
Analysis of a Multimedia Stream usingStochastic Process Algebra�H. Bowman, J.W. Bryans and J. DerrickComputing Lab., U. of Kent, Canterbury, Kent, CT2 7NF, UKTel: +44-1227-827570 and Fax: +44-1227-762811fH.Bowman,J.W.Bryans,J.Derrickg@ukc.ac.ukAbstract. It is now well recognised that the next generation of dis-tributed systems will be distributed multimedia systems. Central to mul-timedia systems is quality of service, which de�nes the non-functionalrequirements on the system. In this paper we investigate how stochasticprocess algebra can be used in order to determine the quality of serviceproperties of distributed multimedia systems. We use a simple multime-dia stream as our basic example. We describe it in the Stochastic ProcessAlgebra PEPA and then we analyse whether the stream satis�es a set ofquality of service parameters: throughput, end-to-end latency, jitter anderror rates.1 IntroductionIt is now well recognised that the next generation of distributed systems willbe distributed multimedia systems, supporting multimedia applications such asvideo conferencing. Importantly though, multimedia imposes a number of newrequirements on distributed computing, not least of which is the need to en-sure \timely" transmission and presentation of multimedia data, e.g. ensuringthat the end-to-end timing delay between transmitting and presenting videoframes stays within acceptable bounds. Such real-time constraints are typicallyembraced by the concept of quality of service [BBBC98].Quality of Service (QoS) characterizes the non-functional properties of a sys-tem; it is expressed in terms of a number of quanti�able criteria, e.g. timeliness,capacity, integrity, cost, security, reliability and priority. In this paper we focuson real-time QoS parameters, such as throughput, end-to-end latency and jitter,we will clarify these concepts shortly.Traditionally, in the �eld of real-time systems, ful�lment of real-time require-ments is ensured by a process of measurement and re�nement. However, suchapproaches are usually informal and there are examples of �nished systems whichare rendered worthless because they cannot meet their real-time requirements.In the �eld of distributed systems, the role of ensuring real-time requirements� The research presented here is supported by the UK Engineering and Physical Sci-ences Research Council under grant number GR/L95878 (A Speci�cation Architec-ture for the Validation of Real-time and Stochastic Quality of Service).
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are met falls on QoS management [HCCB94]. Attempts can be made to pro-vide the required quality of service through a combination of QoS managementfunctions including resource reservation and admission control, monitoring andadaptation. Again, however, such measures are undertaken after the system isdeployed.It is also worth noting that QoS management is a notoriously di�cult activity.Speci�cally, QoS capabilities change dramatically as the load on a system varies;such contention for bandwidth implies that QoS is a highly dynamic measure andis di�cult to determine statically. Furthermore, QoS is fundamentally an end-to-end measure; localized measurement is only a partial solution. In addition, end-to-end measurement must typically be made in a highly heterogeneous setting,across administrative and management domains [Slo94].It is clear that attempting to quantify the performance of a system once itis built will not always yield a reliable measure of QoS capabilities. Informationon performance capabilities need to be determined during system developmentand be used to inform dynamic measurement systems.In response, a number of researchers have considered techniques for the speci-�cation [BBBC98,FL98] and veri�cation [BFM98] of Quality of Service. Howeverto date, this work has been restricted to speci�cation and veri�cation using de-terministic timing , e.g. putting �xed upper and lower bounds on the time thatactions are o�ered to the environment. This is a useful �rst step, but it does notlead to a very re�ned model of the performance of systems. It is also necessary toconsider probabilistic and stochastic concerns, for example to reason about thedistribution of timings on packet deliveries or the probabilities of packet loss.This paper makes a �rst step in this direction by assessing the suitabilityof stochastic process algebras for the speci�cation and analysis of distributedmultimedia systems. Stochastic process algebras are now a relatively extensivelyinvestigated topic, with a number of techniques and tools available, e.g. PEPA[Hil96], TIPP [HRW95], EMPA [BDG95] PAGS [Kat96] and SPADES [DKB97].Here we consider one of the most important techniques, PEPA. Our approachis to model an existing example of a multimedia system, a multimedia stream,in PEPA and then investigate how to check that the system satis�es certainreal-time quality of service properties.The work being reported here has been performed in the context of the V-QoS project which is an EPSRC funded project between the University of Kentat Canterbury and Lancaster University.Structure of paper. First we give background on distributed multimedia sys-tems in Section 2, and in particular, we introduce the multimedia stream exam-ple. Then in Section 3 we review the stochastic process algebra PEPA. In Section4 we give a PEPA speci�cation and analysis of the multimedia stream. In Section5 we discuss the use of immediate actions in stochastic process algebra. Then inSection 6 we assess the suitability of PEPA for such speci�cation and analysisin the light of Section 4 and we give pointers to further work.



