
Constraint Orientated Speci�cation with CSPand Real Time Temporal LogicJustin PearsonDepartment of Computer SystemsBox 325Uppsala UniversitySwedenjustin@docs.uu.seJeremy BryansComputing LaboratoryUniversity of Kent at Canterbury CT2 7NFJ.W.Bryans@ukc.ac.ukJuly 22, 19981 IntroductionA popular speci�cation style, particularly for the initial speci�cation of asystem, is the constraint-oriented style, where the constraints are propertiesrequired to hold of the �nal system. This style is independent of the partic-ular speci�cation notation being used: properties are individually described,and then composed (using, for example, parallel composition within process-algebraic notations, or conjunction within logic-based languages) to form aninitial description of the system. This initial description can then be re�neddown to a speci�cation suitable for implementation, using the re�nementprinciples and rules o�ered by the chosen notation. The appeal of this stylelies in the fact that the initial speci�cation merely asserts properties of thesystem, and makes no demands on how the system should be implemented.So the speci�er may gain con�dence in the speci�cation by, for example,checking the logical consistency, and deducing further consequences of thespeci�cation, before any consideration is given to implementation. Imple-1
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mentation decisions are made during the re�nement steps, in which choicesleft open by the speci�cation are re�ned away.One of the di�culties of using this style is that, for any particular nota-tion, certain types of constraints are much harder to capture than others. Forexample, a language which captures abstract behavioural constraints may notbe able to capture so easily speci�c timing constraints. A logical extensionof the constraint-oriented style would therefore be to allow the speci�er tocapture individual constraints in any of a range of languages, and to providea formal semantic framework for combining these constraints and performingthe necessary consistency checking.In this paper we propose such a speci�cation framework, which allowsthe speci�er a choice of two languages: Communicating Sequential Processes(CSP) [Hoa85] and a version of Propositional Temporal Logic (PTL), derivedfrom [Eme90].CSP is a process-algebraic language designed for the speci�cation andanalysis of parallel systems and (our version of) PTL is a real-time tem-poral logic designed to capture time-dependent constraints concisely. Thebehaviour of a CSP process is dependent on its environment; it is thereforedi�cult to assert global properties. PTL can be easily used to express globaltiming properties of systems, but it is less suited to describing the purelybehavioural aspects. We will therefore develop a framework in which a spec-i�cation is a pair (P ; �), where P is a CSP process and � is a formula of PTL.Global and timing constraints can be described within PTL, and behaviouralconstraints can be described within CSP.Both components of a speci�cation have to be checked for mutual con-sistency, to do this we present a common semantic framework for both PTLand CSP. Since we wish to retain all the behavioural and all the timing infor-mation in this mapping, we choose to use a real-time CSP semantic model.However, the existing real-time CSP models [Ree88, Sch92, Dav93] insistthat recursive processes must be time-guarded, that is some time must elapsebetween any instantiation of a process and its recursive invocation. This fa-cilitates the task of semantically de�ning recursive processes, but goes againstthe philosophy of the dual language style which we develop here. We there-fore present in Section 2 a novel denotational model for CSP (which we callMU , for unguarded CSP), which does not require recursive processes to betime-guarded.In Section 3 we present the logic PTL, and de�ne a satisfaction relationbetween PTL statements CSP processes, to allow us to determine whetherprocesses and formulae are consistent.In Section 4 we present the de�nition of a speci�cation pair, give a re-�nement relation between speci�cation pairs, and show how this re�nement2



relation is related to deduction within PTL and the common CSP notion ofre�nement. This is illustrated with a simple example.The main contribution of this paper is therefore the framework of speci-�cation pairs, and further contributions are the development of a new CSPsemantic model and the interpretation of PTL formulae over this model.2 The CSP modelCommunicating Sequential Processes (CSP) [Hoa85] is a process-algebraiclanguage designed for the speci�cation and analysis of parallel systems. Itis a language of processes and events: processes describe patterns of events,and may be built up and combined using a set of powerful operators. Thelanguage of CSP has been extended to include timing constructs, and a num-ber of semantic models for real-time CSP have been proposed [RR86, RR87,Sch92]. All these models require that processes be time-guarded| some timemust elapse between any instantiation of a process and its recursive invoca-tion. Therefore all recursive processes must contain some timing information.Consider, for example, a simple behavioural constraint as captured by theCSP processLight = on ! o� ! Lightwhich requires that the light may initially switched on, and then may beswitched on and o� alternately. If we wish to combine this constraint withone which explicitly mentions timing values, we must �rst interpret it withina timed semantic model. But then we must insert a delay somewhere in theprocess, which was not part of the original constraint. This is contrary to ourdesire to separate as much as possible the concerns of timing and behaviour.We therefore present in this section a new denotational semantic modelMU , which allows recursive processes to contain no timing information. Indoing so we build on the work on unbounded non-determinism presentedin [Ros93] and [Sch92], and the work on �xed points of recursive processespresented in [MRS95].2.1 NotationWe assume a set of actions �. A timed action is a pair (t ; a), where t 2 R+and a 2 �. A timed trace is a sequence of chronologically ordered timedactions. Timed traces may be �nite or in�nite. The set of timed traces isdenoted TT . 3



