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Abstract 

A model bioassay was used to evaluate the epizootic potential and determine the horizontal 

transmission efficiency of Isaria fumosorosea Trinidadian strains against Trialeurodes 

vaporariorum pharate adults under optimum conditions (25 ± 0.5 °C, ~100% RH) at two 

different photoperiods. Untreated pharate adults were arranged on laminated graph paper at 

different distributions to simulate varying infestation levels on a leaf surface. Four potential hosts 

were located 7, 14, and 21 mm away from a central sporulating cadaver simulating high, medium 

and low infestation levels, respectively. Percent hosts colonized were recorded 7, 12, 14 and 21 

days post-treatment during a 16 and 24 hour photophase. After 21 days, mean percent hosts 

colonized at the highest, middle and lowest infestation levels were 93 and 100%, 22 and 58%, 25 

and 39% under a 16 and 24 hour photophase, respectively. From the results, it was concluded 

that the longer the photophase, the greater the percentage of hosts colonized, and as host distance 

increased from the central sporulating cadaver, colonization deceased. The use of this novel 

model bioassay technique is the first attempt to evaluate the epizootic potential and determine the 

horizontal transmission efficiency of I. fumosorosea Trinidadian strains under optimal 

environmental conditions at different photoperiods. This bioassay can be used to assess 

transmission efficiency for the selection of fungi being considered for commercial biopesticide 

development. 

 

 

 Keywords: blastospore, epizootic potential, whitefly, leaf model bioassay, secondary cycling 
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Introduction 

 The greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: 

Aleyrodidae) is a pest of agricultural crops worldwide that necessitates frequent control using 

insecticides (Castañé & Albajes 1992; Antonious & Snyder 1995; Wang et al. 2003). Due to the 

inappropriate use of insecticides, environmental concerns and evolution of resistance to 

important insecticides, there is need for alternative methods to control whiteflies (Omer et al. 

1992; Sanderson & Rousch 1992; Bi & Toscano 2007).  

Entomopathogenic fungi are being developed as major components of integrated pest 

management programs for controlling T. vaporariorum and other whiteflies (Fransen 1993; 

Poprawski & Jones 2000; Meekes et al. 2002; Vidal et al. 2003; Cuthbertson & Walters 2005; 

Cuthbertson et al. 2008). Most research using fungi for controlling aleyrodids has focused 

primarily on using Beauveria bassiana (Balsamo) Vuillemin, Lecanicillium muscarium (Petch) 

Zare & Gams and Aschersonia species; however, Isaria fumosorosea (=Paecilomyces 

fumosoroseus) Wize (Hypocreales: Cordycipitaceae), has also been shown to cause epizootics in 

whitefly populations on various host plants (Lacey et al. 1995; Wraight et al. 2000; Meekes et al. 

2000; Gökçe & Er 2005; Saito 2005; Alma et al. 2007).  

To determine the efficacy of an entomopathogen used in any control program, both biotic (host 

density, developmental stage, etc.) and abiotic (humidity, temperature, photoperiod, etc.) factors 

that regulate epizootics in insect pests need to be evaluated (Shah & Pell 2003; Vidal et al. 2003; 

Pell 2008; Vidal & Fargues 2008). One of many factors important in epizootics, such as epizootic 

potential, depends not only on their ability to sporulate on cadavers, but also their ability to 

spread to healthy insects, a process known as secondary cycling (Thomas et al. 1995, Luz & 

Fargues 1997, 1999; Luz et al. 1999; de la Rosa et al. 2000; Long et al. 2000a; Arthurs & 

Thomas 2001a, b). Factors that promote secondary cycling are important for achieving long term 

control and can increase the horizontal transmission efficiency of the entomopathogen. 

Horizontal transmission efficiency is dependent upon several parameters including the number 

and distribution of individuals in the infected population. The importance of density dependent 

transmission efficiency has been confirmed in the laboratory (Galani & Almasan 1984; 

Carruthers & Soper 1987) and field (Brown & Hasibuan 1995; Keller et al. 1997; de la Rosa et 

al. 2000; Long et al. 2000b; Kreutz et al. 2004).  