2 Distributed Multimedia Systems2.1 BackgroundIt is typically argued that the incorporation of multimedia enforces three newrequirements on distributed systems [BBBC98]:-{ Continuous Interaction. Traditionally, distributed systems communicationparadigms support interaction of a logically singular character, e.g. a remoteprocedure call. However, the advent of multimedia means that this is notsu�cient. In particular, interaction of an \ongoing" nature must be pro-vided, e.g. continuous transmission of video frames in a video conferencingapplication. Such an ongoing interaction is called a stream (the term owis also often used). We call the elements that are transmitted in a streampackets .{ Quality of Service. QoS requirements also have to be associated with suchcontinuous interactions. For example, if in a video conferencing application,the end-to-end delay between the generation of frames and their presenta-tion becomes too great the sense of simultaneous interaction will be lost.Typical quality of service properties include: end-to-end latency (delay) be-tween the generation of packets and their presentation, throughput , i.e. therate at which packets are presented and jitter , which is a measure of thevariability of delay [BBBC98]. Limiting jitter ensures that there is not anunacceptable variability around the optimum presentation time, e.g. if onepacket is presented quite early and the next is presented relatively late anunacceptable stutter in the presentation may result.{ Real-time Synchronisation. It is also often necessary to synchronise multiplemedia streams. For example, in order to enforce lip-synchronisation, videoand audio streams must be synchronised. Application speci�c real-time syn-chronisation also arises, e.g. if captions need to be displayed at particularpoints in a video presentation.The simple multimedia stream, which we present next, illustrates the �rsttwo of these requirements. Unfortunately, it is beyond the scope of this paper toconsider real-time synchronisation, however, we can point the interested readerto a number of papers which specify a lip synchronisation algorithm using processalgebras, e.g. [Reg93,BBBC98,ABSS96,BFM98].2.2 The Multimedia StreamThe basic multimedia stream is as depicted in Figure 1. It has three top levelcomponents: a Source process, a Sink process and a communication Medium.The Source generates a continuous sequence of packets1 which are relayed by1 These could be video frames, sound samples or any other item in a continuous mediatransmission. In this way the scenario remains completely generic. However, instan-tiation of data values specializes the scenario.



the Medium to the Sink , which then displays them. The Medium is assumedto support asynchronous communication between the Source and the Sink . Inaddition, the Medium is unreliable and may lose messages. Three basic actionssupport the ow of data (see Figure 1 again), transmit , receive and display ,which respectively signal the transfer of packets from the Source to the Medium,from the Medium to the Sink and their display at the Sink . In our stochasticanalysis, speci�c rates will be associated with the actions transmit , receive anddisplay .This example is based upon the LOTOS/QTL speci�cation that appears in[BBBC93,Bla94,BBBC98]. However, the formulation of the stream in [Bla94]contains speci�c timing assumptions, e.g. that the Sink takes 5ms to processframes and error behaviour, e.g. that if a frame arrives particularly late then thesystem should go into an error state. A theme of the sequel is to see to whatextent we can reect these timing assumptions in the setting of a PEPA analysis.
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Fig. 1. A Multimedia StreamIn Section 4, we present a PEPA description of the basic stream behaviourand focus on our main objective: to analyse the quality of service properties ofthe stream. We will vary parameters in the system and see what consequencesthey have on a number of quality of service properties. The QoS properties wewill consider will be, latency, the end-to-end delay between a transmit actionand its corresponding display action; throughput, the rate at which the Sinkprocess displays packets; jitter, which quanti�es how latency values vary aboutthe optimum; and the error rates at which the system can go into error.3 The Stochastic Process Algebra PEPAProcess algebras are a mature formalism for describing and analysing concur-rent and distributed systems; important process algebra approaches include CCS