A timed refusal is a set of timed actions. Each timed refusal is associatedwith a timed traces, and record the events which the process was seen torefuse while performing that trace. The set of all refusal sets is denotedRSET .A divergence value is a non-negative real number, or the symbol1. Thisrecords the time at which the process was seen to have diverged.An observation is a triple (s;X ; d), where s is timed trace, X is a timedrefusal and d is a divergence value.Some useful operators on traces and refusals are:s " I extracts from the timed trace s only the timed actions with timesin the interval I , where I may be closed or right-open. It is de�ned ashi " I = hi(t ; a)a s " I = ( (t ; a)a (s " I ) if t 2 Is " I otherwiseWe overload the extraction operator by de�ning it on refusals: X " Iextracts from the timed refusal X only the timed actions with times in theinterval I , where I may be closed or right-open.X " I = X \ �� IAnd as convenient abbreviations:s;X � t = s;X " [t ;1)s;X � t = s;X " [0; t)The beginning of a trace is de�ned as:begin(t ; a)a s = tbeginhi =1and the end of a trace asend s a (t ; a) = tendhi = 0The beginning and end of a refusal set are de�ned asbeginX = minft j 9 a � (t ; a) 2 X g; if X 6= ;begin ; =1endX = maxft j 9 a � (t ; a) 2 X g; if X 6= ;end ; = 0 4



The begin and end operators can be extended to whole observations:begin(s;X ; d) = min(begin s; beginX ; d)end(s;X ; d) = max(end s; endX ; d); if d is �nite;max(end s; endX ); otherwise:We overload the subtraction operator (the addition operator is overloadedin an analogous way), to allow us to subtract time values from traces andrefusals. hi � t = hi((u; a)a s)� t = (u � t ; a)a (s � t); if u > t((u; a)a s)� t = s � t ; otherwise; � t = hiX � t = f(u; a) j (u + t ; a) 2 X ^ u > 0g((u; a)a s) + t = (u + t ; a)a sX + t = f(u + t ; a) j (u; a) 2 X gFinally, we say that a trace s is a pre�x of a trace t if the trace s can beextended to the trace t . Formally, we write this ass 6 t , 9 u � s a u = t2.2 SyntaxThe syntax used in this paper is similar to real-time CSP. The signi�cantdi�erences are: we include a second pre�x operator (!), and to simplify thepresentation, do not include message passing or variables.If P is a process, t is a time value, I is an index set, A is a set of eventsand a is a single event, then the syntax used in this paper isP ::= ? j Stop j Skip jWait(t) j P j[A ]jP j P 2 P jui2I P j a ! P j a 7! P j P ; P j P .ftg P j P n AThese represent: the most nondeterministic process, ?; the broken pro-cess, Stop; successful termination, Skip; delay, Wait(t); parallel composi-tion, P j[A ]jP ; external choice, P 2 P ; nondeterministic choice, ui2I P ;�rst form of action pre�x, a ! P ; second form of action pre�x, a 7! P ;sequential composition, P ; P ; timeout, P .ftg P and hiding, P n A.5



2.3 The axiomsA process S is a subset of OU , where OU = TT �TREF �R+ [f1g, whichsatis�es the following axioms.Axiom 1 The empty observation is an observation of any process.(hi; ;;1) 2 SAxiom 2 Observations are pre�x closed.(s a s 0;X ; d) 2 S ) 8 t 2 [end s; begin s 0] �r < d ) (s;X " [0; t);1) 2 St = d ) ((s;X " [0; t);1) 2 S(̂s;X " [0; t); d) 2 S ))t > d ) (s;X " [0; t); t) 2 SAxiom 3 Refusal information is subset closed.(s;X [ Y ; d) 2 S ) (s;X ; d) 2 SAxiom 4 Maximal refusal sets exist.(s;X ;1) 2 S ) 9X 0 �(s;X 0;1) 2 S ^ X � X 0 ^8(t ; a) 2 R+ � � � (t ; a) 62 X 0 )(s " [0; t ]a (t ; a);X 0 " [0; t);1) 2 SFrom this axiom, taken together with the chaos axiom below, we canderive two important properties of observations within a CSP process. The�rst is that all observations may be extended 1.De�nition 1 An observation (s 0;X 0; d 0) is an extension of an observation(s;X ; d), written (s 0;X 0; d 0) >E (s;X ; d) ifs 6 s 0X � X 0d > d 0 if d is �nited 0 > end(s;X ; d) if d is in�nite1This is similar to the behavioural partial order in [Sch92].6



This is essentially an information ordering on observations. Informationmay be added to an observation in two ways. The �rst is by �lling outthe information already contained, either by adding refusal information orby improving divergence information, and the second is by increasing theduration of the observation, by adding further trace, refusal or divergenceinformation.A consequence of the above de�nition is the existence of point-wise max-imal observations. A point-wise maximal observation is one which containscomplete information for every point in time, up to the end of the observa-tion. Therefore the only way to add information to these observations is byincreasing their duration.De�nition 2 (s;X ; d) is point-wise maximal in [[P ]] whenever8(s 0;X 0; d 0) 2 [[P ]]:(s 0;X 0; d 0) >E (s;X ; d)) (s 0;X 0; d 0) = (s;X ; d)_end(s 0;X 0; d 0) > end(s;X ; d)Axiom 5 Divergence is chaotic. If an observation contains a divergencevalue of d , where d 6=1, this means that the process diverged at or beforethat time. This is consistent with the CSP philosophy of including all possibleobservations after divergence.8 d 6=1 � (s;X ; d) 2 S ) (s a (s 0 + d);X [ (X 0 + d); d 0 + d) 2 SThe �nal axiom is a requirement that every nondivergent process may beimplemented deterministically, and furthermore that the process is equal tothe union of these implementations. Before we present it, we require somede�nitions.De�nition 3 Re�nement is de�ned on processes as Q v P (Q is re�ned byP) if and only if8(s;X ; d) 2 P � (s;X ; d) 2 Qor [[P ]] � [[Q ]]The lowest member of this order is ?, the highest are those that cannotbe further re�ned.De�nition 4 An observation (s;X ; d) 2 P is an earliest diverging observa-tion in P , if d = minfd 0 j (s;X ; d 0) 2 [[P ]]g.7



