:{C,Root}

g
h

c
d

e
f

a

entry-list

x

B
Root

Root
b

h

Figure 18: Entry-item=Exit-item reachabilityby maintaining a copy of this state information for each partial tracing, and have allgarbage collection messages signed with the identity of their partial tracing. The obviousdrawback is that, while it is scalable and complete, it is neither time- nor space-e�cientas it leads to repeated work.Let us concentrate on the solution based on co-operative work. First we describe thetarget graph for partial tracings in section 5.2; our aim is to implement e�cient mark-redand scan local and remote steps, and scan initial steps, and to decrease space overhead.Then we describe a solution that accounts for multiple partial tracings; we de�ne mark-red and scan phase' steps, the information that is necessary for each partial tracingto proceed when there is some co-operation between partial tracings, and how thatinformation is built during a run. We also describe the new conditions for terminationand how they are achieved by every co-operative partial tracing | the report phase.5.2 Cut-references GraphMultiple overlapping partial tracings require every object traced to be signed with theidenti�er of the partial tracing it is involved with, and coloured. This would lead to aconsiderable space overhead. As we mentioned in section 4.1, we can always determine

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 109reachability between entry and exit-items. We illustrate this idea, with respect to the�gure 11 on page 82, in �gure 18: the entry and exit-items of each site taken togetherform a distributed graph that we name the cut-references graph; every entry and exit-item becomes a vertex of this graph. Every outgoing path from an entry-item, whichreaches an exit-item (via some local objects), becomes a single edge in the same graph((Maheshwari and Liskov 1997a)). A remote edge is represented by the correspondenceentry-item/exit-item, for example exit-item(c)/entry-item(c). Notice that we are onlyinterested in suspect items, so we just require such information for those items. Inthis �gure we show the cut-references of suspect items. The cut-reference graph isconnected to the ordinary graph through ordinary references. For example, entry-itemEid is reachable from the local root at process A. Inter-process garbage collection cantherefore be described as performing garbage collection of the cut-references graph. Iftwo partial tracings are to overlap, they will will encounter each other in a commonentry or exit-item.Now, multiple partial tracings only require entry and exit-items to be signed andcoloured. We bene�t because both less space is needed and because local steps arecheaper, as explained later (this solution will introduce more constraints on dealingwith mutator concurrency as we will show in section 6).We now describe the computation of the cut-references graph. For now we considersuspect items to be de�ned by the Local reachability heuristic. Notice that, indepen-dently of which heuristic we use, a necessary condition is that those suspect objectsare not locally reachable. A better heuristic would only reduce the number of suspectitems. The requirement that suspect entry and exit-items must not be locally reachablestill holds.The computation of the cut-reference graph may be performed at any time. Howeverbecause the mutator actions may change the reachability of entry and exit-items, themore often the cut-reference graph is computed, the more accurate it will be.We divide the computation of the cut-references graph into two phases. In the�rst phase, we require a method that identi�es suspect objects. That is, this methodmust determine whether objects are reachable locally. This will inform our systemabout which entry and exit-items are suspect. In the second phase, we compute the

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 110cut-reference graph, that is, which suspect exit-items are reachable from each suspectentry-item.The �rst method, identify-suspects, can be implemented by tracing from thelocal roots in each process, excluding objects only reachable remotely (as we describein section 8, this may be done by the local collector). After the identify-suspectsmethod, the following post-condition holds:Post-condition 5.1
[identify-suspects]f(8Eiz � suspect(Eiz)) :path(Roots; z)) ^(8Exy � suspect(Exy)) :path(Roots;Exy))gAfter identify-suspects, entry and exit-items are suspect if and only if they arenot reachable locally. For every suspect entry-item Eiz , a second method, compute-graph, computes the list of all suspect exit-items Exy recursively reachable from Eiz .This information is recorded in Eiz :exits. In the absence of mutator concurrency thefollowing post-condition is always true.Post-condition 5.2

[identify-suspects]f(8Eiz � suspect(Eiz)) :path(Roots; z)) ^(8Exy � suspect(Exy)) :path(Roots;Exy))g[compute-graph]f8Eiy; Exz � (suspect(Eiy) ^ suspect(Exz) ^ path(Eiy ; Exz))) Exz 2 Eiy:exitsgHowever, as we said, due to mutator activity between two computations of thecut-references graph, suspect information may change. In this case, we say that thecut-references graph is not accurate.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 111The cut-reference graph represented in �gure 18 would be described by the followingset of variables: Eia:exits = fExcgEic:exits = fExegEie:exits = fExg; ExhgEig:exits = fExagAdditionally we de�ne three further components of each entry and exit-item:mark holds the identi�er (see below) of the �rst active partial tracing to reach thatentry or exit-item.marks holds the identi�ers of other partial tracings simultaneously active in the sameentry or exit-item.colour holds the colour of the entry or exit-item. An entry or exit-item not involvedon any partial tracing is white. The mark-red phase paints suspect items red, andthe scan phase paints all live items green.5.3 Multiple Partial TracingsPartial tracings simultaneously active in the same suspect cycle or connected cyclesmay meet each other during each other's garbage collection cycle. We aim at de�ning aco-operation between overlapping partial tracings. If the mark-red and scan phases ofsimultaneous and connected partial tracings were to overlap, they may never terminatebecause of race conditions between mark-red and scan requests. Thus, these partialtracings are not allowed to proceed if they meet for the �rst time in di�erent phases.We only allow di�erent partial tracings to co-operate when they meet at an entry orexit-item for the �rst time in the mark-red phase. When they meet, the protocol forco-operation will be established. Care must be taken to ensure that co-operative partialtracings do not interfere with each other, i.e for the same reason as above, the di�erent

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 112
A

B

PT

PT

X

C

D

z
z

u
y

y

v

Figure 19: Multiple Partial Tracings Co-operationphases of each partial tracing should not overlap. This co-operation is informally de�nednext.Co-operation between simultaneously active partial tracings relies on the fact thateach partial tracing has enough information to proceed. When the mark-red phase ofa partial tracing PTy meets the mark-red phase of another PTz, through a mark-redstep, we will say that PTz is dependent on PTy and PTy is responsible for PTz. The redsub-graph de�ned by the responsible partial tracing will be conceptually merged withthe dependent tracing's red sub-graph. Consequently, in subsequent phases, a depen-dent partial tracing will not consider references to its red sub-graph from a responsibletracing's red sub-graph to be external references. For that to be possible, red entry-items with the �eld mark holding the responsible tracing's identi�er are not consideredroots for the dependent's initial scan step. Moreover, in order for any remote reference,from a red exit-item with the �eld mark holding the responsible tracing's identi�er, tobe considered a reference internal to the dependent tracing's red subgraph, it must havethe source process inserted in the corresponding entry-item in the target process. Forthat, by the time a mark-red remote step was taken, it should have inserted the sendingprocess's identi�er into the target entry-item's red list, even if that item already belongsto another partial tracing. In this way a reference from the responsible tracing's redsub-graph will be considered to be an internal reference.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 113Co-operation must be extended to the scan phase. Consider the simple example in�gure 19. Suppose that the sub-graphs were merged and PTz �nishes its scan phase andproceeds to the sweep phase without any co-operation from PTy. Consequently, PTzdoes not count red external references to its red sub-graph from PTy's red sub-graph.Consider now the external reference from X, which would cause the entry-item for v tobe repainted green during PTy's scan phase. Consequently, PTz's subgraph should berepainted green. If PTz has proceeded to the sweep phase before PTy has completed itsscan phase, live objects would be reclaimed unsafely. We conclude that PTz must waitfor PTy's scan phase to terminate before it proceeds to the sweep phase.If partial tracings do meet for the �rst time in di�erent phases, they should retreat.Notice that we want to avoid this situation. Partial tracings simultaneously active onthe same cycle or connected cycles are dependent on each other. This means thatdependent partial tracings will fail to collect garbage as we explained in section 4.2.1.This situation is particularly undesirable for partial tracings simultaneously active inthe same sub-graph because, if we do not synchronise the beginning of each scan phase,completeness is compromised. In the example of �gure 19, suppose that PTz encountersPTy at y, de�nes the required co-operation and returns. If PTz starts the scan phasebefore PTy's mark-red reaches object z, PTy will retreat and the two partial tracings willfail. A similar situation may occur in two connected cycles, A and B, if the dependentcycle, for example A, �nishes its mark-red phase before B's mark-red has encounteredit. The partial tracing active on A will fail. However, in this situation we do notcompromise completeness, because a partial tracing at B would eventually collect B ormeet A.5.3.1 Initiating a partial tracingWe now de�ne the behaviour of the collector more precisely. A suspect entry-item Eizat process P may initiate a partial tracing if it is not already involved in another one.We call process P the initiator process. Recall that, during the mark-red phase, a redsub-graph is formed by entry and exit-items identi�ed by that partial tracing. A groupof processes that we call the participants is also formed. While in this phase, a partialtracing may meet other partial tracings and establish a dependency=responsibility re-lationship. In this case they are called co-operative partial tracings. For every partial

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 114tracing, we capture this information in an object of type PTobj.De�nition 5.3PTobj = (Id; Initiator; Participants; EI; EX; Dependents; Responsibles)where the components are de�ned as follows:Id is a unique identi�er. A partial tracing will be identi�ed by the starting suspectentry-item. We consider that entry-items are unique and identify the initiatorprocess1. We use the notation PTz for Eiz .Initiator is the initiator process.Participants is the set of the partial tracing's members (recall section 4.5.2).EI is the set of entry-items such that Ei:mark = Id or Id 2 Ei:marks.EX is the set of exit-items such that Ex:mark = Id or Id 2 Ex:marks.Dependents is the set of partial tracings that are dependent on this partial tracing.Responsibles is the set of partial tracings that are responsible for this partial tracing.A partial tracing can be de�ned by the tuple on de�nition 5.3. This partial tracinghas images (approximations) in each participant. When a partial tracing with identityz | PTz | visits a participant process P for the �rst time in a collection cycle, itconstructs a new partial tracing object of type PTobj | ptoPz. The partial tracingimages have concrete representations as those partial tracing objects. The whole partialtracing information is distributed across PTz's images in each participant.There is a time, as we see below, that the whole partial tracing information mustbe known by the initiator. We de�ned the partial tracing value as the union of everyimage in each participant.For P;Q 2 PTz:Participants and the corresponding ptoPz and ptoQz, we de�ne theunion of the two images as union(ptoPz; ptoQz).1If we are considering network partitions, the pair (entry-item,collection number) could be used foridentifying each partial tracing.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 115De�nition 5.4 union(ptoPz; ptoQz) = ptoRzWhere,� ptoRz:Id = ptoPz:Id = ptoQz:Id� ptoRz:Initiator = ptoPz:Initiator = ptoQz:Initiator� ptoRz:Participants is not de�ned because PTz:Participants is determined at theend of mark-red phase at PTz:Initiator.� ptoRz:EI = ptoPz:EI [ptoQz:EI� ptoRz:EX = ptoPz:EX [ptoQz:EX� ptoRz:Dependents = ptoPz:Dependents [ptoQz:Dependents� ptoRz:Responsibles = ptoPz:Responsibles [ptoQz:ResponsiblesThe whole partial tracing value is de�ned as:PTz = [P2PTz:Participants ptoPzDuring a run (mark-red �! scan �! sweep), most communication between partialtracings is handled through the local partial tracing objects and does not require remotecommunication.For the present, we are not interested in when the union of the partial tracingobjects in every participant will be e�ectively performed, we will come back to thislater. Instead, next we describe the di�erent phases of a partial tracing, accounting forco-operative partial tracings: how a partial tracing object is constructed in every phaseof a partial tracing and which information di�erent partial tracings need to exchangebetween themselves and their participants in order to proceed to the next phase.From now on, we identify a partial tracing object PTz on each participant by usingthe notation PTz. When relevant, instead of using PTz, we may use the image of PTzin a particular participant P | ptoPz.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 1165.3.2 Mark-red PhaseRecall the mark-red steps from section 4.3.1. We now rede�ne the mark-red steps forPTy in order to account for co-operative partial tracings. Every participant executesalternate local (ML) and remote steps (MR), colouring items that it reaches. It performsa local mark-red step from each entry-item Eia newly marked red, where Eia:mark =PTy, to each exit-item Exb in Eia:exits as follows:(ML.1) If Exb is white, then it is reddened and its mark set to PTy, that is, Exb:mark =PTy: we call Exb redy.(ML.2) If Exb is already redy, then no further action is necessary.(ML.3) If Exb is redz where z 6= y, then two partial tracings have met in the samephase. We merge the partial tracings and say that z is dependent on y and y isconversely responsible for z. PTy is appended to Exb:marks, PTy is added to thePTz:Responsibles, and PTz to the PTy:Dependents. Both these interactions takeplace between the partial tracing objects in this process | no messages are sent.(ML.4) If Exb is green, it must have been marked by another group operating in a laterphase so the red wave-front retreats from this object.A remote step executed by PTy propagates a colour from an exit-item Exb in aparticipant P to entry-items Eib in a remote process Q. A new PTy image ptoQy isconstructed in Q to represent this partial tracing (unless one already exists for thispartial tracing as a result of an earlier mark-red request in this collection cycle).(MR.1) If Eib is white or is redy, P is added to Eib:red-list and Eib is marked redy.(MR.2) If Eib is redz and z 6= y, P is still added to Eib:red-list. Once again two par-tial tracings have met and, as in the local step, PTy is appended to Eib:marksand to PTz:Responsibles, PTz to PTy:Dependents in process Q; no messages areexchanged.(MR.3) If Eib is green, no further action is taken and the mark-red phase retreats.Figure 20 shows an example in which two objects, y in process A and z in processD, have initiated independent distributed collections which have met at Eiu in process

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 117

red-list
mark

entry-list

entry-list
red-list

mark

mark
red-list

entry-list

entry-list
red-list

mark

y

u

v

z

Ei Exy u

y u

Ei Exu y

y

A

B

C

D

A B

u

u

v u z

DCB z v

B
B
y y

A C
A C
y z y

Ei Ex Exv z u
D
D
z z z

Ei Exz v
C
C
z z

pto

pto

pto

pto

pto

y A

z D

z D

z D

y A

z

y

B

B

C

B

Responsibles
Dependents

Ex
Ei

Participants

Unique identifier
Initiator

pto

Figure 20: End of the mark-red phase

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 118B. Note that process B contains pto's for both partial tracings PTy and PTz. WhenPTz performs the remote step from Exu at C to Eiu at B, the following action istaken at B: PTy:Responsibles = PTy:Responsibles [fPTzg and PTz:Dependents =PTz:Dependents [fPTyg. More precisely, ptoBy:Responsibles = ptoBy:Responsibles [fPTzg and ptoBz:Dependents = ptoBz:Dependents [fPTyg.Mark-red TerminationAs we described in section 4.5, termination of the mark-red phase for a single partialtracing PTy is detected by its initiator when it receives acknowledgements for all themark-requests it has generated. At this time, the termination protocol described in sec-tion 4.5 guarantees that no item in PTy:EI [PTy:EX will receive a mark-red requestgenerated by PTy itself. Those items may only receive mark-red requests generated byother partial tracings trying to enter some co-operation. If the corresponding partic-ipant had already entered the scan phase, such requests may be safely refused (ML.4and MR.3) because the mark-red phase does not need to visit the complete referentialtransitive closure of a suspect object. Otherwise, co-operation between the two partialtracings would be engaged and the mark-request properly acknowledged.We conclude that termination of the mark-red phase of co-operative partial tracingsare independent of each other. Consequently, we can detect mark-red termination asdescribed in section 4.5.5.3.3 Scan PhaseRecall the de�nitions of scan steps and the local-scan-root-set in section 4.4.1. Werede�ne them now to account for co-operative partial tracings. Any partial tracingrecorded in PTy:Responsibles must co-operate with PTy. A redy-subgraph is alive if itis accessible from a root or from outside the merged subgraphs. The scan phase musttherefore take into account the scan-requests generated by every co-operative partialtracing.Each partial tracing determines the liveness of its own red subgraph. However, italso has to take into account requests from co-operative partial tracings. We presenta set of rules that must be obeyed by each participant of a partial tracing in order toproceed to the scan phase. These rules ensure safety and termination of mark tracings.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 119However, they do not of themselves ensure completeness as we have already mentionedin section 5.3. Nevertheless, as we discuss in section 9.1, our systems do allow a completesolution.1 A process P 2 PTy:Participants may safely enter the scan phase when it re-ceives the report message (recall section 4.5) from PTy:Initiator. Recall that theacknowledgement system allows the Initiator to know the identity of each partic-ipant.2 When P 2 PTy:Participants receives a scan request from PTz where PTz 2PTy:Responsibles, it may safely green the target entry-item. However it may nothave received the report message yet from PTy:Initiator. By rule 1, it should waitfor that message before it enters the scan phase. To avoid race conditions betweenPTy mark-red requests and the responsible process's scan requests, a mark-redonly paints red white entry-items.3 The local-scan-root-set(PTy) in each P 2 PTy:Participants is formed by:� P 's local roots, as suspect information may have changed since the last timeit was computed.� white entry-items, as they do not belong to the suspect sub-graph,� green entry-items, as they have already been found to be live,� any red entry-item marked by either PTy or PTu 2 PTy:Responsibles whoseentry and red-lists di�er, as they are reachable from outside the suspect sub-graph, and� any other red entry-item marked by another PTu =2 PTy:Responsibles, as theyare not part of PTy's suspect subgraph. Recall that PTu 2 PTy:Responsiblesis a co-operative partial tracing. Thus, references from the PTu's suspectsub-graph are not considered as external references to PTy's suspect sub-graph.Again, after an initial step (SI) to colour green any entry or exit-item reachablefrom the local-scan-root-set, the scan phase proceeds by an alternating series of local(SL) and remote scan steps (SR). The initial scan step of each PTy greens any objects

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 120directly reachable from the local-scan-root-set that PTy had previously visited: thesewill be the starting points for the `rescue' trace.(SI.1) Mark green any red entry or exit-item E in the local-scan-root-set for whichE:mark = PTy. Mark green any red exit-item Exb for which Exb:mark = PTyand which is reachable from the local-scan-root-set. These are greeny.The local scan phase step for PTy propagates the green colour from a greeny entry-item Eia to those exit-items Exb in the same process reachable from Eia that PTy hadpreviously visited in the mark-red phase:(SL.1) Green Exb if it is red, reachable from a green Eia, and either Exb:mark = PTyor PTy 2 Exb:marks. That is, we green only those exit-items reddened by co-operative partial tracings.The remote step from a green exit-item Exb propagates the green colour to thecorresponding entry-item Eib:(SR.1) If Eib is red and Eib:mark = PTy or PTy 2 Eib:marks, mark Eib green.(SR.2) If Eib is red but neither Eib:mark = PTy nor PTy 2 Eib:marks, retreat.(SR.3) If Eib is not red, retreat.(SR.4) Request a local step from every greened Eib if Eib:mark has entered the scanphase.Remote steps do not invoke local steps directly. Rather, the partial tracing object that`owns' the entry-item (identi�ed by its mark) will execute a local step once it has startedits scan phase. Note that an entry-item may be part of more than one partial tracing(if the length of its marks list is greater than one). If a partial tracing receives a scan-request before it receives the instruction to start the scan phase, it simply marks theentry-item green but does not yet take a local step2.2Actually, the greening operation may be queued up instead of being taken immediately. It may bebetter to leave the item red, as it can accept more mark-red requests, leaving more opportunities forco-operation.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 121A PTy may only proceed to the sweep phase when it has �nished the scan phaseand when every co-operative partial tracing in PTy:Responsibles has also �nished itsscan phase. Next we explain how the termination protocol is modi�ed to cope withco-operative partial tracings.Scan TerminationIntuitively, we may conclude that the scan phase of a partial tracing cannot �nish while itis possible for that partial tracing to receive a scan request from another partial tracingon which it is a dependent. This scan request may be generated by the responsiblepartial tracing or as a consequence of a third partial tracing on which the responsiblepartial tracing in turn is dependent. Consequently, the scan phase of a partial tracing isonly terminated when the scan phase of every partial tracing on which it is transitivelydependent has terminated.Recall the termination protocol presented in section 4.5. In the non-scalable model,any partial tracing object member of PTz, after having changed to passive-quiet, maybe re-activated by a remote step (i.e. a mark-request) from another partial tracingobject that is also member of PTz. This means that there is at least one processwhich is active-disquiet, hence that the tracing phase has not terminated. Our solutionaccounting for co-operative partial tracings introduces a new action that may re-activatea process in the passive-quiet state. This is a consequence of a remote step executed bya PTy 2 PTz:Responsibles. This means that the co-operative PTy has not �nished itsscan phase, that is, there is at least one process involved in PTy which is active-disquiet.This process may be an element of PTy:Participants or an element of PTu:Participantswhere PTu 2 PTy:Responsibles.We now de�ne the relation Dependent, which identi�es for a given partial tracingthose partial tracings that are directly dependent on it. Given a PTz,De�nition 5.5 Dependent(PTz; PTy) � PTy 2 PTz:Responsibles.Now, let Dependent� be the reexive transitive closure of relation Dependent, thatis Dependent�(PTz; PTy) holds if and only if one of the following holds:� PTz = PTy

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 122
Active

Disquiet
Inactive

a,i

Passive
Disquiet

Passive
Quiet

fj

h

l

b, c, d, e

g

b, c, d, e

a .. l: EventsFigure 21: State transition diagram for termination detection of PTz accounting forco-operative partial tracings.� Dependent(PTz; PTy)� or there is a PTu such that Dependent(PTz ; PTu) ^Dependent�(PTu; PTy);The new state transition diagram for termination detection of a PTz's scan phase isshown in �gure 21. The events illustrated in the �gure are summarised in �gure 22.Compared with �gure 15 on page 97, notice that there is one new event, l | relatedto actions from co-operative partial tracings | and event i is modi�ed to account forco-operative partial tracings. That is, an Inactive butDynamic process may only startthe scan phase when it receives a scan request if that request is sent by PTz. Theseevents are related to actions from co-operative partial tracings. Events c and g maynow be originated by co-operative partial tracings.Intuitively, the condition of stability de�ned in section 4.5:X is not active-disquiet;must be now satis�ed for every process X in PTz:Participants [PTy:Participants forall PTy where Dependent�(PTz ; PTy) holds. When such a state is known by each par-ticipant of a partial tracing, it may enter the sweep phase safely.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 123
Event Actiona start-phase � initialise local-steps� responsible = self� state = active-disquietb send scan request(exit-item) � grey-set = grey-set [fexit-itemgc receive scan request(exit-item) from � local-steps ++p 2 PTz:Participants [PTy:Participants � send acknowledgement(exit-item)where PTy 2 PTz:Responsibles to pd receive acknowledgement(exit-item) � grey-set = grey-set n fexit-itemge perform local step � local-steps ��f grey-set = ; ^ local-steps = 0 � responsible = none� state = passive-quietg receive scan request(exit-item) from � local-steps ++p 2 PTz:Participants [PTy:Participants � responsible = other(p)where PTy 2 PTz:Responsibles � reply-set = reply-set [exit-item� state = passive-disquieth grey-set = ; ^ local-steps = 0 � for exit-item in reply-set sendacknowledgement(exit-item)to responsible� responsible = none� state = passive-quieti receive scan request(exit-item) from � initialise local-stepsp 2 PTz:Participants ^ dynamic � set responsible = self� send acknowledgement(exit-item)to p� state = active-disquietj receive scan request(exit-item)from � local-steps = 1p 2 PTz:Participants ^ non-dynamic � responsible = other(p)� reply-set = reply-set [exit-item� state = passive-disquietl receive scan request(exit-item) � local-scan-root-set(PTz) =at entry-item Eia from local-scan-root-set(PTz) [fEiagPTy 2 PTz:Responsibles � send acknowledgement(exit-item)Figure 22: State changes for termination detection of PTz accounting for co-operativepartial tracings.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 124
red-list

mark

entry-list

entry-list
red-list

mark

mark
red-list

entry-list

entry-list
red-list

mark

y

u

v

z

Ei Exy u

y u

Ei Exu y

y

A

B

C

D

A B

u

u

v u z

DCB z v

B
B
y y

A C
A C
y z y

Ei Ex Exv z u
D
D
z z z

Ei Exz v
C
C
z z

pto

pto

pto

pto

pto

y A

z D

z D

z D

y A

token y

<y>, {z}

B z

yB

B C

z

Responsibles
Dependents

Ex
Ei

Participants

Initiator
Unique identifier

pto

Figure 23: End of the scan phaseWe have de�ned a new global state in which termination is achieved. We now requirea report phase that allows every process involved in a partial tracing to be noti�ed ofsuch a global state. For that, it is useful to have some de�nitions relating to the stateof every process and such a global state.De�nition 5.6 Given P 2 PTz:Participants, stable(P) � :active-disquiet(P).We also say that a PTz is partial-terminated if and only if all its participants arestable:De�nition 5.7 partial-terminated(PTz) � 8P 2 PTz:Participants � stable(P).PTz's report phase implements the algorithm to compute partial-terminated(PTz)for PTz:Initiator. We described it in section 4.5.2: every participant P 2 PTz:

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 125Participants sends a report message to PTz:Initiator when stable(P). PTz:Initiatordetects Partial-terminated(PTz) when it has received report messages from all its par-ticipants and it is stable itself. Additionally, every participant ptoPz reports (in thesame report message) to the initiator a list of all partial tracings on which it is depen-dent: ptoPz:Responsibles. At this time the initiator knows the identity of every partialtracing PTz on which it is dependent (recall de�nition 5.4 on page 115):PTz:Responsibles = [P2PTz:Participants ptoPz:ResponsiblesFigure 23 shows the example at the end of the scan phase. ptoBy in process B hasreported to ptoAy in process A that initiated the collection that PTy is dependent onPTz.The predicate partial-terminated(PTz) is a locally stable predicate (akin to a locallystable condition | recall section 4.5). Once this property becomes true, the stateof the partial tracing over which the property holds will not change with respect tothe property, that is, the property never becomes false again during this collection.Once a process becomes passive, it never changes to active-disquiet again (recall section4.5) during this collection. Our termination property for PTz when accounting for co-operative partial tracings is that all partial tracings on which it depends are partiallyterminated.De�nition 5.8 terminated(PTz) is de�ned as follows:terminated(PTz) � (8PTy �Dependent�(PTz ; PTy)) partial-terminated(PTy))Consequently, we de�ne a report phase algorithm| the Token Algorithm| that,given PTz, determines if, for all PTy where Dependent�(PTz; PTy),partial-terminated(PTy) is true. It is only at this moment that we need remote communi-cation between co-operative partial tracing objects. Furthermore, this communicationis only between initiators. The basic idea of the Token Algorithm is to calculateDependent�. We adopt the simple protocol of passing a token around a ring formed byeach initiator of the co-operative partial tracings (Rana 1983), so that when a token hasreturned to the initiator that created it, the scan phase is known to be complete. The

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 126requirement is that a PTy is only added to Dependent� when partial-terminated(PTy).As soon as PTz:Initiator partially terminates, it constructs a token. The token hastwo parts:terminated a list that represents Dependent� in so far as it has been calculated; initiallythis is < PTz >. The head of the terminated list is the partial tracing that startedthe token.next a set that holds initiators not yet visited; initially this is PTz:Responsibles.Propagation of the token around the ring is simple:Starting the token(PTz): The starting condition is that partial-terminated(PTz). IfPTz:Responsibles 6= ; then create a terminated list containing element PTz andcreate a next set, PTz:Responsibles; PTz:Initiator may send this token to anyelement of the next set.Receiving the token(PTy): if PTy receives token, it either passes it on or retains itaccording the following rules:Rule1: if not partial-terminated(PTy) then PTy:Initiator retains the token untilpartial-terminated(PTy), at which time it sends the token to any element ofthe token's next set according to rules 2 and 3.Rule2: if partial-terminated(PTy) then PTy:Initiator sends the token (see below).If PTy = PTz, that is, PTy is the head of the terminated list, the scan phasehas terminated. The initiator reports this to its participants (recall section4.5.2).Rule3: as an optimisation, if terminated(PTy) then remove all PTu 2 PTy:Responsibles from the next set and append them to terminated list, as since, ifterminated(PTy), all PTy's responsibles must have already terminated. Thismay happen when a partial tracing that has also started a token has receivedit back by the time another token belonging to another initiator arrives.Sending the token(PTy): remove PTy from the next set and append it to the termi-nated list. If any PTu 2 PTy:Responsibles is not in the terminated list, then insertPTu it into the next set. Then proceed according the following rules:

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 127

PTv

PTu

PTy

PTz

time

partial-terminated(PT z)

y

partial-terminated(PT)

partial-terminated(PT)

partial-terminated(PT)

z u

z y

v

u

terminated(PT)z

PTz

PTy

PTv

PTu

Dependent relation

y

ztoken(<PT >, {PT })

token(<PT , PT >, {PT , PT })

token(<PT , PT , PT >, {PT })

y

u

v

v

token(<PT , PT , PT , PT >, {})z y v u

Figure 24: Token Algorithm.Rule4: if the next set is empty then send the token to head of the terminated list.Rule5: if the next set is not empty then send the token to any member of thenext set.In order to proceed to the sweep phase, each initiator has to initiate a token.PTz:Initiator initiates the token when partial-terminated(PTz) itself. When PTz:Initiatorreceives the token back it may proceed independently to the sweep phase; the suspectsub-graph held by the corresponding group is collected.Figure 23 on page 124 shows the token sent by ptoAy at process A | the initiator| to its responsible, ptoDz at process D; ptoDz will return the token with an emptynext -set to the head of the terminated -list, PTy. As ptoDz has an empty responsiblesset, it does not need to wait for any other partial tracing to terminate.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 128Consider �gure 24. It shows a more general example. We show a Dependent relationand the token initiated at PTz, when partial-terminated(PTz). PTz is dependent onPTy. Consequently, it appends PTy to the next set, and sends it to the �rst elementof the next set, in this case PTy. After having received the token, PTy must wait untilpartial-terminated(PTy). At this moment it appends itself to the terminated list andappends its responsibles to the next set. These actions are repeated by every partialtracing receiving the token. Notice that PTv does not append PTy to the next set,because it is already in the terminated list. Following our algorithm this means thatpartial-terminated(PTy). When PTu receives the token, it sends it immediately to PTzbecause partial-terminated(PTu) and next = ;. When PTz receives the token back, itmay proceed to the sweep phase.5.4 ExampleIn this section we present an example. We aim to illustrate in more detail the startof a partial tracing, the creation of a partial tracing object, the mark-red phase steps,the scan phase steps, the co-operation between di�erent partial tracings and the corre-sponding distributed termination detection protocol. We consider the graph in �gure25. Suppose that x, u and r initiate PTx, PTu and PTr respectively, independently. Wedescribe in table 26 the most relevant events for one possible sequence of events of PTx,PTu and PTr. The result of mark-red is shown in �gure 25.Observe the event \PTx: remote step from Exu at B to Eiu at D". Eiu receivesa mark-red request. Eiu is redu. Two partial tracings, PTx and PTu, have met andmust establish a responsible/dependent relation. (MR.2) is applied. B is added toEiu:red-list; PTx is appended to Eiu:marks and inserted to ptoDu:Responsibles; PTu isinserted in ptoDx:Dependents.Observe that ptoAx generated a mark-request from A to B. After have receivedthe mark-red request, ptoBx generated two mark-red requests: one from B to A andanother from B to D. After ptoBx have received those mark-red requests acknowl-edgement, ptoBx acknowledged the mark-red request, sent by ptoAx, to ptoAx (event

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 129

A B

C
D

E
F

pto pto

pto

pto

pto

x y

z

u

v
r

entry-listentry-list

entry-list

entry-list
entry-list

entry-list

red-list red-list

red-list

red-list
red-list

red-list

mark/marks mark/marks

mark/marks
mark/marks

mark/marks

mark/marks

Ei Ex

Ei

Ei
Ei

Ei

Ei

Ex Ex

Ex
Ex

Ex

Ex Exx y y u x

z u v

u z

v r
r v

B
B
x x

A
A
x x x

DX
D

X
u u u

CF
CF
ru r

E
E
r r

BC
BC
ux u

x A ABD x y

u D CE z

r F E

u D E v r

v r u

pto r F FE r v

pto

pto

u D DCE u z x

x A D u u

uv

x A BD y ux

Responsibles
Dependents

Ex
Ey

Participants
Initiator

Unique identifier

pto

Figure 25: End of the mark-red phase

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 130Event Actionx initiates PTx at A � ptoAx = (PTx; A; fAg; fxg; ;; ;; ;)� Eix:mark = xu initiates PTu at D � ptoDu = (PTu;D; fDg; fug; ;; ;; ;)� Eiu:mark = ur initiates PTr at F � ptoFr = (PTr; F; fFg; frg; ;; ;; ;)� Eir:mark = rPTx: local-step from Eix to Exy � (ML.1) ptoAx =(PTx; A; fAg; fxg; fyg; ;; ;)� Exy:mark = xPTu: local-step from Eiu to Exz � (ML.1) ptoDu =(PTu;D; fDg; fug; fzg; ;; ;)� Exz:mark = uPTr: local-step from Eir to Exv � (ML.1) ptoFr =(PTr; F; fFg; frg; fvg; ;; ;)� Exv:mark = rPTx: remote-step from Exy at A to Eiy at B � (MR.1) Eiy:red-list = fAgPTx: local-step from Eiy to Exu � (ML.1) Exu:mark = xPTx: local-step from Eiy to Exx � (ML.1) Exx:mark = x� ptoBx = (x;A; fBg; fyg; fu; xg; ;; ;)PTx: remote-step from Exx at B to Eix at A � (MR.1) ptoAx =(PTx; A; fAg; fxg; fyg; ;; ;)� Eix:red-list = fBgPTx: remote-step from Exu at B to Eiu at D � (MR.2) Eiu:red-list = fBg� Eiu:marks = fxg� ptoDu = (u;D; fDg; fug; fzg; ;; fxg)� ptoDx = (x;A; fDg; fug; ;; fug; ;)PTu: remote-step from Exz at D to Eiz at C � (MR.1)PTu: local-step from Eiz to Exu � (ML.1)PTu: local-step from Eiz to Exv � (ML.1)PTr: local-step from Eir to Exv � (ML.1)PTr: remote-step from Exv at F to Eiv at E � (MR.1)PTr: local-step from Eiv to Exr � (ML.1)PTr: remote-step from Exr at E to Eir at F � (MR.1)PTu: remote-step from Exv at C to Eiv at E � (MR.2)PTu: remote-step from Exu at C to Eiu at D � (MR.1)...PTx at A receives mark-red � ptoAx =acknowledgement from B (x;A; fA;B;Dg; fxg; fyg; ;; ;)PTu at D receives mark-red � ptoDu =acknowledgement from C (u;D; fD;C;Eg; fug; fzg; ;; fxg)PTr at F receives mark-red � ptoFr =acknowledgement from E (r; F; fF;Eg; frg; fvg; ;; ;)Figure 26: Mark-red phase events

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 131\PTx at A receives mark-red acknowledgement from B). This acknowledgement in-forms PTx's initiator of its participants: A, B and D. This information is recorded inptoAx:Participants.When receiving the mark-red acknowledgements, ptoAx instructs A, B and D toenter PTx's scan phase, ptoDu instructs D, C and E to enter PTu's scan phase andptoFr instructs F and E to enter PTr's scan phase.The initial step of PTu at C discovers Eiz whose entry and red-list di�er. The initialstep generates remote steps to Eiv , Eir and Eiu which are coloured green, as well asthe corresponding exit-items. Note that PTu remote step from Exv to Eiv at E willcolour Eiv. The algorithm will request a local step from Eiv if/when the partial tracingidenti�ed by Eiv :mark entered the scan phase. The result of scan phase is shown in�gure 27.When every member of PTx's, PTu's and PTr's participants �nishes its initial scanstep, it informs the corresponding initiator, ptoAx, ptoDu and ptoFr respectively, of thecorresponding responsible partial tracings. Observe that ptoFr receives from ptoEr theinformation that PTu is responsible for PTr. Note the Responsibles �elds in ptoEr (inwhich the responsible/dependent relation was established) and in ptoFr.In order to proceed to the sweep phase, each initiator has to initiate a token.PTr:Initiator, process F , initiates tokenr as shown in �gure 27. The tokenr is sentto PTu's initiator, process D, because PTr is dependent on PTu. PTu may initiate atoken, tokenu, independently as it is dependent on PTx. Figure 28 shows our exam-ple dependent relation and a possible sequence of steps in order to detect termination.Lighter lines describe PTu termination detection and darker lines describe PTr termi-nation detection.Notice that if tokenr arrived at PTu's initiator after terminated(PTu), it would beimmediately sent back to PTr's initiator.5.5 Synchronised MergingWe do not claim that the solution presented up to now in this chapter is complete. Aswe remarked in section 5.1 (c.f. �gure 19 on page 112), a partial tracing may �nish itsmark-red phase, and consequently turn to the scan phase, without the co-operation of

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 132

A B

C
D

E
F

pto pto

pto

pto

pto

x y

z

u

v
r

entry-listentry-list

entry-list

entry-list
entry-list

entry-list

red-list red-list

red-list

red-list
red-list

red-list

mark/marks mark/marks

mark/marks
mark/marks

mark/marks

mark/marks

Ei Ex

Ei

Ei
Ei

Ei

Ei

Ex Ex

Ex
Ex

Ex

Ex Exx y y u x

z u v

u z

v r
r v

B
B
x x

A
A
x x x

DX
D

X
u u u

CF
CF
ru r

E
E
r r

BC
BC
ux u

x A ABD x y

u D CE z

r F E

u D E v r

v r u

pto r F FE r v

pto

pto

u D DCE u z x

x A D u u

uv

x A BD y uxu

r

u
token

r

<r>,{u}

token
u

token
r

<r,u>,{x}

<u>,{x}

Responsibles
Dependents

Ex
Ei

Participants
Initiator

Unique identifier

pto

Figure 27: End of the scan phase

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 133

PT PT PT
r u x

Dependent relation

PT

PT

PT

x

u

r

partial-terminated(PT)u

terminated(PT)x

token (<PT >,{PT })u

token (<PT >,{PT })u

terminated(PT)u

u x

u x

partial-terminated(PT)r

token (<PT >,{PT })
r r u

token (<PT ,PT >,{PT })r r u x

token (<PT ,PT ,PT >, {})r r u x

terminated(PT)rFigure 28: Distributed termination detection

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 134other partial tracings active in the same cycle. This leads to the undesirable situation inwhich the cycle is not collected. The reason is that the garbage cycle is neither coveredby a single partial tracing nor by a set of co-operative partial tracings. Thus, there mayalways be a reference external to the suspect subgraph. The condition for a garbagecycle to be collected is that it must be covered by a partial tracing | single-group |or by a set of co-operative partial tracings | super-group.We claim, however, that our system does provide adaptability, because the mark-redphase only determines entry and exit-items suspected of being garbage. Consequently,it does not make any decision about such items' liveness. As we have just said, oursystem o�ers the choice between long-running overlapped collections and more frequentfaster collections over small groups.However overlapping partial tracings leads to repeated work and space overhead.Between these two opposing solutions, a compromise that still achieves completeness ispossible, at the cost of another level of synchronisation: synchronisation of the beginningof the scan phases | Synchronised Merging We describe this solution next.Now, we show how the start of the co-operative partial tracings scan phase can besynchronised to obtain a complete solution.We de�ne the relation Responsible (akin to de�nition 5.5 on page 121). The aim ofthis relation is to identify, for a given partial tracing, those partial tracings for which itis directly responsible. Given PTz,De�nition 5.9 Responsible(PTz; PTy) � PTy 2 PTz:Dependents.Now, consider Responsible� as the reexive transitive closure of relation Responsible,that is Responsible�(PTz; PTy) holds if and only if one of the following holds:� PTz = PTy� Responsible(PTz; PTy)� there is PTu such that Responsible(PTz ; PTu) ^ Responsible�(PTu; PTy);Given a PTz, the synchronisation of the begining of PTz's scan phase and the begin-ing of PTy's scan phase, where Responsible�(PTz; PTy), is implemented by the TokenAlgorithm described in section 5.1. We give the following de�nitions:

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 135De�nition 5.10 partial-terminated-mark-red(PTz) is true if and only if PTz:Initiatorhas received all the acknowledgements for the mark-red requests it generated.Now, we require that every initiator should know which partial tracings it is respon-sible for. This may be determined by the same acknowledgement system that allowsthe initiator to be aware of all participants. For that, the acknowledgement of a mark-request by an entry-item belonging to another partial tracing should return the partialtracing's identity. The acknowledgement system would propagate it to the initiator. Atthe stage where partial-terminated-mark-red(PTz), PTz's initiator knows the identity ofevery partial tracing it is responsible for (recall de�nition 5.4 on page 115):PTz:Dependents = [P2PTz:ParticipantsPTzP :DependentsThe following de�nition captures the state where the synchronisation of the start ofPTz" scan phase and the start of PTy's scan phase, where Responsible�(PTz; PTy), isachieved:De�nition 5.11 terminated-mark-red(PTz) is true if and only if, for all PTy whereResponsible�(PTz; PTy), partial-terminated-mark-red(PTy) is true.The Token Algorithm detects such a state. PTz's initiator retains the token untilpartial-terminate-mark-red(PTz). Then, if the head of the token's terminated list is PTz,terminated-mark-red(PTz). Otherwise, PTz's initiator (i) removes itself from the nextset to the end of to the terminated list, (ii) inserts any of its dependent partial tracingsthat are not members of the terminated list into the next set, and (iii) passes the tokento any member of the next set. If this set is empty, all PTy where Responsible(PTz ; PTy)have terminated and the token is returned to its owner, the head of the terminated list.Intuitively, we conclude that if the system synchronises the start of the scan phase ofthe multiple partial tracings active in the same cycle, that cycle will be eventually cov-ered by a super-group and eventually collected. We prove that this solution is completein section 7.3.In the absence of measurements we cannot conclude that this complete solution ispreferable to the �rst that we presented. Although it achieves completeness, it alsopresents an extra synchronisation phase.

CHAPTER 5. A SCALABLE CYCLIC GARBAGE COLLECTOR 1365.6 SummaryWe have presented a scalable solution for garbage collection on distributed large addressspaces. Scalability is achieved in our system by having each process collected indepen-dently from the rest of the system through the reference listing protocol. Additionally,cycles of garbage are collected by the three-phase partial tracing. This is a scalablesolution, because it does not involve the whole distributed system. The mark-red phaseforms groups of processes dynamically that will co-operate in the collection of garbagecycles. Our solution is incomplete in the sense that a partial tracing may not coverthe whole transitive closure of a suspect subgraph. However, the merger of concurrentpartial tracings ensures completeness.We transformed the garbage collection of a distributed suspect subgraph to thegarbage collection of the corresponding distributed suspect cut-references graph. Webene�t from less space overhead, and from cheap local steps. When two partial tracingsmeet in an entry or exit-item, they establish a protocol for the co-operation throughpartial tracing objects in each process. This co-operation is extended until the end ofscan phase.The establishment of the Dependent/Responsible relation between two partial trac-ings is a fundamental aspect of our algorithm. The termination detection protocol isdependent on such a relation. The scan phase of a partial tracing is only terminatedwhen the scan phase of every partial tracing on which it is transitively dependent hasterminated.

Chapter 6
Mutator Concurrency
Until now, we assumed that a partial tracing executes without intervening mutations.In practice, while a partial tracing is executing, a mutator may change the object graphso that a partial tracing no longer has a consistent view of the distributed graph. Wegive now a detailed description of techniques for preserving safety and liveness in thepresence of concurrency and show how we bene�t from features that reduce the costsintroduced by the need for synchronisation. This problem was discussed in section 2.4.1,in the context of uniprocessor garbage collection. The parameters by which we can judgeincremental algorithms are their degree of conservatism, synchronisation overheads andtermination cost.We present our solutions for synchronisation between the mutator and a partialtracing here. In chapter 7 we prove that our solution is safe and live. We also showthat mutator synchronisation actions do not interfere with the termination detectionprotocol described in section 4.5.6.1 SynchronisationRecall that the mark-red phase only aims at identifying those entry and exit-itemssuspected of belonging to a garbage cycle. It does not make any decision about entryand exit-items' liveness. Thus, the mark-red phase does not need to be accurate. Incontrast to the mark-red phase, the scan phase must be complete with respect to thered suspect subgraph, since it must ensure that all live red entry and exit-items are137

CHAPTER 6. MUTATOR CONCURRENCY 138repainted green1.Mark-red PhaseThe mark-red phase does not have any need for synchronisation with mutators. Onebene�t of this is that the mark-red phase does not delay mutator activity, since itdoes not require any synchronisation. Additionally, we gain cheap termination becausethere is no need to account for mutator actions that may violate the local conditionof section 4.5 and there is no need for uninterruptible actions of mark-red to checkfor termination. Consequently, the mark-red phase preserves the termination protocolinvariants, irrespective of concurrency.Scan PhaseMutator activity may prevent a root (any member of the local-scan-root-set) from everbeing seen by the scan phase, because of scan phase initial steps not being synchro-nised in each process, and processes rapidly exchanging and deleting references betweenspaces. This may happen because a mutator message could arrive after the initial stephad been taken. We illustrate this problem in �gure 29 and �gure 30 (for simplicity, werepresent entry and exit-items as common objects, and we do not represent the corre-sponding objects). Process A is involved in a partial tracing. Suppose that, after theinitial step has �nished at process A, a mutator message arrives at object a. As a resultof the method invocation, Exb is now reachable from the local-scan-root-set at processA. Also, suppose mutator and local collector activity at process B results in the deletionof the external reference to object a. Consequently, without any co-operation from themutator, exit-item Exb would be missed by the scan phase and wrongly reclaimed bythe subsequent sweep phase.Also consider �gure 30. Suppose that process A transmits a b-reference to process C.Entry-item Eib receives an insert message (recall section 3.4.4) such that Eib:entry-list =Eib:entry-list [fCg. In this way, Eib's red-list and Eib's entry-list di�er. If the insertmessage arrived after initial step has been taken at B and b does not receive a scanrequest from A | Exb is garbage or the b-reference at A is deleted | Exb would be1It may also suggest that garbage items are live, hence it is conservative

CHAPTER 6. MUTATOR CONCURRENCY 139

A

not red cut-reference graph

Exa

Eia

Ex
b

red cut-reference graph

B

local-scan-root-set

Figure 29: Reference mutations | local copy (dotted lines).
A

B

C

to C bEx

Eib

Ex b

A transmits b_reference

Figure 30: Reference mutations | remote copy (dotted lines).