[Mil89], CSP [Hoa85] and LOTOS [BB88]. Furthermore, there are now a num-ber of approaches for incorporating stochastic features into process algebra, e.g.[Hil96,HRW95,BDG95,Kat96,DKB97]. It is argued [Hil96] that stochastic pro-cess algebras o�er a number of bene�ts over standard performance analysis tech-niques such as queueing models [Kin90] and Petri Nets [MBC+95], not least ofwhich is that stochastic process algebra enable compositional description of per-formance issues.The particular stochastic process algebra we consider is PEPA [Hil96]. WithinPEPA, every activity (so called to distinguish it from process-algebraic actions)has a duration. However, an event | what the observer sees when an activity�nishes | is instantaneous. An activity a is de�ned as a pair (�; r) where � 2 Ais the action type and r is the activity rate. Each activity is uniquely typed. � isthe unknown type (which plays the same role as the CCS silent action [Mil89]).The duration of each PEPA activity is determined by an associated expo-nential probability distribution function. This function is parameterised by theactivity rate, which is either a real number or > | the unspeci�ed rate. Whenenabled, the activity a = (�; r) will delay for a period determined by its dis-tribution function: the probability that a happens within time t is given byFa(t) = 1� e�rt .The syntax of PEPA is given byP := (�; r):P j P +Q j P ./L Q j P=L j Awhere P is a process, L is a set of actions and A is a constant. We assume acountable set of process de�nitions A def= P . These terms represent, pre�x, choice,cooperation, hiding and process instantiation. For de�nitions of these operatorsthe reader is refered to [Hil96]. The cooperation operator is perhaps the mostinteresting - the two components P and Q evolve in parallel, synchronising onall activities whose type is in the set L. An action whose type is not in L willproceed independently. It is assumed that each component in a cooperation hasits own implicit resource. Cooperation creates a new shared action, with thesame type as before, but a rate reecting the rate of the slower participant.Having speci�ed a system in PEPA, it can be analysed using the PEPAWork-bench [Gil97]. Any �nite PEPA process has an underlying Markov chain; thisfact forms the basis of all the analysis that is performed. The PEPA workbenchgenerates this Markov chain which can then be solved to determine the under-lying probability vector. This vector characterises the equilibrium behaviour ofthe PEPA speci�caton: elements of the vector give the (steady state) probabilitythat the speci�cation is in a particular state. As illustrated later, a number ofperformance measures can be derived from these steady state probabilities.



4 PEPA Speci�cation of the Stream4.1 Speci�cationWe model the stream as a composition of four components: a Source, a Channel,a Sink and a Timer. The complete speci�cation is given bySource ./ftransmitg Channel ./freceiveg Sink ./fresetg TimerWe describe each component in turn.Source. The Source simply transmits frames onto the medium at a rate of rtrans ;we specify it as,Source def= (transmit ; rtrans):SourceChannel. The Channel component models the medium; it accepts frames fromthe source (via the action type transmit) and then either passes them on to theSink, (via the action type receive, with rate rrec), or loses them (via the actiontype loss, with rate rloss ). A perfect channel may be described by setting rlossto zero.We model the Channel as a �nite bu�er holding up to �ve frames2. The com-plete description is as follows. Although not strictly allowed by the PEPA syntax,we parameterise the de�nition of Channel in order to simplify our presentation.Channel def= Channel0Channel0 def= (transmit ;>):Channel1Channeli def= (transmit ;>):Channeli+1 + 1 6 i 6 4(receive; rrec):Channeli�1+(loss ; rloss ):Channeli�1Channel5 def= (receive; rrec):Channel4 + (loss ; rloss ):Channel4The transmit action type in Channel is passive (the medium can acceptframes from the Source at any rate). In fact, to use the Workbench to anal-yse the speci�cation, transmit must be passive since the current version of thePEPA Workbench requires that only one action type instance may inuence thecorresponding activity rate.In the untimed setting the action loss would be hidden from the environment,we could use the PEPA hiding operator to obtain the same e�ect with PEPA.However, in contrast to in the (deterministic) timed case, where hiding enforcesmaximal progress [Reg93], here it does not e�ect the results of Markov analysis,thus, we do not include it.2 We cannot model an in�nite bu�er since in standard process algebras it would ei-ther be modelled using data, e.g. Buf(q:Queue) := transmit?x:Item; Buf(add(x,q)) +[not(empty(q))] -> receive!�rst(q); Buf(remove(x)) or by allowing an in�nite set ofequations, e.g. replacing 1 � i � 4 in our de�nition of Channel with 1 � i , neitherof which is possible in PEPA.



