
Grey Box Data Re�nementEerke Boiten and John DerrickComputing Laboratory, University of KentCanterbury, CT2 7NF, U.K.(Phone: +44 1227 764000,Email: E.A.Boiten@ukc.ac.uk)Abstract. We introduce the concepts of grey box and display box datatypes. These make explicit the idea that state variables in abstract datatypes are not always hidden. Programming languages have visibility ruleswhich make representations observable and modi�able. Speci�cations inmodel-based notations may have implicit assumptions about visible statecomponents, or are used in contexts where the representation does mat-ter. Grey box data types are like the \standard" black box data types,except that they contain explicit subspaces of the state which are modi�-able and observable. Display boxes indirectly observe the state by addingdisplays to a black box. Re�nement rules for both these alternative datatypes are given, based on their interpretations as black boxes.1 IntroductionProgramming languages that support modularisation and encapsulation of datatypes with their operations have various ways of dealing with the variables thatrepresent the \state" of the data type. The method which is most often adoptedby speci�cation language designers and other theorists is the one where all statecomponents are invisible to any program part outside the encapsulated datatype (\black box", \representation hiding"). This gives the cleanest semantics,the most explicit interface, and the fewest headaches in terms of reuse and reim-plementation. Some object-oriented programming languages, e.g. Smalltalk [7],and most model-oriented speci�cation languages, like Z [17, 19], take this ap-proach.However, representation hiding is conceptually nice but in practice some-times cumbersome. For example, object-oriented languages have to deal withthe problem of binary methods [4]: how to view and implement an operationthat conceptually takes two abstract objects as its input, given that neither ofthe objects should be seeing the other's representation? In C++ for example,this has given rise to the notion of friends , with complicated visibility rules. Inany case, having an explicit distinction between \private" and \public" compo-nents as in C++ or Java reduces the complexity of the speci�cation of interfaces:no explicit functions for observing and modifying public components have to bespeci�ed. A consequence of having visible components is also that they need tobe preserved in inheritance { which may be viewed as a kind of data re�ne-ment. If one wants to develop executable programs from formal speci�cations,

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

it is useful if the formal speci�cation notation has features which approximatethose of the programming language. In that context, it is important to note that\observability" in speci�cation languages is a weaker notion than \visibility" inprogramming languages: the latter normally implies \modi�ability" as well.Re�nement rules [8] for model-oriented languages have been derived withthe black box style of speci�cation in mind. However, users of model-orientedspeci�cation languages actually do not always assume their representations tobe invisible, even if they use the \states and operations" style. For example,the speci�cation of an editor in [11] (not a paper that is concerned with re-�nement { but that is not the issue) has state components that represent thecurrent state of an editor display. Implicitly it is assumed that these are in someway \visible", even though there are no operations which observe it. In multi-language speci�cation frameworks (e.g. ODP [10] or the various combinations ofZ and a behavioural notation [12, 18, 16, 5]), Z is often used as an \informationviewpoint" language (in ODP terminology), which only describes the data typespresent in the system, possibly with the operations on them. Other notations arethen used for describing the actual sequencing of operations. In such a set-up,the data type representation used in the Z sublanguage cannot always assumedto be hidden. As a consequence, due to assumed visibility of state components,the standard data re�nement rules only apply to a limited extent. This meansthat systems of this type cannot be developed stepwise using the standard rules:the state variables which are (implicitly) designated to be visible may not beremoved in data re�nement steps. Re�nements of such speci�cations should be\grey box" re�nements, in which it is assumed that certain state componentsremain present throughout.This paper illustrates how speci�cations in which certain state componentsare assumed to be visible (and possibly modi�able), so-called \grey box datatypes", can be interpreted in terms of the standard black box data types. Fromthis interpretation we derive simple data re�nement rules for grey box datatypes. These rules contain the restriction that the observable state componentsmust remain part of the state. This restriction disappears when adapting a moregeneral approach, viz. that of displays or views , which are operations whichindirectly observe the state of a data type. However, in that approach, de�ningmodi�able displays is an instance of the well-known view update problem.The notation used in this paper will be Z, but analogous constructions canbe given for other model-based speci�cation languages.The next section will de�ne the notion of a grey box data type. Section 3will then present data re�nement rules for such types. In Sect. 4 we will de�nea variation of such types, called \display box" data types, and de�ne re�nementrules for those. The �nal section contains our conclusions.2 Black Boxes and Grey BoxesThe assumed speci�cation style in model-oriented languages like Z is the blackbox abstract data type style, commonly known as \states-and-operations", with