CHAPTER 6. MUTATOR CONCURRENCY 140missed by the scan phase and wrongly reclaimed by the following sweep phase.We �rst consider the e�ect of mutator actions on the scan phase initial step and thenon scan phase remote steps. Recall that the local-scan-root-set is part of the global rootset in each processor. The initial step starts from the local-scan-root-set and coloursgreen all local entry and exit-items reached from it. A local mutator may only changethe connectivity of the graph by overwriting references to objects. Such writes can bedetected by a write barrier (section 2.4.1). Subsequent scan requests at entry-items arepropagated (local step) atomically to the corresponding exit-item. Although local stepscould also be protected with a write barrier, we believe that such a implementationwould be expensive. We describe our implementation in section 8.On termination of the initial step in a process P , the local red subgraph will beisolated from the live object graph (green or white) held in that process. The reasonis intuitively explained as follows: the initial step colours green any local entry or exititem reachable from the local-scan-root-set, that is from references external to the redsuspect subgraph graph. Thus any remaining red entry-item Eiz and its red descendentexit-items were not initially reachable from the local-scan-root-set.A red entry-item Eiz at process P not belonging to the local-scan-root-set at thebeginning of the initial step has its entry-list equal to its red-list. By our algorithm,this means that all processes Q holding an exit-item Exz must have coloured red Exzwith a mark-red local step. If z is not being transmitted to any process, that is, anyprocess Q holding a z-reference is not involved in an incomplete transmission operation(recall section 3.4), only actions through such red exit-items | members of the redsuspect cut-reference graph in other processes | may change the reachability of thered entry-item Eiz and its red descendent exit-items after initial step has �nished at P .Consequently, this reachability may only be changed if:� process Q makes a remote invocation on red Eiz 's corresponding object;� process Q transmits the z-reference through a red exit-item Exz;� process Q transmitted the z-reference before Exz has been coloured red and z-reference is in transit;In order to ensure that no item at process P is missed by the scan phase, we ensure

CHAPTER 6. MUTATOR CONCURRENCY 141that the following invariants always hold after the end of the scan phase initial step atP :Invariant 6.1 After SI(P), no red exit-items are reachable by the local-scan-root-set atP.Invariant 6.2 After SI(P), no red entry or exit-items become new members of thelocal-scan-root-set.We also de�ne the auxiliary invariant:Invariant 6.3 A red entry-item Eiz, where Eiz:red-list = Eiz:entry-list, cannot receivea message that inserts a process into Eiz:entry-list unless there is a scan request intransit to that Eiz.To preserve the above invariants, mutator actions through red exit-items requiresynchronisation operations (akin to read and write barriers described on chapter 2) |before the mutator can perform such an operation, it must activate the garbage collector(scan phase) to perform some action.We introduce a read barrier on red exit-items: Remote Barrier.Remote Barrier When a mutator at process Q invokes or transmits a remote ref-erence to an object z at process P through a red exit-item Exz, it performs a remotestep (scan request) to Eiz at P . The remote step colours green Eiz and all exit-itemslocally reachable from Eiz atomically, before the mutator can change the connectivityof red exit-items.Notice that, as a consequence of the scan phase not being synchronised in eachprocess, an exit-item Exz that corresponds to an entry-item Eiz may have been colouredgreen by the initial step at Q or by a scan remote step (scan request). In this case, ascan remote step must have been executed to colour Eiz green, but one of the mutatoractions described above may be performed on Eiz before the remote step reached Eizbecause of network latency. For now we assume that messages are to arrive in the sameorder as they are generated in point to point connections. This may be e�ected, aswe show in chapter 8, by only colouring green an exit-item after colouring green thecorresponding entry-item. In this way, the following invariant is maintained:

CHAPTER 6. MUTATOR CONCURRENCY 142Remote-step invariant 6.4 8 Exz:(green(Exz)) green(Eiz))The Remote Barrier preserves the invariant 6.1 at process P by not allowing themutator to read references to objects corresponding to red entry-items. In this way,the mutator cannot change the reachability of red exit-items. The Remote Barrier ise�ectively a read barrier (Baker 1978).Invariant 6.2 is preserved by the Remote Barrier and invariant 6.3. The reason isintuitively as follows: to be a new member of the local-scan-root-set after the initial step,a red entry-item Eiz must receive an insert message adding a reference to its entry-list,so that Eiz :red-list 6= Eiz :entry-list. If such a message was sent after the source Exz hasbeen painted red, the Remote Barrier ensures that Exz is greened. By invariant 6.4,Eiz is green. Consequently the new member of the local-scan-root-set and the exit-itemsfrom which it is reachable are green.We now have to make sure that such an insert message is not sent before Exz ismarked red. For that we introduce the following restriction on mark-red.Mark-red Restriction Do not perform remote steps through exit-items correspond-ing to references being transmitted. Following the terminology in (Ladin and Liskov1992), do not perform remote steps through references in the translist2.Cut-referencesUntil now, scan phase initial and local steps ignored the cut-reference graph as it mayhave changed since the last computation. Because of this the initial step has to includelocal roots in the local-scan-root-set as the reachability of the local graph, and conse-quently the reachability of suspect items may have changed. For the same reasons,local steps have to perform an (atomic) trace from entry to exit-items, as reachabilitybetween those items might also have changed.However, we would bene�t substantially from a system that kept cut-references upto date. That is, an initial step would compute which items were reachable from outside2We have chosen to model our problem using the translist model, since it is implemented by the Net-work Objects system. However, there is a correspondence between this problem and the race conditionsproblem described in section 3.4. Consequently, other solutions could be applied.

CHAPTER 6. MUTATOR CONCURRENCY 143
B

A

C

Ei Ei

Ex

Ex

Ei

Ei

Ex

Ex

Ei

Ei

Ex

Ex

a

a

b

b

c

c

d

d

e

e

f

f

Figure 31: Reference mutations (dotted lines) and Cut-references graph.the suspect cut-references graph, and a local step would simply follow a cut-referenceaccurately.First, let us illustrate how a non-accurate cut-reference graph may lead to an unsafescan phase. Consider �gure 31 (again, for simplicity, we represent entry and exit-itemsas common objects, and we do not represent the corresponding objects). Suppose thatan external mutator message arriving on process A at object a creates a new path fromobject a to object d in process B and that this is followed by the deletion of a referencein the old path to d at process B. The cut-references graph is no longer accurate. Alsosuppose that the cut-references graph is involved in a partial tracing so that all entryand exit-items become red. Now suppose process B computes a new cut-reference graphto reect the deletion, but process A does not update its cut-reference graph to reectthe new reference. In this way, a scan local step on entry-item Eia, generated by theexternal reference to entry-item Eif , will miss exit-item Exd.Cut-references | Dirty BarrierLet us de�ne the local-scan-root-set assuming an accurate cut-reference graph. By post-condition 5.1 on page 110, the nodes of a cut-reference graph are not reachable locally.

CHAPTER 6. MUTATOR CONCURRENCY 144Consequently, one may remove the local roots from the local-scan-root-set de�ned onpage 119: it su�ces for the initial step to check that the red suspect cut-referencesgraph is not reachable from external entry-items (any non-red entry-item or red entrywhose entry and red-lists di�er). Moreover, by post-condition 5.2 on page 110, it wouldbe enough for the initial step as well as for every local step to follow the cut-referencesgraph, because, if there is a path between a suspect Eiz and a suspect Exy, thenExy 2 Eiz:exits. As we said, after this simpli�cation, the initial scan step and the localscan steps are simpler and cheaper. Recall that we do not perform a scan from thelocal roots anymore. Moreover, the local scan steps just follow the references in thecut-references graph.In this way, the local-scan-root-set for a PTy would be formed by:� white entry-items, as they do not belong to the red suspect sub-graph,� green entry-items, as they have already been found to be live,� any red entry-item marked by either PTy or any PTu 2 PTy:Responsibles whoseentry and red-list di�er, as they are reachable from outside the suspect sub-graph,and� any other red entry-item marked by other PTu such that PTu =2 PTy:Responsibles,as they are not part of PTy's suspect subgraph.However, as we showed, if suspect items turn to be live, the cut-references of thoseitems may change due to creation and deletion of local references3. We ignore deletionssince doing so does not a�ect safety, but simply makes the algorithm overly conservative.Also they do not a�ect collection of garbage cycles because deletions are reected inthe next computation of cut-references. On the other hand, reference creations mustbe handled so that the scan phase does not miss live exit-items (as illustrated by theexample in �gure 31.).A partial tracing needs co-operation from the mutator in order to provide the scanphase's initial step with accurate information about which cut-references may havechanged in the system and to always provide cut-references for safe local steps.3None of these events can occur unless those items are still alive.

CHAPTER 6. MUTATOR CONCURRENCY 145By post-condition 5.1 on page 110, we conclude that in order to create a new pathto a suspect exit-item, the mutator must have traversed an old path to it. This traversalmust have included traversing an inter-process reference to a suspect entry-item, sincepost-condition 5.1 states that suspect entry-items and suspect exit-items are not locallyreachable. Consequently, only external mutator actions may change their connectivity.In the example (�gure 31 on page 143), the mutator must have traversed the reference toobject b. In this way, it is possible to protect the cut-references graph by a read-barrieron suspect entry-items: a Dirty Barrier.Dirty Barrier When a mutator traverses a remote reference to an object z at processP , if P has a suspect entry-item Eiz for z, it dirties Eiz and the exit-items in Eiz:exits.The following post-condition is then true.Post-condition 6.5
Dirty Barrier(Eiz)fdirty(Eiz) ^ (8Exy 2 Eiz :exits � dirty(Exy))gDirty entry-items are cleared when an entry-item's exits are re-computed (as de-scribed in section 5.2). For simplicity, we assume that if the mark-red phase visits aprocess during such a computation, it waits until it terminates. This condition may beeasily relaxed by allowing mark-red to read the old copy while a new copy is being com-puted. We proceed as follows. After method identify-suspects, all dirty informationis cleared. After this point, and until the next cut-references graph computation, everyremote invocation on suspect objects will trigger a Dirty Barrier.As we have described in section 5.2, compute-graph computes the list of all suspectexit-items reachable from each suspect Eiz. Assuming concurrency, the following post-condition holds:

CHAPTER 6. MUTATOR CONCURRENCY 146Post-condition 6.6
f9Exy � (suspect(Eiz) ^ suspect(Exy) ^ path(Eiz ; Exy)gcompute-graph(Eiz)fExy 2 Eiz :exitsgThis post-condition asserts that if there is a path between a suspect entry-item Eizand a suspect exit-item Exy before method compute-graph's iteration for Eiz, Exywill be a member of Eiz 's exits. This is ensured by any `snapshot-at-the-beginning'incremental tracing.Compute-Graph is performed concurrently with the mutator Dirty Barrier.When the component exits is computed for an entry-item Eiz , if during this com-putation a Dirty Barrier is triggered on Eiz such that dirty(Eiz), all exit-items inEiz:exits must be dirtied at the end of the computation. Thus,Post-condition 6.7 compute-graph(Eiz)fdirty(Eiz)) (8Exy 2 Eiz:exits � dirty(Exy))gDuring compute-graph iteration for Eiz (recall that dirty information is clearedafter identify-suspects), if a Dirty Barrier is applied on Eiz , we remember Eiz anddirty the exit-items in exits at the end of compute-graph.We are now ready to de�ne a set of invariants that must hold in every process P , be-tween the last computation of the cut-reference and the initial step at P . Consequently,we are able to rede�ne a new local-scan-root-set, and scan initial step (SI) and localsteps (SL) in order to preserve safety. In section 7 we will prove that Dirty Barrierensures safety in the presence of mutator concurrency.Invariant 6.8 8Exy � (path(Roots; Exy) ^ suspect(Exy)) dirty(Exy))

CHAPTER 6. MUTATOR CONCURRENCY 147If a suspect exit-item is locally reachable then it must be dirty.Invariant 6.9 8Eiz; Exy � path(Eiz ; Exy) ^ suspect(Exy))Exy 2 Eiz:exits _ dirty(Exy)If there is a path between an entry-item and a suspect exit-item, then either theremust be a cut-reference from the entry-item to that exit-item, or that exit-item is dirty.The local-scan-root-set of a PTa, taking account of co-operative partial tracings, maynow be de�ned as the set of:� white entry-items, as they do not belong to the suspect sub-graph,� green entry-items, as they have already been found live,� every entry-item Eiz where dirty(Eiz), since no Exy (where Exy 2 Eiz :exits) maybe suspect any longer,� every dirty red exit-item Exy, as it may no longer be a suspect,� every red exit-item Exy that have been found non-suspect by the last computationof �nd-suspects,� any red entry-item marked by either PTa or any PTb 2 PTa:Responsibles whoseentry and red-lists di�er, as they are reachable from outside the suspect sub-graph,and� any other red entry-item marked by other PTc where PTc =2 PTa:Responsibles, asthey are not part of PTa's suspect subgraph.We can now rede�ne the scan phase initial step (SI) and scan phase local steps (SL)using an accurate cut-references graph. The Dirty Barrier ensures that no local rootsor external entry-items are missed by the scan phase initial step in any participant. Italso ensures that the cut-reference between entry and exit-items is consistent.(Conc-SI.1) Mark green any red entry or exit item E of the local-scan-root-set for whichE:mark = PTa. For all entry-item Eiz in the local-scan-root-set, green any redexit-item Exy where Exy 2 Eiz :exits and Exy:mark = PTa: they are greena.

CHAPTER 6. MUTATOR CONCURRENCY 148Notice that there may be new members added to the local-scan-root-set by externalmutator messages while the initial step at P is being executed. Consequently, thisprocess must be repeated for any new members. Termination is ensured because thereis a �nite number of red items that may be added to the local-scan-root-set.The local scan phase step for PTa propagates the green colour from a greena entry-item Eiz to those exit-items Exy 2 Eiz :exits that PTa had previously visited in themark-red phase:(Conc-SL.1) Green Exy 2 Eiz:exits if it is red and eitherExy:mark = PTa or PTa 2 Exy:marks.As we prove in chapter 7, invariants 6.8 and 6.9 ensure the safety of scan phaseinitial and local steps.6.2 TerminationIn section 4.5 we described a distributed termination protocol for detecting termina-tion of each phase of the distributed partial tracing. However we did not account forsynchronisation actions due to to mutator-collector concurrency during the scan phase.Correct termination detection requires that each remote step (scan request), andsubsequent local and remote steps, has an active-disquiet process ultimately responsiblefor it. We need to show that the Remote Barrier preserves this condition.In order to show that the Remote Barrier preserves the termination detectionprotocol, we analyse each case of every possible process state and show that a passiveprocess cannot execute the Remote Barrier, thus there must always be a active-disquiet process responsible for it.Inactive P has not taken the initial step. This means that it has not received thereport phase message yet. However, it might install a Remote Barrier, whenthe mutator invokes a remote object or transmits a remote reference, in any redexit-item Exz because P does not know the state of the target process. Since Pis a dynamic process because it is a participant, it eventually turns to active-disquiet. The exit-item Exz should then be inserted on the local-scan-root-set asa new root for the initial step.

CHAPTER 6. MUTATOR CONCURRENCY 149
Active

Disquiet
Inactive

Passive
Disquiet

Passive
Quiet

fj

h

b ,c, d, e, l, b’ ,c’

g, g’

a, i

b, c, d, e, b’

l, m, n

a .. n: EventsFigure 32: State transition diagram for termination detection of PTz accounting formutator concurrency.Active-disquiet P has not yet received all the acknowledgements for the scan requestsgenerated by its initial step, thus it will take responsibility for any Remote Barrierscan request.Passive-disquiet P has already completed its initial step. Any remaining red exit-item Exy 2 P can only have been reachable from a red entry-item Eiz 2 P . Byinvariant 6.4 we conclude that all exit-items Exz in all other processes Q muststill be red. Consequently, a mutator message to Eiz 2 P must have been sentthrough a red Exz 2 Q 6= P . In this case a Remote Barrier must have beenexecuted on Exz. As a result, Eiz and Exy must have been coloured green.Passive-quiet Similar arguments to above.We conclude that a Remote barrier must ultimately have an active-disquiet pro-cess responsible for it. Note that the responsible process may be the one that generatedthe barrier.We may now complete the state transition diagram introduced in section 4.5 (�gure15). The new events reect the execution on a red exit-item and reception on a red entry-item of a Remote Barrier, and reception of an acknowledgement for each possible

CHAPTER 6. MUTATOR CONCURRENCY 150state. The new transaction diagram and new events are described in �gures 32 and33. Events b0, and c0 and g0 represent the execution on exit-items and reception onentry-items of the Remote Barrier respectively. The actions are the same as sendingand receiving scan requests.6.3 SummaryIn this chapter we have presented techniques for preserving safety and liveness in thepresence of mutator/collector concurrency. We conclude that since the mark-red phasedoes not need to be accurate, it does not delay mutator activity and it does not requireany synchronisation.The scan phase must be accurate. Mutator activity may prevent a root from beingseen by the scan phase. Moreover, the cut-references graph may change since it lastcomputation and consequently the reachability of suspect items may also change.We de�ned two synchronisation actions in order to make our algorithm safe in thepresence of mutator concurrency. The Remote Barrier ensures safety by not allowingthe mutator to read references to objects corresponding to red entry-items. In this waythe mutator cannot change the reachability of red exit-items.The Dirty Barrier keeps the cut-references graph up to date. It ensures that it isalways provides accurate information about those cut-references that may have changedin the system to the scan phase's initial-step. In this way, the algorithm can alwaysperform safe local steps, directly, from entry to exit-items.

CHAPTER 6. MUTATOR CONCURRENCY 151Event Actiona start-phase � initialise local-steps� responsible = self� state = active-disquietb � send scan request(exit-item) � grey-set = grey-set [fexit-itemgb' � trigger a Remote Barrier(exit-item)c � receive scan request(exit-item) � local-steps ++c' � receive Remote Barrier(exit-item) � send acknowledgement(exit-item)from to pp 2 PTz:Participants [PTy:Participantswhere PTy 2 PTz:Responsiblesd receive acknowledgement(exit-item) � grey-set = grey-set n fexit-itemge perform local step � local-steps ��f grey-set = ; ^ local-steps = 0 � responsible = none� state = passive-quietg � receive scan request(exit-item) � local-steps ++g' � receive Remote Barrier(exit-item) � responsible = other(p)from � reply-set = reply-set [exit-itemp 2 PTz:Participants [PTy:Participants � state = passive-disquietwhere PTy 2 PTz:Responsiblesh grey-set = ; ^ local-steps = 0 � for exit-item in reply-setsend acknowledgement(exit-item)to responsible� responsible = none� state = passive-quieti receive scan request(exit-item) from � initialise local-stepsp 2 PTz:Participants ^ dynamic � set responsible = self� send acknowledgement(exit-item)to p� state = active-disquietj receive scan request(exit-item)from � local-steps = 1p 2 PTz:Participants ^ non-dynamic � responsible = other(p)� reply-set = reply-set [exit-item� state = passive-disquietl receive scan request(exit-item) on � local-scan-root-set(PTz) =entry-item Eia from local-scan-root-set(PTz) [fEiagPTy 2 PTz:Responsibles � send acknowledgement(exit-item)m trigger a Remote Barrier(exit-item) � local-scan-root-set =local-scan-root-set [fexit-itemgn receive a Remote Barrier(exit-item) � local-scan-root-set(PTz) =on entry-item Eia local-scan-root-set(PTz) [fEiag� send acknowledgement(exit-item)Figure 33: State changes for termination detection of PTz accounting for mutator con-currency

Chapter 7
Proof of Correctness
In this chapter we outline a proof of the correctness of some aspects of the partial tracingalgorithm. First we summarise our model, rewriting the steps, de�nitions, invariants andpost/conditions relevant for the proof. Then, we proceed to the proof itself. We dividethe proof into two sections: safety (section 7.2) and liveness (section 7.3). When provingsafety, we assume that the distributed tracing is correct providing it terminates. We�rst use a simpli�ed model that does not account for mutator concurrency or concurrentpartial tracings, and we assume that distributed termination is correctly detected. Then,we extend the proof to the distributed termination protocol. We prove that once apartial tracing's initiator has received a report message from every participant, the scanphase has terminated, that is, there can be no mark requests in transit. Consequently,no red object can receive a scan request in the partial tracing's sweep phase. Next,we extend the proof to the mutator concurrency model and prove that mutator actionsdo not a�ect termination detection and safety. Finally, we extend the proof to thecase where di�erent partial tracings may be simultaneously active in the same or aconnected sub-graph. In this case we show that two partial tracings may co-operatewithout compromising each other's safety and liveness properties.When proving liveness, we reason about the termination of mark-red and scan trac-ings, and show that all garbage objects eventually become suspect objects and thatgarbage cycles within a suspect subgraph are eventually collected by our system.

152

CHAPTER 7. PROOF OF CORRECTNESS 1537.1 Summary of the ModelMark-red phaseDe�nition 4.1Eix:red-list =fp 2 processes : Exx 2 exit-table(p) ^ colour(Exx) = redgMark-red stepsFor a partial tracing PTy, a local step goes from each red entry-item Eia, whereEia:mark = PTy, to each exit-item Exb in Eia:exits as follows:(ML.1) If Exb is white, then it is reddened and its mark set to PTy, that is, Exb:mark =PTy: we call it redy.(ML.2) If Exb is already redy, then no further action is necessary.(ML.3) If Exb is redz where z 6= y, then two partial tracings have met in the same phase.We merge the partial tracings and say that z is dependent on y and y is responsiblefor z. PTy is appended to Exb:marks, PTy is added to the PTz:Responsibles,and PTz to the PTy:Dependents. Both these interactions take place between thePTobj's in this process | no messages are sent.(ML.4) If Exb is green, it must have been marked by another group operating in a laterphase so the red wave-front retreats from this object.A remote steps executed by PTy propagates colours from an exit-item Exb in aparticipant P to entry-items Eib in a remote process Q:(MR.1) If Eib is white or redy, P is added to Eib:red-list and Eib is marked redy.(MR.2) If Eib is redz and z 6= y, P is still added to Eib:red-list. Once again two par-tial tracings have met and, as in the local step, PTy is appended to Eib:marksand to PTz:Responsibles, PTz to PTy:Dependents in process Q; no messages areexchanged.(MR.3) If Eib is green, no further action is taken and the mark-red phase retreats.

CHAPTER 7. PROOF OF CORRECTNESS 154Scan phaseScan stepsAn initial-step:(SI.1) Mark green any red entry or exit-item E in the local-scan-root-set for whichE:mark = PTy. Mark green any red exit-item Exb for which Exb:mark = PTythat is reachable from the local-scan-root-set. These are greeny.The local scan phase step for PTy propagates the green colour from a greeny entry-item Eia to those exit-items Exb in the same process reachable from Eia that PTy hadpreviously visited in the mark-red phase:(SL.1) Green Exb if it is red, reachable from green a Eia, and either Exb:mark = PTyor PTy 2 Exb:marks. That is, we green only those exit-items reddened by co-operative partial tracings.The remote step from a greenA exit-item Exb propagates the green colour to thecorresponding entry-item Eib:(SR.1) If Eib is red and Eib:mark = PTy or PTy 2 Eib:marks, mark Eib green.(SR.2) If Eib is red but neither Eib:mark = PTy nor PTy 2 Eib:marks, retreat.(SR.3) If Eib is not red, retreat.(SR.4) Request a local step from Eib if Eib:mark has entered the scan phase.Advanced scan stepsThe advanced scan steps follow the cut-references graph. It su�ces for the initial scanstep to check that the red suspect cut-references graph is not reachable from exter-nal entry-items (any non-red entry-item or red entry whose entry and red-lists di�er).Moreover, it is enough for the initial step, as well as for every local step, to follow thecut-references graph, because, if there is a path between a suspect Eiz and a suspectExy, then Exy 2 Eiz :exits.

CHAPTER 7. PROOF OF CORRECTNESS 155(Conc-SI.1) Mark green any red entry or exit item E of the local-scan-root-set for whichE:mark = PTa. For all entry-item Eiz in the local-scan-root-set, green any redexit-item Exy where Exy 2 Eiz :exits and Exy:mark = PTa: they are greena.(Conc-SL.1) Green Exy 2 Eiz:exits if it is red and eitherExy:mark = PTa or PTa 2 Exy:marks.Termination detectionInvariant 4.48pi � pi:state = passive-disquiet)9pj:(i 6= j) ^Ancestor�(pj ; pi) ^ pj:state = active-disquietCut-references graphPost-condition 5.1 [identify-suspects]f(8Eiz � suspect(Eiz)) :path(Roots; z)) ^(8Exy � suspect(Exy)) :path(Roots;Exy))gPost-condition 5.2
[identify-suspects]f(8Eiz � suspect(Eiz)) :path(Roots; z)) ^(8Exy � suspect(Exy)) :path(Roots;Exy))g[compute-graph]f8Eiy; Exz � (suspect(Eiy) ^ suspect(Exz) ^ path(Eiy ; Exz))) Exz 2 Eiy:exitsgAdvanced termination detectionDe�nition 5.5 Dependent(PTz; PTy) � PTy 2 PTz:Responsibles.