Sink. The Sink (modelled as a three place bu�er) receives frames and displaysthem. The receive action type is passive (any rate of frames is accepted).Sink def= Sink0Sink0 def= (receive;>):Sink1Sinki def= (receive;>):Sinki+1 + (display ; rdisp ):SinkR(i�1) 1 6 i 6 2Sink3 def= (display ; rdisp ):SinkR2SinkRi def= (reset ; rreset):Sinki 0 6 i 6 2Error Rates. In the deterministic case, an error is typically signalled by forcingthe system to enter an error state (which would typically be a stop state) whencertain behavioural properties are invalidated, e.g. the level of throughput goesout of certain bounds [BFM98]. However, this is not possible within the PEPAformalism since in order for Markov analysis to be performed, the speci�cationmust be irreducible [Hil96]. The existence of a deadlock state would invalidateirreducibility. Consequently, in this paper we investigate an alternative form oferror behaviour. The approach is that if the gap between consecutive displaysis beyond a certain threshold level, then the system simply signals an error,by performing an error . Such signals could be used in a network managementbackbone where error rate statistics are accummulated.In order to model this error behaviour we use a Timer component. The jobof Timer is to monitor the delay between displays, and to report an error ifthe delay exceeds a certain limit. After each display, the Sink sends a reset tothe Timer. The resets are signals to the Timer (which synchronises on them),and we would naturally like to model them as immediate actions. Althoughsome attempts have been made to allow instantaneous actions within stochasticprocess algebras (see for example [HRW95]), they are not included within PEPA.We therefore model signal activities by setting the rate to be much greater (bya factor of 10 in our example) than the rate of any of the other activities. Wewill return to the issue of immediate actions in Section 5.Timer. The Timer monitors the delay between displays. Such a feature neces-sarily requires the Timer to \remember"3 the time of the last display, in orderto determine whether the next one is on time. The restriction to exponentialdistributions means that we can only approximate such a feature, which we dousing Erlang distributions.An Erlang distribution is a sequence of exponential distributions which ap-proximate a deterministic timing to an arbitrary degree of accuracy [Jai91]. Forexample, to model an error event occurring deterministically at time t , we use3 We use the term remember in the sense that the timer must count down the waitingtime in a deterministic fashion. This goes contrary to the memory-less assumptionwhich implies that if an event does not occur in a particular time unit then evaluationof whether it occurs in the next time unit is completely independent of the previoustime unit. Thus, the memory-less property implies that there is no sense in whichhow long a delay has been counting down for is remembered.



a sequence of n tick events followed by an error event. The tick activities areexponentially distributed (rate rtick ) where t = (n � r�1tick ) + r�1error ; this resultsin a model where the error event occurs at time t on average, and the vari-ance of when it occurs gives us the accuracy with respect to timing. We canreduce the overall variance (i.e. increase the accuracy) simply by increasing nand correspondingly increasing rtick .In our example, we allow Timer to tick �ve times before reporting an error.It may be reset at any time. Note that it keeps ticking after reporting an error,i.e. it is therefore possible to get multiple errors before the next frame arrives.We therefore de�ne Timer as follows:Timer def= Timer0Timer0 def= (reset ;>):Timer1Timeri def= (tick ; rtick ):Timeri+1 + Timer0 1 6 i 6 5Timer6 def= (error ; rerror ):Timer1 + Timer04.2 AnalysisHaving presented a PEPA description of the basic behaviour of the stream, wecan now focus on our main objective: to analyse the quality of service propertiesof the stream. We will vary parameters in the system and see what consequencesthey have on the following quality of service properties:-1. Latency. This is the end-to-end delay between a transmit and its correspond-ing display . When deterministic timing is used, the approach is to determinean upper bound on latency, e.g. that the maximum time between generationand display of a frame cannot excede 95ms. Here however, in line with thestochastic approach, we will consider the average latency .2. Throughput. We would like to determine the rate at which the Sink pro-cess displays packets. Clearly, there is a direct link between the rate of lossof the Medium and the throughput at the Sink . Thus, the avour of ourinvestigation of this property will be to determine how the rate at which theMedium loses messages a�ects throughput.3. Jitter. Jitter constraints are imposed in order to ensure that there is not anunacceptable variability around the optimum presentation time. In previouswork bounded jitter has been analysed, i.e. veri�cation has ensured that jitterlevels do not stray out of certain upper and lower bounds [BFK+98]. If jitteris bounded in this way then we know that extreme bad (jitter) behaviourcannot occur. However, the resulting constraint is likely to be rather coarse.In particular, extreme uctuations would be allowed within these bounds.Here we consider a statistical measure of jitter, the variance of the latencydelay , which yields a more re�ned jitter property. In the sequel we simplycall this jitter .



