
, 1
Expansion Postponementfor Normalising Pure Type SystemsErik PollComputing Laboratory, University of Kent, Canterbury, EnglandAbstractExpansion Postponement is a tantalisingly simple conjecture about Pure Type Systems,which has so far resisted all attempts to prove it for any interesting class of systems. Weprove the property for all normalising Pure Type Systems, and discuss the connectionwith typechecking.Pure Type Systems (PTSs) (Barendregt 1991, 1992) provide a general frameworkfor describing a large class of type theories (or typed lambda calculi). TypicallyPTSs are expressive type theories, where we not only have �-reduction on terms,but also on types. To derive a type for term it may then be necessary to performsome �-conversions of types.Expansion Postponement (EP) is the conjecture that to typecheck terms we onlyever have to �-reduce types, and never have to �-expand them. This is clearly adesirable property: �-expansion a very non-deterministic relation, and there is nosensible strategy for �-expanding terms. As we will explain later, EP is a necessarycondition for correctness of the natural typechecking algorithm for PTSs proposedby R. Pollack (1992) (but, unfortunately, not a su�cient one).For a more precise de�nition of EP, we have to consider the PTS type inferencerule for converting types:conversion � ` b : B � ` B0 : s B =� B0� ` b : B0It allows any type B to be replaced by a �-convertible oneB0, provided this new typeB0 is a well-formed type-expression, which is guaranteed by the premise � ` B0 : s.This rule for converting types can be split into two rules, one for reducing andone for expanding types. And because reducing a well-formed expression alwaysproduces a well-formed expression, the premise � ` B0 : s can safely be dropped inthe former rule. This results in the following rules:reduction � ` b : B B !!� B0� ` b : B0expansion � ` b : B � ` B0 : s B � B0� ` b : B0It is not di�cult to show that replacing conversion with the two rules above doesnot change the typing relation (Lemma 16 in (Benthem Jutting et al., 1993)).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Erik PollBut is expansion really needed ? When we look at some type derivations, itseems that we can always get by with just reduction. The most obvious place whereconversion is needed is to check if the types of a function and its argument match,and for this just reduction would be su�cient (since �-reduction is Church-Rosser).Expansion Postponement is the conjecture that any typing judgement � ` a : Acan be derived by �rst deriving � ` a : A0 for some A0 without using expansion,and then possibly using expansion just once to �-expand A0 to A. In other words,EP says that the use of expansion can always be postponed to the end of a typederivation. It would follow from EP that if we are interested in �nding just anytype for a given term we can forget about the expansion rule altogether.De�nition of PTSs and Expansion PostponementWe quickly recall the de�nition of Pure Type Systems (PTSs). For more informationon PTSs see for instance (Barendregt 1991, 1992).De�nition 1A Pure Type System (PTS) is a triple (S;A;R), with S a set of symbols called thesorts, A � S� S a set of axioms, and R � S� S� S, a set of rules.The terms of a PTS are generated byT ::= Var j S j (TT) j (�Var:T: T) j (�Var:T: T);where Var is a set of variables.We use the following conventions: s; s1; : : : range over sorts; x; y range over vari-ables; a;A; b; B; : : : range over terms. Terms equal up to the names of bound vari-ables are identi�ed, and � denotes syntactic equality. We write b[x := a] for thecapture-free substitution of a for x in b, !� for one-step �-reduction, !!� for itsreexive and transitive closure, and =� for �-equality.The typing relation ` of a PTS is the smallest relation closed under the rules:axiom � ` s : s0 (s : s0) 2 Avariable � ` A : s�; x : A ` x : Aweakening � ` b : B � ` A : s�; x : A ` b : Bformation � ` A : s1 �; x : A ` B : s2� ` (�x:A: B) : s3 (s1; s2; s3) 2 Rabstraction �; x : A ` b : B � ` (�x:A: B) : s� ` (�x:A: b) : (�x:A: B)application � ` b : (�x:A: B) � ` a : A� ` ba : B[x := a]reduction � ` b : B B !!� B0� ` b : B0expansion � ` b : B � ` B0 : s B � B0� ` b : B0