Predeterministic processes are deterministic until they diverge, if they do.De�nition 5 Process P is predeterministic if for all earliest diverging ob-servations(s;X ; d) 2 P ; (t ; a) 2 X �t < d ) (s " [0; t ]a h(t ; a)i;X " [0; t);1) 62 PAxiom 6 The �nal axiom is then de�ned asimp(P) 6= ; ^ P = S imp(P)where imp(P) is the set of predeterministic implementations of P , de�ned asimp(P) = fQ j P v Q ^ Q is predeterministicgAlternatively the last axiom can be stated in terms of upward closure:De�nition 6 The upward closure of a set of observations in S is de�ned asS = f(s;X ; d) j 8 t � (s;X ; d) � t 2 SgThat is, if all �nite pre�xes of an in�nite observation are in S , then thein�nite observation is in S .The last axiom simply states that predeterministic processes are equal totheir own closure.2.4 The EquationsThe semantics of a CSP process is given by FU , where FU is a function fromCSP syntax to MU . It is de�ned inductively over the CSP operators asFU [[?]] = f(s;X ; d) j s 2 TT ^ X 2 RSET ^ d 2 R+ [ f1ggFU [[Stop]] = f(hi;X ;1) j X 2 RSETgFU [[Wait(d)]] = f(hi;X ;1) j X 62 X " [d ;1)g[f(h(tX;X)i;X ;1) j tX > d ^ X 62 X " [d ; tX)g8



FU [[P j[A ]jQ ]] = f(s;X ; d) j 9 sP ;XP ; dP ; sQ ;XQ ; dQ �(sP ;XP ; dP) 2 FU [[P ]] ^(sQ ;XQ ; dQ) 2 FU [[Q ]] ^s 2 sP j[A ]j sQ ^X = XP j[A ]jXQ ^d = minfdP ; dQggwhere sP j[A ]j sQ is de�ned recursively as (assuming a 2 A; b; c 62 A)hi j[A ]j hi = fhigsP j[A ]j hi = fsPghi j[A ]j sQ = fsQg(t ; a)a sP j[A ]j (t ; a)a sQ = f(t ; a)a (sP j[A ]j sQ)(t1; b)a sP j[A ]j (t2; c)a sQ = f(t1; b)a (sP j[A ]j (t2; c)a sQ)g; if t1 < t2= f(t2; c)a ((t1; b)a sP j[A ]j sQ)g; if t2 < t1= f(t1; b)a (sP j[A ]j (t2; c)a sQ)g[f(t2; c)a ((t1; b)a sP j[A ]j sQ)g; if t1 = t2The recursive de�nition is necessary because the order of simultaneous eventsis important.XP j[A ]jXQ is de�ned as the unique X such thatX � A = XP � A [ XQ � AX̂ � (� n A) = XP � (� n A) \ XQ � (� n A)FU [[P 2 Q ]] = f(s;X ; d) j (s;X ; d) 2 FU [[P ]] ^(hi;X " [0; begin s);1) 2 FU [[Q ]]g[f(s;X ; d) j (s;X ; d) 2 FU [[Q ]] ^(hi;X " [0; begin s);1) 2 FU [[P ]]gFU [[P u Q ]] = FU [[P ]] [ FU [[Q ]]
9



FU [[a 7! P ]] = f(hi;X ;1) j a 62 �(X )g[f(s;X ; d) j 9 sP ;XP ; dP ; ta �(sP ;XP ; dP) 2 FU [[P ]] ^s = h(ta ; a)ia sP ^a 62 �(X " [0; ta)) ^X � ta = XP ^d = dP + tagThe new operator! includes nondeterministic waits on either side of theaction a.If to is the time at which a is o�ered, ta the time at which it is accepted,and tP the time at which the process P is initiated, then the de�nition is:FU [[a ! P ]] = f(hi;X ;1) j 9 to 2 R+ � [to ;1)� fag \ X = ;g[f((ta ; a)a s;X ; d) j (sP ;XP ; dP) 2 FU [[P ]] ^9 to 6 ta � [to ; ta)� fag \ X = ; ^9 tP > ta � s = sP + tP ^X � tP = XP ^d = dP + tPgFU [[Skip]] = f(hi;X ;1) j X 62 �(X )g[f(h(tX;X)i;X ;1 j X 62 �(X " [0; tX))gFU [[P ; Q ]] = f(s;X ; d) j (s;X [ [0;minfend(s;X ); dg)� fXg; d) 2 FU [[P ]]g[f(s;X ; d) j 9 sP ;XP ; sQ ;XQ ; dQ �(sP a h(tX;X)i;XP [ [0; tX)� fXg;1) 2 FU [[P ]] ^(sQ ;XQ ; dQ) 2 FU [[Q ]] ^s = sP a (sQ + tX) ^X = XP [ (XQ + tX) ^d = dQ + tXg10