CHAPTER 7. PROOF OF CORRECTNESS 156De�nition 5.6 Given P 2 PTz:Participants, stable(P) � :active-disquiet(P).De�nition 5.7 partial-terminated(PTz) � 8P 2 PTz:Participants � stable(P).De�nition 5.8terminated(PTz) � (8PTy �Dependent�(PTz ; PTy)) partial-terminated(PTy))Mutator concurrencyInvariant 6.1 After SI(P), no red exit-items are reachable by the local-scan-root-set atP.Invariant 6.2 After SI(P), no red entry or exit-items become new members of thelocal-scan-root-set.Invariant 6.3 A red entry-item Eiz, where Eiz:red-list = Eiz:entry-list, cannot receivean insert message unless there is a scan request in transit to that Eiz.Remote-step invariant 6.4 8 Exz:(green(Exz)) green(Eiz))Mark-red Restriction Do not perform remote steps through exit-items correspond-ing to references being transmitted. Following the notation in (Ladin and Liskov 1992),do not perform remote steps through references in the translist.Post-condition 6.5
Dirty Barrier(Eiz)fdirty(Eiz) ^ (8Exy 2 Eiz :exits � dirty(Exy))gPost-condition 6.6

f9Exy � (suspect(Eiz) ^ suspect(Exy) ^ path(Eiz ; Exy)gcompute-graph(Eiz)fExy 2 Eiz :exitsg

CHAPTER 7. PROOF OF CORRECTNESS 157Post-condition 6.7
compute-graph(Eiz)fdirty(Eiz)) (8Exy 2 Eiz:exits � dirty(Exy))gInvariant 6.8 8Exy � (path(Roots; Exy) ^ suspect(Exy)) dirty(Exy))Invariant 6.9 8Eiz; Exy � path(Eiz ; Exy) ^ suspect(Exy))Exy 2 Eiz:exits _ dirty(Exy)7.2 SafetySafety InvariantThe partial tracing algorithm must satisfy the following safety invariant:Safety property 1 No live objects are reclaimed.In the sweep phase only red entry-items are collected, so the invariant is equivalentto:Safety property 2 At the begining of the sweep phase no red entry-items involved ina PTa are reachable from any root inside or outside the group containing the suspectsubgraph.7.2.1 Partial tracing algorithmIn this section we prove that the partial tracing algorithm works safely in conjunctionwith the reference listing protocol. We consider neither mutator-collector concurrency,nor multiple partial tracings nor termination detection.We want to prove that at the begining of the sweep phase of PTa

CHAPTER 7. PROOF OF CORRECTNESS 158
8Eiy(reda(Eiy)) :live(Eiy)) (1)Suppose that reda(Eiy)^ live(Eiy) at the begin of sweep phase. Thus, Eiy must bereachable from outside the group or from a live exit-item inside the suspect sub-graph.Notice that an entry-item is never locally reachable, although the corresponding objectmay be locally reachable itself. Thus,8Eiy � (reda(Eiy) ^ live(Eiy)) (2)(9Q =2 PTa:Participants ^ 9Exz 2 Q:exit-table ^ path(Exz ; Eiy) (3)_(9R 2 PTa:Participants ^ 9Exu 2 R:exit-table ^ path(Exu; Eiz) ^ live(Exu))(4)Now suppose that (3) holds but (4) does not. By the reference listing protocol,path(Exz; Eiy)) Q 2 Eiy:entry-list (5)That is, Q must have been inserted in Eiy:entry-list when path(Exz ; Eiy) was created(recall that we assume a safe reference listing protocol). Also,Q =2 PTa:Participants) :reda(Exz) (6)because Exz was not visited by PTa's mark-red phase. If it had been visited, Q wouldhave been made a member of PTa:Participants by the acknowledgements system.By de�nition 4.1,(path(Exz ; Eiy) ^ :reda(Exz))) Q =2 Eiy :red-list (7)That is, since exit-items are unique, Q cannot be a member of Eiy:red-list because itdoes not hold a red exit-item to Eiy. Consequently,(path(Exz; Eiy) ^Q =2 PTa:Participants)) Di�erence(Eiy:entry-list; Eiy :red-list) 6= ;(8)

CHAPTER 7. PROOF OF CORRECTNESS 159From this it follows that Eiy must have been painted green by the scan initial step.Thus, live(Eiy) and reda(Eiy) is a contradiction. Now suppose proposition (4) holds,that is, there is an exit-item Exu belonging to R 2 PTa:Participants from which Eiyis reachable and live(Exu). Since Eiy was not painted green by the scan phase initialstep, reda(Eiy) ^ (Eiy :red-list = Eiy:entry-list) (9)because, entry-items whose red and entry-lists are painted green by the initial scan step.So, since path(Exu; Eiy), R 2 Eiy:entry-list. Hence, R 2 Eiy:red-list. Thus,reda(Exu) by de�nition 4.1. By hypothesis Exu is live. Thus,live(Exu)) (10)(9r 2 Roots(R) ^ path(r;Exu)) _ (11)(9Eir 2 R:entry-table ^ path(Eir; Exu) ^ live(Eir)) (12)Ignoring concurrency, if (11) holds, Exu would have been painted green by the scaninitial-step (SI.1). So live(Exu) and reda(Exu) is a contradiction. Thus (12) must hold.We have path(Eir; Exu). Once we are at the begin of sweep phase, Eir must bered. If not, Exu would have been painted green by the initial step. Thus any red`live' entry-item is only reachable from other global roots which are red. Any red `live'entry-item is reachable from the actual roots or from outside the red subgraph. Thiscontradicts our de�nition of liveness, hence there are no red live entry-items at the startof the sweep phase.7.2.2 Distributed Termination ProtocolNow we outline the proof of the distributed termination detection protocol described insection 4.5. We want to show that the distributed termination protocol detects safelythe end of the mark-red and scan phases, in order for a partial tracing to proceed to thescan and sweep phases respectively. Consequently, no object may receive a mark-red orscan request at the begining of scan and sweep phases respectively. In order to safely

CHAPTER 7. PROOF OF CORRECTNESS 160proceed to the next phase, each process P involved in a PTa must receive a reportmessage from PTa's initiator. As we stated in section 4.5.2, this means that there areno P 2 PTa:Participants such that P:state = active-disquiet. This property is capturedby the following theorem:Theorem 7.1(8P 2 PTa:Participants P:state 6= active-disquiet))(8P 2 PTa:Participants � P:grey-set = ; ^ P:local-steps = 0)The proof of this theorem is based on the validity of invariant 4.4. If we apply thisinvariant to the set of PTa's participants, it states that:8P 2 PTa:Participants (P:state = passive-disquiet)9Q 2 PTa:Participants ^Ancestor�(Q;P) ^Q:state = active-disquiet)The proof of this invariant is based on the state transition diagram on �gures 15 onpage 97 and 16 on page 99. The proof follows by induction on the number n of ancestorsof a participant P . This number is �nite and it is at least one, because, from the statetransition diagram, it follows that:� at the start, there is always at least one active-disquiet process,� two disquiet processes never establish a Ancestor relation, because a disquiet pro-cess receiving a scan request immediately acknowledges it. The responsibility isthen inherited by the process responsible for the receiver disquiet process.Case n = 1, by de�nition, P is the only ancestor of P and so P cannot be passive-disquiet. Thus, the implication holds.Case n = m+ 1. It follows from the state transition diagram that,P:state = passive-disquiet) 9Q 2 PTa:Participants(Q:state = active-disquiet _Q:state = passive-disquiet) ^Ancestor(Q;P))

CHAPTER 7. PROOF OF CORRECTNESS 161Let us assume that P:state = passive-disquiet. If Q:state = active-disquiet, then,as from Ancestor(Q;P) we have Ancestor�(Q;P), the result we want to prove holdsimmediately.Otherwise, Q:state = passive-disquiet and, since Ancestor(Q;P), the number ofancestors of Q is less or equal to m, and then by the induction hypothesis,9R 2 PTa:ParticipantsR:state = active-disquiet ^Ancestor�(R;Q))So, the participant R has the desired property: R is active-disquiet and, becauseAncestor�(R;Q)) and Ancestor(Q;P)), Ancestor�(R;P)). 2Now, we proceed with the proof of theorem 7.1. Suppose that 8P 2 PTa:Participants�P:state 6= active-disquiet and 9P 2 PTa:Participants such that P:grey-set 6= 0 orP:local-steps 6= 0, that is, there may be a scan-request in transit. From the state transi-tion diagram, this implies that P:state = passive-disquiet _ P:state = active-disquiet. IfP:state = passive-disquiet, by invariant 4.4, there must be an active-disquiet participant.So we have a contradiction. 27.2.3 Mutator ConcurrencyIn this section we extend the proof to the model allowing for mutator concurrency. Weprove that:1 TheRemote Barrier allows correct distributed termination detection of the scanphase.2 Safety property 2 on page 157 holds.The proof that theRemote Barrier preserves the invariant 7.1 follows immediatelyfrom the state case analysis in section 6.2. We showed that a Remote Barrier can onlybe triggered by an active-disquiet process. Hence, at least that process is responsiblefor all subsequent requests generated by the barrier. From this it follows that theorem7.1 is trivially true.

CHAPTER 7. PROOF OF CORRECTNESS 162Next we prove safety property 2. Recall the proof of the partial tracing algorithmon page 157. Let us turn to prove proposition 1 on page 158 and account for mutatorconcurrency. To show that concurrent mutator activity preserves this proposition, andconsequently the safety property, we prove �rst invariants 6.1, 6.2, 6.3, 6.8 and 6.9.Proof of Invariant 6.1 This invariant states: After SI(P), no red exit-items arereachable from the local-scan-root-set at P .Suppose that after the initial step at process P there is an exit-item Exy such thatred(Exy). By mark-red local steps, Exy must be reachable from a red entry-item Eiz ,where Eiz :red-list = Eiz:entry-list. By mark-red remote steps and de�nition 4.1, allExz from which Eiz is reachable must be red. In order for Eiz to be referenced fromthe local-scan-root-set, some process P holding a red Exz for Eiz must have invokedEiz's corresponding object. In that case, a Remote Barrier must have been triggeredin Eiz through Exz and painted Eiz and all exit-items in Eiz:exits green, includingExy. Consequently, the invariant is true. 2Before proving invariant 6.2, we prove the auxiliary invariant 6.3.Proof of Invariant 6.3 Such invariant states that: A red entry-item Eiz , whereEiz:red-list = Eiz:entry-list, cannot receive an insert message unless there is a scanrequest in transit to that Eiz .We have Eiz such that Eiz :red-list = Eiz:entry-list. By mark-red remote stepsand de�nition 4.1, all Exz from which Eiz is reachable must be red. By the mark-redrestriction, at the time every Exz was marked-red, Exz =2 translist. This implies thatthere were no messages in transit holding a reference to Eiz 's corresponding object.Consequently, for Eiz to receive an insert message, some process P holding a red Exzfor Eiz must have transmitted a reference to Eiz to another process. But, in this casea Remote Barrier would have been triggered on Exz and a scan request would havebeen sent and received (by invariant 6.4) at Eiz .Proof of Invariant 6.2 This invariant states: After SI(P), no red entry or exit-itemsbecome new members of the local-scan-root-set.Suppose that after the initial step at process P there is an entry-item Eiz suchthat red(Eiz). Hence, Eiz :red-list = Eiz :entry-list. For Eiz to become a new member

CHAPTER 7. PROOF OF CORRECTNESS 163of the local-scan-root-set, it must receive an insert message such that Eiz :red-list 6=Eiz:entry-list. By invariant 6.3, there must be a scan request in transit to Eiz . Hence,Eiz and all exit-items in Eiz:exits will be painted green. Consequently the invariant istrue. 2Proof of Invariant 6.8 This invariant states that:8Exy � (path(Roots; Exy) ^ suspect(Exy)) dirty(Exy))This invariant is true immediately after identify-suspects because, by post-condi-tion 5.1, path(Roots; Exy) ^ suspect(Exy) is a contradiction. After identify-suspects,only external messages may change the reachability of suspect exit-items, so there musthave been Eiz such that path(Eiz ; Exy). By post-condition 6.6, Exy 2 Eiz :exits.In order to make a new path to Exy, an external mutator message must have ar-rived at Eiz after identify-suspects. By post-condition 6.5 and post-condition 6.7,dirty(Eiz) ^ dirty(Exy).We conclude that the invariant is always true. 2Proof of Invariant 6.9 This invariant states that:8Eiz; Exy � path(Eiz ; Exy) ^ suspect(Exy))Exy 2 Eiz :exits _ dirty(Exy)By post-condition 5.1, Exy was not reachable locally in the last identify-suspects.If path(Eiz ; Exy) existed before compute-graph, by post-condition 6.6, Exy 2 Eiz:exits.If not, as above, after identify-suspects only external messages may change the reach-ability of suspect exit-items, so there must have been Eiu such that path(Eiu; Exy). Bypost-condition 6.6, Exy 2 Eiu:exits. In order to make a new path to Exy, an externalmutator message must have arrived at Eiu after identify-suspects. By post-condition6.5 and post-condition 6.7, dirty(Eiz) ^ dirty(Exy).We conclude that the invariant is always true. 2

CHAPTER 7. PROOF OF CORRECTNESS 164Recall the partial tracing algorithm proof on page 157. Here we want to prove theproperty: 8Eiy � (reda(Eiy)) :live(Eiy))Suppose that reda(Eiy) ^ live(Eiy) at the begin of sweep phase. Then,8Eiy(reda(Eiy) ^ live(Eiy)) (13)(9Q =2 PTa:Participants ^ 9Exz 2 Q:exit-table ^ path(Exz; Eiy) _ (14)(9R 2 PTa:Participants ^ 9Exu 2 R:exit-table ^ (15)path(Exu; Eiz) ^ live(Exu)) (16)Suppose (14) holds, but ((15) ^ (16)) do not, and suppose path(Exz; Eiy) existedbefore the initial scan step. As we showed in the non-concurrent model (see page 157),Eiz is a member of the local-scan-root-set and painted green by scan initial step. Thus,reda(Eiy) ^ live(Eiy) is a contradiction.Now, suppose path(Exz ; Eiy) did not exist before the initial scan step. Once reda(Eiy),by invariant 6.2, Eiy could not be a new member of the local-scan-root-set after initialstep. A Remote Barrier on Eiy preserves the invariant.Now suppose (15) and (16) hold, but (14) does not hold. As we have already shown,Exu is red and by hypothesis Exu is live. Hencelive(Exu)) (17)(9r 2 Roots(R) ^ path(r;Exu)) _ (18)(9Eir 2 R:entry-table ^ path(Eir; Exu) ^ live(Eir)) (19)Suppose (18) holds, but (19) does not. Thus, 9r 2 Roots(R) ^ path(r;Exu).Suppose such a path existed before the initial step at R. If :suspect(Exu), Exuwould have been a member of the local-scan-root-set and painted green. If suspect(Exu),

CHAPTER 7. PROOF OF CORRECTNESS 165by invariant 6.8, Exu is dirty, and so Exu would have been a member of the local-scan-root-set and painted green. Thus, reda(Eiy) ^ live(Eiy) is a contradiction.If such path did not exist before the initial step at R, by invariant 6.1, and assumingsafety of `Advanced local steps', Exu would have safely been greened by a RemoteBarrier.Now, suppose that (19), but (18) does not hold. As we have shown in the proof ofthe partial tracing algorithm on page 157, Exu must be red. Thus red live items areonly reachable from other red live items, and not from any root. So they are not live.To conclude this proof, we have to prove that the `Advanced local steps' are safe.That is, after initial step at process P :8Eiz; Exy � red(Eiz) ^ red(Exy) ^ path(Eiz; Exy)) Exy 2 Eiz :exitsFrom invariant 6.9, Exy 2 Eiz :exits _ dirty(Exy). By de�nition of the local-scan-root-set, if dirty(Exy), Exy would have been painted green by the initial step. Thus, wehave that Exy 2 Eiz :exits.We conclude the proof that no red objects are live at the begining of the scan phase.7.2.4 Co-operative partial tracingsIn this section we extend the proof to the scalability model, that is, to the model thatallows co-operative partial tracings. We prove the following safety properties:Co-safety.1 The Token Algorithm safely detects termination of scan phase. Thatis, when the initiator PTa receives back the token it has initiated, tokena, PTamay safely switch to the sweep phase.Co-safety.2 Safety property 2 on page 157 holds.First we prove property Co-safety.1, which is described by the following theorem:Theorem 7.28PTa(receive-tokena(tokena)) \no scan requests in transit for PTa")If PTa receives back the token it initiated, tokena, there are no more requests in transitfor PTa.

CHAPTER 7. PROOF OF CORRECTNESS 166The proof of this theorem is based on the proof of the following theorem:Theorem 7.3 8PTa � (8P 2 PARTICIPANTS(PTa) � P:state 6= active-disquiet) \no scan requests in transit for PTa")Where,PARTICIPANTS(PTa) = SPTb2Dependent�(PTa) PTb:ParticipantsIf no participant of PTa and no participant of any PTb transitively responsible forPTa is active-disquiet, there cannot be any scan request in transit for PTa.We �rst prove the following invariant:Invariant 7.48P 2 PTa:Participants (P:state = passive-disquiet)9PTb �Dependent�(PTa; PTb) ^ :partial-terminated(PTb))The proof follows by induction on the number n of partial tracings in the Dependent�relation of PTa.Case n = 1, that is j Dependent�(PTa; PTb) j= 1, PTa is the only partial trace re-sponsible for PTa. The formula is trivially true by de�nition of partial-terminated(PTa).Case n = m+ 1. It follows from the state transition diagram that,P:state = passive-disquiet) 9Q 2 PTb:Participants�(Dependent(PTa; PTb) ^ (Q:state = active-disquiet _Q:state = passive-disquiet))Let us assume that P:state = passive-disquiet. If Q:state = active-disquiet, then:partial-terminated(PTb) by de�nition 5.7. As from Dependent(PTa; PTb) we haveDependent�(PTa; PTb), the result we want to prove holds.Otherwise, Q:state = passive-disquiet, and since Dependent(PTa; PTb), by the in-duction hypothesis,

CHAPTER 7. PROOF OF CORRECTNESS 167
9PTc �Dependent�(PTb; PTc) ^ :partial-terminated(PTc)Then, 9PTc �Dependent�(PTa; PTc) ^ :partial-terminated(PTc)2Let us prove theorem 7.3. By the state transition diagram, if there are scan-requestsin transit for PTa, there must be P in PTa or PTb 2 PTa:Responsibles where P:state =passive-disquiet_P:state = active-disquiet. By invariant 7.4 this leads to a contradiction.Thus, this theorem holds.To complete this proof we have to prove theorem 7.2. Recall that in each individualPTb scan report phase, the initiator determines the conditionpartial-terminated(PTb) (de�nition 5.7). So, it su�ces for the Token Algorithm todetect this condition for all PTb such that Dependent�(PTa; PTb) holds. PTa receivestokena back when tokena:next is empty. Thus, we show that8PTa � (tokena:next = ;) (20)(8PTb �Dependent�(PTa; PTb)) partial-terminated(PTb))) (21)From its de�nition and Dependent� de�nition (page 121), the Token Algorithmbuilds PTa's Dependent� such that8PTb:Dependent�(PTa; PTb))(partial-terminated(PTb) ^ PTb 2 tokena:terminated)_(partial-terminated(PTb) ^ PTb =2 tokena:terminated ^(9PTc:Dependent�(PTc; PTb) ^ PTc 2 tokena:next))_(:partial-terminated(PTb) ^ (PTb 2 tokena:next _(9PTc:Dependent�(PTc; PTb) ^ PTc 2 tokena:next))

CHAPTER 7. PROOF OF CORRECTNESS 168Suppose that there is PTb such that Dependent�(PTa; PTb) and:partial-terminated(PTb) and tokena:next = ;. By de�nition of the Token Algo-rithm, PTb is only inserted in tokena:terminated, if partial-terminated(PTb). Thus,PTb =2 tokena:terminated. Consequently, by the above proposition, PTb 2 tokena:next _(9PTc:Dependent�(PTc; PTb) ^ PTc 2 tokena:next). In either case, tokena:next 6= ;.Thus, by the assumption of proposition 20, we have arrived at a contradiction.Next we prove property Co-safety.2. We rewrite propositions 3 on page 158 and 4 onpage 158 accounting for co-operative partial tracings. We introduce the term super-groupafor the union of PTb:Participants such that Dependent�(PTa; PTb).8Eiy(reda(Eiy) ^ live(Eiy)) (22)(9Q =2 super-groupa ^ 9Exz 2 Q:exit-table ^ path(Exz; Eiy)) (23)_(9R 2 super-groupa ^Exu 2 R:exit-table ^ path(Exu; Eiz) ^ live(Exu)) (24)Suppose that (23) holds but (24) does not. As we have already shown, by thereference listing protocol, proposition 5 on page 158 holds. Also,Q =2 super-groupa) (8PTb 2 super-groupa � :redb(Exz)) (25)because, Exz was not visited by by the mark-red phase of any member of super-groupa.By de�nition 4.1,(path(Exz; Eiy) ^ (8PTb 2 super-groupa � :redb(Exz)))) Q =2 Eiy:red-list (26)That is, Q cannot be a member of Eiy:red-list because it does not hold a red exit-item signed by any PTb 2 super-groupa to Eiy. Consequently, proposition 8 on page 158holds. From this it follows that Eiy must have been painted green by scan initial step.Thus, live(Eiy) and reda(Eiy) is a contradiction. In this case, proposition (24) musthold, that is, there must be an exit-item Exu belonging to super-groupa from which Eiyis reachable and live(Exu).

CHAPTER 7. PROOF OF CORRECTNESS 169We rephrase the conclusion from 9 on page 159 as \Exu must be redb for some PTband by hypothesis Exu is live". But, by mark-red step, PTb 2 PTa:Responsibles andhence a member of the responsibles set of the initiator of PTa (every P 2 PTa:Participantsreports a list of responsibles it is aware of to its initiator at the end of mark-red phase).PTa does not enter sweep phase until PTb (and other responsible partial tracings) arepartial-terminated (recall Token Algorithm). Assuming correctness of Token Algo-rithm, PTa has detected this condition (once it is at the begining of sweep phase).Consequently, Eiy cannot receive one scan request through Exu.7.3 LivenessWe want to show that our system cannot deadlock or livelock. Mark-red and scanphases do not have any critical regions or exclusive holding of resources. Consequently,they cannot deadlock.The mark-red phase does not need to visit the complete transitive referential closureof suspect entry-items, hence it is guaranteed that it terminates. On the other hand,the scan phase must paint green all red live objects. We guarantee that it performsa �nite number of steps because there are a �nite number of red items. Also, thetoken algorithm performs a �nite number of steps. Finally, the colouring process ismonotonic, that is, the colour of an item may change only from white to red and fromred to green. This prevents the responsible's scan phase and the dependent's mark-redphase from chasing each other, that is, it avoids race conditions between mark-red andscan requests. We conclude that our system also does not livelock.Now, we show that a complete solution can be achieved, that is, all garbage objectsare eventually collected. The completeness argument is that every garbage object iseventually a suspect object. Both, the locally reachable and distance heuristic are com-plete heuristics as every garbage object is non-locally reachable, and the distance ofevery garbage object increases in�nitely. Hence, assuming that every process performsa local collection regularly, every garbage object will become non-locally reachable orevery garbage object will eventually cross the distance threshold.Now we de�ne which conditions must be met for a garbage object (member of agarbage cycle) to not be collected.

CHAPTER 7. PROOF OF CORRECTNESS 170Consider a distributed garbage cycle. Suppose that PTz is initiated at any object zwhich is member of that cycle. For an object z to not be collected, there must be anexternal reference to the cycle. That is, there must be an object y that is not involvedin PTz, and z is transitively reachable from y. Object y must be garbage, otherwisez would not be garbage. In this case, we may say that y will eventually be a memberof a partial tracing, for example PTy. Conceptually, one of these three situations willhappen eventually:1 PTy covers z, and there are no external references to PTy's suspect subgraph. zwill be eventually collected by PTy.2 PTz transitively dependent on PTy, and there are no external references to PTy'ssuspect subgraph. PTy will eventually succeed and collect object y. If Dependent(PTz; PTy), there are no more external references to z. Consequently z will be col-lected by PTz. If Dependent�(PTz; PTy), there is PTu such that Dependent�(PTz ;PTu) and Dependent(PTu; PTy). PTu will eventually succeed, and by inductionon the number of PTz's responsibles, object z will eventually be collected by PTz.3 PTy is transitively responsible for PTz and PTz is transitively responsible for PTy,and there are no external references to PTz's suspect subgraph and PTy's suspectsubgraph. If Responsible(PTy; PTz) and Responsible(PTz; PTy), PTy and PTzeventually meet each other. If the beginning of PTy's scan phase and PTz's scanphase are synchronised, there are no more external references to z. Consequentlyz will be collected by PTz. Now assume that:(a) If there is PTu such that Responsible�(PTy; PTu) and Responsible(PTu; PTz),PTu will eventually meet PTz. As Responsible�(PTy; PTu), we conclude thatPTy will eventually meet PTz.(b) If there is PTv such that Responsible�(PTv; PTz) and Responsible(PTv; PTy),PTv will eventually meet PTy. As Responsible�(PTz; PTv), we conclude thatPTz will eventually meet PTy.By induction on the number of partial tracings between PTz and PTy, if thebeginning of PTy's scan phase and PTz's scan phase are synchronised, there areno more external references to z. Consequently z will be collected by PTz.

CHAPTER 7. PROOF OF CORRECTNESS 1717.4 SummaryIn this chapter we presented a proof of several aspects of our algorithm. We �rst useda simpli�ed model that does not account for mutator concurrency or concurrent partialtracings, and we assumed that distributed termination is correctly detected. Then, weextended the proof to the other aspects. We showed that the distributed terminationprotocol detects safely the end of the mark-red and scan phases, in order for a partialtracing to proceed to the following phase.Then, we extended the proof to the mutator concurrency model and proved thatmutator actions do not a�ect termination detection and safety. Finally, we showed thattwo partial tracings may be simultaneously active in the same or a connected sub-graph,that they may co-operate without compromising each other's safety property.Finally, we showed that our algorithm is live in the sense that all garbage cycleswithin a suspect subgraph are eventually collected, and that eventually all garbageobjects are suspect objects, thus, that eventually all garbage cycles are covered by oneor more co-operative partial tracings.

