
1

Representing Space: A Hybrid Genetic Algorithm for Aesthetic Graph
Layout

M.H.W. Hobbs and P.J. Rodgers
University of Kent at Canterbury, UK.

email: M.H.W.Hobbs@ukc.ac.uk, P.J.Rodgers@ukc.ac.uk

Abstract
This paper describes a hybrid Genetic Algorithm (GA) that is used to improve the layout of a graph
according to a number of aesthetic criteria. The GA incorporates spatial and topological information by
operating directly with a graph based representation. Initial results show this to be a promising technique
for positioning graph nodes on a surface and may form the basis of a more general approach for problems
involving multi-criteria spatial optimisation.

1. Introduction and Background
Many spatial problems have a common need to
locate interacting objects on a surface.
Applications as diverse as geographical data
analysis and molecular modelling deal with
location as a special feature within a vector of
attributes that describe a problem. Generic GAs
have been used in applications such as electronic
engineering design problems [6]; molecular
conformational analysis [13,14,]; network and
graph optimisation [15,17]. These systems deal
with a variety of graph based representations but
typically use a one dimensional encoding which
means that either spatial information is lost, or
extra, problem specific constraints have to be
introduced.

Hybrid GAs which model the specific spatial needs
of a problem have been developed [4,10], and
other evolutionary techniques, using richer
representation structures such as Genetic
Programming [9] have been applied to spatial
problems. This paper proposes that spatial
problems need a specifically spatial representation
which, combined with the more generic aspects of
GAs can be used as a general solution technique.

The problem considered here is to locate the nodes
of an arbitrarily connected graph so that it
conforms to aesthetically pleasing principles of
layout [1]. It is inherently difficult to optimise even
one criteria such as minimising edge crossings
[18]. Current research has focused on force models
[7] and simulated annealing [5] but these are more
likely to be trapped by local optima than a GA.
The GA also has considerable potential to tackle
large problems as the time complexity of the
optimisation technique is not dependent on the size
of the graph. Additionally, it is possible to reduce
the time complexity for calculating the fitness

function by using approximate methods and
caching partial results.

The GA represents the spatial nature of the
problem by using a graph based representation.
The crossover operator is performed directly on the
graph by splitting parent graphs and joining the
resultant subgraphs into a child graph. This has the
advantage of maintaining the geometric and graph
theoretic association of the nodes negating the
need for any separate constraint satisfaction.

The crossover operator also attempts to retain
geometrically close subgraphs from each parent in
an attempt to carry better subgraphs into the next
generation. This contrasts with other GA graph
drawing work that takes nodes (or node
neighbourhoods) randomly from the two parent
graphs [11] or which translates the graphs to a one
dimensional representation and uses constraints on
traditional crossover [12].

Section two of this paper briefly describes the
main features of the genetic algorithm; section
three presents some initial results and section four
concludes by summarising our findings and
discussing the current and future work for this
project.

2. The Graphical Genetic Algorithm
The initial population is created by a randomly
produced geometric node layout with the number
of nodes and edges controlled by the user. Two
graphs are selected for reproduction by choosing
the fittest out of a four randomly selected from the
population. This is a simple tournament selection
mechanism with a low selection pressure.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

2.1. Fitness Function
We use a multiobjective fitness function based on
five well known measurable aesthetic criteria for
graphs:

1. Total edge length. This is simply the sum of
the lengths of each edge.

2. Graph area. This is a calculation of the area of
the bounding rectangle of the nodes in the
graph.

3. Node overlap. A weighted penalty is given to
nodes that are too close or overlap each other.

4. Angular resolution. This is a calculation of the
angle between edges connected to the same
node and penalises connections that form
acute angles.

5. Edge crossing. Applies a penalty function
based on the number of edge crossings in the
graph.

While these criteria are useful measures of
aesthetic properties of graphs, this is not an
exhaustive list and there are other measures that
can be used [3,16].

The calculation of the fitness function follows the
sum of weighted global ratios approach [1]. For
each criteria i = 1..5, given above, the fitness ratio
ri is calculated from the criteria value, fi, as
follows:

ri = 1 + (fi - Max Valuei)/(Min
Valuei - Max Valuei)

Where Max Valuei is the highest fi found for that
criteria in the operation of the GA, and Min Valuei

is the lowest fi found. This formula converts the
criteria from an absolute range to a ratio that ranks
it against the best found so far by the algorithm.