the familiar re�nement relation on it (cf. Appendix A). A black box data typeis speci�ed by a tuple (State;Ops;Init) in which State is a de�nition of a statespace, consisting of a collection of typed variables and a predicate1 on thosevariables. Ops is a set of operations, each of which is speci�ed as a relationbetween the state before, the state after, and possibly inputs and outputs. Initis the initialisation: a satis�able predicate on the state variables describing thepossible initial states of the type. The more abstract description of re�nementon which the re�nement rules for e.g. Z are based [8, 9] contains besides aninitialisation also a finalisation, which relates the �nal state of the abstractdata type to the \global state". This �nalisation is ignored in most presentationsof Z re�nement (recent work by Woodcock et al [19] being a notable exception).Its use is to report information from the \run" of the system back to the globalstate when the system terminates.In actual use of Z, especially when systems are modelled which are not whollywithin a computer, one often deviates from the strict black box approach.Example 1 If we presented the following state schema:CMmoney:Ndisplay:Stringmoney=0) display="Insert 35p then press Coffee"money � 35) display="Press Coffee"0<money<35) display ="Insert"a (shownum (35�money))a"p more then press Coffee"(where shownum is an assumed function for turning integers into strings) itwould be immediately clear that display represents a part of the state which isintended to be observable. Hardly anyone would object to the co�ee machineinternally maintaining its balance in Eurocents, but the displayed text could notbe changed to French without causing customer complaints. 2The grey box approach to data types aims to make such distinctions explicit,and to provide safe re�nement rules for speci�cations like the above. Becausewe want to model both the speci�cation language notion of \observability" andthe programming language based notion of \visibility" (i.e. observability plusmodi�ability), the state of a grey box data type should in general be partitionedinto three parts: readable components, modi�able components, and private com-ponents. The meaning of modifying a component is more complicated than ina programming language, because states of grey box data types have predicateson their components which need to be preserved. Thus, we need to ask: when1 We will call this predicate the state predicate and not the state invariant , becausethe state predicate is an invariant but not necessarily the strongest invariant thatactually holds.

should modi�cation be allowed, and what e�ect should it have on other compo-nents which are linked to it by the state predicate? This is an instance of thewell-known framing problem discussed in e.g. [3, 11]. In terms of the re�nementcalculus [14], the question we need to ask is: what is the frame F in our de-sired speci�cation F :[p ; (x 0=x? ^ p)] where p is the state predicate? Our choiceis the following (possibly rather arbitrary): non-modi�able variables cannot bechanged indirectly, and modi�able components only explicitly (i.e., the frameF contains only the variable x itself). In order to allow modi�able componentswhich are \linked" by the predicate to be changed together, we allow simulta-neous changes. Thus, we assume the following principle:The values of a collection of modi�able components can at any time bechanged to values such that the state predicate is maintained by leavingall other components unchanged.This is not an ideal solution, ideally one would want to specify that a changein one component should induce a minimal change in the other components {certainly private components should be allowed to be a�ected. However, anyspeci�cation of \minimal change" would become unwieldy. The solution abovesatis�es at least two desirable properties: it induces no restrictions if the statepredicate is true, and it results in moderately simple speci�cations and re�ne-ment rules further on.To properly express grey box data types, we have to introduce some Zspeci�cs, which we will assume are familiar to the reader { from now on statespaces, operations, initialisations, etc. are schemas . Let a subspace of a schemaS be any schema A such that A , S �A (the operation � denotes projection ofa schema onto the components of another one { we will sometimes use a brack-eted list of variables for its second argument; projection is de�ned as existentialquanti�cation over the \other" components). Two schemas are disjoint if theyhave no common components.De�nition 1 (Grey box) A grey box data type is a tuple(State;Read;RW;Ops;Init) such that (State;Ops;Init) is a black box data type(called the underlying black box), and Read and RW are disjoint subspacesof State, denoting the read-only components and the modi�able (read-write)components. 2Example 2 A grey box speci�cation using our earlier co�ee machine stateschema, making explicit that display is observable and money is not, is(CM ;CM � (display) ; [] ;fCoin;Coffeeg ;Init) whereCoinV alues=f1;2;5;10;20;50;100g