Chapter 8
Implementation over NetworkObjects
We have implemented and tested a prototype of the concurrent version of the cyclicgarbage collector algorithm presented in chapter 4. The implementation was carriedout to test its feasibility and identify its weaknesses and strengths. We mainly focus onimplementation strategies related to our e�ciency goals.We chose the Network Objects system as a vehicle because it provides an imple-mentation of the reference listing protocol (section 3.4.4), on which our system is based.However, our algorithm can be adapted to other systems that provide an acyclic garbagecollector based on reference listing.First we give an overview of the architecture of Network Objects system, mainlyfocusing on the local and acyclic distributed garbage collector, remote invocation andmarshaling of network objects. This is important, to understand the implementationstrategies of our system. Then, we briey report on our prototype implementation. Westart by describing the modules of the implementation and overviewing some solutions.Then, we explain each solution, reporting the main problems encountered.We also discuss the implementation of extensions, mainly to cover those aspects ofour system introduced in section 5.

172

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 1738.1 An Overview of Network ObjectsNetwork Objects is a distributed object-based programming system for Modula-3 thatallows the development of programs that communicate over a network, while hiding thedetails of network programming (Birrel et al. 1993).Network Objects provide a means to incorporate remote procedure call (Birrel andNelson 1984) in an object-based programming style. An object consists of a data recordand a set of methods that can be invoked on the object. The process that allocatedthe network object is called its owner, and the instance of the object at the owneris called the concrete object. A network object can be transmitted between processesby reference and then shared by processes in a distributed system. Processes holdinga reference to a concrete object are called clients. The client and owner can run ondi�erent machines or in di�erent processes on the same machine. Network objects maybe transmitted from one client to another as well as from the owner to a client.Network Objects allows a concrete object to be accessed from another process in thesame way as if it was local to that process. A remote reference in the client actuallypoints to a surrogate object. The surrogate contains an handler and has methods whichperform remote procedure calls on the concrete object in the remote owner process.References for a network object may be marshaled from one process to anotherduring method invocation as arguments or results. A network object is marshaled bytransmitting its wireRep, which consists of a unique identi�er for the owner process |ProcessID | plus the index of the object at the owner | ObjID.Each process maintains an object table that contains references to all its surrogatesand all its concrete objects for which some process holds a surrogate. If a concretenetwork object is present in the object table, the runtime system says that it is exported,otherwise is unexported.The heap of a Modula-3 program is managed by garbage collection. Network objectsare managed by a distributed garbage collector based on the reference listing schemepresented in section 3.4.4 (Birrel et al. 1993). In the following sections we will explainhow the the partitioned model presented in chapter 3 is implemented in the NetworkObjects System, including the local collector for Modula-3.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 174
Partition A

B

C

xA

xC

Object Table

CS(xA)={B}

Legend

CS Client Set

Exported Object

SurrogateFigure 34: Network Object Model for Garbage Collection8.1.1 Implementation of the Garbage Collection ModelThe Network Object Model for garbage collection divides the distributed system globaladdress space into several partitions that are held by the di�erent processes1 of thedistributed system. Each process (or the corresponding partition) can be identi�edunambiguously, and we identify processes (partitions) by upper-case letters, e.g. A, B,..., and objects by lower-case letters su�xed by the identi�er of the process to whichthey belong, e.g. xA, xB,From the garbage collector's point of view, mutators periodically exchange messagesin addition to performing local computations independently of other mutators in thesystem. They allocate objects in the local heaps and transfer data between processes,which may include references to objects. An object referenced from another processis called an exported object. Each process is garbage collected independently from theother processes.The Network Objects Model for garbage collection, represented in �gure 34, consistsof: � A set of processes containing objects that may point to objects on the same pro-cesses or to objects in other processes.� Surrogate objects that record an outgoing reference. A process may hold at most1A Modula-3 process.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 175one surrogate for a given object, in which case all references in the process tothat object point to the surrogate. In the Network Objects implementation asurrogate object has other roles apart from garbage collection. It also encapsulatesa marshaler as we shall see.A surrogate implements an exit-item described in chapter 3.� An object table for each process that records references from outside the process toobjects within the process. If process B has a surrogate pointing to an object inprocess A, the object table at A has an entry for the referenced object (see �gure34). To ensure this, a concrete object is entered into its owner's table when itis �rst marshaled; it remains there until the distributed garbage collector detectsthe deletion of its last surrogate.The object table also contains entries for all surrogates that exist in the process.It maps the wireRep for a remote object to the unique local surrogate for thatobject.The entry table and exit table described in chapter 3 are implemented by theNetwork Objects's object table.� A Client-set for each exported object which contains identi�ers for all the processesthat have a surrogate for that object. The following invariant is always maintained(see �gure 34):NO Invariant 8.1 If there is a surrogate for object xA at client B, then B 2xA:Client-set.The client-set implements the entry-list described in chapter 3.8.1.2 Local Garbage CollectionLocal collections are based on tracing from local roots | the stack, registers, globalvariables and also the object table. We shall refer to the object table entries as OTroots. The object table is considered a root by the local collector in order to preserveobjects reachable only from other processes.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 176The Modula-3 local collector is an adaptation of the algorithm presented in (Bartlett1988) and modi�ed to be incremental, generational, and VM-synchronised by JohnDeTreville. The relevant features of this local collector for our implementation are itsconservative and incremental nature. The local collector is a mostly copying collector(presented in section 2.4.3) that uses a page-wise black-only read-barrier supported bythe operating system's memory protection hardware (Appel et al. 1988) to trap heapaccesses by the mutator.The primary di�erences between the mostly copying algorithm and the classicalcopying algorithm (recall section 2.3) lie in how it �nds its root set and how it organisesthe heap.The heap of a Modula-3 process consists of a number of pages that may appearanywhere in the heap. Associated with each page is a space identi�er, which identi�esthe \space" that objects on the page belong to: previous, current or free. Previous andcurrent spaces are equivalent to from-space and to-space of a classical copying collectorrespectively. The free space represents the free pages. This level of indirection meansthat there are two ways to move an object from the previous to current space. It canbe copied to a fresh current space page as in a classical copying algorithm, or the spaceidenti�er of the page containing it can be changed to current. Since pages do not havecontiguous addresses, they are held in a list for each space.As described in section 2.4.3 the mostly copying algorithm is a conservative collector.It assumes no knowledge of registers, stack or global variables layouts, but it does assumethat all pointers in the heap can be found accurately. Using this distinction, the localcollector will divide all accessible objects in the heap into two classes: those which mighthave a direct reference from the root set, and those which do not. The former objectsare left in place | the space identi�er is changed for that page | and the latter objectsare copied into a compact area of memory.The mutator works on pages identi�ed with current space. The local collector oper-ates in three phases. When a garbage collection cycle is initiated, in a �rst phase, thecurrent space becomes previous space, that is, the space identi�er of pages in currentspace is changed to previous. Next, the root set is scanned conservatively for potentialpointers in the heap. When a pointer into a heap page is found, that page is \promoted"to the current space, that is, the space identi�er of the page is changed to current. The

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 177page is also added to the tail of the list of pages in current space. Thus, the objectswhich might have references in the root set are now part of the current space, but theiraddress has not changed. Promoting pages is a conservative action, because garbageobjects may also be retained on promoted pages.During the second phase, all pages in the current space list are scanned for referencesinto the previous space. Each object reached is copied into a fresh current space page(recall section 2.3) that will also be queued and scanned. When the scanning is complete,in a third phase, pages in previous space are freed, that is, they are appended to thefree-list for new allocations, and garbage collection is completed.Until now, we have assumed a stop-the-world local collection, hence we did notaccount for incremental mutator activity (recall section 2.4.1). The algorithm describedabove is augmented with a page-wise black-only read-barrier supported by the operatingsystem's memory protection facilities (Appel et al. 1988) in order to synchronise themutator and the collector. The result is showed in �gure 35. We use the followingsyntax: `=' for assignment, `==' for equality.Recalling the tricolour abstraction introduced in section 2.4.1, the following invariantis maintained during the local collection:NO Invariant 8.2 The mutator is only allowed to see black objects.When the mutator allocates memory for an object, it checks the occupancy of theheap. If it is bigger then a certain threshold (recall section 2.4.1), some amount ofgarbage collection, depending on the collector's state, is performed.In �gure 35 we represent three states for a local garbage collection cycle. TheModula-3 garbage collector has more states, but they are irrelevant for our purpose.Whenever a local garbage collection starts | state zero | the space identi�er of eachpage in the current space is changed to previous (as we said, this means that the currentspace becomes the previous space). Also, pages referenced from the stack are promotedto the current space | promote(page). The promoted pages are inserted in a queue2We simply assume a new page as a result of scanning an object. A nil page will be return if noneobject is copied to the current space. The new page space is set to current.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 178State == zero, one, twoSpace == current, previous, freeState = zerocurrent_queue = emptygc() =State == zero => for page where page.space == current dopage.space = previousfor R in Roots dopromote(page(R))State = oneState == one => page = pop(current_queue)scanPage(page)if current_queue == empty thenState = twoState == two => for page where page.space = previous dopage.space = freeState = zeroif current_queue 6= empty thenfor page in current_queue doprotect(page)fault_handler() =foreverthread, page = WaitForTrappedThread()LOCK memoryscanPage(page)ResumeThread(thread)promote(page) =if heap_bottom � page � Heap_topand page.space == previous thenpage.space = currentpush(page, current_queue)scanPage(page) =if gray(page) thenif protected(page) thenunprotect(page)for obj on page donewpage = scan(obj)2if newpage 6= nil thenpush(newpage, Tospace_queue)allocate(n) =LOCK memory...if threshold thengc()Figure 35: Modula-3 local collector algorithm

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 179to be scanned for pointers in the previous space. The mutator is then resumed by thecollector.When the collector resumes the mutator, it sets the virtual-memory protection ofthe unscanned area's page to `no access' (coloured grey) | protect(page). Wheneverthe mutator attempts to access an object on a protected (grey) page, the page-accesstrap is triggered and the fault is caught by the collector | fault-handler(). Thecollector scans the objects on that page (colouring the page black). New current spacepages are then enqueued and protected as well. Then, the collector unprotects the pageand resumes the mutator. To the mutator all objects appeared to be in the currentspace.In state one the collector pops a page from the current space queue and scans it. Ifthe queue is empty, the collector moves to state two in the next call, otherwise, it staysin state one. Again, pages in the current space queue are protected (greyed) to catchmutator accesses on grey objects.Finally, in state two | no grey pages | pages left in previous space are freed.8.1.3 Network Objects Runtime SystemThe Network Objects runtime system is implemented by a special object that providesmethods to support, among other things, distributed garbage collection. There is onesuch concrete object per process. In addition there are potentially many special objectsurrogates used to invoke corresponding methods in di�erent processes, that is, whenthe runtime system of two di�erent processes interact, they will do so through theinvocation of each others special object methods.8.1.4 Remote Invocation and Marshaling of Network ObjectsArgument and results values are communicated by marshaling them into a sequence ofbytes, transmitting the bytes from one process to another, and then unmarshaling theminto values in the receiving process, in a remote method invocation.In this section, we will describe the implementation of remote methods invocationand network object's marshaling. For each network object there must be a clientand server stub to support remote method invocation using Remote Procedure Call(Birrel and Nelson 1984). The client stub is a local surrogate object. The client process

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 180actually invokes its methods, which in turn implement the remote invocation. On theserver side, the stub consists of a single procedure for that object | the Dispatcher |that is called to dispatch remote invocations.Next we describe a simpli�ed sketch of the procedure calls performed by a clientto make a remote method invocation to a method of obj. A remote object invocationcan be viewed as an exchange of messages between client and server. The messagesare exchanged via a connection c established between the client and the server. Thecontents of the message includes the number that identi�es the method to be invokedat the server-side, and the arguments of that method. On completion of the remoteinvocation the server sends a message with the method results.BEGIN SurrogateMethod<marshal to c the number of the method><marshal to c the method arguments>result := AwaitResult(c);<unmarshal from c the method results>END SurrogateMethodNext we consider the server-side stub, which consists of a dispatcher procedure foreach network object. The dispatcher is called by the Network Object runtime systemwhen it receives a remote object invocation for a network object. The dispatcher proce-dure is responsible for unmarshaling the method number and any arguments, invokingthe concrete object's method, and marshaling any results.Here is a simpli�ed sketch of a typical dispatcher for an object obj through a con-nection c:BEGIN Dispatcher<unmarshal from c the method number><unmarshal from c the method arguments><call the appropriate method of obj><marshal to c the method result>END Dispatcher

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 1818.1.5 Acyclic Garbage CollectionThe acyclic garbage collector is responsible for always safely maintaining the invariant8.1. In this section we will describe the acyclic garbage collector operations responsiblefor maintaining the object table entries and the client-sets of exported objects.The insert and delete control messages introduced in section 3.4.4 are implementedin the Network Objects system by a dirty-call and a clean-call respectively.The potential race conditions between concurrent transmission and deletion of asame network object (its wireRep) is avoided (recall section 3.4.4) by preventing theremote reference from being reclaimed at the sender process. This is done by making surethat the object's client-set remains non-empty while its wireRep is being transmitted.When the sending process P is the object's owner, this is accomplished by putting Pinto the object's client-set until P has received the dirty-call. When P is not the object'sowner, it must have a surrogate for it. This surrogate is kept reachable until it is knownthat the object's owner has received the dirty-call (recall section 3.4.1). This happenwhen P receives an acknowledgement from the receiver process. In this overview weskip implementation details, and concentrate on the implementation of the dirty-callmechanisms since it is important for our prototype implementation.Our system is then implemented above a safe reference listing protocol.dirty call Whenever a process A exports a network object O to process B (as a resultof A marshaling O to B), (i) if A is the owner of O, O is inserted in A's objecttable; when B receives the imported wireRep, it creates a surrogate for O andsends a dirty call to A; upon receipt of the dirty call, B is inserted in O's client-set, (ii) otherwise, when B receives the imported wireRep, it creates a surrogatefor O and sends a dirty call to the owner of O; upon receipt of the dirty call bythe owner of O, B is inserted in O's client-set.The following sequence of instructions implements the above actions for an objectobj with wireRep wireRep. MarshalObj is executed at process A. It sends objectobj's wireRep wireRep to process B. Notice that A may be either the owner ofobj or have a surrogate to obj. concrete(obj) returns true if obj is a concreteobject.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 182BEGIN MarshalObjif concrete(obj) then<insert obj in objTbl><send wireRep to receiving process>ENDProcess B executes UnmarshalObj. It creates a surrogate for the new objectand sends a dirty-call to the owner of the object identi�ed by the wireRep |ProcessID. specialObj(ProcessID(wireRep)).dirty-call(wireRep) correspo-nds to the remote invocation of the dirty-call method of the owner's specialobject. BEGIN UnmarshlObj<receive wireRep>if not objtbl.find(wireRep, obj) then<create surrogate with wireRep>specialObj(ProcessID(wireRep)).dirty-call(wireRep)ENDWhen the owner of obj3 receives the dirty-call it inserts process B in obj's client-set. BEGIN DirtyCall<insert sending process in obj.client-set>ENDclean call Whenever a surrogate for O is reclaimed by the local garbage collector atprocess B, B sends a clean call to O's owner. Upon reception of the clean call,B is deleted from O's client-set. When an object's client-set becomes empty, thereference to the object is removed from the object table so that the object can bereclaimed subsequently by its owner's local collector.3As we explained it can be the sending process or other process to which the sending process holdsa surrogate.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 1838.2 Prototype ImplementationIn this section we describe the implementation of the partial tracing over the NetworkObjects system. We start by taking an overview of the prototype. At a high-level, foreach process we de�ne a set of threads that implement the partial tracing algorithm. Ata lower-level, we sketch the implementation of policies inherent in the algorithm and,at a third level, we describe which implementation strategies we have adapted to theruntime system of Network Objects. Then we look in more detail at the implementationof the described prototype components.We de�ned a tracing and a sweep thread that implement the mark-red, scan andsweep phases, plus additional threads acting as event handlers driven by external events.The event handlers are implemented as methods of a DGCobj (Distributed GarbageCollector object) object that we have implemented as a part of the runtime systemobject | the special object. Di�erent DGC objects in di�erent processes communicatewith each other by remote procedure call.Each partial tracing is implemented by a PTobj (Partial Tracing object)4. The PTobjstate holds the state described in de�nition 5.3 on page 114 and the PTobj methods areinvoked by the DGCobj methods to perform the required action for each event handler.The termination of each phase is detected by the distributed termination detectionprotocol (recall section 4.5). The variables that de�ne the termination condition ineach process are implemented as part of the PTobj state and are accessed by the PTobjmethods when invoked by the termination detection protocol event handlers.The concurrency barriers, as described in section 6 are implemented in the NetworkObjects runtime system. The partial tracing algorithm intercepts the transmission andremote method invocation of a network object to implement the barriers.Finally several implementation strategies were designed to support di�erent require-ments of the partial tracing algorithm. These include, suspect identi�cation, implemen-tation of mark-red and scan steps, implementation of mutator co-operation and, �nally,as extensions to our prototype, the computation of the cut-reference graph. The im-plementation strategies we have de�ned require mainly the co-operation of the Network4In our implementation we just have one PTobj per Network Objects process, since we have notimplemented the advanced cyclic garbage collector

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 184Objects local collector. We have modi�ed it in order to obtain the necessary informationfor the partial tracing algorithm.8.2.1 Partial TracingIn this section we briey describe each DGCobj handler and its interaction with thepartial tracing state implemented by a PTobj, as they implement the partial tracingalgorithm described in chapter 4. We represent the system architecture in �gure 36.Next, we explain every element represented as well as every interaction, and which sys-tem feature they implement. As we have already said communication between processesis implemented by remote procedure call.We �rst introduce the speci�cation of PTobj:PTobj =StateId = Initiator: processIdParticipants: set of processIdparent: processIdreply-set: set of wireReplocal-steps: numbergrey-set: set of wireRepstack: stack of memory addressMethodsaddStackMRrequest(obj: object): booleaninit-scan(participants: set of processId): booleanaddStackSrequest(obj: object): booleaninsert-greySet(wrep: wireRep): booleanremove-greySet(wrep: wireRep): booleaninsert-replySet(wrep: wireRep): booleanincLocal-steps(): booleandecLocal-steps(): booleanMark-red PhaseThe mark-red thread implements mark-red local steps. It transmits the red colourlocally from concrete objects to surrogates. In our implementation, local objects are

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 185

prototype
extension

mark-red
thread

thread
scan

sweep
thread

Ptobjz

PTobj
y

scanHandler

markRedHandler

Termination
Protocol
Handlers

Scan Handlers

Mark-red
Handlers

Special
Object

DCGobjProcess A Process B

mark-red
thread

scan
thread

HANDLERS
initSweepHandler
endInitStepHandler

initScanHandler
markRedAckHandler

scanAckHandler

Figure 36: System Architecture

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 186recursively traced. In contrast, our solution described on section 6 would simply followthe cut-references graph. Because this phase simply constructs a conservative estimate ofthose objects that might be garbage, and therefore need not be accurate, red marks canbe disseminated without synchronisation with the mutator. The simpli�ed algorithm ofmark-red thread is described next.BEGIN mark-red threadforeverwhile stack not empty dopop(obj)colour(obj, red)push(descendants(obj))for all surrogate s in objtbl doif red(s) thenPTobj.insert-greySet(WireRep(s))if DGCobj(ProcessID(s)).markRedHandler(s) thenPTobj.remove-greySet(WireRep(s))PTobj.decLocal-steps()if PTobj.local-steps == 0 and PTobj.greySet empty thenif thisProcess == PTobj.Initiator thenfor all P in PTobj.Participants doDGCobj(P).initScanHandler(PTobj.Participants)elseDGCobj(PTobj.Responsible).markRedAckHandler(PTobj.Participants, PTobj.reply-set)ENDThe recursive trace is implemented with a stack. The object seed of each local stepis pushed onto the stack. The mark-red trace repeatedly pops objects from the stackuntil it is empty. Objects are marked red and any unmarked descendent is pushed inthe stack. When the stack is empty, a remote step to the concrete object is executed foreach red surrogate. For e�ciency reasons, we chose to batch remote steps to the sametarget process.Notice that insert-greySet, and decLocal-steps contribute to implementing thetermination detection protocol (recall section 4.5). Termination detection protocol han-dlers, initScanHandler (described in the context of scan phase) and markRedAckHandler,

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 187implement the mark-red report-phase and acknowledging of a mark-red request respec-tively. Notice that, if markRedHandler replies true, the surrogate is removed from thePTobj.greySet. In this way, we reduce the number of explicit acknowledgements.BEGIN markRedAckHandler(participants: ProcessID,reply-set: set of wireRep)PTobj.Participants = PTobj.Participants [participantsfor all wrep in reply-setPTobj.remove-greySet(wrep)if PTobj.local-steps == 0 and empty PTobj.greySet thenif thisProcess == PTobj.Initiator thenfor all P in PTobj.Participants doDGCobj(P).initScanHandler(PTobj.Participants)elseDGCobj(PTobj.Responsible).markRedAckHandler(PTobj.Participants, PTobj.reply-set)ENDA remote step is implemented as a remote procedure call of the markRedHandlerby the mark-red thread. The target object is pushed into the stack. Consequently,local-steps is incremented. Additionally, the sending process is inserted into a struc-ture called the red-set (akin to client-set (recall section 4.3)).BEGIN markRedHandler(obj: object)if PTobj.Responsible 6= NIL thenreply = trueelsereply = falsePTobj.insert-replySet(WireRep(obj))responsible = sending processPTobj.incLocal-steps()obj.red-set = obj.red-set [sending processPTobj.addStackRequest(obj)return replyEND

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 188Mark-red RestrictionAs we have described in section 6 a mark-red remote step should not be performedthrough a surrogate corresponding to a reference being transmitted. As we have de-scribed in section 8.1, the Network Object system keeps track of incomplete referencetransmissions on behalf of the acyclic collector, until the object's owner has received thecorresponding dirty-call. In the same way, the mark-red thread discards remote-stepsfor surrogates in such conditions.Scan PhaseA scan step may be a initial step, a remote step or a local step.initScanHandler initiates the scan phase in every participant, that is, it initiatesthe initial step by inserting into the mark stack (akin to mark-red phase), the local-scan-root-set (in section 8.3 we describe the computation of the local-scan-root-set).BEGIN initScanHandler(participants)PTobj.Participants = participantsPTobj.incLocal-steps()PTobj.addStacksRequest(local-scan-root-set)ENDThe initial step is a local tracing. It must be accurate, that is, it must paint green allsurrogates reachable from the local-scan-root-set de�ned in section 5.1. Recall that thisversion does include the local roots and performs a recursive tracing from the de�nedlocal-scan-root-set. In contrast, the initial step de�ned in section 6 only follows thecut-reference graph.We perform an independent local tracing from the local-scan-root-set. We haveadopted Mostly Parallel garbage collection (Boehm et al. 1991) | an incremental updatealgorithm | because it does not require compiler modi�cations to implement the write-barrier and so can be used to support di�erent languages, such as Modula-3.The basic idea of the Mostly Parallel Garbage Collection algorithm is the following.The traditional tracing operation of stop-and-collect collectors is performed in parallelwith the mutator. The mutator and collector are synchronised by the use of a writebarrier that catches all the mutator writes while the collector is running. The write-barrier is implemented using a set of virtual memory dirty bits, which are automatically