Epizootic parameters of entomopathogenic fungi against various arthropods have been studied 

under laboratory conditions using different model systems. Hall (1984) used leaf disc bioassays 

to study the epizootic potential of  L. muscarium isolates against aphids, whereas Mier et al. 

(1991) used glass slides in moisture chambers to conduct in vitro pathogenicity tests on whitefly 

nymphs with Mexican isolates of L. muscarium. Landa et al. (1994) used a glass slide bioassay to 

compare the pathogenicity of conidia from different isolates of I. fumosorosea, L. muscarium and 

B. bassiana against early fourth-instar whitefly nymphs. Later, Landa and Bohatá (1999) used 

glass slides to determine the compatibility of I. fumosorosea with natural insecticides against 

whitefly nymphs.  Most recently, Avery et al. (2004) used a glass slide bioassay to compare the 

pathogenicity of blastospores and conidia of I. fumosorosea Trinidadian strains against pharate 

adults of T. vaporariorum at two different photoperiods. Using this model, horizontal 

transmission efficiency of I. fumosorosea strains after colonization could not be assessed, 

therefore; a novel model bioassay simulating a leaf surface was designed. 
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 The purpose of this study was to determine the horizontal transmission efficiency of I. 

fumosorosea Trinidadian fungal strains in colonizing susceptible pharate adults of the 

greenhouse whitefly at different distances from a sporulating cadaver under different photoperiod 

regimes. Two photoperiods were chosen to compare the horizontal transmission of the fungal 

strains under different growing conditions in a greenhouse. This study reports the use of a 

simulated model bioassay to determine the epizootic potential and horizontal transmission of I. 

fumosorosea Trinidadian strains at two different photophases.  

 

Materials and methods 

Test insects 

   Greenhouse whitefly pharate adults (17-18 d old; = 5
th

 instar) were supplied by British 

Crop Protection Ltd., England.  Prior to the assay, detached leaves (Nicotiana tabacum L.) were 

washed with sterile distilled water to remove other potential fungi contaminating the hosts and 

allowed to dry in a fume hood.  Pharate adults were carefully removed at random from the semi-

desiccated leaf surface with a probe made from a flattened hypodermic needle (Landa et al. 1994) 

for use in the bioassays. 

 

Fungal strains 

 Isaria fumosorosea (Ifr) strains T, T10 and T11 used in this study were originally 

collected in Trinidad and maintained at CABI BioScience (Egham, UK) on potato dextrose agar 

(PDA; Oxoid ) slants. Strains T and T11 were both originally isolated from Bemisia tabaci 

(Gennadius) in 1990 and 1991, respectively, and strain T10 from an unknown aphid species in 

1990.  Ifr Trinidadian strains were maintained on PDA slants at Birkbeck, University of London 

and later cultured at 25 ± 0.5 °C on PDA prior to use in the experiments.  

 

Liquid culture media for blastospores  

 Liquid culture medium modified from Jackson et al. (1997) was used to produce the 

blastospores of Ifr strains.  The liquid culture media contained the following ingredients per liter:  

KH2PO4, 2 g; CaCl2.2H2O, 0.4 g;  MgSO4.7H2O, 0.3 g; Fe2SO4.7H2O, 50 mg; CoCl2.6H2O, 37 

mg; MnCl2.4H2O, 16 mg; ZnSO4.7H2O, 14 mg; glucose, 80 g  and Casamino acids, 13.2 g. To 

supply the required vitamins for the blastospore growth (Jackson et al. 1997), a 1 mL aliquot of 

Aspergillus vitamin solution was added to the medium which contained the following: biotin 

stock, 15 mL, nictinomide, 100 mg, pyridoxin, 250 mg, p-aminobenzoic acid, 200 mg, riboflavin, 

100 mg, aneuren HCl, 0.5 mg, and pantothenic acid, 200 mg per liter of solution.  Lastly, glucose 

was added to the liquid culture media stock, adjusted to a pH of 5.5 by the addition of HCl, 

autoclaved and then combined with the sterile Aspergillus vitamin stock solution.  