Coin�CMcoin?:CoinV aluesmoney0 =money + coin? InitCM 0money0=0Coffee�CMmoney0=money�35The read-only components are given by the projection of CM to the componentdisplay, which is a schema containing display as its only component and as itspredicate that display has one of the values that CM might assign to it. Thus,display is always observable.[] represents the empty schema, so there are no modi�able components inthis example. It would not make sense to attempt to make money modi�able,because modifying money would only be allowed when that had no e�ect ondisplay, e.g. when money � 35. Besides, it would allow changing the balance byan arbitrary amount, even a negative one. 2A grey box data type (State;Read;RW;Ops;Init) can be interpreted as ablack box data type based on the underlying one, which has an extended setof operations: observing operations for every component in Read^ RW , and asimultaneous modi�cation operation for all components in RW .De�nition 2 (Interpretation of a grey box) The black box interpreta-tion of a grey box (State;Read;RW;Ops;Init) is (State; Ops[fModg[Obs; Init)where Obs contains for every component x :T of Read^ RW the operationObsx�Statex ! :Tx !=xLet the components of RW be xi :Ti (i=1 : : n), then Mod is given byMod�RW�(State n RW)xi?:Ti (i=1 : : n)8 i :1 : : n � xi 0=xi? 2Note that this is not the only possible interpretation of a grey box as a blackbox: the observability of components could also be represented by extending theunderlying black box by a �nalisation. We will further discuss this in Sect. 5.

Example 3 In the co�ee machine (Example 2) the interpreting black boxcontains as the only extra operation:Obsdisplay�CMdisplay! :Stringdisplay!=displayThis corresponds to our initial intuition that display really was observable. Nowthis is made explicit by the operation Obsdisplay which can always be performedand outputs the observable value. 2Example 4 An (imaginary) ancient machine for displaying four bit numbershas four switches, a handle, and a display. When you turn the handle, the displaychanges to the number represented by the current setting of the switches. This isspeci�ed by the grey box (Anc;Anc�(disp) ;Ancn(disp) ;fHandleg ;Init) wherebit=f0;1gAncsw1;sw2;sw4;sw8:bitdisp:NHandle�Anc�(Anc n (disp))disp0 = sw1 + 2�sw2 + 4�sw4 + 8�sw8
InitAnc0disp0=0

The interpretation as a grey box contains observation operationsObsdisp�Ancdisp! :Ndisp!=disp Obssw1�Ancsw1!:bitsw1!=sw1(and similarly for the other switches), plus a modi�cation operationMod�Ancsw1? ;sw2? ;sw4? ;sw8? : bitdisp0=dispsw10=sw1?^ sw20=sw2?^ sw40=sw4? ^ sw80=sw8? 2

3 Re�nement of Grey Box Data TypesTo use grey box data types in developments, we need to de�ne a re�nementrelation for them. Clearly we could take the approach that all grey boxes needto be replaced by their interpreting black boxes, and do re�nement on those.This is always a possibility, however we would like to be able to stay within thegrey box domain as long as possible. The grey box re�nement relation will bebased on re�nement of their interpreting black boxes: two grey boxes are in thegrey box re�nement relation when the black boxes that interpret them are inthe standard black box re�nement relation.Operation re�nement (i.e., re�nement in which the state space does notchange) of grey boxes is not a very interesting issue. The rules for the operationsare just the same as for black box operation re�nement, which follows from thefact that every operation in the grey box becomes an operation in the blackbox and the fact that the rules for operation re�nement are really independentbetween the various operations. In the interpretation as black boxes, non-trivialoperation re�nement of operations Obsx is not possible because these operationsare already total and deterministic. Operation re�nements of the modi�cationoperationMod are possible, however they will not normally result in black boxesthat represent grey boxes. (But they could implement some of the more sophis-ticated methods for modi�cation of linked variables, which is reassuring.)Example 5 Consider the grey box (S ;S � (x) ; [] ;? ;Init) whereSx ;y ;z :Ny=x + z InitS 0x=y=0Even if it does de�ne x to be modi�able, its modi�cation operation Mod is verylimited because it only allows x to change when that incurs no change in y or z ,i.e. when x \changes" to its current value. However, one could imagine a moresophisticated modi�cation operation on x which leaves z unchanged and changesy accordinglyMod2�Sx?:Nx 0=x?z 0=zwhich is an operation re�nement of Mod (but no longer the modify operation ofany grey box data type). 2In data re�nement of grey box interpretations, we cannot change any of theobservable state components. This �ts with the interpretation of grey box datare�nement as inheritance, however we will see how it can be removed in a later