Expansion Postponement 3where we assume that no variable is declared twice in a context.Two of the most important properties of PTSs are:Theorem 2� Subject Reduction (SR). If � ` a : A and a!!� a0, then � ` a0 : A.� Correctness of Types (CT). If � ` a : A, then � ` A : s or A 2 S.We now consider the system with only reduction of types:De�nition 3The typing relation `r is the smallest relation closed under all the rules above exceptexpansion.It is obvious that all `r-judgements are also `-judgements:Theorem 4 (`r � `)If � `r a : A then � ` a : A.Expansion postponement is essentially the reverse implication. However, ` � `rwill not always be true. For example, it may be possible that �; x : A ` x : A0 forsome A0 !!� A, whereas it is impossible that �; x : A `r x : A0 for some A0 !!� A,because in `r types cannot be expanded as in `. So the best we can hope for is` � `r "modulo" �-reduction of types:Open Problem 5 (Expansion Postponement (EP))If � ` a : A then � `r a : A0 for some A!!� A0 ?We will abuse notation when writing inclusions between relations, and for instance(somewhat incorrectly) write ` � `r for EP.The rest of this section illustrates some of the problems that arise when we tryto prove EP. None of this is relevant to the rest of the paper, so the reader whoalready knows or believes that EP is not easy to prove may choose to skip it.The obvious way to prove EP { induction on the derivation { fails in the casethat the last step is abstraction:� Suppose the last step in the derivation is:abstraction �; x : A ` b : B � ` (�x:A: B) : s� ` (�x:A: b) : (�x:A: B)By the induction hypothesis �; x : A `r b : B0(i) for some B !!� B0 and� `r (�x:A: B) : S for some s !!� S. And since s cannot be reduced, thismeans that � `r (�x:A: B) : s (ii). Now to derive � `r (�x:A: b) : (�x:A: B0)from (i) using the abstraction rule, we would need � `r (�x:A: B0) : s as asecond premise. This is frustratingly close to (ii), but not exactly the same !The root of the problem here is that in the abstraction rule (�x :A: B)occurs to the right of ':' in the conclusion but to the left of ':' in the premise.The natural thing to try now is proving some useful properties of `r. In particular,SR would provide the missing link in the attempted proof above, as it would allowus to deduce � `r (�x:A: B0) : s from (ii). But it is surprisingly di�cult to proveany of the usual meta-theoretic properties for `r:

4 Erik PollOpen Problem 6� Weak Subject Reduction (WSR) for `r.If � `r a : A and a!!� a0 then � `r a0 : A0 for some A!!� A0 ?(We do not have SR for `r; see (Pollack, 1994) for a counterexample).� Correctness of Types (CT) for `r.If � `r a : A then � `r A : s or A 2 S ?It is easily shown that EP is equivalent with WSR for `r, and that, for the so-calledfunctional PTSs, EP is also equivalent with CT for `r.Expansion Postponement for Normalising PTSsFrom now on we restrict ourselves to PTSs with normalising types, i.e. the PTSsfor which for all � ` a : A the type A has a normal form. This clearly subsumesall normalising PTSs, i.e. the PTSs for which for all � ` a : A both a and A havenormal forms.The trick is that instead of `r we consider an even more restricted system, `nf ,and we prove EP (` � `r) by proving the stronger property ` � `nf . The system`nf gives types in normal form:De�nition 7The typing relation `nf is the smallest relation closed under the following rules:axiom � `nf s : s0 (s : s0) 2 Anf-variable � `nf A : s�; x : A `nf x : nf (A)weakening � `nf b : B � `nf A : s�; x : A `nf b : Bformation � `nf A : s1 �; x : A `nf B : s2� `nf (�x:A: B) : s3 (s1; s2; s3) 2 Rnf-abstraction �; x : A `nf b : B � `nf (�x:A: B) : s� `nf (�x:A: b) : (�x:nf (A): B)nf-application � `nf b : (�x:A: B) � `nf a : A� `nf ba : nf (B [x := a])Here nf (A) denotes the �-normal form of A.It is easy to see that all `nf -judgements are also `r-judgements:Theorem 8 (`nf � `r)If � `nf a : A then � `r a : A.ProofEasy induction on � `nf a : A. In fact, it su�ces to observe that all `nf -rulesare derivable rules for `r. For instance, nf-abstraction can be derived by composingabstraction and reduction.