 

Ifr conidial inoculum preparation and blastospore production 

 A circular plug (0.7 cm diameter) was removed from a conidial culture grown on PDA 

for 14 d at 25 ± 0.5 °C under constant fluorescent light for each strain, i.e. conditions previously 

determined to be optimum for conidial production for Ifr on PDA solid media (Avery 2002).  

Each plug was transferred to a PDA slant in a glass tube and incubated at 25 ± 0.5 °C light for 14 

d under constant fluorescent light.  These new PDA slant conidial cultures served as the 

inoculum for the liquid-culture media for producing blastospores. Conidial suspensions for 
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inoculating the submerged cultures were prepared by flooding each PDA slant with 10 mL of 

sterile, distilled water.  Sterile glass beads (20-25 beads; 1 mm in diameter) were then added, and 

the tube suspension was agitated using a vortex mixer. The concentration of the inoculum for 

submerged cultures per strain was standardized using a hemocytometer to 2.2 ± 0.2 x 10
6
 conidia 

mL
-1

.  

 Ifr inoculum suspensions (10 mL) were then poured into three separate flasks containing 

the liquid-culture medium. Liquid-cultures (100 mL in 250 ml Erlenmeyer flasks) were incubated 

at 25 °C on an orbital shaker (Gallenkamp™) at 140 rpm for 4 d and the pH was not buffered 

during culture growth.  After incubation, each liquid culture broth was filtered through a double 

layer of sterile muslin to separate any fungal hyphae from the blastospores.  

 From each replicate filtered culture, a 30 µL pipette sample was spread with a bent sterile 

glass rod onto two separate PDA plates to determine the purity of each culture. All PDA plates 

were cultured at 25 ± 0.5 °C under constant fluorescent light for 2-3 d and observed to determine 

if contaminated with other fungi.  Pure blastospore suspension per Ifr strain (based on observed 

plate culture) was chosen as the source of inoculum for producing the cadavers at both 

photoperiod regimes. The mean number ± SEM of viable blastospores mL
-1

 used to inoculate the 

whitefly pharate adult hosts for all Ifr strains produced in each flask was 1.8 ± 0.13 x 10
7
 (Avery 

et al. 2004). 

 

Cadaver conidial production 

 Filtered blastospore droplets (~2 µL per drop) of each Ifr strain suspended in 0.01% 

Triton X-100 were placed on four sterile glass slides using an inoculating loop as described by 

Avery et al. (2004). Pharate adults of similar size were randomly removed from one of the two 

semi-desiccated tobacco leaves, placed in the middle of each suspension drop on the slide and 

allowed to dry in the fume hood. After the drops had dried, each slide containing 10 pharate 

adults were placed inside a sterile plastic Petri dish (100 x 15 mm) containing PDA and sealed 

using Parafilm
®

. The PDA in the Petri dishes maintained a high relative humidity (RH ~100%) 

for the duration of the assay.  Each Petri dish was then placed in a growth chamber, and the 

assays were incubated at 25 ± 0.5 °C under a 24 h photophase. After 8 d of incubation, 5 

sporulating cadavers for each strain were selected and scraped from a slide with a sterile razor 

blade and vortexed in 1 mL of 0.01% Triton X-100 (v/v) for 60 s. Ten individual aliquots (10 µL 

each) were taken from each suspension and the average conidial concentration per cadaver per Ifr 

strain was determined using a hemocytometer.  The mean number ± SEM of conidia mL
-1

 

produced per cadaver for strain T, T10 and T11 was 11.6 ± 3.2, 10.3 ± 1.4 and 3.3 ± 0.5 x 10
3
, 

respectively.   