section. It follows from two issues: �rst, the type of x ! in Obsx cannot change indata re�nement, because inputs and outputs are not changed in data re�nement.Second, the predicate of Obsx can change in data re�nement, but when it nolonger has the shape x=x ! it is no longer an observation operation introduced inthe black box interpretation of a grey box. Thus, Obsx will have to keep variablex , and as a consequence so will the state. Thus, data re�nement between twogrey boxes will in the most general case be between (AS;Read;RW;AOps;AI)and (CS;Read;RW;COps;CI), using a retrieve relation R whose signature isAS^CS (with AS and CS sharing all but their private components). The rulesfor initialisation and between AOps and COps will be the same as those for theunderlying black box. For completeness, these have been included in Appendix A.Now we need to investigate what re�nement conditions derive from the implicitoperations.Observation operations The precondition of any observation operation is true forall possible states. Thus, the applicability condition for observation operationsreduces to true. The correctness condition for observation operations also reducesto true because the state is unchanged and the output equals a component thatis unchanged in data re�nement.Modi�cation operation The analysis for the modi�cation operation is slightlymore complicated. Two crucial observations are that it is a deterministic oper-ation, whose precondition is that its after-state is allowed.De�nition 3 For schemas A and B , the schema A?B denotes the schemaobtained from A by decorating every component from B with a \?". Also, A?Agets abbreviated to A?. 2Using this convention, preMod=State?RW . Applicability then becomesAS?RW ^R) CS?RW , and correctness between AMod and CMod becomesR^AMod^CMod) R0 { informally, changing the same modi�able variablesto the same values in two linked states should result in linked states afterwards.De�nition 4 (Grey box data re�nement) The grey box data type(CS;Read;RW;COps;CI) is a data re�nement of (AS;Read;RW;AOps;AI)when there exists a retrieve relation R whose signature is AS^CS such thatunderlying black boxes (CS;COps;CI) is a black box data re�nement of(AS;AOps;AI) using retrieve relation R (cf. Appendix A).modi�ability Any modi�cation in the concrete type is possible when it is pos-sible in the abstract type:8AS ; CS ; RW? � AS?RW^R) CS?RWcorrect modi�cation For AMod and CMod the modi�cation operations ofthe two types (cf. De�nition 2):8AS ; CS ; AS0 ; CS0 ; RW ? � R^AMod^CMod) R0 2

First we will present (contrived) examples of data re�nements that fail to holddue to either of the grey box speci�c conditions, these demonstrate that thenew conditions are independent. Then we will give one example of correct datare�nement.Example 6 The grey box data type (CS;[];[x :N];COps;CI) is not a datare�nement of (AS;[];[x :N];AOps;AI) for the given retrieve relation R:ASx ;y :Nx=y _ x=y + 1 CSx ;z :Nx=z RASCSy=zIt fails on the modi�ability condition, because in the state where x=y=2 in AS,x may be modi�ed to 3, whereas in the corresponding state in CS, i.e. wherex=z=2, it may not. In terms of the interpretation, the modi�cation operationallows x?=3 in the �rst but not in the second. 2Example 7 Consider the grey boxes (S ;S � (x) ; [] ;Ops;InS) and(T ;T � (x) ; [] ;Ops;InT)Sx ;y :Nx=y _ x=y + 1InSS 0x 0=1
Tx ;z :Nx=z _ x + 1=zInTT 0x 0=1with retrieve relation R b= [S ; T j x=y]. When x ;y=5 in S , x may be modi�edto 6 (leaving y unchanged). A related state in T is x=5 ;z=6 and also here xmay be modi�ed to 6 leaving z unchanged. However, the resulting states areunrelated. Thus, in this case re�nement fails on the condition of modi�cationcorrectness. 2Example 8 A �rst attempt to extend the machine of Example 4 with negativenumbers could be to add a third, \-1" position to all of the switches. This wouldresult in the grey box (Anc2 ;Anc2�(disp) ;Anc2n(disp) ;fHandleg ;Init) wherebit=f0 ;1 ;�1gAnc2sw1;sw2;sw4;sw8:bitdisp:ZHandle�Anc2�(Anc2 n (disp))disp0 = sw1 + 2�sw2 + 4�sw4 + 8�sw8
InitAnc20disp0=0