This means that for any given generation we can
tell which are the fitter individuals but that
comparison across generations is dependent on the
overall progress made in each of the fitness
criteria. The fitness value, f, for a graph is then the
weighted sum of these values:

f = w1r1 + w2r2 + w3r3 + w4r4 + w5r5

This fitness calculation is particularly suitable
where there are a large number of criteria that need
to be combined and the complex interrelations
between them are not easily determined [8].
Weights are determined experimentally on a test
graph to achieve the desired results and as they
apply to ratios rather than absolute values these
settings are suitable for graphs of different sizes
and topologies.

2.2. Crossover and Mutation
We use a geometrically based gradient crossover
function. This adds nodes to the child graph by
taking nodes along a random gradient, one parent
graph ascending the gradient and one descending
the gradient. A node is taken from each parent
graph in turn, unless the corresponding node is
already in the child graph, in which case the next
unused node is taken. This splits each parent graph
into two subgraphs with equal number of nodes
preserving spatial relationships and the main
features of the topology.

Figure 1. shows two parent graphs, where the
highlighted nodes form the child graph. Figure 2.
shows the resultant child. The nodes are sorted on
the indicated gradient (shown as a directed line
next to each graph), with nodes from the first graph
taken from top left to bottom right and nodes from

Figure 1. The two parent graphs undergoing crossover

Figure 2. The Child graph

3

the second graph taken from bottom right to top
left.

We mutate a graph by picking nodes from the
graph randomly, and moving them a random
distance along the X and Y axis from their current
location. The likelihood of a mutation and the size
of the movement are controlled by the user.

3. Results
Figure 3. shows a randomly generated graph with
159 edge crossings and a graph from the final
population which has four edge crossings produced
by running the GA with a population of 20 for
1000 generations. Typically, most of the
improvements were seen by around 250
generations with small improvements due to minor
changes caused by the mutation operator.

A number of small test graphs were generated
which could be optimised by hand. The results
from the GA showed that in 3 out of 10 cases the
optimum number was found and on average the
GA produced graphs with just over 2 extra edge
crossings.

4. Conclusions and Further Work
We have introduced a new geometrically based
crossover technique for graph drawing GAs. This
has been used within a hybrid GA that implicitly
processes spatial information via the main
operators of crossover and mutation. This has
demonstrated that it is possible to hybridise the GA
to implicitly process spatial information via the

main operators of crossover and mutation without
resort to special optimisation or constraint
enforcement techniques. Much work remains even
in this limited application area but this is a start
towards a more general goal of providing a generic
framework for a wide range of spatial problems.

There are two types of application that are
appropriate to graph based GAs. The first are
applications that use graphs where the graph
theoretic structure is maintained throughout the
GA process, as with graph drawing described here.
An interesting area of this type is integrated circuit
design, where the connections between circuits are
constant, and the aim is to minimise the physical
layout of circuits to improve the performance of
the final chip. The second type of application is
where the graph theoretic structure of the graph
may alter during the process of the GA. One
example is network routing, where in order to
improve communication between pairs of nodes
short paths are sought through a graph representing
a communication network. For this second type,
new graph crossover strategies may be required in
order to produce graphs that are different, but still
appropriate to the application area.

There are a number of areas that require work in
the specific domain of graph drawing. The
selection of aesthetic criteria needs to incorporate
ideas of symmetry and even spacing between
nodes before the results can compete with
traditional methods for small graphs. However,
even now the GA provides an excellent pre-
processor to these methods where larger graph
sizes make an exhaustive, deterministic approach

Figure 3. An initial graph and the aesthetically optimised result

4

slow or prone to trapping in local optima. The GA
is adaptable because of the general way in which
the fitness function is calculated and scalable due
to the inherent efficiencies of the technique.

The overall speed of the fitness calculation can be
improved by combining the calculation of the
various criteria into one pass across the graph.
Additionally, results for particular sub-graphs can
be cached and used where these patterns re-appear.
To speed up the GA, a less general layout
technique could be employed, using a grid where
nodes are restricted to appearing on certain
regularly spaced points. The resolution of this grid
will be sufficient so that location of a node on
either of two adjacent points to will have a
minimal effect on any of the fitness criteria. It
would also allow the automatic enforcement of
node overlap and minimum inter-node distance.