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 189set whenever the corresponding pages of virtual memory are written to. The virtualmemory bits are updated to reect mutator writes. After tracing is complete, themutator is halted and tracing is restarted from all marked objects that lie on dirtypages. At this point, all objects reachable from the local-scan-root-set are marked green,which is the safety condition for our system.This option introduces, however, synchronisation requirements between the localcollector and initial step as they both make use of the operating system virtual memorysystem. Thus, we believe that implementing the initial step in the system local collectorcould be a better compromise.mark-red thread and scan thread implement recursive tracing using a stack fromseed objects to surrogates, disseminating the colour. New object seeds incrementPTobj.local-steps. When the stack is empty the same variable is decremented. Aremote step is implemented as a remote procedure call of the scanHandler by the scanthread. The target object is then pushed into the stack. Consequently, the surrogateat the sending process is inserted into PTobj.greySet.A local step is also implemented by the scan thread. If the initial step has notalready �nished, the target concrete object is a new root object for initial step andthe remote step is immediately acknowledged | scanAckHandler. If initial step hasalready �nished, the concrete object is a new object seed, is pushed into the stack andPTobj.local-steps is incremented. As we have already said, the scan phase must beaccurate. In this way, mutator actions should also perform synchronisation actions.However, due to the asynchronous nature of local steps (also generated by externalmutator messages | recall section 6) it would be ine�cient for the Mostly Parallelgarbage collection algorithm to implement such synchronisation. This is because, forevery local step implementation, the memory would have to be protected and mutatoractions trapped. The simplest method of propagating marks from concrete objects tosurrogates is to `stop the world' in the process and perform a standard recursive tracefrom the concrete object. We expect that this would not cause excessive delay becauseit is likely that objects reachable from a live concrete object are already known to belive. Recall that local steps de�ned in section 6 only follow the cut-references graph.When a process terminates its initial-step | PTobj.local-steps = 0 andPTobj.greySet is empty | it reports to the initiator | PTobj.Initiator | through

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 190endInitStepHandler. This state is detected by scan thread when local-steps = 0and greySet is empty (akin to mark-red thread) or by scanAckHandler (akin tomarkRedAckHandler).BEGIN endInitStepHandler(participant: processID)PTobj.doneParticipants = PTobj.doneParticipants [participantif PTobj.doneParticipants == PTobj.Participants thenfor all P in PTobj.Participants doDGCobj(P).initSweepHandler()ENDThe initiator detects the end of scan phase when it PTobj.doneParticipants isthe same as PTobj.Participants. The scan phase report phase is implemented by theinvocation of the initSweepHandler in every participant.We here skipped the description of scan thread, scanHandler and scanAckHandler,as they are similar to the corresponding mark-red phase ones. initSweepHandler in-structs every participant to proceed to the sweep phase.Sweep PhaseThe sweep thread is responsible for communicating to the local collector which objecttable entries should be discarded from the global root set. In our implementation we havecoloured red and green concrete objects rather than object table entries. Our solutionconsists of instructing the local collector to discard object table entries that point to redconcrete objects. However, the entries themselves are only removed when the client-setof such concrete objects is empty. In this way, we do not interfere with the referencelisting scheme (recall section 3.4.4): discarding object table entries causes the cycle to bedeleted the next time the containing processes do a local trace. Discarded object tableentries are then removed through regular clean-calls. This solution can be implementedin the Network Objects system because a concrete object's client-set is implemented asan auxiliary structure and not as a state variable of the object.8.2.2 Suspect Identi�cationWe describe our implementation strategy for identifying suspect entry-items. We focushere on the locally reachable heuristic.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 191In the partitioned model (recall section 3.1) the roots for a local collection includethe local root set | the local roots | and the global root set | the entry-table. Inthe Network Object system the entry-table is implemented by a monolithic object table(section 8.1.1), which is then considered part of the root set by the local collector. Anunmodi�ed local collector would always mark all the exported objects and surrogates.As a result, exported objects and surrogates would be always locally reachable andtherefore never collected. To solve this problem we have implemented a modi�ed versionof the Modula-3 local collector (section 8.1.2) and a modi�ed object table. This newversion implements a two-phase local collection that de�nes two kind of objects:soft objects are not locally reachable other than from the global root set | the objecttable. They are suspect objects, and candidates for a partial tracing. A soft markidenti�es a seed for a partial tracing, while a red mark identi�es an object as amember of a suspect subgraph (recall chapter 4).hard objects are locally reachable. Consequently, they are not candidates for a partialtracing.The two phase local collector proceeds as follows:� A �rst tracing is performed from the local roots. This �rst root set does notinclude the object table. The objects reached by this �rst tracing are marked hard.The object table is marked soft.� A second tracing is performed starting from the object table. This second tracingcompletes the �rst. Any object reached by this second tracing is marked soft if itis not already marked hard.Special actions are needed to prevent the �rst tracing from including the object tablein the �rst root set. The modi�ed local collector treats the object table as a specialroot. To allow this, we modi�ed the object table as shown in �gure 37: the object tablestate includes a �xed size array hash table of pointers to network objects. This allowsthe collector to identify unambiguously which pages the object table uses5.5Here, for simplicity, we assume the object table �ts in one page. In our implementation, thisrestriction does not apply. We just ensure that object table pages do not contain any other objects.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 192
Object
Table
State

Key
Network
 Object

Entries

Figure 37: Object: Object TableNow we require the allocator to allocate the object table in a separate page. Noother objects share this page with object table, and the collector proceeds as follows:1 at the begin of a local collection promote the object table page. In this way weprevent tracing from the objects in the object table in the �rst phase.2 at the end of the �rst phase, start a second trace from the object table. The objectsreached by this second trace are marked soft if not reached by the �rst trace.The two phases of the local collection execute concurrently with the mutator. Cer-tain actions have to be taken in order to maintain invariant 8.2 on page 177 | themutator is not allowed to see black objects | when the object table is accessed by themutator. The unmodi�ed local collector (section 8.1.2) would protect the object tablepage when promoted, but this would result in a page scan by the fault-handler (see�gure 37) whenever the object table fault is trapped. This would result in the sameproblem mentioned above: every exported object, even those only reachable from theobject table, would be marked hard. We resolve this problem as follows. As above,the object table page is promoted at the begining of the local collection, but it is notprotected. Instead, each entry in Entries is protected with a black-only read barrierimplemented in the object table methods. Hence, in terms of the tricolour abstractionfor incremental collection, object table entries are grey. We illustrate this situation in�gure 38 and describe it in �gure 39. When an object table search method is invoked, theentry found in Entries is scanned and the object pointed by it is copied to the currentspace (coloured grey in terms of the tricolour abstraction) | objTbl_method(). In itsturn, the entry is coloured black, and hence allowed to be read by the mutator. Thenetwork object pointed to this entry is marked hard during the �rst phase.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 193

Object
Table
State State

Table
Object

Object Table Method

Barrier

Current Space Current Space

Current SpacePrevious Space

Previous
Space

Figure 38: Object Table Barrier

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 194
State == zero, one, two, threeSpace == current, previous, freeState = zerocurrent_queue = emptygc() =promote_objtbl()State == zero => for page where page.space = current dopage.space = previousfor R in Roots dopromote(page(R))State = OneState == One => page = pop(current_queue)scanPage(page)if current_queue == empty thenState = twoState == Two => scanPage(objTblpage)if current_queue == empty thenState = threeState == Three => for page page.space = previous dopage.space = freeState = zeroif current_queue 6= empty thenfor page in current_queue doprotect(page)promote_objTbl() =objTblpage.space = currentobjTbl_method() =...entry = findEntry();newpage = scan(entry)push(newpage, current_queue)...Figure 39: Modula-3 local collector algorithm for suspect identi�cation

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 195At the end of �rst phase, object table pages are scanned. Grey entries are colouredblack in terms of the tricolour abstraction, while the corresponding network objects aremarked soft in terms of suspect identi�cation. The omitted details are as described in�gure 39.8.2.3 Remote BarrierAs we have described in section 6 a Remote Barrier is executed whenever a mutatorat process A invokes or transmits a remote reference to a remote object at process Bthrough a red exit-item. In the Network Objects system model this means whenever amutator at process A invokes or transmits a remote reference to an object yB at processB through a red surrogate yB, a scan request is sent to yB entry in B's object table.We combine the implementation of the Remote Barrier described in section 6with the implementation of remote methods invocation and the implementation of thedistributed garbage collector operations described in section 8.1.4 and 8.1.5 respectively,thus not incurring any extra remote messages. We explain how in the remaining of thissection.Method InvocationA client does not directly invoke the methods of a remote object. Instead, it invokesthe corresponding methods of a surrogate object. Our implementation intercepts thesurrogate methods invocation and sends a scan request piggy-backed on the remotemethod invocation whenever this surrogate is red.The Network Objects system generates the stubs for remote method invocationautomatically. We modi�ed those in order to provide piggy-backed scan requests. Recallthe simple sketch of a typical surrogate method in section 8.1.4. The modi�ed sketchto account for piggy-backed scan requests is:BEGIN SurrogateMethodif red(self) thenPTobj.insert-greySet(WireRep(self))<marshal to c (barrier = true)><marshal to c process(self)><marshal to c PTobj.Id>

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 196else <marshal to c (barrier = false)><marshal to c the number of the method><marshal to c the method arguments>result = AwaitResult(c);<unmarshal from c the method results>END SurrogateMethodred(self) tests the colour of the surrogate and process(self) identi�es the send-ing process. The sending process is the responsible for such request.insert-greySet(self) implements the communication with the termination detec-tion protocol, that is, it communicates a new element for greySet (recall section 4.5).Finally, the boolean value barrier indicates a scan request for object obj at the serverside.Recall the sketch of a typical dispatcher described on section 8.1.4. At the serverside the encoded information is interpreted as follows.BEGIN Dispatcher<unmarshal from c barrier>if barrier == true then<unmarshal from c process><unmarshal from c Id><execute barrier with Id from process><unmarshal from c the method arguments><call the appropriate method of obj><marshal to c the method result>END DispatcherWhen unmarshaling the method arguments, if barrier = true a barrier should beexecuted. This is equivalent to a scan local step described in section 8.2.1. Id identi�esthe partial tracing and process the responsible for such request.Transmission of a ReferenceAs we have already described, network objects are transmitted from one process to an-other during method invocation as arguments or results of remote method invocations.Our implementation intercepts such actions on the MarshalObj and UnmarshalObj pro-cedures described on section 8.1.5. When a process A, with a red surrogate for an

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 197
Process A

Process C

Process B

zC

yB

yB

yB

concrete object

surrogate object

reference transmissson

dirty-call

red object/surrogate

<wireRep(yB), barrier = true, PTid, process A>

<wireRep(yB), barrier = true, PTid, process A>

new reference
< > message

Figure 40: Implementation of Remote Barrier for transmission of a reference.object obj with wireRep wireRep at process B, marshals it as an argument or resultof a remote method invocation to process C, we piggy-back a scan request to obj atprocess B (the owner) in the transmission message and acyclic garbage collector oper-ations: the dirty-call to obj. We illustrate this procedure in �gure 40 and present asimple sketch next:BEGIN MarshalObjif concrete(obj) then<insert obj in objTbl>msg = <wireRep, barrier = false>else (* surrogate *)if red(obj) thenPTobj.insert-greySet(WireRep(obj))msg = <wireRep, barrier = true, PTobj.Id, process(obj)>else msg = <wireRep, barrier = false><send msg to receiving process>END

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 198Recall section 6, Remote Barriers are only executed through red surrogates. Con-sequently, we concentrate on reference transmissions through surrogates. red(obj) teststhe colour of the surrogate. When marshaling a reference through a red surrogate, ourimplementation instructs the receiver process to send a scan request piggy-backed onthe dirty-call to the object owner. The sending process is the responsible of such scanrequest. insert-greySet(obj) implements the communication with the terminationdetection protocol, that is, it communicates a new element for greySet (recall section4.5). As above, the boolean value barrier indicates a scan request for object obj atthe owner process.When unmarshaling the network object reference, the receiver process instructs thedirty-call to the owner process to execute a barrier, if barrier = true. However,it may happen that the reference was transfered to the owner process. In this case,objtbl.find(wireRep, obj) and concrete(obj) return true, and the barrier shouldbe executed immediately on obj. As above, this is equivalent to a scan local stepdescribed in section 8.2.1. Id identi�es the partial tracing and process the responsiblefor such request.BEGIN UnmarshalObj<receive msg>with msgif barrier == true thenif objtbl.find(wireRep, obj) thenif concrete(obj) then<execute barrier with Id from process>else<create surrogate with wireRep>specialObj(ProcessID(wireRep)).dirty-call(wireRep, barrier = true, Id, process)elseif not objtbl.find(msg.wireRep, obj) then<create surrogate with msg.wireRep>specialObj(ProcessID(wireRep)).dirty-call(wireRep, barrier = false)END

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 199
Process A

Process B

scan-request(xB) remot-invocation(xB)
 or marshalling(xB)
 + scan-request(xB)

acknowledged(xB)

time

FIFO transmission

Figure 41: Time-line showing the need for repeated piggy-backing of scan requests onbarrier execution.If barrier = true, a dirty-call should execute a barrier. As above, this is equivalentto a scan local step described in section 8.2.1. Id identi�es the partial tracing andprocess the responsible for such request.BEGIN DirtyCallif objtbl.find(wireRep, obj) then<insert sending process in obj client-set>if barrier == true then<execute barrier with Id from process>ENDRemote-step InvariantIn section 6 we introduced a restriction of point to point communication in order tomaintain the invariant 6.4. We assumed that messages are to arrive in the same orderas they were generated in point-to-point communications, that is, point to point com-munication channels are FIFOs. In this way, a mutator message sent through a greensurrogate would always arrive after the scan request generated when that surrogate waspainted green. As we no longer assume messages are delivered in the order they weresent in point-to-point communications, we implement it by repeatedly piggy-backingscan requests onto mutator messages until one such request is acknowledged. This isillustrated on �gure 41 for two processes, A and B, and a scan request to object xB.Any remote invocation of xB, or transmission of xB to other processes on the boldtime-line, requires a piggy-backed scan request.In the absence of failures, one request will be eventually acknowledged, resulting inthe e�ective greening of the surrogate.

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 2008.3 Prototype Extensions8.3.1 Cut-references GraphIn this section we discuss the implementation of cut-references graph in the NetworkObjects system, described in section 5.3.Several authors have proposed techniques for computing the cut-references graphin the context of back-tracing algorithms (Rodriguez-Riviera 1995, Maheshwari andLiskov 1997a). The solution proposed in (Maheshwari and Liskov 1997a) has someadvantages over the solution proposed in (Rodriguez-Riviera 1995). Locally reachablesurrogates of suspect concrete objects (akin to variable exits) may be computed bottomup during a depth-�rst local collection using Tarjan's algorithm (Tarjan 1972). Thismethod requires objects to be traced just once, in contrast with the solution describedin (Rodriguez-Riviera 1995) that may require objects to be traced many times.However, as mentioned in the same work, breadth-�rst copying collectors need toperform a separate trace from suspect objects in order to compute the cut-referencesgraph. We argue that this would not be expensive because suspect objects are expectedto be few and such traces would be able to proceed concurrently with the mutator atlow cost. Moreover, the frequency with which the cut-references graph is computed maybe controled: if suspect items are not dirty, compute the cut-references only for newsuspects.Recall section 5.3. We introduced identify-suspects that computed suspect ob-jects. As we have already shown in section 8.2.2, such a method may be implementedby the Modula-3 local collector, albeit slightly modi�ed. compute-graph may nowimplement Tarjan's algorithm concurrently with the mutator. The Dirty barrier wehave introduced in section 6 allows one partial tracing to use the cut-references graphsafely, as we have proved in section 7. As we will explain next, the Dirty Barrier isonly applied when the mutator invokes a remote method and it is inexpensive.8.3.2 Dirty BarrierThe implementation of the Dirty Barrier is simple and inexpensive. In the NetworkObjects system we would need a new �eld for every concrete object that would be clearedevery time identify-suspects is performed and set every time the concrete object is

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 201invoked: the dirty �eld. Such invocations may only be made by an external mutator,as we have shown in section 6. The typical dispatcher described on section 8.1.4 wouldbe modi�ed as follows:BEGIN Dispatcher<dirty obj><unmarshal from c barrier>if barrier = true then<unmarshal from c process><unmarshal from c Id><execute barrier with Id from process><unmarshal from c the method arguments><call the appropriate method of obj><marshal to c the method result>END Dispatcher<dirty obj> would set the object's dirty �eld until the next local collection.8.4 SummaryThe main goal of this chapter is to identify the potential problems and propose solutionswhen mapping the system we have described in chapters 4 and 5 onto the NetworkObjects system.We presented an overview of the Network Objects system, namely its implementationof the model described in chapter 3, and implementation details that were importantto the implementation of our system. These included the Modula-3 local collectionalgorithm, methods for marshaling, unmarshaling and remote invocation, and �nallythe acyclic garbage collection operations.We described our prototype implementation. The prototype description includedthe system architecture and interaction between the di�erent components. We looked,in more detail, at the implementation strategies of several aspects of our system, namely,how to identify suspect objects and how to implement the mutator co-operation overthe remote invocation system.We also discussed the viability of implementing the extensions to our system de-scribed in chapter 5, namely the implementation of the cut-references graph and dirty

CHAPTER 8. IMPLEMENTATION OVER NETWORK OBJECTS 202barrier.

Chapter 9
Conclusions and Future Work
In this chapter we summarise our primary goals for garbage collection in distributedsystems, for which we proposed an innovative solution and o�er a qualitative analysisof our algorithm. We conclude this chapter with some perspectives for future research.9.1 DiscussionWe have addressed the following fundamental goals faced by cyclic distributed garbagecollection: correctness, e�ciency, scalability, completeness and fault-tolerance. A com-mon thread to our solution, described in chapters 4 and 5, is that we approximate theproperty of locality. That is, we rejected global tracing as a means for cyclic garbagecollection in a large, distributed address space, because it is neither scalable nor fault-tolerant. Instead, we have adopted a solution that tries to con�ne the collection of adistributed garbage cycle to those processes that contain it.Our approach combines tracing within one partition and reference listing (acrosspartition boundaries) with partial tracing (within a group of partitions) in order tocollect distributed garbage cycles. We use heuristics to form groups of processes dy-namically (the mark-red phase) that co-operate to perform partial traces of subgraphssuspected of being garbage.We support multiple, independently-initiated distributed garbage collections andallow the collection of garbage cycles that span groups.Our scheme operates in three phases: 203

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 204Mark-red phase We identify as red the inter-process transitive closure of an objectheuristically suspected of belonging to a garbage cycle, starting from a suspectentry-item. We also form a group of processes that will collaborate in the subse-quent phases.Scan phase We try to isolate self-contained red subgraphs, i.e., garbage cycles. Weperform a group collection that aims at painting green any red object reachablefrom outside the red subgraph, i.e., red objects reachable from a non-red globalroot. A group collection involves a local trace in each partition. However, to tracea group: (i) red entry-items are not considered as members of the local roots, and(ii) tracing continues across boundaries internal to the group, when red exit-itemsare repainted green.Sweep phase We make remaining red objects available for collection by the next localcollection, because they must be garbage.In this section we o�er a qualitative analysis of our algorithm. We discuss severalaspects of our system in order to analyse how it meets the goals stated in section 4.2.9.1.1 Scalability and CompletenessThe �rst feature that makes our system scalable is its lack of need for global synchroni-sation. A partial tracing is potentially scalable in that it uses asynchronous communi-cation and has no protocols that demand the involvement of all processes in the system.Each partial tracing only needs the co-operation of those processes that either partici-pate in the partial tracing itself or participate in some responsible partial tracing. Thisco-operation is engaged through the initiators of each partial tracing. Synchronisationactions imply communication between each partial tracing participant and its initiator,and between an initiator and its responsibles' initiators.We showed that our algorithm is complete (section 7.3). It allows di�erent actionsto be taken when two concurrent partial tracings meet:Overlapping of suspect subgraphs. Di�erent partial tracings are active in the samesubgraph. This allows long-running complete collections, although at a cost ofwasted work and space overhead.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 205Synchronised merging of suspect subgraphs. Di�erent co-operative partial tracingsare active and synchronised in the same subgraph. They allow complete collec-tions at space and synchronisation low costs. Although, depending on the graphtopology, they may compromise promptness.Merging of suspect subgraphs. Di�erent co-operative and independent partial tracingsare active in the same subgraph. They allow more expedient collections althoughcompromising completeness.This policy decision may be determined by the collector itself or by the user program,globally or on a per-process or even per-object basis. Heuristics based on geography,process identity, distance from the suspect originating the collection, minimum distancefrom any object known to be live, or time constraints may be used to restrict the ex-tent of mark-red or the decision whether to merge with, overlap or retreat from otherdistributed collections. In the absence of knowledge of the problem being computed,it is unclear what action should be taken when two groups meet. A merger may notalways be desirable. Instead it may be preferable to run multiple overlapping partialtracings. For example the best compromise may be to combine simultaneously occa-sional long-running but complete collections over very large groups with more frequentfaster completing collections over small object graphs. Our algorithm o�ers the imple-menter the choice between completeness and promptness at the level of partial tracings,processes and individual objects. Partial tracings can decide whether or not to merge,processes can decide whether to allow partial tracings to merge, to overlap or to retreatfrom one another, and objects can decide on merger or retreat.The e�ciency of this algorithm is greatly a�ected by this policy decision. We analyseits e�ciency when discussing promptness next.9.1.2 E�ciencyWe have identi�ed three e�ciency concerns: message complexity, space complexity,promptness/progress and mutator overhead.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 206Message ComplexityThe message complexity of our system depends entirely on number of interprocess edgesand the topology of the graph. We can measure this by considering the number of timesan inter-process reference might be traversed, where each traversing is a message.Call the number of inter-process edges in the subgraph visited by mark-red e, andthe number of participants in this group n. Note that e � the number of edges in thetransitive referential closure of the suspect objects, because the mark-red phase doesnot need to visit the complete transitive referential closure of suspect entry-items.� The mark-red phase for each group issues e mark-request remote procedure calls,by de�nition.� The number of mark-red acknowledgement calls depends on whether the request issent to a quiet or a disquiet participant, and this in turn depends on the topology(degree of sharing) of the subgraph. An acknowledgement from a disquiet par-ticipant can be piggy-backed onto the remote procedure call acknowledgement;that from a quiet participant requires a separate call. Thus, between n� 1 (oneacknowledgement for each participant-creating request) and e (one per edge) callsare required.� Each acknowledgement message has a length � n, the maximum number of pro-cesses to which the request message can have been forwarded.Thus the number of remote procedure calls CMR caused by mark-red is:e+ n� 1 � CMR � 2e� Scan phase initiation requires n� 1 messages: one message from the initiator toeach participant. Additionally, scan phase initiation for synchronised co-operativepartial tracings (recall section 5.5) requires dz calls for each PTz where dz =jDependent�(PTz)j.� The number of scan requests sent depends on the accuracy with which suspects areidenti�ed. In the best case, no requests are sent but each participant must reporttermination to the initiator; in the worst case, the number of remote procedure

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 207calls is the same as that for mark-red1. Let p be the probability that our suspectidenti�cation heuristic is accurate.� Scan termination for co-operative partial tracings requires dz calls.Thus the expected number of remote procedure calls CSC caused by the scan phase is:(1� p)e+ 2(n� 1) + 2dz � CSC � 2(1 � p)e+ (1 + p)(n� 1) + 2dz� The sweep phase requires n� 1 messages.The total number of remote procedure calls Cpt required is:(2� p)e+ 4(n� 1) + 2dz � Cpt � 2(2 � p)e+ (2 + p)(n� 1) + 2dzThe cost of our algorithm is determined by the parameters n, e, dz and p. p dependson our choice of suspect; n, e and dz are partly determined by the topology of thesubgraph and the dynamics of distributed collections but can also be controlled by policydecisions on the extent of mark-red's coverage of the graph. Because little is known ofthe demographics of distributed objects, exibility is a key goal of our collector. Ourcollector can be seen as a framework within which policy decisions can be implemented.Policy guides the choice of suspects, the choice of processes forming each partial tracingand the merger of partial tracings.The better the heuristic the greater the chance p that our algorithm traces onlygarbage subgraphs thereby:1 decreasing the number of times a partial tracing is run,2 limiting the mark-red trace to just garbage items,3 reducing the number of messages for the scan phase to the best case, and4 decreasing the chance of wasted and repeated work.As we have already said in section 4.6 a more sophisticated heuristic | the distanceheuristic | may improve the algorithm's e�ciency.1The intermediate case occurs when a subset of the red sub-graph is found to be live.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 208p and n can be controlled by bounding the amount of work done by mark-red. Recallthat this phase needs only make a conservative estimate of the transitive referentialclosure of suspect objects | it need not visit the whole closure. This policy decisioncan be taken statically by prior negotiation or dynamically by mark-red.Back-tracing AlgorithmLet us turn to the analysis of the algorithm presented in (Maheshwari and Liskov 1997a).This is an algorithm of the same class as ours, as they identify heuristically objectssuspect of being garbage. Back-tracing, as opposed to forward tracing, follows the\refers-to" relation on the inverse reference graph (IRG) (recall section 3.5.6). It startsa back-tracing on the transitive closure, of this new relation, of a suspect object in orderto �nd out if it is transitively reachable from a root.Call the number of inter-process edges in the transitive closure of a suspect entry-item e, and the number of involved processes n. In its �rst phase, back-tracing involvestwo messages for each inter-process reference it traverses | one for the call when tracingback to the root, and another for its response when returning. Finally the report phaseinvolves a message from the initiator to each participant. Thus, independently of thesuspect choice, the total number of calls required isCbt = e+ (n� 1)Cpt is greater than Cbt. However they are both O(n). Moreover, if multiple collectionsstart on several objects of a suspect subgraph, say m, Cpt will be the same because themultiple partial tracings will co-operate. On the other hand, Cbt will turn toCbt = me+m(n� 1)As in the partial tracing algorithm, the better the heuristic the greater the chancethat the back-tracing algorithm traces only garbage subgraphs thereby decreasing thenumber of times a back-tracing is run and decreasing the chance of wasted and repeatedwork. Moreover, this algorithm guarantees that if a back-tracing is started in a garbagestructure, only garbage objects will be traced. On the other hand, our system may trace