4. Error Rates. As discussed earlier our error scenario is that the system sim-ply signals an error, by performing the action type error , whenever the gapbetween consecutive displays goes beyond a certain threshold level. We willassess how the rate of these error signals change as we alter other parametersin the system.To generate meaningful performance �gures we analyse the system in itsequilibrium state. To do so we build the in�nitesimal generator matrix of thecorresponding Continuous Time Markov Chain (CTMC). For all states, thismatrix gives the probability that the system will be in that state once it hasreached equilibrium, i.e. at the steady state. This can be calculated automaticallyby the PEPA Workbench. To calculate performance �gures such as throughput,latency and jitter we need to �nd the true rates of the activities, which in turnrequires that we calculate the probability that each activity is enabled.The system is made up of four processes, and the state of the system changeswhenever the state of one of the processes changes. The probability of the systembeing in a particular state is worked out numerically using MATLAB. The PEPAState Finder takes input such asSource 0|*|*|*and returns all the states of the system in which Source is in the state Source0.The sum of the probability values of these states is the probability that theSource is in state Source0, and we can use this to determine the true rates ofcomponents.True rates and steady state probabilities Here we show how to derive thevarious performance measures from the steady state probabilities. We considerp(ChannelN ) to be the probability that the Channel component of the speci�-cation is in state ChannelN at equilibrium, and similarly for Sink, Source andTimer. In addition, p(SinkN and ChannelM ) denotes the probability that theSink component is in state SinkN and the Channel component is simultaneouslyin state ChannelM . These can be determined using the PEPA Workbench, andare used to calculate the true rates of activities.The speci�ed rate of an activity is not necessarily the same as the rate ofthat activity in the equilibrium state, since bottlenecks elsewhere in the systemmay slow the activity down. The true rate (or equilibrium rate) of an activity isthus the speci�ed rate multiplied by the probability that the activity is enabled.An activity is enabled if the system is in a state in which it can perform thatactivity. For example, the true rate of the display activity is,true rdisp = rdisp �P3i=1 p(Sinki )since only the Sink process is involved in this activity, and it is only capableof performing a display event if it is in one of the states Sink1, Sink2 or Sink3. Ifrloss is set to zero, then the probability of Sink being in state Sink1 (p(Sink1)) is



0:1152, p(Sink2) = 0:0136 and p(Sink3) = 0:0016. So the probability of being in astate where it can perform a display is the sum of the above probabilities. Hencethe true rate of the display activity is 200� (0:1152+0:0136+0:0016) = 26:0800(subject to rounding error, actually 26.0861).Throughput, latency and jitter We consider each of these in turn.Throughput. The rate of throughput of frames in the equilibrium state is givenby the true rate of the display activity. This is calculated as shown above.Latency. Our approach to obtaining the mean end-to-end delay is to sum themean delays imposed by each individual component in the communication path.To determine the latency of an individual component we must consider the truerates of entry and exit of frames. In our example the precise calculation varieswith each component.The Source component does not have an explicit entry activity, since it ismodelling the generation of frames. We consider that one frame starts to beformed as soon as the previous one is transmitted, so the latency is given by themean time between transmit activities, which is the inverse of the true transmitrate.source latency = (true rtrans)�1The Channel component poses more problems. We need to take into accountthe fact that not all frames are passed on to the Sink: some are lost via theactivity loss. The probability of a frame being lost by Channel and the probabilityof it being successfully passed on are determined by the race condition betweenthe two activities loss and receive. If we let ave frames lost be the averagenumber of frames in the Channel which will be lost, and ave frames received bethe average number of frames in the Channel which will eventually be received,thenave frames channel = ave frames lost + ave frames receivedand we have the equality,ave frames lostave frames received = true rlosstrue rrecThen using Little's law in the context of successful transmissions, the averagelatency of the successfully passed on frames (channel latency) is given by4,channel latency = ave frames receivedtrue rrecThe Sink component has only one input and one output activity, and so thelatency is given by a straightforward application of Little's Law.sink latency = ave no frames sinktrue rdisp4 In fact, because of the assumptions implicit in Markovian analysis, this turns out tobe equal to the latency of the lost frames.



The latency of the stream is the sum of the component latencies:stream latency = source latency + channel latency + sink latencyJitter. Jitter measures the variability of the time duration between the ex-pected and actual arrival times of packets. This will be the variance of a sumof exponential distributions, one for each component in the system. Since thesedistributions are all independent, the variance of the sum is simply the sum ofthe variances (see [HP93]), i.e.jitter = source variance + channel variance + sink variancewhere, for example,source variance = (true rtrans )�2Component usage We can also determine the average number of frames ina component by taking a weighted sum of the appropriate probabilities. Forexample, the average number of frames in the Channel component isP5i=0 i � p(Channeli )In a similar fashion we can calculate the average number of frames in theSource and Sink components, and the average number of frames in the entiresystem is the sum of these averages.We can also calculate idling and busy times: the percentage of time that acomponent spends idling is given by the probability that there are no frames inthe component. The percentage busy time is the probability that there are oneor more frames in the component.4.3 An ExampleWith the PEPA Workbench, we can calculate the various performance �guresand quality of service parameters we are interested in. For example, with thefollowing particular rates: rtrans = 60:0; rrec = 30:0; rdisp = 200:0; rtick =100:0; rerror = 2000:0; rreset = 2000:0 and varying rloss we get the table shownin Figure 2.In explaining this table we can make a number of points:1. As the rate of loss increases the true rate of transmission increases (sincethe Channel is less often full); the true rate of transmission tends to thespeci�ed rate of transmission, i.e. 60, as rloss tends to in�nity.2. The true rates of reception and display are equal, since no frames are lostbetween these activities and the true rates of reception and display decreaseas loss increases, for obvious reasons.