Before any conclusions can be drawn about the
wider context of general spatial problem solving
this technique will be tested on a number of
different applications. However, it can be expected
that a system that can dispense with ad-hoc
optimisations and constraints will be easier to
generalise and will be more sympathetic to the
underlying processes of the GA technique.

References
1. Di Battista, P. Eades, R. Tamassa and I. Tollis,

Algorithms for drawing graphs: an annotated
bibliography. Computing Geom. Theory Appl. 4: pp
235-282. 1994.

2. P.J. Bentley and J.P. Wakefield. Finding
Acceptable Solutions in the Pareto-Optimal Range
using Multiobjective Genetic Algorithms. WSC2
Second Online World Conference on Soft
Computing. June 1997.

3. F.J. Brandenburg, M. Himslot and C. Rohrer. An
Experimental Comparison of Force-Directed and
Randomised Graph Drawing Algorithms.
Symposium on Graph Drawing, GD’95. LNCS
1027. Springer-Verlag. 1995.

4. R. Cooley, M. Hobbs, D. Pack. Genetic Algorithms
and the Analysis of Spatially Referenced Data.
Applied Artificial Intelligence 2:11 pp. 151-170.
1997.

5. R. Davidson and D. Harel, Drawing Graphs Nicely
Using Simulated Annealing. ACM Transactions on
Graphics 15(4):301-331. October 1996.

6. L. Davis, D. Orvosh, A. Cox and Y. Qiu, A Genetic
Algorithm for Survivable Network Design. In
Proceedings of the fifth International Conference
on Genetic Algorithms, ed. S. Forrest, 408-415.
Morgan Kaufmann. 1993.

7. P. Eades. A Heuristic for Graph Drawing.
Congressus Numerantium, 22. pp. 149-160. 1984.

8. C. Fonseca, and P. Flemming. An Overview of
Evoutionary Algorithms in Multiobjective
Optimization, Evolutionary Computation, vol. 3 pp.
1-16. 1995

9. A. Ghozeil and David B. Fogel. Discovering
Patterns in Spatial Data using Evolutionary
Programming Genetic Programming 1996:
Proceedings of the First Annual Conference, pp.
521-527, MIT Press,28-31 July 1996.

10. M. Hobbs. Spatial Clustering with a Genetic
Algorithm. In D. Parker, editor, Innovations in GIS
3, pages 85-94 Taylor & Francis. 1996

11. C. Kosak, J. Marks, S. Shieber. Automating the
Layout of Network Diagrams with Specified Visual
Organization. IEEE Transactions on Systems, Man
and Cybernetics. vol 24, no. 3 March 1994. pp.
440-454.

12. S.R. Mangano. Algorithms for Directed Graphs: A
unique approach using genetic algorithms. Dr.
Dobb’s Journal. April 1994. pp. 92-97.

13. C.M. Oshiro, I.D. Kuntz and J. Scott Dixon.
Flexible ligand docking using a genetic algorithm.
Journal of Computer-Aided Molecular Design,
9:113-130. 1993.

14. A.L. Patton, W.F. Punch and E.D. Goodman. A
standard GA Approach to Native Protein
Conformation Prediction. Proceedings of the sixth
international conference on Genetic Algorithms,
574-581. 1995.

15. P. Piggot and F. Suaraweera Encoding Graphs for
Genetic Algorithms: An Investigation using the
Minimum Spanning Tree Problem. In Progress in
Evolutionary Computation VIII; 305-313 Springer.
1994.

16. H.C. Purchase, RF. Cohen and M. James.
Validating Graph Drawing Aesthetics. Symposium
on Graph Drawing, GD’95. LNCS 1027. Springer-
Verlag. 1995.

17. F. Schweitzer, W. Ebeling, H. Rose and O. Weiss.
Network Optimization Using Evolutionary
Strategies. In Parallel Problem Solving from
Nature - PPSN IV; Eds. Voigt, H., Ebeling, W.,
Rechenberg, I., Schwefel, H.; 940-949 Springer.
1996.

18. F. Shahrokhi, L.A. Szpkely and I. Vtr’o. Crossing
Numbers of Graphs, Lower Bound Techniques and
Algorithms. International Workshop on Graph
Drawing, GD’94. LNCS 894. Springer-Verlag.
1995.