FU [[P .ftg Q ]] = f(s;X ; d) j (s;X ; d) 2 FU [[P ]] ^minfd ; begin sg 6 tg[f(s;X ; d) j 9 sQ ;XQ ; dQ �(sQ ;XQ ; dQ) 2 FU [[Q ]] ^(hi;X " [0; t);1) 2 FU [[P ]] ^s = sQ + t ^X � t = XQ ^d = dQ + tgFU [[P n A]] = f(s;X ; d) j 9 sP ;XP �(sP ;XP ; d) 2 FU [[P ]] ^s = sP n A ^XP = X [ [0;minfend(s;X ); dg)� Ag2.5 RecursionNone of the above clauses explicitly introduce �nite divergence values intothe observations of a process. We can only create divergent processes usingrecursion. The semantics of a process X = F (X ), where F is a CSP process,is given by the least �xed point of the corresponding function over the domainMU . As an example, consider the process P = a ! P . The traces generatedby this process arehi; h(t1; a)i; :::h(ti ; a)in ; :::If the trace becomes in�nitely long at a �nite time d , a divergence value ofd is introduced.The exact semantics of the process P = a ! P is therefore given byf(s;X ;1) j �(s) = fag ^a 62 �(X ) ^#(s) =1) end(s) =1g[f(s;X ; d) j 9 t 6 d � #(s " [0; t ] � a) =1 ^8 t 0 < t � #(s " [0; t 0) <1) ^�(s " [0; t 0) = fag) ^a 62 (�(X ) " [0; t 0))g11



Standard CSP recursion theory [Hoa85, Ros88] cannot be applied, be-cause the model MU is not a complete partial order (CPO). Further themetric space theory of ordinary real-time CSP [Dav93] cannot be used, be-cause the metric is not applicable. To see that MU is not a CPO, considerthe set of processes de�ned byPn =un6t<1Wait(t) ; a ! StopThe chain fPig1i=0does not have an upper bound. Any upper bound wouldhave to refuse a at all times, since for any time t we can always �nd a processwhich will refuse a at that time, but would not be able to refuse it forever,since no individual component can. This is forbidden by the maximal refusalset axiom: an action must be either possible or refusable at all times.We therefore use the framework presented in [MRS95], which relies onlocal cpo's.De�nition 7 A local cpo is a partially ordered set with a least element, inwhich every directed subset with an upper bound has a least upper bound.A local cpo is much weaker than a cpo. Obviously every cpo is a localcpo, but in a local cpo we only require least upper bounds to exist whenupper bounds exist (in a cpo least upper bounds would have to exist forevery increasing chain).Theorem 1 MU with the nondeterminism ordering is a local cpo: it has aleast element, ?, and every directed subset with an upper bound has a leastupper bound.Proof 1 Let S be a subset of MU , directed under the nondeterminism or-dering v, and suppose that an upper bound of S exists. Consider SfS 0 jS 0 is an upper bound for Sg. This is non empty, since S has at least oneupper bound, and it must be the least upper bound, since it contains allother upper bounds. It is also a legitimate process, since it satis�es all theprocess axioms.Not all monotone functions over local cpos have �xed points. To see whythis is so, consider the local cpo de�ned on the set Q = fn�1n j n > 0g bythe mapping f (n�1n ) = nn+1 . The monotone function f maps each element tothe one above it, but clearly has no �xed point.In CSP terms, this means that not all monotonic chains of processes willhave �xed points. For example, consider the chain of processes de�ned by:Pn =ut2[1� 1n ;1)Wait(t) ; a ! Stop12



The limit of this chain must re�ne each element in the chain. Thus, in thelimit process, a cannot be o�ered at any time before 1, because for any timebefore 1 we can �nd a Pi which does not o�er a at that time. But on theother hand a must be o�ered before time 1, since all elements of the chaino�er a before time 1. This contradiction ensures that the limiting processdoes not exist.A su�cient condition for a monotone function over a local cpo to have a�xed point is for it to have a pre-�xed point.De�nition 8 A pre-�xed point of a function f over a set X is an elementx 2 X such that f (x ) 6 x .If we can show that a pre-�xed point exists, then the following theoremshows that we can �nd a �xed point.Theorem 2 X is a local cpo with least element ?, and f : X ! X is amonotone function.If x is a pre-�xed point of f , then f has a least �xed point given by�x (f ) = supff �(?) j � an ordinalgProof 2 Omitted, see [MRS95].Theorem 2 only proves the existence of a �xed point for functions whichalready have a pre-�xed point, i.e. a point x such that f (x ) 6 x .In order to prove the existence of this pre-�xed point, we use a dominatedconvergence theorem.Theorem 3 Let Q be a local cpo, E a set, i : E ! Q a function andf : Q ! Q a monotone selfmap. Suppose there is a related function f suchthat f � i 6 i � f , i.e. the following diagram commutes up to 6.E - Efi ? ?iQ - Qf6If x 2 E is a �xed point of f , then i(x ) 2 Q is a pre-�xed point of f .Proof 3 f (i(x )) 6 i(f (x )), and since x = f (x ) we conclude that f (i(x )) 6i(x ). Thus i(x ) is a pre-�xed point of f , as required.13