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 209live objects if a garbage structure points to live data. As we said, our system relies onthe heuristic to �nd suspect objects. The more accurate the heuristic the greater thechance that our algorithm traces only garbage subgraphs thereby limiting the mark-redtrace to just garbage items.In addition to an increasing message complexity, multiple collections active in thesame cycle lead to a greater amount of repeated and wasted work. We expect a par-tial tracing to be more e�cient than a back-tracing, and vice-versa, depending on thetopology of the applications graph. We come back to this analysis when discussingpromptness next.Space ComplexityCompared to other algorithms based on reference-listing (recall section 3.4.4), our al-gorithm requires extra space for the red-lists and for the cut-reference graph. However,this space is not proportional to the application's graph.Consider the space occupied by the cut-reference graph. After a local collection, thestructure exits retains, for each suspect entry-item Eiz , a list of the suspects' exit-itemsreachable from Eiz. Call the number of suspect entry-items nei, and the number ofsuspect exit-items nex. The space occupied by the cut-reference graph is O(nei � nex).This extra space is only required between the time an entry-item becomes suspect andthe time the entry-item is collected or turns to non-suspect. Moreover, this extra spaceis the same required by the back-tracing algorithm, as it also builds a suspect cut-references graph.Compared to the back-tracing algorithm, our algorithm requires extra space forthe red-lists. During a partial tracing, a red entry-item Eiz , member of a suspectsub-graph, retains a list of which processes have a red Exz. Call the number of redentry-items rei, and the number of red exit-items rex. The space occupied by the red-lists is O(rei�rex). Recall, however, that Eiz :red-list � Eiz :entry-list. Thus, the red-listmay be implemented in the entry-lists just by setting a bit on the entry-list's elements.Promptness/ProgressOur algorithm achieves promptness in two ways. First, it does not compromise the recla-mation of local and acyclic distributed garbage: local collection and acyclic distributed

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 210collection are not hindered. Second, the promptness of the cyclic distributed collectionis potentially improved by restricting the target object graph to suspect objects graphs| property of locality. Moreover, as we have already shown in section 4.6, the amountof work done by mark-red can be bounded, hence potentially improving the promptnessof our system. We need, however, to make a stronger case about the likely behaviourof our algorithm: how much progress it makes, how great can be the ine�ective andwasted work, which are the good cases and which are the bad cases.Consider a distributed garbage cycle and suppose that PTz is initiated at any objectz, which is member of that cycle. For that cycle to not be collected there must be anexternal reference to it; that is, there must be an object y that is not involved in PTz,and z is transitively reachable from y. We have showed that our system is complete: ymust be garbage, otherwise z would not be garbage; a partial tracing will be initiatedat y eventually. However we want to show that its e�ciency depends greatly on thesuspect choice. Recall that one of these three situations will happen eventually:1 PTy covers z, and there are no external references to PTy's suspect subgraph.2 PTz is transitively dependent of PTy, and there are no external references to PTy'ssuspect subgraph.3 PTy is transitively responsible for PTz and PTz is transitively responsible for PTy,and there are no external references to PTz's suspect subgraph and PTy's suspectsubgraph.As we showed, z is eventually collected independently of which situation occurs.Suppose however that PTz initiates at z and terminates before PTy has initiated aty, and that PTz does not cover y. As there is an external reference to PTz's suspectsubgraph, PTz will fail in collecting z. We show this situation in �gure 42. We show inthe �gure two connected cycles. The lines represent an arbitrary number of objects. Weexplicitly represent objects x, z and y. Before one of the above situations can happen,any partial tracing initiated in the bold cycle in the �gure will fail to collect z, hencenot making any progress. Also, if two partial tracings, PTx and PTy, start and PTy�nishes before PTx encounters y, PTy will fail because there is an external referenceto PTy's suspect subgraph. These two situations lead to wasted and repeated work.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 211
z

y

Figure 42: Connected garbage structuresThis happens because, as we said in section 4.2.1, the mark-red phase may not tracethe whole set of connected garbage objects.Notice that these situations do not occur in the back-tracing algorithm. A back-tracethat starts at a garbage object will always succeed in the absence of failures. Hence, wecould expect a better promptness/progress in this situation.We may bound the wasted and repeated work of the partial-tracing algorithm, basedon the fact that if the bold cycle in �gure 42 is garbage, the lighter cycle in the same�gure must be garbage. Consequently, by our completeness argument, every object inthe garbage structure is eventually suspect and may potentially initiate a partial tracing.We now de�ne two parameters that determine, as we show below, the success of ouralgorithm, that is, its promptness:T is an estimated time interval during which all garbage objects within a garbagestructure become suspect. Assuming that our system is implementing the distanceheuristic, T would be the time needed for every object in the garbage structureto cross the distance threshold. Assuming that processes perform local garbagecollections regularly, we expect that every garbage object will cross the thresholdin a bounded time.Tpt is an estimated time for a mark-trace to cover the whole transitive closure of asuspect object.Now consider that object z becomes a suspect object. It then starts a PTz. It may

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 212reach some object that, although being garbage, may have not become suspect. Thesolution would be to follow the following rule:rule a start PTz at the time given by adding T to the time z became a suspect.At this time, all objects in the garbage structure are likely to be suspect.Now suppose that PTz's mark-red phase has �nished and PTz's initiator is going tostart PTz's scan phase. As we have already said, it fails because there is an externalreference to PTz's suspect sub-graph. We show now how our algorithm can reduce theprobability of such a problem to happen using the values of T and Tpt. The rule is:rule b delay the beginning of PTz's scan phase by Tpt.Recall that, by rule a, when PTz started, the objects in the garbage structure arelikely to be suspect, hence are likely to have started a partial tracing. In the example,PTy. Tpt is an estimated time for a mark-trace to reach the transitive closure of asuspect object. If PTz delays the beginning of the scan phase by Tpt, it is likely thatby the time PTz initiates the scan phase PTy has encountered PTz and de�ned adependent/responsible relation. We may generalize this assumption and say that themore accurate the estimations of T and Tpt, the greater the probability of di�erentgarbage structures to be covered by one, or more, partial tracings.These values may be estimated after measurements of real applications and may betuned each garbage collection cycle. That is, these values may be adapted as the systemevolves.How can these values be estimated? We expect our system fails to collect a suspectcycle because garbage, not involved in the partial tracing, points to garbage, and notbecause the cycle garbage is live. In our example, PTz always fail until there is a partialtracing, for example PTy, that also covers the PTz's suspect sub-graph, or meets PTzor deletes the external references to PTz's suspect sub-graph. We may measure thetime between a PTz's failure and the PTz's success. As we expect that this time is thetime necessary for the whole garbage structure to be covered by one, or more, partialtracings, we accept it as an estimation of T +Tpt. Expecting that, in a real application,one garbage structure may be formed often, we could use the estimated time to tunefuture collection cycles.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 213Notice that PTz's failure or success may be measured by which action | delete orno delete | is applied to the initiator object, the object z, every time PTz is �nished.We believe this may improve the success of a partial tracing and then the promptnessof the system.On the other hand, we are also interested in avoiding unnecessary multiple collec-tions, for example, collections initiated in the bold cycle in �gure 42, that increase bothd (see above) and the number of processes where the collections have to meet. To thisend, the system could only propagate distances over a certain threshold through mark-red requests. In this way, when the objects' distances cross the distance threshold, thecorresponding objects would be already involved in a partial tracing. In this way wecould avoid synchronising the start of scan phase as we would reduce the risk of multipledistributed collections in the same garbage cycle. It is important to say however that ifthe system neither propagates distances through the mark-red phase nor synchronisesthe begin of scan phase, multiple collections on the same cycle may abort inde�nitely(recall section 4.2.1).We consider now the behaviour of our algorithm when handling large and complexstructures, for example, chains of multiple garbage structures such as the ones repre-sented in �gure 42.Recall that if we delay the beginning of a partial tracing by T , there is a large chancethat all objects in the garbage structure turn to suspect. This situation may lead to onein which multiple partial tracings would start and co-operate in the collection of largestructures.As we have already said (recall section 4.6), heuristics can be used for restrictingthe extent of the mark-red phase. Depending on the shape of the garbage structure,this may compromise the algorithm's progress as the mark-red phase may not includethe whole connected garbage structure, hence failing to collect the garbage structure.Only measurements of real applications can say how much this type of heuristic mayimprove the promptness of the algorithm.Consider now the back-tracing algorithm. It is di�cult to understand how thealgorithm behaves in such garbage structures. If multiple back-tracings start, theymay lead to repeated and wasted work. On the other hand, multiple back-tracings may

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 214
x Figure 43: Double linked listindependently collect any part of the garbage structure. In the absence of measurements,it is di�cult to know which action would be taken.Moreover, a back-tracing has to �nd a root or a garbage object in order to determinethe liveness of a suspect object. The process/object that initiated a back-tracing mustreceive back an answer of type \live" or \not live". Back-tracing may always stop atany time. However, if the back-tracing algorithm gives up at any path, it returns \live"to the initiator. In this way it cannot decide about the liveness of suspect objects.Thus, we say that it lacks of the property of exibility, hence make di�cult the use ofheuristics to improve promptness of garbage collection of large and complex structures.Examples Consider now some examples of typical structures such as double linkedlists and searching trees, with back references, of an arbitrary size. We describe how weexpect our algorithm to behave with those structures.We show in �gure 43 a double linked list of N elements, in which each elementis located in a di�erent process, and E inter-process references. After the deletion ofthe list entry reference, every object will become a suspect object as a consequence ofmultiple local collections in each process. The behaviour of the partial tracing algorithmdepends on which garbage object starts a partial tracing:� Suppose that object x initiates a partial tracing PTx. It propagates the mark-redto the other objects before they start a partial tracing. This may be achieved forexample, as we said, by propagating the distances through the mark-red phase.The whole structure would be covered by PTx and entirely collected. The messagecost corresponds to the best case of the message complexity formula.� Suppose that object x initiates a back-tracing algorithm. It propagates the back-tracing messages to the other objects before they start a back-tracing. The wholestructure would be covered by PTx and entirely collected. The message costcorresponds to the best case of back-tracing message complexity.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 215In this situation, the back-tracing algorithm would present a lower cost than thepartial tracing algorithm.� Suppose that several objects initiate a partial tracing. In the worst case, everyobject starts a partial tracing. In this situation every partial tracing must co-operate in order to collect the garbage structure. If the co-operation is not set,the collection fails. The message cost corresponds to the worst case of the messagecomplexity formula and represents a wasted e�ort. If the co-operation is set, andthis depends on the values estimated for Tpt, the whole structure would be coveredby the co-operating partial tracings and entirely collected. The cost for eachpartial tracing is de�ned by the best case of the message complexity formula. Thetotal cost depends on the number of partial tracings co-operating on the collectionof this structure, d, that is the number of participants that have initiated a partialtracing. The message complexity formula would be:2d2 + dXi=1 ei + 4(ni � 1)The formula is an overestimate as some of the token passing that implement thedistributed termination protocol could be short circuited. ei and ni are relatedto each co-operative partial tracing. Generally, for each partial tracing ei � Eand ni � N . For this particular case, for each partial tracing d = N becauseevery object started a partial tracing. However, as we said when reasoning aboutmultiple simultaneous collections, we may expect d� N .� Suppose that several objects initiate a back-tracing algorithm. In the worst case,every object starts a back-tracing. The whole structure is entirely collected. Themessage cost corresponds to the worst case of the message complexity. The mes-sage complexity formula would be:mXi=1 e+ (n� 1)For each initiated back-tracing, e = E and n = N . In this particular case m = N .As in the partial tracing algorithm, it is expected m� N .

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 216

Figure 44: Searching tree with back referencesComparing the two formulae,Pdi=1 ei �Pmi=1 e andPdi=1 4(ni�1)�Pmi=1(n�1).The partial tracing algorithm also presents the cost 2d2 that in this particularsituation equals 2N2. But, as we said, we expect d � N in the majority of thecases. Thus, even if m and d have the same order of complexity, it is likely thatthe partial tracing algorithm would present a better message complexity.How can Tpt be estimated? The system may estimate Tpt as the time needed topropagate the mark-red tracing through a conservatively estimated (large) list'slength. In this way, if every partial tracing delays the beginning of the scan phaseby T +Tpt, the partial tracings initiated in every object of the linked list are likelyto meet.We show in �gure 44 a searching tree, with back references to the root, of N nodes,each located in a di�erent process, and E inter-process references. After the deletionof the reference to the root of the, every object will become a suspect object as aconsequence of multiple local collections in each process. In the same way, the behaviourof the partial tracing algorithm depends on which garbage object starts a partial tracing.The analysis of the behaviour of the partial tracing and back-tracing algorithm inthe collection of this structure is essentially the same as the analysis of the double linkedlist. This comes from the fact that, as in the double linked list, we may �nd a pathbetween any two di�erent objects in the structure. It can happen that an object in thetree initiates a partial tracing and propagates it to the other objects in the tree. Inthis case, the whole structure is entirely collected by that partial tracing. Alternatively,

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 217

Figure 45: Tree nodes pointing to cyclic garbage structuresseveral objects may start a partial tracing. In this case, the partial tracings must co-operate in collecting the garbage structure.A di�erent behaviour would arise if the nodes of the tree structure point to anyarbitrary structure such a linked list, as represented in �gure 45.Every partial tracing initiated in a linked list, pointed by a node in the tree, willfail. The wasted e�ort is measured by the worst case in the message complexity formula.However, recall that the whole tree structure is garbage. A partial tracing initiated inany node of the tree would cover the linked list or would meet any partial tracingthat had initiated in the linked list. The system may estimate Tpt as the time need topropagate the mark-red tracing through a conservatively estimated (large) length of thepath between the root and a leaf of the tree. In this way, if every partial tracing delaysthe beginning of the scan phase by T + Tpt, the partial tracing initiated in the linkedlist is likely to be encountered by a partial tracing initiated in some node of the tree.A back-tracing initiated in any element of the tree or linked list structures woulddiscover the target suspect sub-graph to be garbage. Again, the back-tracing algorithmcost depends on the number of objects that initiated a garbage collection cycle. Thecost of the back-tracing algorithm increases substantially as the number of objects thatinitiate simultaneous back-tracings increases.Mutator OverheadMutator overhead due to garbage collection must be minimised. Our system performsgarbage collection concurrently and asynchronously with respect to mutators. All partial

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 218tracing steps are performed concurrently with the mutator. In particular, the scan phaseinitial step requires atomic execution with respect to cut-references updating, but thisdoes not a�ect the mutator activity.As we stated in section 4.2.2, mutator actions may generate synchronisation actionsin order to ensure safety. Our system has two synchronisation points as we describedin section 6: a Dirty Barrier every time a remote object is invoked and a RemoteBarrier every time a red remote object is invocated through a red exit-item or trans-mitted. As our implementation showed, these barriers are cheap. The Dirty Barrieronly involves setting an entry-item Eiz , and every exit-item where Exy 2 Eiz :exits,dirty. Dirty items are considered members of the local-scan-root-set for the scan phaseinitial step.The Remote Barrier causes the mutator to generate a scan request only on the�rst occasion in a collection cycle that a message is sent from a red exit-item. Thisscan request is piggy-backed onto the reference listing protocol operations or mutatormessages (see section 8.2.3). Additionally, the probability of mutating objects corre-sponding to red entry or exit-items decreases with better heuristics.In order to scan phase to terminate, all scan requests must be acknowledged. Mu-tator actions on red exit-items spawn new scan requests, however. The number ofred entry and exit-items is �nite, hence, a �nite number of scan requests is generated.Consequently, mutator actions do not delay scan phase termination.9.1.3 Fault-toleranceUntil now we have assumed that processes do not crash, and that they communicate bymessages which are guaranteed to be delivered. As we have already said, in a distributedsystem a message may be lost, duplicated or delivered out of order. Processes maybecome disconnected for a long period of time and may also crash.In this section we extend our partial tracing to realistic distributed system behaviour.We assume that messages may be lost, duplicated or delivered out of order. We furtherassume that crashes are fail-stop, therefore the only consequence of a crash is discon-nection, loss of volatile memory and the halting of computation. In this section we donot address recovery, that is, all objects contained in a process at the time of the crashare assumed to be deleted.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 219Our partial tracing is built on top of the reference listing mechanism described insection 3.4.4. Consequently we inherit the following features (Birrel and Nelson 1984):� a protocol for maintaining entry and exit-items which is robust in the face of lost,duplicated and out of order messages.� a protocol for detecting those objects that are referenced by crashed processes.� a protocol for handling dangling references from objects to processes that appearto have crashed.Message failureWe identify four types of messages in our system: mark request messages, acknowl-edgement messages, report messages and token messages. These messages may be lost,duplicated or delivered out of order, without compromising the safety of our system.mark requests messages(entry-item) perform two kind of actions: (i) insert sourceexit-item in the grey-set; and (ii) send a mark-request to the target entry-item:colour the entry-item and, for the mark-red phase case, insert the source process inthe entry-item's red-list; if the target process is passive, insert the source exit-itemin the reply-set.These actions are idempotent because set insertion is an idempotent operation,and we do not perform any removal operations. The acknowledgement systemprotects our system from lost messages.acknowledgement messages(exit-item) remove the exit-item from the grey-set. Thisis an idempotent message because set removal operations are idempotent, and, fora particular partial tracing, an item is never re-inserted into a grey-set. The lossof a message is detected because an exit-item is not removed from the grey-setuntil the corresponding acknowledgement is received.report messages inform the initiator of the end of the initial step and respectiveresponsibles. By their nature, these messages are idempotent. The initiator isaware of the participants in a partial tracing and, consequently, the loss of such amessage will be noticed by it.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 220token messages may be safely retried. The initiator process just discards any copy itis already aware of.Finally, these messages may be delivered in any order. There are no potential raceconditions between them. Race conditions with mutator messages are safely handledby our concurrency model as we have proved in chapter 7.Messages delay is handled by the acknowledgement system. A non-acknowledgedrequest will make a partial tracing PTz to fail. A message from PTz's cycle n mayinterfere with PTz's cycle n+ 1. A sequence numbering for each message handles suchdelays.Process failuresAs we showed, our system is fault-tolerant to message failures. Additionally, we tolerateprocess crashes in the sense that a partial tracing may start even if other processes inthe system are down. Hence, we trade completeness against promptness.We do not handle a failed participant. We propose such a research as a future work.9.2 Future Work9.2.1 Prototype ImplementationAn obvious step for future work is to improve the current prototype implementation. Itshould be extended with the scalable version described in section 5.1.With the advent of new object-based distributed programming systems, includingmobile computing technology, applications may make more use of cyclic distributedgarbage collection. As an example, researchers are turn their attention to distributedgarbage collection, including cyclic garbage collection, for distributed standards such asCORBA (Vinoski 1993), as recent \Request for Proposals" have shown (Carlini 1997),and to the Java Remote Method Invocation protocol (Gosling and McGilton 1995).9.2.2 Performance EvaluationAnother future direction is to analyse the performance of our system. We do not knowof any performance measurements of cyclic distributed garbage collection algorithms.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 221Unfortunately, since cyclic distributed garbage collection is not currently widely avail-able, there are few applications that make full use of distributed garbage collection.Hopefully, the number of these applications will start growing once distributed garbagecollection is widely spread.We decided not to produce synthetic benchmarks for the following reasons. As(Wilson 1995) states, to build a benchmark important characteristics of workload mustbe known. In our case, the probabilities of relevant characteristics of the behaviourof distributed applications must be known. However, for the reasons above we do nothave that knowledge. Also, synthetic benchmarks usually make false assumptions, forexample that memory allocation by programs is random. (Wilson 1995) shows thatreal programs do not generally behave randomly. They are designed to solve actualprograms, and the method chosen to solve these problems has a strong e�ect on theirpattern of memory usage. Until much deeper understanding of program behaviour isavailable, the only reliable method for simulation is to use real applications.These statements enforce the need for studying real distributed applications andusing them to test garbage collection systems. In the distributed memory managementcase, this means that there is an urgent need for studies of topology or demographicsof distributed object systems.These studies should answer questions like: At what rate is garbage, including cycles,formed? How common are distributed cycles? What is their shape? Is there some degreeof locality, or are they randomly spread through the distributed system?If it is the case, as stated by (Wilson 1995), that the patterns of memory usageare related with a speci�c method, our system would bene�t from such a study. Themark-red phase could be supported by hints from the programmer or compiler, or froman event history, improving the e�ciency of our cyclic algorithm.9.2.3 Fault-toleranceOur system is fault-tolerance to message failures and process failures: it handles safelyloss, duplication and out of order delivery of messages; and it does not need the co-operation of all processes in the system to perform cyclic collections.Another issue related to fault-tolerance needs further research, however. This issueis how to handle a failed participant, that is, garbage collection must remain safe and

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 222live under adverse conditions.We intend to study more deeply the relation between our system and fault-tolerantreference listing, to produce a more fault-tolerant cyclic distributed garbage collector.We intend to produce a solution based on identifying every garbage collection cyclemessage with a sequence number generated by the initiator process. This techniquewould allow our system to always be safely able to turn participant processes on non-participant processes.9.2.4 Related AreasPartitioned garbage collection in persistent stores has much in common with indepen-dent collection in RPC-based distributed systems. Large persistent object stores areusually divided into partitions that are collected independently, for example (Mahesh-wari and Liskov 1997b, Printezis, Atkinson, Daynes, Spence and Bailey 1997).To trace a partition independently of the others, each partition must rememberreferences to its objects from other partitions and use them as roots. So, our partitionedgarbage collection model described in chapter 3 may be adapted to garbage collectionin persistent object stores.Partitioned garbage collection introduces two problems in the context of garbagecollection in persistent object stores (Maheshwari and Liskov 1997b). One is perfor-mance: maintaining information about inter-partition references has a space and timeoverhead. The other is completeness: tracing from inter-partition references does notcollect garbage cycles that span partitions. Again, the second problem has much incommon with the completeness problem for garbage collection in RPC-based systems.We shall concentrate on the second problem. The work of (Maheshwari and Liskov1997b) proposes a global marking scheme to ensure the collection of cycles of garbagethat span partitions. Global marking is piggy-backed on partitioned collection, butcyclic garbage can still only be collected when the whole persistent store is marked. Wepropose PTs on suspect objects (entry and exit-items may be assigned with a distance).We will outline in which way our PT system may improve completeness while preservingthe localised nature of partitioned garbage collection and improving promptness.The global marking is piggy-backed on regular tracing of partitions. A marked tracemarks from persistent roots, application roots and marked entry-items. Objects reached

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 223during this trace are marked, while inter-partition references reached are recorded to bemarked when the target partition is garbage collected.Our scheme may improve promptness in two ways. A �rst solution would use themark-red phase as a group-formation heuristic. Mark-red phases may be piggy-backedon partition collection starting from suspect objects and build a group of partitions thatmay contain garbage cycles. A group marking could then be performed on a group ofpartitions that have resulted from the mark-red phase. Such information could evencontribute to partition selection policies.Second, we could try a more dynamic solution and perform PTs as we have describedin chapter 5:� Mark-red and scan phases could be piggy-backed on partition collection. A mod-i�ed partition collection could implement Tarjan's algorithm, and propagate redand green marks from entry to exit-items. At the end of a collection red and greenmarks for inter-partition references would be updated, providing red or green rootsfor other partitions and updated red-lists. Additionally, the participants must berecorded in some PT object akin to PTObj of de�nition 5.3.� For detecting termination, in each phase, a mark bit would be assigned to everyparticipant partition to denote whether the red or green marks of its items hadbeen propagated. Marking-red or scanning a partition causes it to become marked,but may cause other partitions to become unmarked, because more entry-itemsare marked and such mark must be propagated. Termination would be detectedwhen all participants would had been marked.� PTs that encounter each other in the mark-red phase would be allowed to join.Di�erent policies could be adopted as we have discussed in section 9.1 dependingon how far completeness may be relaxed.� Synchronisation with mutator activity and scan phase can be avoided duringone partition collection, if garbage collection is run as an optimistic transaction(Tanenbaum 1992), that aborts in case of concurrent writes by an application(Shapiro and Ferreira 1995). However, synchronisation is still needed to detectreachability changes of red items (local reachability as well as inter-partition reach-ability) in a partition P after the scan Initial-step(P) has been taken, since the

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 224Initial-step is not synchronised in every partition. Recall that after the Initial-step, red exit-items are only reachable from outside the partition. This allows usto check at commit time the transaction's read-write log. If an object correspond-ing to a red entry-item has been read, the entry-item is marked green. For thischeck to be allowed to be done lazily at commit time, termination must only bedetected when all partitions stay unmarked after the log has been checked.� As in (Maheshwari and Liskov 1997b), colour information may be maintained onentry and exit-items that are stored as regular persistent objects, as well as markbits. They would be updated after tracing a partition. This, in conjunction withtransaction recovery methods, would allow the restoration of the state of a PTafter recovery.The main bene�ts of applying a PT system instead of a global marking are:� termination is fast. Only the scan phase needs mutator synchronisation. Thereare a �nite number of red objects, so a partition can only be unmarked a �nitenumber of times. Additionally, if the PT is working in garbage objects, partitionunmarking will not happen.� PTs work only in a subset of the object store. Consequently we achieve betterpromptness.From this analysis we conclude that, although needing further investigation, ourscheme looks promising for garbage collection on persistent object stores.