 

Model bioassay protocol 

Ifr-infected pharate adult cadavers used for these studies were produced as described above. The 

dried inoculated pharate adults were then carefully transferred to the center of each sterile 

(alcohol swabbed) laminated graph paper square (5 x 5 mm) using the flattened hypodermic 

needle and adhered to the surface by a drop of water. Four healthy un-treated pharate adults were 

gently removed from a semi-desiccated leaf and placed surrounding the central inoculated 

pharate adult (cadaver) according to the specific grid arrangement (Figure 1). Grid arrangement 

A, B and C, simulated high, medium and low infestation levels on a leaf surface, respectively. 
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Each complete square (5 total insect hosts including the central cadaver) was carefully laid onto a 

sterile V-shaped glass rod previously placed on PDA agar in a plastic Petri dish (100 x 15 mm) 

and then sealed with Parafilm
®

. The glass rod was used to elevate the plastic square above the 

PDA so as to minimize contamination of other possible fungal pathogens present on the 

susceptible insect hosts. The sealed dishes were incubated at 25 ± 0.5 °C in growth chambers 

under a 16 and 24 h photophase. Each dish which contained the completed grid with insect hosts 

surrounding a central cadaver resting on the glass rod represented a model bioassay.   

 At assessment of each bioassay, Petri dish lids were carefully removed and the total 

number of hosts (including exuviae or eclosed adults) colonized by the fungus was recorded 7, 

12, 14 and 21 d post-treatment. Colonized hosts were defined as producing conidia.  To enhance 

observation of the transparent hyphal growth across the laminated surface, a colored plastic Petri 

dish was placed under the bioassay plate. The number of hosts colonized at both photoperiods 

was observed and recorded during the same period. All experiments were conducted using 

random samples of pharate adults from a single batch of whiteflies on two different leaves and 

tests under different photoperiods were conducted simultaneously. The different densities in the 

bioassay per Ifr strain tested were replicated 3 times and the experiment was repeated under a 16 

and 24 h photophase. 

 

Statistical analysis 

 Results were subjected to a three-way RMANOVA ( factorial analysis to 

determine the effect of time, fungal strain, host distribution and photoperiod on host 

colonization. If no interaction was determined, than the mean percent hosts colonized between 

strains and infestation levels were separated using a one-way ANOVA + Tukey HSD test (α = 

0.05) after being arcsine transformed. Where no significant differences in percent colonization 

were found between the strains at the different densities over time, the data were pooled and re-

analyzed. Percent of non-treated hosts colonized at different infestation levels per bioassay over 

time were arcsine transformed prior to being analyzed using a repeated measures (RM) ANOVA 

(  = 0.05). To determine the relationships between host distance from the central cadaver and 

percent colonization, data were submitted to regression analyses and compared at both 

photoperiods. These statistical tests were conducted using PROC GLM procedures of SAS 

WIN_PRO platform (SAS Institute Inc., Cary, NC, 1999-2001). 

Using Least Squares Dummy Regression Analysis (LSDR) we tested the null hypothesis: Ho: B11 

= B12 = 0. That is, the regression coefficients for distance predicting colonization would be the 

same across the two photoperiods.  For this analysis, distance was coded 1 for the 16:8 LD 

photoperiod and 2 for the 24:0 LD photoperiod. The two conceptual regression models were as 

follows: 

Model 1: y1 = β01 +β11 x for x ≤ 24:0 LD . 

Model 2: y2 = β02 +β12 x for 16:8 LD x ≥ 24:0 LD . 

Where  

y1 = photoperiod 1 (16:8 LD) 

y2 = photoperiod 2 (24:0 LD) 

x = Distance 

These statistical tests were conducted using the PROC REG and ‘TEST’ statements in SAS for 

Windows version 9.1 (SAS Institute Inc., Cary, NC, 1999-2001).  
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Results 

Effect of photoperiod regimes and fungal strains on colonization of insect hosts 

Percent of hosts colonized at each infestation level for both photoperiod regimes increased 

significantly over time (F = 3.53; df = 3, 215; P = 0.0170). A significant interaction effect of host 

distribution on the percent colonization was observed amongst all the levels (F = 4.74; df = 2, 

215; P < 0.0001) and, when comparing infestation levels, host colonization was significantly 

greater at the highest level (F = 34.9; df = 2, 215; P < 0.0001) compared to the medium or the 

lowest level after 7 days (Table 1). No differences (F = 0.27; df = 2, 53; P = 0.767) were 

observed between the performance of the fungal strains T, T10 and T11 on the percent 

colonization at either photoperiod regime for 7, 12, 14 and 21 days post treatment. 