Using Anc itself as the retrieve relation, the underlying black boxes are clearlyrelated by data re�nement. Both modi�cation operations are total, so the modi-�ability condition is satis�ed. Correct modi�cation follows from the fact that theconcrete modi�cation operation coincides with the abstract one on their com-mon domain, and that the retrieve relation is the identity on that domain. (Wedo not need to consider the observation operations in the interpretations at allbecause they will be re�nements thanks to the grey box formalisation.) 2The data re�nement rule given above for grey boxes is not complete. Clearly agrey box which has an explicit operation of the form Obsx b= [�S ; x ! :T jx !=x]for a private variable x is equivalent (in the interpretation as a black box, atleast) to the grey box which has included x in the observable variables instead.Thus, for a complete re�nement rule one should consider the interpreting blackboxes rather than the grey boxes { but we cannot think of any examples ofincompleteness which are less arti�cial than the one given.A more serious issue with grey box re�nement is that it requires, throughoutstepwise development, every observed variable to remain present as a state vari-able, even if the information that is to be \observed" could also be constructedfrom the state in another way. This problem is overcome by using so-called dis-play boxes instead.4 Display BoxesA variant on the grey box data type is the \display box" data type, which hasno directly observable components and no modi�able components, but explicit\observations" or displays. These observations relate the state to some outputtype, and should be total, i.e. there is no situation in which the observable aspectof the state can not be observed.Example 9 The state space of our initial co�ee machine could be cleaned upby separating out the display �eld and having that as a display instead:CM 2money:NDisplayCM 2display! :Stringmoney=0) display!="Insert 35p then press Coffee"money � 35) display!="Press Coffee"0<money<35) display! ="Insert"a (shownum (35�money))a"p more then press Coffee" 2

De�nition 5 (Display box) A display box data type is a tuple(State;Ds;Ops;Init) such that (State;Ops;Init) is a black box data type, andevery element D of the set Ds is a schema on State and some other (\output")type, such that D is total, i.e. D � State=State. 2The informal interpretation of a display D is that it gives an output for everypossible state. If each of the displays outputs the value of one state variable,the display box has the same interpretation as a grey box without modi�ablevariables. (Modi�able displays form an instance of the view update problem, andwill be discussed later on.) The interpretation as a black box is very close to thedisplay box: it just involves making �State explicit in every display.De�nition 6 (Interpretation of a display box) The display box(State;Ds;Ops;Init) is interpreted as the black box (State;Ops [Disps;Init)where Disps contains for every element D of Ds the operation D^�State. 2Example 10 The co�ee machine could be speci�ed as the display box(CM 2;fDisplayg;fCoin;Coffeeg;Init) and its interpretation would be the blackbox (CM 2;fCoin;Coffee;(Display^�CM 2)g;Init). (The only speci�cationfreedom that is lost by turning a state component into a display is the pos-sibility to specify, for a non-functional display, which of the possible displayvalues is to be chosen in the initial state.) 2As in the case of grey boxes, we need to de�ne re�nement for display boxes,by translating back re�nements of interpreting black boxes. For this purpose, wewill employ the technique of calculating most general data re�nements [19, 2].The correctness and applicability conditions for the most general data re�nementof a display operation reduce to true.De�nition 7 (Display box re�nement) The display box(AS;ADs;AOps;AI) is data re�ned by display box (CS;CDs;COps;CI) usingretrieve relation R with signature AS^CS ifunderlying black box (AS;AOps;AI) is data re�ned by (CS;COps;CI) usingretrieve relation R:displays The displays in ADs and CDs can be matched in pairs AD;CD suchthat CD is an operation re�nement of (9AS � AD^R)_: (9AS � R). 2The calculated most general data re�nement of AD is actually (9AS � AD^R),however, this is not a total operation, which is required for displays. The givenexpression is the most general total data re�nement of that, totalising it byallowing any display for states that are unrelated by the retrieve relation.Example 11 Having rede�ned the co�ee machine of Example 2 as a displaybox in Example 3, we can now present the internal adaptation of the Europeancommon currency as a display box re�nement. With retrieve relation