rloss 00.0 10.0 20.0 30.0 40.0 50.0true rloss 00.0 9.5490 18.0536 25.0964 30.6408 34.9059true rtrans 29.0897 37.7430 44.7389 49.8593 53.3447 55.6212true rrec 29.0897 28.1940 26.6853 24.7629 22.7039 20.7153true rdisp 29.0897 28.1940 26.6853 24.7629 22.7039 20.7153true rtick 99.4546 99.4455 99.4287 99.4056 99.3795 99.3531true rerror 10.9080 11.0891 11.4261 11.8875 12.4098 12.9375ave no. in source 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000ave no. in chan 4.1273 3.6087 3.0477 2.5203 2.0715 1.7112ave no. in sink 0.1713 0.1648 0.1545 0.1418 0.1285 0.1160ave no. in stream 5.2985 4.7735 4.2021 3.6620 3.2000 2.8272source latency (s) 0.0344 0.0265 0.0224 0.0201 0.0187 0.0180chan latency (s) 0.1419 0.0956 0.0681 0.0505 0.0388 0.0308sink latency (s) 0.0059 0.0058 0.0058 0.0057 0.0057 0.0056stream latency (s) 0.1821 0.1280 0.0963 0.0763 0.0632 0.0543throughput jitter 0.0012 0.0013 0.0014 0.0016 0.0019 0.0023channel jitter 0.0012 0.0013 0.0014 0.0016 0.0019 0.0023source jitter 0.0012 0.0007 0.0005 0.0004 0.0004 0.0003latency jitter 0.0035 0.0032 0.0033 0.0037 0.0042 0.0050Fig. 2. Table 1 - Analysis of Stream3. The true rate of the tick event does not change greatly when the rate of lossis increased. This is because of the use of the Erlang distribution, i.e. thelarge number of tick events ensures that tick 's are \almost" independent ofreset events. In addition, reset and error events are very fast events relativeto tick .4. The results here allow us for example to relate the rate of loss to the through-put. For example, if we wished to ensure that the throughput (true rate ofdisplay) was greater then 28 packets per second then we would know thatsetting the rate of loss to 10:00 would be close to the boundary condition.5. The true rate of display is very di�erent to the speci�ed rate of display . Thisis because the Sink needs something to display before it can do anything,i.e. it spends much of its time in state Sink0.6. The average number of frames in the stream declines as the rate of lossincreases, for obvious reasons. In addition, latency of the stream componentand the stream itself decrease as the rate of loss increases.4.4 Figures for the Tempo StreamThe example that we have analysed here is based upon previous formulations ofthe problem to be found in [BBBC93,Bla94,BBBC98]. In this section we inves-tigate to what extent we can bring our analysis in to line with the speci�cationto be found in [Bla94]. One reason for doing this is to make the results of ouranalysis relevant to the earlier work, thus enabling our results to inform thosefound in [Bla94]. We inform the earlier work in two ways, �rstly by providing a



formal analysis ([Bla94] just gives a speci�cation of the problem) and secondly,because our analysis is performed in a stochastic context, [Bla94] only considersdeterministic timings.In pursuing this goal, we �rstly, in line with the speci�cation in [Bla94],employ a marginally more sophisticated Source process:-Source0 def= (gen; rgen ):Source1Source1 def= (transmit ; rtrans):Source0which di�erentiates between the generation of frames (the gen activity) and thetransmission of frames (the transmit activity). Secondly, we have attempted tobring the �gures resulting from our analysis into line with those used in [Bla94].The requirements given in [Bla94] are:{ The data source generates frames at a rate of 30 frames per second.{ After generation, 5ms elapse before it is transmitted{ Successfully transmitted frames arrive at the data sink between 15ms and20ms after transmission{ The data sink takes 5ms to process a frame{ The end-to-end latency of a single frame should not exceed 30ms{ The end-to-end throughput should be within 25 and 35 frames per second.In attempting to follow these �gures we obtained the table shown in �gure 3,where rgen = 35:3; rtrans = 200:0, rrec = 78:0, rdisp = 200:0, rtick = 50:0, rerror =2000:0 and rreset = 2000:0.We can see from the table that using these parametersenables us to model the requirements given in [Bla94], which were highlightedabove. In particular, the �gures found in the �rst two columns in this table fallwithin the required timings. This is subject to the fact that we are working withaverage latency values rather than crude latency bounds. Thus, the �rst column,where loss is zero, probably has too high an end-to-end latency value: 29.99 ms,i.e. since variance of latency (jitter) is non-zero some transmissions will certainlyinvalidate the 30ms upper bound on end-to-end latency.Thus, the second column contains �gures that are probably most closely inline with those in [Bla94]. Focussing on this column, we can identify a number ofconclusions, which inform the earlier multimedia stream work. Firstly, the �guresidentify an acceptable bound on loss (i.e. a true rate of 3:4488) and indicate acertain rate of error (i.e. a true rate of 3:2493).Furthermore, the analysis reveals that the average number of frames in thestream at any one time is never more than one and as the rate of loss increasesthis number declines. This indicates that the requirements given in [Bla94] arenot completely realistic; in particular that the channel itself is not accuratelymodelled. Two possible ways of improving the modelling are allowing multiplesources and sinks to use the same channel; and modelling the channel as asequence of bu�ers, each of which delays the frames as they pass through.



