
Using Probability to Reason about SoftDeadlinesAndy King and Jeremy BryansComputing Laboratory,University of Kent at Canterbury, CT2 7NF, UK.famk, jwbg@ukc.ac.ukAbstract. Soft deadlines are signi�cant in systems in which a boundon the response time is important, but the failure to meet the responsetime is not a disaster. Soft deadlines occur, for example, in telephony andswitching networks. We investigate how to put probabilistic bounds onthe time-complexity of a concurrent logic program by combining (on-line)pro�ling with an (o�-line) probabilistic complexity analysis. The pro�lingcollects information on the likelihood of case selection and the analysisuses this information to infer the probability of an agent terminatingwithin k steps. Although the approach does not reason about synchro-nization, we believe that its simplicity and good (essentially quadratic)complexity mean that it is a promising �rst step in reasoning about softdeadlines.1 IntroductionTime-critical constraint applications, such as those that arise in robotics, dis-tributed multimedia and embedded systems, typically have to answer a requestfor a service within a speci�ed time. In a real-time command and control sys-tem, failure to meet a deadline may lead to the loss of human life. In telephonyor switching, however, failure to meet a deadline, may simply compromise thequality of a video stream. This would be undesirable rather than catastrophic.These deadlines are said to be soft [6] and it is su�cient to ensure that there isa high probability that the deadline is met.In this short paper we propose a simple analysis that infers the likelihoodof an agent, expressed in a concurrent logic language, of meeting a soft dead-line. The basic problem is to infer a distribution for the probability of an agentterminating (and hence servicing a request) in, say, up to k steps of computa-tion. By examining this distribution the programmer can isolate a performancebug/bottleneck and thus patch/redesign the code. This probabilistic informa-tion is not available from existing techniques, such as pro�ling [5], that wouldtypically associate each agent with an average execution time. Although pro�lescan be enriched with variance information [8], variance is just a crude (and oftenhard to interpret) measure of spread. For example, suppose that we can modelthe likelihood of an agent answering a request for a service with an exponentialdistribution (this sort of assumption is routinely made in probabilistic model

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


checking [6]). Information like \the probability of servicing the request within ksteps is 1� e��k" is far more useful than \the agent has a mean of 1� steps witha variance of 1�2 ". Put simply, di�erent distributions have the same variance andmean and variance alone are not enough to infer the probability of terminatingwith k steps.Rather than just inferring that the application (the top-level or main agent)terminates, our analysis infers the probability of each agent (and hence eachservice) in the system terminating. This is important because time-critical ap-plications are frequently persistent. Although the approach is applicable to con-current constraint programming, we simply measure time in terms of the numberof resolution (goal-head matching) steps. It is not clear whether this measurewould be a sensible unit of time with a more elabourate constraint solver wherethe time to check for entailment and satis�ability is likely to vary dramaticallyfrom agent to agent and from store to store. Deciding the time unit that is mostappropriate for a constraint application, we feel, is an independent problem andit is not addressed in this paper.This paper is structured as follows: In section 2 we discuss the need for an(on-line) probabilistic pro�ling component in the analysis. In section 3 we presenttwo (o�-line) analyses that take the pro�ling information, as input, and produce,as output, the distribution of each agent terminating within k steps. Sections 4and 5 respectively present the related and future work; whereas section 6 presentsour conclusions.2 On-line pro�ling componentLike other probabilistic analyses [1], our analysis is based on being able to asso-ciate execution frequencies (or, when non-zero, normalized, execution probabil-ities), with the cases de�ning an agent. Light-weight pro�ling techniques havebeen developed for logic programs [5] and adapted to concurrent logic programssuch as Strand [4] so acquiring the probabilities is not a problem. What is apotential problem is the reliability of this execution frequency information. Theessential problem is that the termination behaviour of a concurrent logic pro-grams relates to (1) synchronization and (2) non-deterministic case selection andthese properties are store sensitive. This is illustrated in the program P :P = 8<:p(x) :- x = a ! p(x)+ x = a ! stop+ x = b ! stop q :- p(x)r :- (tell(x = b) k p(x))s :- (tell(x = a) k p(x))The agents q, r and s essentially invoke the agent p(x) with a di�erent store(di�erent test data). q will never terminate since p(x) suspends immediately. rwill always terminate within k = 2 steps. s, however, may or may not terminatedepending on the non-deterministic case selection. In fact, assuming that eachcase has an equal chance of selection, then s has a probability of 1� 12k of termi-nating within k steps. Thus, pro�ling the program with di�erent test data canlead to very di�erent termination behaviour. This is the weakness of pro�ling. It