The percent of hosts colonized 21 d post-treatment under constant light for the highest infestation 

level (mean ± SEM: 100 ± 0.0) was 42% and 61% higher (F = 6.21; df = 2, 26; P = 0.0017) 

compared to the medium (58 ± 12.5) and lowest (39 ± 11.1) level which were similar, 

respectively (Table 2). Under a 16 h photophase, the percent hosts colonized 21 d post treatment 

for the highest infestation level (mean ± SEM: 92 ± 4.2) was 70% and 67% higher compared to 

the medium (22 ± 5.7) and lowest (25 ± 8.3) level which were similar, respectively. 

 

Effect of time, infestation level and photoperiod regimes on colonization of hosts 

   Colonization of the whitefly hosts by all fungal treatments was significantly 

affected by time (RMANOVA: F = 21.78; df = 3, 211; P < 0.0001), infestation level (F = 84.18; 

df = 2, 211; P < 0.0001) and photoperiod (F = 134.34; df = 1, 211; P < 0.0001). At all infestation 

levels, colonization increased over time (F = 4.74; df = 6, 211; P = 0.0002) and the longer 

photoperiod (24 h) had a significant positive effect (F = 3.53; df = 1, 211; P = 0.0170) compared 

to the shorter photoperiod (16 h) over the 21 d observation period.  

Linear regression slopes of percent colonization of the susceptible pharate hosts were significant 

at 16 h (F = 26.6; df = 1, 26; P < 0.0001) and 24 h (F = 20.1; df = 1, 26; P < 0.0001) 21 d post 

treatment (Figure 2). As the distance from the sporulating cadaver and the surrounding 

susceptible hosts increased, the percentage of hosts colonized significantly decreased at both 16 h 

(R
2
 = - 0.6297; P < 0.001) and 24 h (R

2
 = - 0.8326; P < 0.001) photoperiod regimes. Regression 

estimates suggest that distance is a stronger predictor of colonization for the 24:0 photoperiod 

(slope = -4.32046) than for the 16:8 LD photoperiod (slope = -4.71409).  Results from the F test 

confirmed a significant difference between the slopes (F=18.50, p = 0.0007) with the 24 h 

photophase having a higher percent of susceptible hosts colonized at all infestation levels 

compared to the 16 h photoperiod.  The null hypothesis that the two slopes were identical was 

rejected, confirming that the slopes do indeed differ significantly across the 2 photoperiods.   

 

Discussion  

Epizootic potential of fungal strains against whitefly hosts 

In this study, potential hosts surrounding the central sporulating cadaver were colonized either as 

pharate adults or exuviae with eclosed adults. Sometimes Ifr hyphae were observed to entangle 

the eclosing adults by surrounding the nymphal casing (exuviae) with a netted mycelial mass and 

then sporulate. Wraight et al. (1998) observed postmortem hyphal growth and sporulation of Ifr 
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(20°C and 100% RH) rapidly covered the dead whitefly host and extended several millimeters 

onto the surrounding leaf surface. 

In the distribution studies, with a single pharate adult being the only major nutrient resource for 

the fungus, the Ifr hyphae were able to colonize some of the surrounding hosts or host exuviae 

with eclosed adults located 21 mm away. However, honeydew transferred with the initially 

infected nymphs may also have provided a secondary carbon resource for the fungal hyphae. 

Fokkema et al. (1983) noted that aphid honeydew stimulated the growth of various saprophytic 

fungi on the wheat leaf phylloplane.  