To apply the framework outlined above, we must produce a model whichdominates the model MU . We identify a space E , an injection functioni : E ! F and a function f : E ! E such that FU � i v i � f . These arede�ned in Appendix A.The denotation of recursive processes can then be de�ned in the usualway, since the theory of local cpo's guarantees that all the relevant �xedpoints exist (see [MRS95] for details).3 PTLIn this section we introduce the linear-time propositional temporal logic(PTL) [Eme90], which will be used for temporal speci�cations. Our ver-sion of PTL has three classes of atomic propositions. The atoms Pa , Oaexpress the fact that a process either does an action a or o�ers and action aand the atom D expresses the fact that the process has diverged. The logicis de�ned in terms of a satisfaction relation j=t between observations andformulas of the logic. The expression (s;X ; d) j=t � asserts that the formula� holds on the observation (s;X ; d) at time t . Observations in our model areof two types: either they are extended in�nitely in time, that is end(s;X ; d)is in�nite; or an observation ends at some �nite time t . So the assertion(s;X ; d) j=t � can never be true for t > end(s;X ; d), because we read theassertion (s;X ; d) j=t � as the observation (s;X ; d) makes � true at time t .If the observation supplies no information about time t then (s;X ; d) j=t �is unde�ned.The relation j=t for t <= end(s;X ; d) is then de�ned inductively asfollows. For atoms:� (s;X ; d) j=t D whenever d 6 t ;� (s;X ; d) j=t Pa whenever (t ; a) 2 s;� (s;X ; d) j=t Oa whenever (t ; a) 62 X ;So the assertion (s;X ; d) j=t Pa asserts that the action a is actually per-formed at time t . Note that we use negative information to characterizeo�ers. We say that an observation (s;X ; d) o�ers an a at time t if it doesnot refuse it.The connectives ^ and : are de�ned in the standard way:� (s;X ; d) j=t � ^  whenever (s;X ; d) j=t � and (s;X ; d) j=t  ;� (s;X ; d) j=t : � whenever (s;X ; d) 6j=t �;14



The operator U is standard to temporal logic. Here we simply translate itinto assertions on observations:� (s;X ; d) j=t � U <� whenever9 (�nite)t1 : t1 > t and j t � t1 j< � �(s;X ; d) j=t1  and8 t2 : t < t2 < t1 (s;X ; d) j=t2 �Other operators can be derived operators are de�ned in the usual way:� � _  is de�ned as : (: � ^ :  );� �)  is de�ned as  _ : �;� 3��� is de�ned as true U ���,� 2� is de�ned as : 3(: �).So far we have explained what it means for an observation to modela formula of PTL. A process is a collection of observations satisfying theconsistency conditions from Section 2.3. This makes the de�nition of what itmeans for a process to satisfy a formula slightly subtle. Because observationsin processes are pre�x-closed, it is not su�cient to say that a process Psatis�es a formula � when all its observations do. Take for example theprocessa ! b ! Stopintuitively this should satisfy the formula true U Ob, but for example theobservation (<>; ;;1) does not eventually o�er the action b. To avoid thiswe say that a process P satis�es a formula � if for each observation in Peither it satis�es it or some extension does in the �E ordering.A further problem arises because refusal sets in observations are alsodownward closed, so given the observation(<>; [0; t)� fbg;1)from the process a ! b ! Stop the process axioms require that the obser-vation (<>;X ;1) whereX = f(t 0; b) j t 0 < t and t 0 is rationalghence it can appear that the process is o�ering an action at every irrationaltime point. So we re�ne the de�nition of a process satisfying a formulafurther so that we only consider maximal refusal sets. This leads is to thefollowing de�nition. 15



De�nition 9 We say that a process P satis�es � (P j= �) if for all observa-tions o in FU [[P ]] :9 o 0 2 FU [[P ]] such that o 0 >E o ^ o 0 j=0 �This de�nition allows the use of an inferential style of reasoning via rulessuch as: P j= �a 7! P j= Oa U <1(Pa ^ �)with the side condition (: (� ) : Pa)). If � is true of the processP , then when we consider the process a ! P we know that the event a iso�ered immediately, and if it is performed then � will immediately becometrue. Some rules are presented in Appendix B.4 Speci�cation and Re�nementWe now come on to an important notion in this paper, the idea of speci�ca-tion pairs. A speci�cation pair combines a CSP process P and a PTL formula� into a single pair (P ; �). This pair represents the subset of observations ofFU [[P ]] which satisfy �. Speci�cation pairs give a way of mixing two devel-opment styles: process re�nement as used extensively in the CSP communityand the use of temporal logic for time-dependent system development.As with the de�nition of j= relating processes and formulae there are somesimilar technical considerations with incomplete observations which lead tothe following de�nition:De�nition 10 A speci�cation pair is a pair (P ; �) consisting of a CSP pro-cess P and a PTL formula, �. It is de�ned in terms of observations as(P ; �) = fo 2 FU [[P ]] j 9 o 0 >E o with o 0 j= �gIt is important to realize that although the pair (P ; �) is a speci�cation,it does not always denote a CSP process, but represents a wider notion thanthat of a process. It may then be unimplementable, for example:(P = a ! P ;2(Ob))does not denote a process, because the process P is never able to o�er aan action b and therefore the process speci�cation pair contains no observa-tions. Such unimplementable speci�cations can be di�cult to spot and arise16



because the behavioural and temporal speci�cations are in conict. Thuswhen using speci�cation pairs there are further proof obligations on the de-signer to show that the components of a pair are consistent with each otherand that the speci�cation is therefore implementable. Such proof obligationsseem unavoidable, in a system which allows such a wide separation of con-cerns as we do here. Below we shall discuss some of the forms that such proofobligations take.As with ordinary CSP processes, process speci�cation pairs can re�ned,formally this gives:De�nition 11 (P ; �) is re�ned by (Q ;  ) (written (P ; �) v (Q ;  ) ) if(Q ;  ) � (P ; �)To connect standard process re�nement and deduction in PTL we presentthe following proposition (where  ` � indicates that � follows from  , thededuction system in [Jac90] could be used to prove this):Proposition 1P v Q  ` �(P ; �) v (Q ;  )This proposition allows the two styles of development, process re�nementand temporal logic deduction, to be combined in one framework.Given a speci�cation (P ; �), one way of showing that is it implementableis by proving that it meets the axioms for de�ning a process. In practicethis would be tedious, but for various cases there simpler ways of checkingimplementability.Given a process Q , if Q j= � then it is easy to see that (Q ; �) is aprocess, since (Q ; �) = FU [[Q ]]. This gives a simple su�cient condition totest whether a re�nement of a speci�cation is a process.An example development would start with a speci�cation (P ;  ) and pro-ceed by a series of re�nements:(P ;  ) v (P 0;  0) v : : : v (Q ; �)where the last speci�cation can easily be shown to be an implementablespeci�cation by showing Q j= �. While Proposition 1 is powerful and usefulit provides no mechanism for moving information from a formula � in (P ; �)to the process P . We mention one proof rule which allows timing informationto be moved across:(a ! Q ; �) Q j=  � ` (: U >� )(a ! Q ; �) v (a !Wait(�) ; Q ; �)17