is also strength of pro�ling. Case selection probabilities abstract away from thesynchronization and non-deterministic behaviour of the program. Probabilitiesgive a high level view of the way computation paths can ow through a pro-gram. In fact probabilistic information is almost certainly necessary as well assu�cient for soft deadline analysis: without probabilistic information the onlyuseful termination property would be eventual reachability. Thus, henceforth, weassume that the di�erent rules that de�ne an agent are annotated with selectionprobabilities. We borrow a notation from [3] and express a program and a pro�letogether as:Q = 8<:p(x) :- x = a j 12 ! p(x)+ x = a j 12 ! stop+ x = b j 0 ! stop q :- true j 0! p(x)r :- true j 0! (tell(x = b) k p(x))s :- true j 1! (tell(x = a) k p(x))In this case the pro�le is for when the top-level agent agent is s. Note that weuse probabilities descriptively rather than prescriptively as in [3]. Note also thatonly non-zero frequencies are normalised and that q and r are annotated withprobabilities of zero.3 O�-line termination componentThe program Q takes a special form in that the left-hand-side of each rulecontains at most one user-de�ned agent. We can exploit this and apply an algo-rithm that appears in the model checking literature [6]. Algorithm 1 of [6] canbe reinterpreted as a way calculating the probability of an agent reducing to stopwithin, say k = 4, steps. We let pn (respectively qn, rn, sn and stopn) denotethe probability of reaching the agent p (respectively q, r, s and stop) at step n.Thus, assuming our initial agent is s, we have p0 = 0 q0 = 0, r0 = 0, s0 = 1 andstop0 = 0. More generally, for n > 0, we have the system:pn+1 = 12pn + 0qn + 0rn + sn; stopn+1 = 12pn; qn+1=0rn+1=0sn+1=0The equation pn+1 = 12pn+0qn+0rn+sn, for example, expresses the probabilityof reducing to p (at step n + 1) given the likelihood of reducing to either p, q,r or s (at step n). Computing pn, qn, rn, sn and stopn for 1 � n � k and thenPn=kn=1 stopn gives the probability of terminating in at most n steps. For programQ, with k = 4, Pn=4n=1 stopn = 78 as is shown below.n pn qn rn sn stopn0 0 0 0 1 01 1 0 0 0 02 12 0 0 0 123 14 0 0 0 144 18 0 0 0 18



Also, not surprisingly, P1n=1 stopn = 1. As [6] point out, their algorithm isattractive as the total number of multiplications required in the (o�-line) analysisis just O(k:r) where r is the total number of cases that are annotated with anon-zero probability. In Q, for example, r = 3.The limitation of the algorithm is that it is only applicable when the programassumes a particularly simple syntactic form. The analysis cannot be applied,for instance, to the program R that is listed below. We thus extend the methodof [6]. R = �p(x) :- true j 23 ! (p(x) k p(x) k p(x))+ true j 13 ! stopConsider the likelihood of the agent p terminating at exactly step n. p canonly terminate in n = 1 steps through case 2 and hence p1 = 13 . Otherwise, ifn > 1, then the �rst, second and third agents of the composition in case 1 mustterminate in i; j; k > 0 steps where i+ j + k = n. Case 1 has a probability of 23of being selected which leads the system:p1 = 13 ; pn+1 = 23 i<nXi=1 j<nXj=1 k<nXk=1 pi pj pk^ i+j+k=nThe nested summand means that the cost of computing pn for 1 � n � k isO(Pkn=1 n2) = O(k3). (The index k of the innermost summand is �xed by thei and j in the outermost summands.) More generally, if each rule contains acomposition of at most m agents, then the complexity would be O(Pkn=1 nm)= O(km+1). Note, however, that pn can be expressed as a double summand byintroducing tn that can itself be expressed as a double summand.p1 = 13 ; tn = i<nXi=1 j<nXj=1 pi pj ;^ i+j=n pn+1 = 23 i<nXi=1 j<nXj=1 ti pj^ i+j=nThis reduces the complexity to O(Pkn=1 n) = O(k2). More generally, a nestedsummandPi1<ni1=1 Pi2<ni2=1 : : :Pim<nim=1 Qj=mj=1 pjij where p1; : : : ; pm are the m agents,can be decomposed intom�1 double summands by introducingm�2 temporaryvariables. Using this tactic we obtain a complexity of O(mk2). We are reallyintroducing a form of memoisation since t avoids recomputation. The usefulnessof memoisation is illustrated below. c2k denotes the number of multiplicationsrequired to computePn=2kn=1 pn. The log2 c2k column indicates that memoisationis required for the analysis to be quadratic.