Colonization of healthy whitefly hosts may have been influenced by possible auto-dissemination 

of spores by the eclosed adults (range of eclosed adults per density: 0-50%) while inside each 

bioassay chamber. Auto-dissemination of Ifr PFR 97 spores by whitefly adults was recorded in 

greenhouse conditions on cucumber plants (Bohatá & Landa 2004). However, in this study, the 

auto-dissemination effect would be similar because the percent eclosion of the pharate adults 

after 21 d exposure to 16 h (10.9 ± 2.90) or 24 h (13.9 ± 7.35) photophases were similar for the 

different infestation levels. Once whiteflies eclosed, regardless of the photophase, they were 

observed to be impeded from flying freely and immediately became entangled in the infective 

fungal mycelium extending away from the central cadaver. Also, after analyzing the percent 

colonization over time, a consistent increase was found for all infestation levels at both 

photoperiod regimes.  

The greatest distance infective hyphae spread from the central cadaver to susceptible hosts across 

the artificial surface was 21 mm. Wraight et al. (1998) indicated that the ability of Ifr hyphae to 

grow extensively over a leaf surface under humid conditions is a characteristic that certainly 

enhances its rapid spread through whitefly populations and its ability to cause epizootics.  The 

increase in photophase from 16 to 24 h resulted in greater colonization of the whitefly hosts with 

Ifr conidia regardless of fungal strain. In contrast, Ifr Trinidadian conidial treatments cultured on 

PDA and applied against pharate whitefly adults on glass slides, indicated that the infection and 

colonization rates were similar under either photophase (Avery et al. 2004). The increased 

virulence may have resulted from the fungal strains being intially passaged through the central 

cadaver; however, this hypothesis was not verified in the present study. In addition to fungal 

virulence, an increased photophase has also been demonstrated to have a positive effect on the 

infection rate, conidiation and development of Ifr (Sakamoto et al. 1985; de la Torre & Cárdenas-

Cota 1996; Avery et al. 2004). 

 In this model system, by varying distances healthy whitefly hosts were located from the 

central sporulating cadaver, it was possible to simulate high, medium and low infestation levels 

found on a leaf surface. However, this model system is limited and cannot account for behavioral 

parameters of the whitefly or plant characteristics that could affect the horizontal transmission of 

the fungus. For instance, in this study, whiteflies were held under optimum conditions for fungal 

development (Avery 2002), which may not reflect greenhouse or field environmental conditions 

due to the microclimatic conditions present on the leaf surface. In tritrophic interactions, 

parameters not included were the possible effects trichome type and density or allelochemicals 

found on the leaf surface on the growth of Ifr. In a similar study with greenhouse whitefly hosts, 

Ifr strains were not inhibited by the presence of exudates from the trichomes of Pelargonium 

cultivars (Avery 2002).  However, Vega et al. (1997), and Lacey and Mercadier (1998) found that 

Ifr growth was inhibited by selected allelochemicals or secondary compounds commonly found 
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on the surface of leaves.  In addition, Poprawski et al (2000) tested similar allelochemicals 

against conidial suspensions of both Ifr  and B. bassiana. Perhaps these allelochemicals could be 

spread on the laminated surface of this model bioassay to determine what effect they may have 

on the potential infectivity, virulence and horizontal transmission of Ifr or other 

entomopathogenic fungi. Lastly, whitefly nymphs usually feed on the underside of the leaf 

surface, therefore the honeydew could be removed naturally from the phylloplane which may 

affect the colonization rate of Ifr.. The leaf model bioassay was designed simply to determine the 

effect of photoperiod on Ifr strains and whether the hyphae from one infected insect (cadaver) 

could colonize surrounding hosts at different spatial arrangements simulating different infestation 

levels under optimum conditions of temperature and humidity.   