Bibliography
Agha, G. (1986). Actors: a Model of Concurrent Computation in Distributed Systems,MIT Press.Amsaleg, L., Franklin, M. and Gruber, O. (1995). E�cient incremental garbage collec-tion for client-server object database systems, Proceedings of the VLDB Interna-tional Conference on Very Large Data Bases.Appel, A. W., Ellis, J. R. and Li, K. (1988). Real-time concurrent collection on stockmultiprocessors, ACM SIGPLAN Notices 23(7): 11{20.Atkison, M. P., Bailey, P. J., Chisholm, K. J., Cockshott, W. P. and Morrison, R. (1983).An approach to persistent programming, Computer Journal 26(4): 360{365.Augusteijn, L. (1987). Garbage collection in a distributed environment, PARLE'87 Par-allel Architectures and Languages Europe, Vol. 259 of Lecture Notes in ComputerScience, Springer-Verlag, Berlin, pp. 75{93.Babaoglu, O. and Marzullo, K. (1993). Consistent global states of distributed systems:Fundamental concepts and mechanisms, in S. Mullender (ed.), Distributed Systems,Addison-Wesley, pp. 55{96.Baker, H. G. (1978). List processing in real-time on a serial computer, Communicationsof the ACM 21(4): 280{294. Also AI Laboratory Working Paper 139, 1977.Bartlett, J. F. (1988). Compacting garbage collection with ambiguous roots, TechnicalReport 88/2, DEC Western Research Laboratory, Palo Alto, California. Also inLisp Pointers 1, 6 (April{June 1988), pp. 2{12.

225

BIBLIOGRAPHY 226Bartlett, J. F. (1989). Mostly-Copying garbage collection picks up generations andC++, Technical note, DEC Western Research Laboratory, Palo Alto, CA. Sourcesavailable in ftp://gatekeeper.dec.com/pub/DEC/CCgc.Bevan, D. I. (1987). Distributed garbage collection using reference counting, PARLEParallel Architectures and Languages Europe, Vol. 259 of Lecture Notes in Com-puter Science, Springer-Verlag, pp. 176{187.Bharat, K. A. and Cardelli, L. (1995). Migratory applications, Proceedings of the 8thAnnual ACM Symposium on User Interface Software and Technology.Birrel, A. D. and Nelson, B. J. (1984). Remote procedure call, ACM Transactions onComputer Systems 2(1): 39{59.Birrel, A., Evers, D., Nelson, G., Owicki, S. and Wobber, E. (1993). Network objects,Technical report SRC 115, Digital Systems Research Center.Birrel, A., Evers, D., Nelson, G., Owicki, S. and Wobber, E. (1994). Distributed garbagecollection for network objects, Technical report SRC 116, Digital Systems ResearchCenter.Bishop, P. (1977). Computer systems with a very large address space and garbagecollection, Technical Report MIT Rep, LCS/TR{178, Laboratory for ComputerScience, M.I.T., Cambridge, Mass.Bobrow, D. G. (1980). Managing reentrant structures using reference counts, ACMTransactions on Programming Languages and Systems 2(3): 269{273.Boehm, H.-J. and Weiser, M. (1988). Garbage collection in an uncooperative environ-ment, Software Practice and Experience 18(9): 807{820.Boehm, H.-J., Demers, A. J. and Shenker, S. (1991). Mostly parallel garbage collection,ACM SIGPLAN Notices 26(6): 157{164.Brownbridge, D. R. (1985). Cyclic reference counting for combinator machines, Recordof the 1985 Conference on Functional Programming and Computer Architecture,Vol. 201 of Lecture Notes in Computer Science, Springer-Verlag, pp. 256{272.

BIBLIOGRAPHY 227Carlini, G. (1997). Anyone interested in reviewing a dgc rfp for CORBA?, gclist(gclist@iecc.com).Cheney, C. J. (1970). A non-recursive list compacting algorithm, Communications ofthe ACM 13(11): 6{8.Chin, R. S. and Chanson, S. T. (1991). Distributed object-based programming systems,ACM Computing Surveys 23(1): 91{124.Christopher, T. (1984). Reference count garbage collection, Software Practice and Ex-perience 14(6): 503{507.Collins, G. E. (1960). A method for overlapping and erasure of lists, Communicationsof the ACM 3(12): 655{657.Cook, J., Klauser, A. W., Wolf, A. and Zorn, B. (1996). Semi-automatic, self-adaptivecontrol of garbage collection rates in object databases, Proceedings of the ACM SIG-MOD International Conference on Management of Data, ACM SIGMOD, pp. 377{388.Cook, J., Wolf, A. and Zorn, B. (1994). Partition selection policies in object databasegarbage collection, Proceedings of the ACM SIGMOD International Conference onManagement of Data, ACM SIGMOD, pp. 371{382.Derbyshire, M. H. (1990). Mark scan garbage collection on a distributed architecture,Lisp and Symbolic Computation 3(2): 135 { 170.DeTreville, J. (1990). Experience with concurrent garbage collectors for Modula-2+,Technical Report 64, DEC Systems Research Center, Palo Alto, CA.Deutsch, L. P. and Bobrow, D. G. (1976). An e�cient incremental automatic garbagecollector, Communications of the ACM 19(7): 522{526.Dickman, P. (1992). Optimising weighted reference counts for scalable, fault-tolerantdistributed object-support systems, Unpublished.Dijkstra, E. W. and Scholten, C. (1980). Termination detection for di�using computa-tions, Information Processing Letters 11: 1{4.

BIBLIOGRAPHY 228Dijkstra, E. W., Feijen, W. and van Gasteren, A. (1983). Derivation of a terminationdetection algorithms for distributed computations, Information Processing Letters.Dijkstra, E. W., Lamport, L., Martin, A., Scholten, C. and Ste�ens, E. (1978). On-the-y garbage collection: An exercise in cooperation, Communications of the ACM21(11): 965{975.Edelson, D. R. (1992). Precompiling C++ for garbage collection, Proceedings of Inter-national Workshop on Memory Management, St. Malo, France, Vol. 637 of LectureNotes in Computer Science, Springer Verlag, Berlin.Ellis, M. A. and Stroustrup, B. (1990). The Annotated C++ Reference Manual, Addison-Wesley.Ferreira, P. (1996). Larchant: ramasse-miettes dans une m�emoire partag�ee r�epartie avecpersistance par atteignabilit�e, PhD thesis, L'Universit�e Pierre & Marie Curie - ParisVI.Ferreira, P. and Shapiro, M. (1996). Larchant: Persistence by reachability in distributedshared memory through garbage collection, Proceedings of the 16th InternationalConference on Distributed Computing Systems (ICDCS), Hong Kong.Franklin, M., Copeland, G. and Weikum, G. (1989). What's di�erent about garbagecollection for persistent programming languages, Technical Report ACA-ST-062-89,MCC Information Center, 3500 W. Balcones Center Drive, Austin, TX 78759-6509.Friedman, D. and Wise, D. S. (1977). The one-bit reference count, BIT 17(3): 351{359.Friedman, D. and Wise, D. S. (1979). Reference counting can manage the circularenvironments of mutual recursion, Inf Process. Lett. 8(1): 41{45.Fuchs, M. (1995). Garbage collection on an open network, IWMM95, Vol. 986 of LectureNotes in Computer Science, Springer-Verlag, Berlin, pp. 251{265.Godard, I. (1994). Re: Collecting distributed cycles of garbage, USENET comp.object.Goldberg, A. and Robson, D. (1983). Smalltalk-80: The Language and its Implementa-tion, Addison-Wesley.

BIBLIOGRAPHY 229Gosling, J. and McGilton, H. (1995). The java language environment: A white paper,Available from http://www.javasoft.com/whitePaper.Gupta, A. and Fuchs, W. K. (1993). Garbage collection in a distributed object-orientedsystem, IEEE Transactions on Knowledge and Data Engineering 5(2): 257{265.Hudak, P. R. and Keller, R. (1982). Garbage collection and task deletion in distributedapplicative processing systems, Conference Record of the 1982 ACM Symposiumon Lisp and Functional Programming, Pittsburgh, Pa., pp. 68{78.Hudson, R. L., Morrison, R., Moss, J. E. B. and Munro, D. S. (1997). Garbage collectingthe world: One car at a time, OOPSLA'97 ACM Conference on Object-OrientedSystems, Languages and Applications, Vol. 32 of ACM SIGPLAN Notices, ACM,pp. 162{175.Hughes, R. J. M. (1985). A distributed garbage collection algorithm, Proceedings ofthe 1985 FPCA, Vol. 201 of Lecture Notes in Computer Science, Springer-Verlag,pp. 256{272.Jones, R. E. (1996). Garbage Collection: Algorithms for Automatic Dynamic MemoryManagement, JohnWiley & Sons. With a chapter on Distributed garbage collectionby R. Lins.Jones, R. E. and Lins, R. D. (1993). Cyclic weighted reference counting without de-lay, in A. Bode, M. Reeve and G. Wolf (eds), PARLE'93 Parallel Architecturesand Languages Europe, Munich, Vol. 694 of Lecture Notes in Computer Science,Springer-Verlag, Berlin.Jul, E., Levy, H., Hutchinson, N. and Black, A. (1988). Fine-grained mobility in theEmerald system, ACM Transactions on Computer Systems 6(1): 109{133.Juul, N.-C. and Jul, E. (1992). Comprehensive and robust garbage collection in adistributed system, IWMM92, Vol. 637 of Lecture Notes in Computer Science,Springer-Verlag, Berlin.Kafaru, D., Washabaugh, D. and Nelson, J. (1990). Garbage collection of actors, OOP-SLA/ECOOP '90 Workshop on Garbage Collection in Object-Oriented Systems,ACM.

BIBLIOGRAPHY 230Kernighan, B. W. and Ritchie, D. M. (1990). The C Programming Language, PrenticeHall.Kolodner, E. and Weihl, W. (1993). Atomic incremental garbage collection and recoveryfor a large stable heap, Proceedings of the ACM SIGMOD International Conferenceon Management of Data, ACM SIGMOD, pp. 177{186.Ladin, R. and Liskov, B. (1992). Garbage collection of a distributed heap, InternationalConference on Distributed Computing Systems, Yokahama.Lang, B., Quenniac, C. and Piquer, J. (1992). Garbage collecting the world, ACMSymposium on Principles of Programming, Albuquerque, pp. 39{50.Lermen, C.-W. and Maurer, D. (1986). A protocol for distributed reference counting,Conference Record of the 1986 ACM Symposium on Lisp and Functional Program-ming, ACM SIGPLAN/SIGACT/SIGART, Cambridge, Massachusetts, pp. 343{350.Lieberman, H. and Hewitt, C. (1983). A real-time garbage collector based on thelifetimes of objects, Communications of the ACM 26(6): 19{29. Also report TM{184, Lab. for Computer Science, M.I.T., Cambridge, Mass.,July 1980.Linington, P. F. (1992). Introduction to the open distributed processing basic refer-ence model, Open Distributed Processing, Elsevier Science Publishers B. V. (NorthHoland).Lins, R. D. (1990). Cyclic reference counting with lazy mark-scan, Technical Report 75,The University of Kent at Canterbury Computing Laboratory, The University,Canterbury, Kent. Also Information Processing Letters 44(4):215{220, 1992.Lins, R. D. and Jones, R. E. (1993). Cyclic weighted reference counting, in K. Boyanov(ed.), Procedings of WP & DP'93 Workshop on Parallel and Distributed Processing.Also Computing Laboratory Technical Report 95, University of Kent, December1991.Liskov, B., Day, M. and Shrira, L. (1992). Distributed object management in Thor.,Proc. Int. Workshop on Distributed Object Management, Edmonton(Canada),pp. 1{15.

BIBLIOGRAPHY 231Louboutin, S. and Cahill, V. (1995). On comprehensive global garbage detection, Pro-ceeding of the European Research Seminar on Advances in Distributed Systems(ERSADS '95), INRIA/IMAG, Grenoble, pp. 208{213. Also technical report TCD-CS-95-11, Dept. of Computer Science, Trinity College Dublin.Louboutin, S. R. Y. (1997). A Reactive Approach to Comprehensive Global GarbageDetection, PhD thesis, University of Dublin, Trinity College.Louboutin, S. R. Y. and Cahill, V. (1997). Comprehensive distributed garbage collectionby tracking causal dependencies of relevant mutator events, Proceedings of the 17thInternational Conference on Distributed Computing Systems (ICDCS), IEEE Press.Maeda, M., Konaka, H., Ishikawa, Y., TomoKiyo, T., Hori, A. and Nolte, J. (1995).On-the-y global garbage collection based on partly mark-sweep, Proceedings ofInternational Workshop on Memory Management, Kinross, UK, Vol. 986 of LectureNotes in Computer Science, Springer Verlag, Berlin.Maheshwari, U. (1993). Distributed garbage collection in a client-server, transactional,persistent object system, Master's thesis, Department of Electrical Engineering andComputer Science, Massachusetts Institute of technology.Maheshwari, U. and Liskov, B. (1994). Fault-tolerant distributed garbage collection ina client-server objected-oriented database, Proceedings of the third InternationalConference on Parallel and Distributed Information Systems, pp. 239{248.Maheshwari, U. and Liskov, B. (1995). Collecting cyclic distributed garbage by con-trolled migration, Proceedings of the Symposium on Principles of Distributed Com-puting.Maheshwari, U. and Liskov, B. (1997a). Collecting distributed garbage cycles by backtracing, Proceedings of the Symposium on Principles of Distributed Computing.Maheshwari, U. and Liskov, B. (1997b). Partitioned garbage collection of a large objectstore, Proceedings of the ACM SIGMOD International Conference on Managementof Data, ACM SIGMOD.

BIBLIOGRAPHY 232Marzullo, K. and Sabel, L. S. (1994). E�cient detection of a class of stable properties,An earlier version of this paper appears in the Proceedings of the 5th InternationalWorkshop on Distributed Systems, October 1991, Spring-Verlag LNCS Vol. 579.Mattern, F. (1987). Algorithms for distributed termination detection, Distributed Com-puting 2: 161{175.Mattern, F. (1989). Global quiescence detection based on credit distribution and recov-ery, Information Processing Letters 30(4): 195{200.McCarthy, J. (1960). Recursive functions of symbolic expressions and their computationby machine, Communications of the ACM 3: 184{195.Minsky, M. L. (1963). A Lisp garbage collector algorithm using serial secondary storage,Technical Report Memo 58 (rev.), Project MAC, MIT, Cambridge, MA.Moss, J. E. B., Munro, D. S. and Hudson, R. L. (1996). Pmos: A complete and coarse-grained incremental garbage collector for persistent object stores, Proceedings ofthe seventh Workshop on Persistent Object systems.Nettles, S. M., O'Toole, J. W., Pierce, D. and Haines, N. (1992). Replication-basedincremental copying collection, in Y. Bekkers and J. Cohen (eds), Proceedings ofInternational Workshop on Memory Management, Vol. 637 of Lecture Notes inComputer Science, Springer-Verlag, Carnegie Mellon University, USA.Ng, T. C. T. (1996). E�cient garbage collection for large object-oriented databases,Master's thesis, Department of Electrical Engineering and Computer Science, Mas-sachusetts Institute of technology.Nitzberg, B. and Lo, V. (1991). Distributed Shared Memory: A survey of Issues andAlgorithms., IEEE Computer pp. 52{60.Ozsu, M. T., Daylal, U. and Valduriez, P. (1994). An introduction to distributed objectmanagement, Distributed Object Management, Morgan Kaufmann Publishers.Piquer, J. (1991). Indirect reference counting: A distributed garbage collection al-gorithm, in Aarts et al. (ed.), PARLE'91 Parallel Architectures and LanguagesEurope, Vol. 505 of Lecture Notes in Computer Science, Springer Verlag, Berlin.

BIBLIOGRAPHY 233Plainfoss�e, D. and Shapiro, M. (1992). Experience with fault-tolerant garbage collectionin a distributed Lisp system, Proceedings of International Workshop on MemoryManagement, St. Malo, France, Vol. 637 of Lecture Notes in Computer Science,Springer Verlag, Berlin.Plainfoss�e, D. and Shapiro, M. (1995). A survey of distributed garbage collection tech-niques, Proceedings of International Workshop on Memory Management, Kinross,UK, Vol. 986 of Lecture Notes in Computer Science, Springer Verlag, Berlin.Printezis, T., Atkinson, M., Daynes, L., Spence, S. and Bailey, P. (1997). The design of anew persistent object store for PJama, Technical report, Department of ComputerScience, University of Glasgow, Glasgow G12 8QQ.Queinnec, C., Beaudoing, B. and Queille, J.-P. (1989). Mark during sweep rather thanmark then sweep, PARLE'89 Parallel Architectures and Languages Europe, Vol.365 of Lecture Notes in Computer Science, Springer-Verlag, Berlin.Rana, S. P. (1983). A distributed solution to the distributed termination problem,Information Processing Letters 17: 43{46.Ricciardi, A. M. and Birman, K. P. (1993). Process membership in asynchronous envi-ronments, Technical Report TR 93-1328, Department of Computer Science, CornellUniversity, Ithaca NY (USA).Rodrigues, H. and Jones, R. E. (1996). A cyclic distributed garbage collector for networkobjects, in O. Babaoglu and K. Marzullo (eds), Tenth Iternational Workshop onDistributed Algorithms (WDAG), Vol. 1095 of Lecture Notes in Computer Science,Springer-Verlag, Berlin.Rodrigues, H. and Jones, R. E. (1998). Cyclic distributed garbage collection with groupmerger, European Conference on Object-Oriented Programming (ECOOP98), Lec-ture Notes in Computer Science, Springer-Verlag, Berlin.Rodriguez-Riviera, G. (1995). Cyclic distributed garbage collection without global syn-chronization, PhD Preliminary Examination Report.

BIBLIOGRAPHY 234Rodriguez-Riviera, G. and Russo, V. (1997). Cyclic distributed garbage collection with-out global synchronization in CORBA, Presented at International Workshop onMemory Management OOPSLA'97.Rovner, P. (1985). On adding garbage collection and runtime types to a strongly-typed,statically checked, concurrent language, Technical Report CSL-84-7, Xerox PARC,Palo Alto, Ca.Samples, A. D. (1992). Garbage collection-cooperative c++, in Y. Bekkers and J. Cohen(eds), Proceedings of International Workshop on Memory Management, Vol. 637of Lecture Notes in Computer Science, Springer-Verlag, Berlin.Schelvis, M. (1989). Incremental distribution of timestamp packects: A new approachto distributed garbage collection, ACM SIGPLAN Notices 24(10): 37{48.Schroeder, M. D. (1993). A state-of-the-art distributed systems computing with BOB,in S. Mullender (ed.), Distributed Systems, Addison-Wesley, pp. 1{26.Shapiro, M. and Ferreira, P. (1995). Larchant-rdoss: a distributed shared persistentmemory and its garbage collector, in J.-M. H�elary and M. Raynal (eds), Interna-tional Workshop on Distributed Algorithms (WDAG), Vol. 637 of Lecture Notes inComputer Science, Springer-Verlag, Berlin, pp. 198{214.Shapiro, M., Dickman, P. and Plainfoss�e, D. (1992). Robust, distributed referencesand acyclic garbage collection, Proceedings of the Symposium on Principles of Dis-tributed Computing.Shapiro, M., Gruber, O. and Plainfoss�e, D. (1990). A garbage detection protocol for arealistic distributed object-support system, Rapports de Recherche 1320, INRIA-Rocquencourt. Also in ECOOP/OOPSLA'90 Workshop on Garbage Collection.Shivaratri, N. G., Krueger, P. and Singhal, M. (1992). Load Distributing for LocallyDistributed Systems, Computer 25(12): 33{44.Sousa, P., Sequeira, M., Z�uquete, A., Ferreira, P., Lopes, C., Pereira, J., Guedes, P. andMarques, J. A. (1993). Distribution and persistence in the IK platform: Overviewand evaluation, Computing Systems 6(4): 391{424.

BIBLIOGRAPHY 235Steele, G. L. (1975). Multiprocessing compactifying garbage collection, Communicationsof the ACM 18(9): 495{508.Tanenbaum, A. S. (1992). Modern Operating Systems, Prentice Hall.Tarjan, R. (1972). Depth �rst search and linear graph algorithms, SIAM Journal ofComputing.Tel, G. and Mattern, F. (1993). The derivation of distributed termination detectionalgorithms from garbage collection schemes, ACM Transactions on ProgrammingLanguages and Systems 15(1): 1{35.Ungar, D. M. (1984). Generation scavenging: a non-disruptive high performance storagereclamation algorithm, ACM SIGPLAN Notices 19(5): 157{167. Also published asACM SIGPLAN Notices 19, 5 (May 1984) and ACM Software Engineering Notes9, 3 (May 1984).Vestal, S. C. (1987). Garbage Collection: An Exercise in Distributed, Fault-TolerantProgramming, PhD thesis, University of Washington.Vinoski, S. (1993). Distributed object computing with CORBA, C++ Report pp. 33{38.Watson, P. and Watson, I. (1987). An e�cient garbage collection scheme for parallelcomputer architectures, PARLE'87 Parallel Architectures and Languages Europe,Vol. 259 of Lecture Notes in Computer Science, Springer Verlag, pp. 432{443.Weizenbaum, J. (1963). Symmetric list processor, Communications of the ACM6(9): 524{544.Weizenbaum, J. (1969). Recovery of reentrant list structures in slip, Communicationsof the ACM 12(7): 370{372.Wilson, P. R. (1992). Uniprocessor garbage collection techniques, Proceedings of Inter-national Workshop on Memory Management, St. Malo, France, Vol. 637 of LectureNotes in Computer Science, Springer Verlag, Berlin.Wilson, P. R. (1995). Dynamic storage allocation: A survey and critical review, Pro-ceedings of International Workshop on Memory Management, Kinross, UK, Vol.986 of Lecture Notes in Computer Science, Springer Verlag, Berlin.

BIBLIOGRAPHY 236Wilson, P. R. (1996). Distr. gc general discussion for faq, gclist (gclist@iecc.com).Wise, D. S. (1993). Stop-and-copy and one-bit reference counting, Technical Report 360,Indiana University, Computer Science Department.Yong, V.-F., Naughton, J. and Yu, J.-B. (1994). Storage reclamation and reorganisa-tion in client-server persistent object stores, Proceedings of the ICDE InternationalConference on Data Engineering, pp. 120{133.Yuasa, T. (1990). Real-time garbage collection on general-purpose machines, Journalof Software and Systems 11(3): 181{198.Zorn, B. (1990). Barrier methods for garbage collection, Technical Report CU{CS{494{90, University of Colorado at Boulder, Department of Computer Science, Boulder,Colorado.Zorn, B. (1992). The measured cost of garbage collection, Technical Report CU{CS{573{92, University of Colorado at Boulder, Department of Computer Science, Boulder,Colorado.