Expansion Postponement 5So, by Theorems 4 and 8, `nf� `r � `. (Note that it immediately follows from thisthat if ` produces normalising types, then so do `r and `nf .) The crucial di�erencebetween `nf and `r is that for `nf we can prove SR. For this the following twolemmas are needed:Lemma 9 (Generation lemma for `nf)If � `nf (�x:A0: b) : (�x:A: B) then �; x : A0 `nf b : B.ProofInduction on the derivation of � `nf (�x:A0: b) : (�x:A: B). The last step can onlybe nf-abstraction or weakening, so these are the only cases we have to consider.Lemma 10 (Substitution lemma for `nf)For PTSs with normalising types: if �; x : A;� `nf b : B and � `nf a : nf (A), then�;�[x := a] `nf b[x := a] : nf (B [x := a]).ProofThis can be proved as the substitution lemma for ` (see for instance (Barendregt,1992)), by induction on the derivation of �; x : A;� `nf b : B.Theorem 11 (Subject Reduction (SR) for `nf)For PTSs with normalising types: if � `nf a : A and a!!� a0 then � `nf a0 : A.ProofThis can be proved as SR for ` (see for instance (Barendregt, 1992)). In fact, theproof for `nf is a bit simpler. We simultaneously prove the following two propertiesby induction on the derivation:(1) if � `nf c : C and �!� �0 then �0 `nf c : C.(2) if � `nf c : C and c!� c0 then � `nf c0 : C.All the cases are very boring, except the case that c is the redex that is contracted,which is where the substitution lemma and the generation lemma are needed:Suppose the last step in the derivation of � `nf c : C isnf � application (i)� `nf b : (�x:A: B) (ii)� `nf a : A� `nf ba : nf (B [x := a])i.e. c � ba and C � nf (B [x := a]).(1) To prove: �0 `nf c : nf (B [x := a]) for �!� �0.If �!� �0, then by the IH �0 `nf b : (�x:A: B) and �0 `nf a : A, and by the`nf -application rule �0 `nf ba : nf (B [x := a]).(2) To prove: � `nf c0 : nf (B [x := a]) for ba!� c0.We distinguish two possibilities for the reduction ba!� c0:| ba !� c0 is a reduction ba !� b0a0, with a !� a0 and b � b0, or b !� b0and a � a0. Then by the IH � `nf b0 : (�x:A: B) and � `nf a0 : A, andby the `nf -application rule � `nf b0a0 : nf (B [x := a 0]).

6 Erik Poll| ba!� c0 is the reduction (�x:A0: b0)a!� b0[x := a], i.e. b � (�x:A0: b0).To prove: � `nf b0[x := a] : nf (B [x := a]).Now (i) is � `nf (�x:A0: b0) : (�x:A: B), and so by the generation lemma�; x : A0 `nf b0 : B (iii). By the substitution lemma it follows from (ii) and(iii) that � `nf b0[x := a] : nf (B [x := a]).Theorem 12 (` � `nf)For PTSs with normalising types: if � ` c : C then � `nf c : nf (C).ProofInduction on the derivation of � ` c : C. Almost all the cases are trivial, exceptabstraction, which is where SR for `nf is needed:Suppose the last rule in the derivation of � ` c : C is�; x : A ` b : B � ` (�x:A: B) : s abstraction� ` (�x:A: b) : (�x:A: B)i.e. c � (�x:A: b) and C � (�x:A: B).To prove: � `nf (�x:A: b) : nf (�x :A: B). By the induction hypothesis we have�; x : A `nf b : nf (B) (i) and � `nf (�x:A: B) : s (ii). By SR for `nf it followsfrom (ii) that � `nf (�x:A: nf (B)) : s (iii). Now by applying nf-abstraction to (i)and (iii) we are done, since obviously nf (�x :A: nf (B)) � nf (�x :A: B).Now by Theorems 8 and 12 (`nf � `r and ` � `nf) it immediately follows that` � `r:Corollary 13 (Expansion Postponement)For PTSs with normalising types: if � ` a : A then � `r a : A0 for some A0 !!� A.Expansion Postponement and TypecheckingTo conclude, we say a few words about the connection between Expansion Post-ponement and typechecking, and leave the reader with an interesting open problem.By a typechecking algorithm we mean an algorithm that, given a term a anda context �, answers the question � ` a : ?, i.e. that returns a type A such that� ` a : A, or reports failure if no such A exists. Several generic typechecking algo-rithms for di�erent classes of PTSs are known (see (Benthem Jutting et al., 1993)and (Poll, 1993)).However, correctness of the most natural typechecking algorithm, de�ned in Pol-lack (1992), remains an open problem. This algorithm tries to answer � ` a : ? inthe obvious way, by trying to construct a type derivation for a in context � guidedby the shape a (and �), e�ectively trying to derive a type of a term from the typesof its sub-terms.Before considering its formal de�nition, we can already give an informal explana-tion of why EP is a necessary condition for correctness of this algorithm. It is notdi�cult to see that the algorithm will never use the expansion rule. To use expansionit would have to guess a �-expansion of a type, and there is no sensible strategy for