Exchangemoney;geld :Ngeld=3�moneywe have that the display box (CM 2;fDisplayg;fCoin;Coffeeg;Init) is datare�ned by (KM;fZeigeg;fMuenze;Kaffeeg;Anfang) whereCoinV alues=f1;2;5;10;20;50;100gMuenze�KMcoin?:CoinV aluesgeld0 = geld + coin?�3 AnfangKM 0geld0=0Kaffee�KMgeld0=geld�105ZeigeKMdisplay! :Stringgeld=0) display!="Insert 35p then press Coffee"geld � 105) display!="Press Coffee"0<geld<105) display! ="Insert"a (shownum ((105�geld) div 3))a"p more then press Coffee"The calculated data re�nement for Display would leave display! unspeci�edwhen geld is not divisible by 3, the operation Zeige is the (syntactically) simplestdeterministic operation re�nement of that.The link to the grey box example of the same co�ee machine is also givenby a display box re�nement. If we re�ne CW 2 to CW using CW as the retrieverelation, this introduces display as a state component with the obvious value,then the calculated new display will beNewDispCW 2display! :Stringdisplay!=displaywhose black box interpretation is of course identical to the implicit operationObsdisplay in the grey box. 2Display boxes have the advantage over grey boxes that they allow indirect ob-servations of variables, which in turn allow a broader range of data re�nements.

However, there is also a downside to using display boxes: de�ning modi�abledisplays is problematic. This is very similar to the well-known and extensivelystudied view update problem in databases [1], and to linking displays and up-dates in visualisation systems [13, 15]. Displays are de�ned in terms of statevariables, but it is usually not clear how an explicit change in a display shouldbe translated back to changes in those variables.Example 12 Given the display box data type(WCFinal;fV oor;ByShearerg;fDoelpunt;Goalg;KickOff) whereteam ::= Engl j HollWCFinalgoals :team! NKickOffWCFinal0goals0 Holl=0goals0 Engl=0ByShearerWCFinalscored! :Nscored!=goalsEngl
Doelpunt�WCFinalgoals0 Holl=goalsHoll + 1goals0 Engl=goalsEnglGoal�WCFinalgoals0 Engl=goalsEngl + 1goals0 Holl=goalsHollV oorWCFinallead! :Zlead!=goalsHoll�goalsEnglwe could not make any of these displays modi�able: it is impossible to determinethe number of goals scored by either side from the di�erence between the two,or from the number of goals scored by one side only. As it happens, from bothdisplays together we can draw enough information, but in general even this neednot be the case. 2Another example of a display that could not be made modi�able is the one inthe co�ee machine: how much money is in the machine when the display reads"Press Coffee"?We could introduce a data type with updateable displays by introducing therestriction that updateable displays are injective. However, this would resultin seriously constrained data re�nement rules, and thus we have omitted thisalternative.5 Summary and ConclusionsWe have de�ned the concepts of grey box and display box data types, by giv-ing interpretations of these in terms of the traditional black box data types. Byuse of many examples we have shown that our alternative types can be used

to simplify speci�cations, and to formalise informal styles of speci�cation anddevelopment which assume that certain state components are hidden. In partic-ular, we have given re�nement rules which operate on grey boxes and displayboxes directly, whose soundness follows from black box re�nement rules betweentheir interpretations. The derived re�nement rules were considerably simpli�edfrom the original black box interpretation re�nement conditions, due to the ex-tra structure of the speci�cations. In particular, observability of variables in greyboxes is de�ned in a way which ensures that it imposes no conditions on datare�nement. Grey boxes have the advantage that they may include modi�ablevariables, and the disadvantage that only limited forms of data re�nement (viz.those that change only private variables) are possible. In display boxes, the latterdisadvantage disappears, at the price of losing the option for implicit modi�ca-tion. However, since both are de�ned in terms of their underlying black boxeswith extra operations added to them, a mixture of grey box and display boxdata types seems well possible.The paper has left unexplored the possibility of de�ning observable variablesand displays in terms of a �nalisation. The standard presentation of black boxdata types has an empty �nalisation, which means that the only way for thesystem to communicate values to its environment is by the outputs of operations.In the most general model [8] this communication also (or only) happens after thesystem has completed its \run" in a �nalisation step. Any state component (forobservable variables) or expression in terms of state components (for displays)that is included as a system output in the �nalisation has to be viewed as\observable", because �nalisation may happen at any time. Thus, in interpretinggrey and display boxes as black boxes, we could have included displays andobservation of variables in a �nalisation rather than in new operations. Thismay be somewhat \cleaner" although semantically there should be no di�erence,because the rules for re�nement between operations with outputs are derivedfrom those for systems where all output occurs at �nalisation [19].References1. E. Bertino and G. Guerrini. Viewpoints in object database systems. In A. Finkel-stein and G. Spanoudakis, editors, SIGSOFT '96 International Workshop on Mul-tiple Perspectives in Software Development (Viewpoints '96), pages 289{293. ACM,1996.2. E.A. Boiten, J. Derrick, H. Bowman, and M. Steen. Coupling schemas: data re�ne-ment and view(point) composition. In D.J. Duke and A.S. Evans, editors, NorthernFormal Methods Workshop, Electronic Workshops In Computing. Springer, 1997.3. A. Borgida, J. Mylopoulos, and R. Reiter. And nothing else changes: The frameproblem in procedure speci�cations. In Proc. 15th International Conference onSoftware Engineering, Baltimore, Maryland, May 1993. IEEE Computer SocietyPress.4. K. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group, G.T. Leavens, andB. Pierce. On binary methods. Theory and Practice of Object Systems, 1(3):221{242, 1996.