rloss 00.0 10.0 20.0true rloss 00.0 3.4488 6.1772true rgen 30.0041 30.0046 30.0042true rtrans 30.0041 30.0046 30.0042true rrec 30.0041 26.5554 23.8270true rdisp 30.0041 26.5554 23.8270true rtick 49.9294 49.9188 49.9090true rreset 30.0041 26.5554 23.8270true rerror 2.8233 3.2493 3.6395ave no. in source 0.1500 0.1500 0.1500ave no. in channel 0.5742 0.4735 0.4035ave no. in sink 0.1736 0.1505 0.1329ave no. in stream 0.8978 0.7740 0.6865source latency (s) 0.0050 0.0050 0.0050channel latency (s) 0.0191 0.0158 0.0134sink latency (s) 0.0058 0.0057 0.0056stream latency (s) 0.0299 0.0264 0.0240variance of sink 0.0011 0.0014 0.0018variance of channel 0.0011 0.0014 0.0018variance of source 0.0011 0.0011 0.0011jitter 0.0033 0.0039 0.0046Fig. 3. Table 2 - Tempo like �gures5 Immediate ActionsIn this section we consider to what extent immediate actions inuence the anal-yse we obtained above. As suggested earlier, it may be possible to reduce thevariance of the error action by using immediate actions, and some work has beendone on including immediate actions in stochastic process algebra. In [HRW95],immediate actions are added to a basic stochastic process algebra. The resultinglanguage is called TIPP and it extends the class of processes which may be speci-�ed. But in order to derive a Continuous Time Markov Chain immediate actionsmust have only an internal impact, and to capture this an equivalence, calledMarkovian Observational Congruence, is de�ned. Every term in the TIPPtoolinput language [KM98] can be interpreted as a Continuous Time Markov Chain,provided all delays are Markovian. The TIPPtool allows CTMC analysis similarto the capabilites of the PEPA workbench.Timeouts are approximated by Erlang distributions followed by immediateactions. Thus if, in a similar way to in TIPP, we could use immediate actions,then we could model error as a visible immediate action, and we could de�neTimer as Timer0 def= (reset ;>):Timer1Timeri def= (tick ; rtick ):Timeri+1 + Timer0 1 6 i 6 5



Timer6 def= error :Timer1 + Timer0However, the equational laws of Markovian Observational Congruence, to befound in [HRW95], give usTimer6 = error :Timer1 + Timer0= error :Timer1 (Axiom9)which reects the fundamental property of immediate actions: that they always\win" the race condition. Furthermore, we get thatTimer5 = (tick ; rtick ):error :Timer1 + (reset ;>):Timer1and so the only di�erence here is that when the error is enabled, it has to happenimmediately.So, in a stochastic process algebra which provides them, we can use immediateactions to signal errors. However, in a situation where an Erlang distribution hasbeen used to approximate a deterministic delay, making the error an immediateaction will only have a very minor impact on the error variance. To see this,consider the example of the Timer above. Error variance is calculated aserrorvariance = 5 � (1=(true rtick � true rtick )) + (1=(true rerror � true rerror ))With the rate of the error action set to 2000, the error variance is 0.0020, andwith the rate of the error action set to 200000, the error variance is also 0.0020.It is evident from these �gures that once the rate of error is su�ciently fast,increasing it does not alter the variance signi�cantly. The Erlang distributionitself is responsible for all the variance.In conclusion, although in an appropriate SPA we could specify the multi-media stream using an immediate action for the error, since it would make nodi�erence to the performance �gures presented in this paper we have not followedthis route.6 Assessment and Further Work6.1 Assessment of PEPAThis subsection gives a short assessment of PEPA (and stochastic process alge-bra in general) in the light of our application of them to specifying and analysingthe multimedia stream. Our experience with PEPA has generally been positive.Its major strength being that it supports automated analysis and correspondinggeneration of performance �gures. This is a major strength of the technique.



