
Proving Termination of Input-ConsumingLogi ProgramsJan{Georg Smaus�INRIA-RoquenourtBP 105, 78153 Le Chesnay Cedex, FraneAbstratA lass of prediates is identi�ed for whih termination does not dependon left-to-right exeution. The only assumption about the seletion rule isthat derivations are input-onsuming, that is, in eah derivation step, theinput arguments of the seleted atom do not beome instantiated. Thisassumption is a natural abstration of previous work on programs with delaydelarations. The method for showing that a prediate is in that lass isbased on level mappings, losely following the traditional approah for LD-derivations. Programs are assumed to be well and niely moded, whih aretwo widely used onepts for veri�ation. Many prediates terminate undersuh weak assumptions. Knowing these prediates is useful even for programswhere not all prediates have this property.1 IntrodutionTermination of logi programs has been widely studied for LD-derivations,that is derivations where the leftmost atom in a query is always seleted [1, 3,7, 8, 9, 10, 12℄. These works are based on the following idea: when an atoma in a query is seleted, it is possible to pin down the size1 of a. This sizeannot hange via further instantiation. It is then shown that for the atomsintrodued in this derivation step, it is again possible to pin down their sizewhen eventually they are seleted, and these atoms are smaller than a.This idea has also been applied to arbitrary derivations [6℄. Sine norestrition is imposed on when an atom an be seleted, it is required that ineah query in a derivation, the size of eah atom is always bounded. Programsthat ful�ll this requirement are alled strongly terminating. The lass ofstrongly terminating programs is very limited.For most logi programs, it is neessary for termination to require a er-tain degree of instantiation of an atom before it an be seleted. This anbe ahieved using delay delarations [2, 16, 17, 18, 19, 22, 23℄. The problemis that, depending on what kind of delay delarations and seletion rule areused, it is often not possible to pin down the size of the seleted atom, sinethis size may depend on the resolution of other atoms in the query that are�Formerly: University of Kent at Canterbury, United Kingdom.1The tehnial meaning of \pinning down the size" di�ers among di�erent methods.This will be disussed in Set. 7.
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not yet resolved. Nevertheless, the approahes by Marhiori and Teusink [17℄and Martin and King [18℄, and to a limited extent L�uttringhaus-Kappel [16℄are based on the idea desribed above.Our approah falls between the two extremes of making no assumptionsabout the seletion rule on the one hand and making very spei� assump-tions on the other. We believe that a reasonable minimal requirement fortermination an be formulated in terms of modes:In eah derivation step, the input arguments of the seleted atomannot beome instantiated.In other words, an atom in a query an only be seleted when it is suÆientlyinstantiated so that the most general uni�er (MGU) with the lause head doesnot bind the input arguments of the atom. We all derivations whih meetthis requirement input-onsuming.This paper is about identifying prediates for whih all input-onsumingderivations are �nite. Other works in this area have usually made spei�assumptions about the seletion rule and the delay delarations, for exampleloal seletion rules [17℄, delay delarations that test arguments for ground-ness or rigidness [16, 18℄, or the default left-to-right seletion rule of mostProlog implementations [19, 22, 23℄. In ontrast, we show how previous re-sults about LD-derivations an be generalised, the only assumption aboutthe seletion rule being that derivations are input-onsuming.We exploit that under ertain onditions, it is enough to rely on a relativederease in the size of the seleted atom.Example 1.1 Consider the usual append program, where the �rst two ar-gument positions are input positions. The following is an input-onsumingderivation. The seleted atom is always underlined. On the right hand side,we indiate some of the variable bindings made in this derivation.append([1℄; [℄; As); append(As; [℄; Bs); (As = [1jAs0℄)append([℄; [℄; As0); append([1jAs0℄; [℄; Bs) ; (Bs = [1jBs0℄)append([℄; [℄; As0); append(As0; [℄; Bs0) ; (As0 = [℄)append([℄; [℄; Bs0); 2 (Bs0 = [℄)When append([1jAs0℄; [℄; Bs) is seleted, it is not possible to pin down its sizein any meaningful way. In fat, nothing an be said about the length of the(input-onsuming) derivation assoiated with append([1jAs0℄; [℄; Bs) withoutknowing about other atoms whih might instantiate As0. However, the deriva-tion ould be in�nite only if some derivation assoiated with append([℄; [℄; As0)was in�nite. Our method is based on suh a dependeny between the atomsof a query.As disussed in Set. 7, previous approahes [6, 16, 17, 18℄ annot formallyshow termination of derivations with oroutining suh as the one above.Even though the lass of programs for whih all input-onsuming derivationsare �nite is obviously larger than the lass of strongly terminating programs,it is still quite limited. The following example illustrates this.