Returning to the example of Section 2, if we wished to insist that every timethe light was turned on, it stayed on for at least two seconds, we could write(Light = on ! o� ! Light ;2<1(Pon ) ((: Oo� ) U >2Oo� )))which is re�ned by the above rule to(Light = on 7!Wait(2) ; o� ! Light ;2<1(Pon ) ((: Oo� ) U >2Oo� )))and further re�ned to(Light = on 7!Wait(2) ; o� 7! Light ; true)However, some temporal logic formulae capture global constraints, andcan only be re�ned into the CSP process when the entire system has beendescribed. For example, if Light was only a subcomponent of a larger system,then the global constraint that the light remained on for at most two seconds:2<1(Pon ) (true U 62Po� ))could only be veri�ed once the CSP description had been completed.5 RecursionConsider the CSP process �X :F (X ). Iterations of the function [[F ]] = f giverise to the constructable chain:? v f1(?) v f2(?) v f3(?) : : : v fi(?) v : : :The lowest element of this chain, ?, has every possible behaviour. If wesaid that the limit of a constructable chain models a formula whenever allits approximations do, then the only formula that recursive processes couldmodel would be true.We therefore consider only the non-divergent traces of an element of thechain.Furthermore, the fact that observations are pre�x-closed can present someproblems. As an example, consider �X :a 7! X . One of the simplest thingswhich is true of this process is that it always o�ers an a. Therefore wewant �X :a 7! X j= 2Oa . But this does not hold initial segment of theconstructible chain, because once the a actions have been performed, theprocess behaves chaotically. To solve this problem, we make use of the notionof pointwise-maximal observations, the de�nition of which is repeated herefrom De�nition 2. 18



De�nition 12 (s;X ; d) is pointwise-maximal in [[P ]] whenever8(s;X 0; d 0) 2 [[P ]]:(s;X 0; d 0) >E (s;X ; d)) (s;X 0; d 0) = (s;X ; d)_end(s;X 0; d 0) > end(s;X ; d)We must also introduce a new notion of satisfaction which, althoughde�ned for a general process, is designed to apply to recursive processes.De�nition 13 [[P ]] jj=t� whenever for all pointwise-maximal, nondivergent(s;X ;1) 2 [[P ]], (s;X ;1) j=t �, or some extension of (s;X ;1) does.The above de�nitions allow us a form of Scott-induction for a certainclass of processes.De�nition 14 An pointwise-maximal admissable predicate is one which, ifit holds (in the sense of jj=t) for each �nite element of a constructable chain,also holds (again in the sense of jj=t) for the �xpoint of the chain. Formally,� is a pointwise-maximal admissable predicate if, for all constructable chainsfi , 8 i � fi(?) jj=t�) [[�X :f (X )]] jj=t�De�nition 15 A speci�cation pair is a pair (P ; �) consisting of a CSP pro-cess and a PTL formula. It is de�ned in terms of observations as(P ; �) = f(s;X ; d) 2 [[P ]] j 9 pointwise�maximal extension(s 0;X 0; d 0) �(s 0;X 0; d 0) >E (s;X ; d) ^(s 0;X 0; d 0) j= � ^8(s 00;X 00; d 00) >E (s 0;X 0; d 0)withX 00maximal(s 00;X 00; d 00) j= �gIf � is a pointwise-maximal admissable predicate, we have the followingtheorem.Theorem 48 n(F n(?) jj=t�)(�X :F (X );2: D) j= �Proof 4 Consider (s;X ;1) 2 (�X :F (X );2: D), where X is a maximalrefusal set.Since � is a pointwise-maximal admissable predicate, it follows immedi-ately that [[�X :F (X )]] jj=�. 19