Expansion Postponement 7doing this. But if the algorithm tries to answer � ` a : ? without using expansion,then it really tries to answer � `r a : ? instead of � ` a : ?, and can only be correctif these questions are equivalent.A formal de�nition of algorithm is given below by the system `sd. The set of in-ference rules for `sd are syntax-directed, which means that there is at most one typederivation for a given term a in a given context �, which is completely determinedby the syntax of a and � (at least, for the so-called functional PTSs). So the rulesfor `sd e�ectively provide a type-checking algorithm.yDe�nition 14 (Pollack, 1992)We write � `sd a :!� A for (9A0� `sd a : A0 ^ A0 !� A), where !� is somereduction relation.The typing relation `sd is the smallest relation closed under the rules:axiom � `sd s : s0 (s : s0) 2 Asd-variable � `sd A :!!� s�; x : A `sd x : Asd-weakening � `sd b : B � `sd A :!!� s�; x : A `sd b : B b 2 Var [Ssd-formation � `sd A :!!� s1 �; x : A `sd B :!!� s2� `sd (�x:A: B) : s3 (s1; s2; s3) 2 Rsd-abstraction �; x : A `sd b : B � `sd (�x:A: B) :!!� s� `sd (�x:A: b) : (�x:A: B)sd-application � `sd b :!!wh (�x:A0: B) � `sd a : A A =� A0� `sd ba : B[x := a]Here !!wh denotes weak-head reduction. In sd-application weak-head reduction isthe quickest way to test if the type of b is �-convertible to a �-type. In sd-weakeningthe side-condition b 2 Var [S �xes a strategy for weakening, namely as high up inthe derivation tree as possible.It is easy to see that the algorithm given by `sd is sound (i.e. if it �nds a type thenthis type is correct):Theorem 15 (Soundness, `sd � `)If � `sd a : A then � ` a : A.ProofEasy induction on � `sd a : A. Just observe that all the `nf -rules are derivablerules for `r (and hence `).However, it is not so simple to prove that the algorithm is complete (i.e. if a termis typable then it will �nd a type):y In the same way, the rules for `nf also provide a type-checking algorithm, but reducingall types to normal form is unacceptably ine�cient for all but the simplest PTSs.

8 Erik PollOpen Problem 16 (Completeness, ` � `sd)If � ` a : A then � `sd a : A0 for some A0 =� A ?In fact, this problem has to be restricted to the so-called functional PTSs; acounterexample for a non-functional PTS is given in (Pollack, 1992).Since `sd� `r� ` it is clear that EP (` � `r) is a necessary condition for ` � `sd.Like EP, proving ` � `sd by induction on the derivation also fails in the case thatthe last step is abstraction.There are two ways in which EP might help us to solve the problem above. Firstly,having proved EP the proof obligation ` � `sd above can be reduced to `r � `sd.Unfortunately, this is still an open problem. Secondly, the problems we encounterwhen trying to prove completeness of `sd and EP are similar, so a method forproving EP might also useful for proving completeness of `sd. But for the methodwe used this is not the case: `nf � `sd does not seem any easier to prove than` � `sd. ReferencesBarendregt, H.P. (1991). Introduction to Generalised Type Systems. Journal of FunctionalProgramming, 1(2), 124{154.Barendregt, H.P. (1992). Lambda calculi with types. Gabbai, D.M., Abramsky, S., andMaibaum, T.S.E. (eds), Handbook of Logic in Computer Science, vol. 1. Oxford Uni-versity Press.Benthem Jutting, B. van, McKinna, J., and Pollack, R. (1993). Checking Algorithms forPure Type Systems. Pages 19{62 of: Types for programs and proofs. LNCS, vol. 806.Springer.Poll, E. (1993). A Typechecker for Bijective Pure Type Systems. Computing Science Note(93/22). Eindhoven University of Technology.Pollack, R. (1992). Typechecking in Pure Type Systems. Pages 271{288 of: Informalproceedings of the 1992 Workshop on Types for Programs and Proofs, B�astad, Sweden.Pollack, R. (1994). The theory of LEGO. Ph.D. thesis, University of Edinburgh.