The choice of a 24 h photophase used in this model bioassay was based on previous data showing 

that Ifr Trinidadian strains grew faster under constant light compared to a shorter photophase 

(Avery 2002, Avery et al. 2004).  In addition, certain plants such as pepper plants grown under 

continuous lighting (24 h) have resulted in earlier flowering and fruiting giving better yields 

under greenhouse conditions (Demers and Gosselin 1999). Therefore in this model, the choice of 

comparing the virulence and horizontal transmission of Ifr during either a 24 or 16 h photoperiod 

may have some practical application.  For instance, although the colonization was faster under 

constant light, the end result after 21 days was not significantly different. Therefore, in 

greenhouse production, the added expense incurred for increasing the photoperiod to supplement 

the daylight hours is not warranted according to this model.  The same result could be obtained at 

a shorter photophase over time and theoretically save the grower the added expense of using 

more electricity for lights in the greenhouse.  However, this model is based on laboratory data 

and needs to be confirmed under greenhouse conditions. 

 

Effect of environmental conditions and host distribution on transmission efficiency  

Many authors have indicated that epizootics are dependent upon various abiotic and biotic factors 

which include environmental conditions and population distribution.  For example, in a 

laboratory experiment using hypocrealean under optimum growing conditions, conidia transfer 

between inoculated B. bassiana and untreated spruce bark beetles at different ratios resulted in 

96% mortality at a ratio of 1:1 and 90% mortality at a ratio of 1:2 (Kreutz et al. 2004). In addition 

at ratios of 1:5, 1:10 and 1:20 the mortalities after 7 days were 83, 77 and 75%, respectively.  In 

soil experiments, horizontal transmission efficiency of infection by Hypocreales was correlated 

with the distribution of the pest population (Keller et al. 1997; Long et al. 2000a, b).  

In this study, the colonization of whitefly hosts was positively correlated to the distribution of the 

population under optimum environmental conditions. The number of susceptible hosts colonized 

after 21 days was greatest when nearest to the sporulating cadaver. It was observed that host 

colonization occurred 61 and 67 % faster at the high infestation level than with the low level 

under a 24 and 16 hour photoperiod regime, respectively. By decreasing the distance susceptible 

hosts are located from the cadaver, the contact time by hyphae from the infected host is 

potentially shortened and subsequently the transmission efficiency should increase. 

Transmission efficiencies of Ifr thus appear to be dependent upon host distribution under high 

humidity.  However, this was a model system and it does not take into account all the parameters 

involved in epizootics. In closed production systems, e.g. greenhouses, where optimum growing 

conditions for Ifr can be provided by short periods of misting, secondary cycling of the fungus 
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may occur as well. Vega et al. (1999) found that the Ifr blastospore formulation can germinate in 

6-8 h under high humidity conditions.  Ifr blastospore products, PFR 97™ 20% WDG (Certis, 

USA) and PreFeRal® WG, (BioBest, Belgium) are both recommended to be most effective when 

application is initiated before or at the first sign of insect presence. Also, these products are 

recommended to be applied when populations of whitefly are low in ‘hot spots” before high 

infestations occur. Therefore, based on this model system, with only one cadaver infected with 

Ifr, at the lowest infestation level, the fungal hyphae were still able to infect the other whitefly 

hosts 21 mm away.  This implies that transmission efficiency and secondary cycling can occur at 

very low infestation levels with Ifr under high humidity conditions readily available in a 

greenhouse. Commercial growers could remediate with Ifr at this low infestation level with 

potential infection and secondary cycling occurring for the next whitefly generation.  

   

Model systems as tools for predicting fungal epizootics  

 Most modeling on transmission efficiency has dealt with entomopthoralean fungi (Brown 

and Hasibaun 1995; Oduor et al. 1997; Verghese and Sreedevi 2006); however, similar work for 

hypocrealean-host relationships is both lacking and needed.  By using model systems, such as 

those used in this study, the likelihood of epizootics developing may be more accurately 

predicted for a specific fungus, given certain environmental and population parameters. In 

addition, this model bioassay can be used for simulating and predicting the virulence and 

horizontal transmission of Ifr or other entomopathogenic fungi against aleyrodid species or 

insects with a sessile developmental stage prior to application in the field.   