naive memoisationk c2k log2 c2k c2k log2 c2k2 5 2:3 15 3:93 77 6:3 63 6:04 925 9:9 255 8:05 9021 13:1 1023 10:06 79485 16:3 4095 12:07 666877 19:3 16383 14:08 5462525 22:4 65535 16:09 44217341 25:4 262143 18:010 355821565 28:4 1048575 20:0
n pn tn1 0:3333 0:00002 0:0000 0:11113 0:0000 0:00004 0:0247 0:00005 0:0000 0:01656 0:0000 0:00007 0:0055 0:00008 0:0000 0:00439 0:0000 0:000010 0:0016 0:0000In factP1n=1 pn � 0:366025 and indeed, we would expectP1n=1 pn to be slightlylarger than 13 .4 Related workA Markov model for probabilistic concurrent constraint programming in pre-sented in [3] which, we believe, might form another basis for a probabilisticsoft deadline analysis. By using the short-circuit protocol [9], an observationhx = y; pi for an agent like q(x; y) could be reinterpreted as expressing the prob-ability p of q (eventually) terminating. Unfortunately, the constraint systems of[3] are required to be �nite and it is not clear that a termination analysis basedon an (in�nite dimensional operator algebra) extension would be practical.Generating functions are used in [2] to quantify the relative e�ciency ofbacktracking search and parallel search. Generating functions have been used inthe average case analysis of imperative programs and so it might be possible toapply this approach to soft deadline analysis. Parellisation is also the focus of thetime-complexity work in [7, 10]. These papers describe criteria for recognisingshort-lived agents so that �ne-grained processed can be coalesced into morecourse-grained units. Neither papers describe probabilistic techniques.The most closely related work is that described in [6]. This paper extends thetemporal logic CTL with time and probability to reason about properties suchas the probability of a service being carried out within a certain time. Like ourwork, the objective is to verify the likelihood of satisfying soft deadlines. Ourwork shows how to generalise algorithm 1 of [6].5 Future workAn interesting direction for future work is to try and infer probabilistic estimateson the size of the store. Another challenge will be to put probabilistic boundson the time-complexity of, say, branch-and-bound for a particular class of inputdata. We think that it is unlikely that estimated pro�les will be able to deliver an



accurate soft deadline analysis but the experiment should be attempted for com-pleteness. We also intend to investigate how our work can be used in granularitycontrol [7, 8, 10].6 Discussion and conclusionsThe problem with using pro�ling based analyses, as [11] points out, is that apro�le for one run may not adequately predict the behaviour of another run. Putsimply, the distributions inferred for the analysis may not accurately characterizethe behaviour of the program for another data set. One way forward is to de-couple the on-line and o�-line components of the analysis so that the frequencyinformation can be acquired from several program runs with di�erent sampledata. By enriching the analysis with intervals it would it possible to characterizethe probability of case selection as a range, [0:3; 0:33], say. Furthermore, with anappropriate GUI, the user would be able to alter/extend/contract the intervals.The o�-line component could then be recomputed to construct a what-if styleprobabilistic pro�ling tool.To summarize, although our approach relies on pro�ling information, webelieve that its simplicity and good complexity mean that it is a sensible anduseful �rst step in inferring the likelihood of an agent meeting a deadline.AcknowledgementsWe thank Kish Shen for motivating discussions; the EPSRC grants GR/MO8769and GR/L95878 that funded the work; and \COTIC" European working group23677 that funded the travel.References1. S. Debray, S. Kannan, and M. Paithane. Weighted Decision Trees. In Proceedingsof the Joint International Conference and Symposium on Logic Programming, pages654{668. MIT Press, 1992.2. N. Dershowitz and N. Lindenstrauss. Average Time Analyses Related toLogic Programming. In Proceedings of the Sixth International Conference onLogic Programming, pages 369{381. MIT Press, 1989. Also available fromhttp://www.cs.huji.ac.il/ naomil/.3. A. Di Pierro and H. Wiklicky. A Markov Model for Probabilistic Concur-rent Constraint Programming. In To appear in proceedings of APPIA-GULP-PRODE'98, Joint Conference on Declarative Programming, 1998. Also availablefrom http://www.soi.city.ac.uk/ adp/.4. I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-Hall, 1989.5. M. M. Gorlick and C. F. Kesselman. Timing Prolog Programs Without Clocks.In Proceedings of the Symposium on Logic Programming, pages 426{432. IEEEComputer Society, 1987.



6. H. Hanson and B. Jonsson. A Logic for Reasoning about Time and Reliability.Formal Aspects of Computing, 6:512{535, 1994.7. A. King, K. Shen, and F. Benoy. Lower-bound Time-complexity Analysis of Logicprograms. In International Symposium on Logic Programming, pages 261{276.MIT Press, 1997. http://www.cs.ukc.ac.uk/pubs/1997/506/.8. V. Sarkar. Determining Average Program Execution Times and their Variance.In SIGPLAN Conference on Programming Language Design and Implementation,pages 298{312, 1989.9. E. Shapiro. The Family of Concurrent Logic Programming Languages. ACMComputing Surveys, 21(3), 1989.10. K. Shen, V. Santos Costa, and A. King. Distance: a new metric for controllinggranularity for parallel execution. Journal of Functional and Logic Programming,To appear, 1998. http://www.cs.ukc.ac.uk/pubs/1998/588.11. D. W. Wall. Predicting Program Behaviour Using Real or Estimates Pro�les.In SIGPLAN Conference on Programming Language Design and Implementation,pages 59{70, 1991.

This article was processed using the LATEX macro package with LLNCS style