Thus if (s;X ;1) is pointwise-maximal then it follows immediately that(s;X ;1) j= �.If (s;X ;1) is not pointwise-maximal, then we know that there existpointwise-maximal nondivergent extensions of (s;X ;1) in (�X :F (X );2: D).Since these are also in [[�X :F (X )]], there is some extension of (s;X ;1) in(�X :F (X );2: D) which models �.Therefore either (s;X ;1) j= �, or some extension does.Theorem 5 All predicates (excluding those which includeD) are pointwise-maximal admissable.Proof 5 Consider (s;X ;1) 2 [[�X :F (X )]]. If #s < 1 then (s;X ;1) 2fi(?) for some i . If #s =1 then we perform a structural induction.The atomic propositions form the base cases.case Pa : If #s = 1 then end(s) = 1, and there exists a �nite pre�x(s 0;X 0;1):(s 0;X 0;1) jj=tPa .case Oa : as Pa .The remainder of the proof follows by a routine structural induction.6 Conclusions, comparisons and future workWe have presented a speci�cation framework which uses the languages ofCSP and PTL, and cleanly separates the concerns of behaviour and timing,by allowing each constraint to be captured in the most suitable language.We have developed an enhanced denotational semantic model for CSP, andwe have also interpreted the temporal logic PTL over this model. This hasenabled us to combine the two formalisms at the semantic level in a uniformway, by the use speci�cation pairs.In [Jac90] the author presents a way of relating temporal logic with real-time CSP. The semantics for the temporal logic is given as a Kripke model,and to express properties of time-guarded processes the model of [Sch89]is reinterpreted as a Kripke model. The emphasis there is on the relationbetween the two models, and it is essentially concerned with the form of therelation j=t . Whereas in this work we have developed a framework, whichallows properties from both models to be combined.In [Sch97], a theory of timewise re�nement within the context of CSP ispresented. This has a very similar goal to the work presented here, in thatit allows the translations of speci�cations and proofs of correctness betweentimed and untimed semantic models. The timed interpretations proposedin [Sch97] initially allow more timed processes to be re�nements of untimed20



ones, but the parallel composition operator does not in general preserve re-�nement. In our approach the timed interpretation is more selective, andparallel composition preserves re�nement.A dual language speci�cation framework is proposed in [Bla94], usingLOTOS and a temporal language called QTL. In that work, rather developa common semantic model, the author presents a specialised technique forverifying a speci�cation of a system presented both in QTL and LOTOSagainst it requirements (described in QTL). The work is carried out with thespeci�c application domain of multimedia systems in mind.Many questions remain open, while it is theoretically possible to reasonabout systems using the semantics the derivation of useful proof rules is ofimportance, these are being investigated in the context of a case study. Anarea of possible further research is to investigate the techniques developed inmodel checking [ACD93] to derive an algorithm for automatically checkingthat a process P meets a speci�cation �.AcknowledgementsThanks are due to Steve Schneider and John Derrick, for their valuable com-ments on earlier versions of this paper.References[ACD93] Rajeev Alur, Costas Courcoubetis, and David Dill. Model checkingin dense real-time. Information and Computation, 104(1):2{34,May 1993.[Bla94] Lynne Blair. The Formal Speci�cation and Veri�cation of Dis-tributed Multimedia Systems. PhD thesis, Lancaster University,U.K., September 1994.[Dav93] Jim Davies. Speci�cation and proof in real time CSP. CambridgeUniversity Press, 1993.[Eme90] E. Allan Emerson. Temporal and modal logic. In Handbook ofTheoretical Computer Science, chapter 16, pages 996{1072. Else-vier, 1990.[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985. 21
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A The predeterministic spaceThe space OP of predeterministic processes consists of all processes whichsatisy axioms 1-5 and are predeterministic. The function FP over the spaceof predeterministic processes dominates the function FU . For every processP which may be constructed using the CSP operators, the correspondingprocess P constructed using the dominating operators will always dominatethe process P . FU [[P ]] v FP [[P ]].The function FP is de�ned as follows:FP [[?]] b= FU [[Stop]] = f(hi;X ;1) j X 2 RSETgFP [[Stop]] b= FU [[Stop]] = f(hi;X ;1) j X 2 RSETgFP [[Wait(d)]] b= FU [[Wait(d)]]FP [[P j[A ]jQ ]] = f(s;X ; d) j 9 sP ;XP ; dP ; sQ ;XQ ; dQ �(sP ;XP ; dP) 2 FU [[P ]] ^(sQ ;XQ ; dQ) 2 FU [[P ]] ^s 2 sP j[A ]j sQ ^X = XP j[A ]jXQ ^d = minfdP ; dQggwhere sP j[A ]j sQ is de�ned recursively as (a 2 A; b; c 62 A)hi j[A ]j hi = fhigsP j[A ]j hi = fsPghi j[A ]j sQ = fsQg(t ; a)a sP j[A ]j (t ; a)a sQ = f(t ; a)a (sP j[A ]j sQ)(t1; b)a sP j[A ]j (t2; c)a sQ = f(t1; b)a (sP j[A ]j (t2; c)a sQ)g; if t1 < t2= f(t2; c)a ((t1; b)a sP j[A ]j sQ)g; if t2 < t1= f(t1; b)a (sP j[A ]j (t2; c)a sQ)gand XP j[A ]jXQ = XP j[A ]jXQExternal choice 23



FP [[P2Q ]] = f(s;X ; d) j (s;X ; d) 2 FP [[P ]] ^(hi;X " [0; begin s);1) 2 FP [[Q ]]g[f(s;X ; d) j (s;X ; d) 2 FP [[Q ]] ^(hi;X " [0; begin s] [ s " [t ; t ];1) 2 FP [[P ]]gDominated internal choice is easily de�nedFP [[PuQ ]] b= FP [[P ]]The immediate pre�x choice introduces no nondeterminismFP [[a 7!P ]] b= FU [[a 7! P ]]The nondeterminsitic pre�x operator is dominated by the immediate pre-�x operator.FP [[a!P ]] b= FU [[a 7! P ]]Skip introduces no nondeterminismFP [[Skip]] b= FU [[Skip]]The sequential composition operator may introduce nondeterminism atthe point of transfer of control. For example, if a single copy of the action ais observed, then it is nodeterministic whether or not control has passed inthe processP = (a ! Skip2Skip) ; a ! StopTo resolve this, we give the action X precedence over all other actions.
24