5. C. Fischer. CSP-OZ: a combination of Object-Z and CSP. In H. Bowman andJ. Derrick, editors, Formal Methods for Open Object-based Distributed Systems,volume 2, pages 423{438. Chapman & Hall, 1997.6. M.-C. Gaudel and J. Woodcock, editors. FME'96: Industrial Bene�t of FormalMethods, Third International Symposium of Formal Methods Europe, LNCS 1051.Springer-Verlag, March 1996.7. A. Goldberg. Smalltalk-80 | The language and its implementation. Addison-Wesley, 1983.8. He Jifeng, C. A. R. Hoare, and J. W. Sanders. Data re�nement re�ned. In B. Robi-net and R. Wilhelm, editors, Proc. ESOP 86, LNCS 213, pages 187{196. Springer-Verlag, 1986.9. He Jifeng and C.A.R. Hoare. Prespeci�cation and data re�nement. In Data Re�ne-ment in a Categorical Setting, Technical Monograph PRG-90. Oxford UniversityComputing Laboratory, November 1990.10. ITU Recommendation X.901-904 | ISO/IEC 10746 1-4. Open Distributed Pro-cessing - Reference Model - Parts 1-4, July 1995.11. D. Jackson. Structuring Z speci�cations with views. ACM Transactions on Soft-ware Engineering and Methodology, 4(4), October 1995.12. V. Kasurinen and K. Sere. Integrating action systems and Z in a medical systemspeci�cation. In FME'96 [6], pages 105{119.13. G.J. Klinker. An environment for telecollaborative data exploration. In ProceedingsVisualization '93 { sponsored by the IEEE Computer Society, pages 110{117, 1993.14. C. C. Morgan. Programming from Speci�cations. Prentice Hall International Seriesin Computer Science, 2nd edition, 1994.15. J.C. Roberts. On encouraging multiple views for visualization. In InformationVisualization IV'98, London, July 1998. IEEE Computer Society.16. G. Smith. A semantic integration of Object-Z and CSP for the speci�cation ofconcurrent systems. In J. Fitzgerald, C.B. Jones, and P. Lucas, editors, FME'97:Industrial Application and Strengthened Foundations of Formal Methods, LNCS1313, pages 62{81. Springer-Verlag, September 1997.17. J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.18. M. Weber. Combining statecharts and Z for the design of safety-critical controlsystems. In FME'96 [6], pages 307{326.19. J. Woodcock and J. Davies. Using Z: Speci�cation, Re�nement, and Proof. PrenticeHall, 1996.A Data Re�nement Rules for Black BoxesGiven black box data types A=(AS;AOps;AInit) and C=(CS;COps;CInit),then C is a data re�nement of A if2 using retrieve relation R (whose signatureis AS^CS) if the following conditions hold:initialisation 8CS � CInit) (9AS � AInit^R)2 \if" but not \i�", these are the conditions for forwards simulation, which are onlysu�cient for data re�nement in combination with those for backwards simulation (cf.[8, 19]). However, operations introduced in this paper are deterministic, for whichcase forwards simulation is su�cient.

and the operations in AOps and COps can be matched in pairs AOp;COp bothwith input x?:X and output y ! :Y , such that for each of those pairs the followingtwo conditions hold:applicability COp should be de�ned on all representatives of AS on whichAOp is de�ned:8AS ; CS ; x?:X � preAOp^R) preCOpcorrectness wherever AOp is de�ned, COp should produce a result related byR to one that AOp could have produced:8AS ; CS ; CS0 ; x?:X ; y ! :Y �preAOp^COp^R) 9AS0 � R0^AOp