This novel model bioassay technique is the first to evaluate the epizootic potential and determine 

the horizontal transmission efficiency of blastospores of I. fumosorosea Trinidadian strains under 

optimal environmental conditions at different photoperiods. 
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Figures 

Figure 1. Distribution of infected (solid circles) and susceptible (open circles) Trialeurodes 

vaporariorum hosts and characteristics for the various grid arrangements A, B and C observed 

under 16:8 and 24:0 hour LD photoperiod regimes. Each unit square measures 5 x 5 mm. 

 

Figure 2. Correlation between the distance of surrounding susceptible Trialeurodes 

vaporariorum  hosts from the sporulating cadaver and the percentage colonized at different 

photoperiods when incubated at 25 ±  0.5 ºC with ~100 RH. There are 3 data points (1 per strain) 

for the varying distances from the cadaver represented, although some are obscured due to 

similar values. 
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 Grid arrangement A Grid arrangement B Grid arrangement C 

 

 

Grid arrangement A B C 
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Distance from  
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Table 1. Effect of photophase (hr), distance from the cadaver and Trinidadian fungal strains on 

the percent colonization of susceptible Trialeurodes vaporariorum (GW) hosts over time 

under laboratory conditions. 

   

Mean % GW hosts colonized
a
 /days post-

treatment 

Main Effect   n 7 12 14 21 

 

Photophase (hr)       

16  27   0.0a 17.6a 19.4a 44.0a 

24  27 45.4b 51.9b 57.4b 65.7b 

distance from the cadaver
b
       

7  18 30.6a 65.3b 72.2b 95.8b 

14  18 20.8a 22.2a 25.0a 36.8a 

21  18 16.6a 16.7a 18.1a 31.9a 

Fungal strain       

T  18 30.6a 40.3a 44.4a 62.5a 

T10  18 19.4a 33.3a 36.1a 54.9a 

T11  18 18.1a 30.6a 34.7a 47.2a 

a
Means followed by the same letter are not significantly different (Duncan multiple range test, 

P < 0.05) 
b
Four potential hosts were located 7.1mm (high), 14.1mm (medium) and 21.2 mm (low) from 

a central sporulating T. vaporariorum cadaver.(Infestation level)  
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Table 2. Main effect
a
 of host distribution on the colonization of Trialeurodes 

vaporariorum (GW) with Isaria fumosorosea Trinidadian strains at different 

photoperiods (h L:D) incubated at 25 ± 0.5 °C with ~100% RH. 

 Mean percentage ± SEM of GW colonized / day
bc

 

Host distribution  

(h L:D) 7 12 14 21 

 

High (16:8) 0 ± 0.0c 53 ± 2.8b 58 ± 4.2b   92 ± 4.2a  

High (24:0) 61 ± 11.1a 78 ±  7.7a 83 ± 7.2a 100 ± 0.0a 
     

Medium (16:8) 0 ± 0.0c 0 ± 0.0c 6 ± 6.0c 22 ± 5.7c 

Medium (24:0)   42 ± 11.7ab  44 ± 12.3b 50 ± 12.5b    58 ± 12.5b  

     

Low (16:8) 0 ± 0.0c 0 ± 0.0c 0 ± 0.0c 25 ± 8.3c 

Low (24:0)  33 ± 10.2b  33 ± 10.2b 36 ± 9.4b      39 ± 11.1cb  
a
The performance data for all I. fumosorosea strains for both photoperiods and 

distances from the cadaver were found similar (MANOVA, DMRT, P > 0.05) and 

were therefore combined prior to determining the mean percentage of GW colonized 

per day. 

b
Four potential hosts were located 7.1, 14.1 and 21.2 mm from a central sporulating 

GW cadaver for the highest, medium and lowest densities, respectively. (n = 9 

replicates for all densities).  

c
Actual untransformed mean values in a column followed by different letters among 

the densities per hour (h) LD photoperiod are significantly different (Tukey HSD 

test, P < 0.05). Mean values were arcsine transformed prior to analysis. 
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