FP [[P ; Q ]] = f(s;X ; d) j (s;X [ [0;minfend(s;X ); dg � fXg; d) 2 FP [[P ]] ^X 62 �(s) ^8 u; v � s = u a v ): 9 tX � (u a h(tX;X)i;X " [0; tX);1 2 FU [[P ]]g[f(s;X ; d) j 9 sP ;XP ; sQ ;XQ ; dQ ; tX �(sP a h(tX;X)i;XP [ [0; tX)� fXg;1) 2 FU [[P ]] ^8 u; v � s = u a v ): 9 tX � (u a h(tX;X)i;X " [0; tX);1 2 FU [[P ]] ^(sQ ;XQ ; dQ)FU [[Q ]] ^s = sP a (sQ + tX) ^X = XP [ (XQ + tX) ^d = dQ + tXgThe timeout operator may introduce nondeterminism at the point oftransfer of control. If both processes can perform the same action at timet , then the decision as to which process survives is nondeterministic. Weresolve this by insisting that at time t , the second process may only performevents which the �rst process is incapable of performing.FP [[P.ftgQ ]] = f(s;X ; d) j (s;X ; d) 2 FP [[P ]] ^minfd ; begin sg 6 tg[f(s;X ; d) j 9 sQ ;XQ ; dQ �(sQ ;XQ ; dQ) 2 FP [[Q ]] ^(hi;X " [0; t ] [ fsQ " [t ; t ]g;1) 2 FP [[P ]] ^s = sQ + t ^X � t = XQ ^d = dQ + tgThe hiding operator may introduce nondeterminism into a process, sincedi�erent observations may become identical after hiding. We resolve thisusing a choice function choose, which provides a unique way of choosing asingle action from any set of actions.FP [[PnA]] = f(s;X ; d) j 9 sP ;XP �(sP ;XP ; d) 2 FP [[P ]] ^s = sP n A ^XP = X [ [0;minfend(s;X ); dg)� A ^accP ;a(sP)g25



accP ;A(sP) = 8 u;w ; t ; a � s = u a (t ; a)a w )sP ;A(u)(t) 6= fg ^a = choose(sP ;A(u)(t))_sP ;A(u)(t) = fgSP ;A(u)(t) is the set of events from A open to the process P at time tafter the trace u.
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a 2 � [ fXgStop j= 2(:Oa) P j= � Q j=  P u Q j= � _  ? j= true P j= � Q j= �P 2 Q j= �Skip j= OX U <1PX P j= � Q j=  P j= true U <� OXP ; Q j= � U <�  provided � does not contain PX or OX assubformulae.P j= � Q j=  P .ftg Q j= � U <t  provided � contains no sub-terms U �t 0 with t 0 > t . P j= �P n A j= � ^2<1(Va2A :Oa) ^2<1(Va2A :Pa)provided Oa and Pa are not subformulae of�, for all a 2 A.Table 1: Rules for combining processes and formulaeB Rules for �nite processesIn this section present a set of rules for �nite processes (processes whichare constructed without recursion) which connect the processes constructorswith the rules of the logic. The rules which are routine to work out are intable 1.The immediate form of the event pre�x operator has the ruleP j= �a 7! P j= Oa U <1(Pa ^ �)with the side condition (: (� ) : Pa)). If � is true of the process P ,then when we consider the process a ! P we know that the event a is o�eredimmediately, and if it is performed then � will immediately become true.Unlike the process a 7! P , the process a ! P introduces two arbitrarydelays, one before and one after the occurrence of the event a. So the rules27



becomes P j= �a ! P j= true U <1(Oa U <1(Pa ^ (true U <1�)))with the same side condition: (: (�) : Pa)).The rule for parallel is more complicated. A �rst attempt, consideringonly the empty synchronisation set, would be something like: (where P jjjQ = P j[ ; ]jQ)P j= � ^ Q j=  P jjj Q j= � ^  but we can �nd a simple counter example. Consider the processes b 7! Stopand c 7! Stop. It is easy to see that b 7! Stop j= 2(: Oc) and c 7! Stop j=true, but it is equally clear that a 7! Stop j[ ; ]j c 7! Stop 6j= 2(:Oc). Thedi�culty arises because � can assert negative information about Q and there-fore to state the rule properly we have to characterise negative information.Thus we de�ne two operators `neg' and `pos' on formulae which capture pos-itive and negative assertions about events. These operators are de�ned bymutual recursion:pos(true) = pos(false) = ; neg(true) = neg(false) = ;pos(Oa) = pos(Pa) = fag neg(Oa) = neg(Pa) = ;pos(� ^  )=pos(� _  )=pos(�)[pos( ) neg(� ^  )=neg(� _  )=neg(�)[neg( )pos(� U  )=pos(� S  )=pos(�)[pos( ) neg(� U  )=neg(� S  )=neg(�)[neg( )neg(: (�)) = pos(�) pos(: (�)) = neg(�)We add the following two side conditions to the rule:neg(�) \ (neg( ) [ pos( )) = ; neg( ) \ (neg(�) [ pos(�)) = ;The formula � must contain no negative information about any event in , unless that event is also in the synchronisation set, and similarly for  .The rules presented above are not complete in two senses. First, we havenot presented rules for all of the CSP operators. Second, the rules di�erfrom the derivation rules found in [Dav93] where the rules are complete inthe sense they completely characterise the behaviours of CSP operators inlogical terms. But these rules di�er from ours in using the full power of �rstorder logic, as opposed to PTL in this paper. Although it is not possible tomake the rules complete in the sense [Dav93], using PTL simpli�es reasoningabout speci�cations. Furthermore, it seems that the rules could be madecomplete using �rst order temporal logic as opposed to PTL and this isbeing investigated. 28