Clearly, restricting to exponential distributions is critical in enabling such anal-ysis to be performed.A number of limitations of the approach can also be highlighted. These typ-ically reect the current \state of the art" of stochastic process algebra tech-niques.{ Change of Mind Set. Speci�cation in PEPA requires a signi�cant change ofmind set from speci�cation in classic process algebra, such as CCS [Mil89],CSP [Hoa85] and LOTOS [BB88]. A central aspect of this change is thenature of action o�ers. The classic process algebra interpretation is thatactions are o�ered to the environment, which decides whether to take them.Thus, in this aspect, the system is passive5 - the system o�ers a set of actions,then it waits passively for the environment to decide which (if any) to take.(Deterministically) timed process algebras, such as Timed CSP [Dav93] orET-LOTOS [LL93], re�ne this interpretation by allowing time bounds to beplaced on the period of time in which actions are (passively) o�ered to theenvironment; untimed process algebra can be seen as a subclass of timedprocess algebra where the time bounds are always zero to in�nity.In PEPA the interpretation is somewhat di�erent. Firstly, the basic unit ofmodelling is an activity, the completion of which is marked by the occurrenceof an action type. Importantly, although the occurrence of this action typecan be seen by the environment, it is not directly controlled by the envi-ronment. In this way, the system is more active in deciding the instance ofaction occurrence, this is born out by the discussion in chapter 3 of [Hil96].In fact, the PEPA interpretation is one of usage of (implicit) resources. Thus,choice models competition for a resource while parallel composition repre-sents cooperative use of resources in performing activities.This change of mind set can be di�cult to come to terms with when startingto use PEPA. Also, for some speci�cation problems both the classic inter-pretation and the PEPA interpretations can arise in describing the samesystem.{ Deadlock States. Another aspect of moving from the classic process algebramodel to PEPA is that, in order to enable Markovian analysis to be per-formed, deadlocks cannot arise in the system speci�cation. A consequenceof which is that the the deadlock process stop does not appear in the PEPAabstract syntax. In our case study this became a problem when we tried todescribe error behaviour, i.e. we would have liked to have allowed the systemto time out and then stop. With respect to this problem, a possible area forfuture work is transient analysis, which determines the probabilities of be-ing in particular states before equilibrium is reached. There are a number ofnumerical methods which can be used to �nd transient solutions to Markovchains (see for example [Ste94]). In addition, the TIPPtool [KM98] allowstransient analysis - if the labelled transition system generated from a speci�-5 Internal actions complicate this interpretation, since their selection is determinedinternally by the system. Thus, what we say largely concerns observable actions.



cation is not strongly connected, a time instant can be given to the tool andit will compute the probabilities of being in particular states at that time.{ Setting True Rates. A useful feature would be the ability to set the truerate of a particular transition, i.e. the analysis would ensure that the ratespeci�ed for a particular transition is indeed its true rate and would adjustthe true rates of other activities accordingly. This would, for example, haveenabled us to set the true rate at which frames are transmitted and see howother parameters vary around this rate. Thus, such a feature would havebeen useful when trying to relate the results of our analysis to the earlierstream speci�cations.{ Deterministic Timing. It is clear from our case study that even in the contextof stochastic speci�cation, deterministic timings will frequently arise. Mod-elling a timeout from which an error state is reached is an example whicharises in our speci�cation. In a Markovian setting, the standard solution isto use an Erlang distribution, as we have indeed done. This is a reasonablesolution, however, it potentially leads to a massive state explosion, whichwould prohibit the application of support tools. The state explosion is con-strained in our application since we only have a single Erlang distribution.However, if a number of Erlang distributions evolve concurrently, their com-ponent phases are interleaved, which causes state explosion according to theproduct of the number of phases.{ Generalised Distributions. The last point leads onto what is perhaps themost fundamental limitation of the PEPA approach, and that is what isalso its strength - the restriction to exponential distributions. Generaliseddistributions are required, not just in order to obtain deterministic timing,but since distributions found in the application area commonly fail to bememoryless (or deterministic). For example, in our case study, the rate ofthe action receive has a major a�ect on determining the latency delay of thechannel and this rate is assumed to be exponentially distributed. However, itis well known that packet lengths are not in reality exponentially distributed,rather they are either of constant length (as in ATM cells [Tan96]) or theyare uniformly distributed with minimum and maximum size (as in Ethernetframes [Tan96]). Furthermore, the latency delay imposed by a channel willclearly be tied to packet lengths. Thus, our assumption of an exponentialchannel latency is not in practice realistic.This observation suggests that a suitable modelling technique should sup-port generalised distributions. This brings a number of problems, not leastof which is that analytical techniques become signi�cantly more complicated[Kin90]. In addition, it has been pointed out [Kat96] that use of exponentialdistributions is very closely tied to the interleaving assumption underlyingparallel composition in process algebra. Furthermore, it is suggested [Kat96]that true concurrency models, which are typically more complex than inter-leaved approaches, are appropriate to be used in the presence of generaliseddistributions.
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