Example 1.2 Consider the following program, where for both prediates,the �rst position is the only input position.permute([℄, [℄).permute(Y, [U | X℄) :-delete(Y, U, Z),permute(Z, X). delete([X|Z℄, X, Z).delete([U|Y℄, X, [U|Z℄) :-delete(Y, X, Z).Then we have the following in�nite input-onsuming derivation:permute([1℄; W); (W = [U0jX0℄)delete([1℄; U0; Z0); permute(Z0; X0) ; (Z0 = [1jZ00℄)delete([℄; U0; Z00); permute([1jZ00℄; X0) ; (X0 = [U00jX00℄)delete([℄; U0; Z00); delete([1jZ00℄; U00; Z000); permute(Z000; X00) ;delete([℄; U0; Z00); delete(Z00; U00; Z0000); permute([1jZ0000℄; X00) ; : : :To ensure termination even for programs like the one above, most authorshave made stronger assumptions about the seletion rule, thereby negletingthe important lass for whih assuming input-onsuming derivations is suf-�ient. We have attempted to formulate our results as generally as possibleto make them widely appliable.The rest of this paper is organised as follows. The next setion �xesthe notation. Setion 3 introdues well and niely moded programs andSetion 4 shows that for these, it is suÆient to prove termination for one-atom queries. Setion 5 then deals with how one-atom queries an be provento terminate. In Set. 6 we sketh how the method presented here ould beapplied. Setion 7 disusses the results and the related work.2 PreliminariesOur notation follows Apt [1℄ and Etalle et al. [12℄. For the examples we useProlog syntax. We reall some important notions. The set of variables ina syntati objet o is denoted as vars(o). A syntati objet is linear ifevery variable ours in it at most one. The domain of a substitution � isdom(�) = fx j x� 6= xg.For a prediate p=n, a mode is an atom p(m1; : : : ;mn), where mi 2fI ;Og for i 2 f1; : : : ; ng. Positions with I are alled input positions,and positions with O are alled output positions of p. We assume that a�xed mode is assoiated with eah prediate in a program. To simplify thenotation, an atom written as p(s; t) means: s is the vetor of terms �llingthe input positions, and t is the vetor of terms �lling the output positions.An atom p(s; t) is input-linear if s is linear, output-linear if t is linear.A query is a �nite sequene of atoms. Atoms are denoted by a, b, h,queries by B, F , H, Q, R. We write a 2 B if a is an atom in B. A derivationstep for a program P is a pair hQ; �i; hR; ��i, where Q = Q1; p(s; t); Q2 andR = Q1; B;Q2 are queries; � is a substitution; p(v;u) B a renamed variant



of a lause in P and � an MGU of p(s; t)� and p(v;u). We all p(s; t)� theseleted atom and R�� the resolvent of Q� and h B. A derivation stepis input-onsuming if dom(�) \ vars(s�) = ;.2A derivation � for a program P is a sequene hQ0; �0i; hQ1; �1i; : : : whereeah pair hQi; �ii; hQi+1; �i+1i in � is a derivation step. Alternatively, we alsosay that � is a derivation of P [fQ0�0g. We sometimes denote a derivationas Q0�0;Q1�1; : : :. An LD-derivation is a derivation where the seleted atomis always the leftmost atom in a query. An input-onsuming derivation isa derivation onsisting of input-onsuming derivation steps.If (F; a;H); (F;B;H)� is a step in a derivation, then eah atom in B� is adiret desendant of a, and b� is a diret desendant of b for all b 2 F;H.We say b is a desendant of a if (b; a) is in the reexive, transitive losure ofthe relation is a diret desendant. The desendants of a set of atoms are de-�ned in the obvious way. Consider a derivation Q0; : : : ;Qi; : : : ;Qj ;Qj+1; : : :.We all Qj;Qj+1 an a-step if a is an atom in Qi and the seleted atom inQj ;Qj+1 is a desendant of a.3 ModesIn this setion we introdue well moded and niely moded programs, whihare standard onepts used for veri�ation of logi programs [2, 5, 11, 12, 13℄.Well-modedness has been introdued by Dembinski and Ma luszy�nski [11℄and widely used sine. In Merury it is even mandatory that programs arewell moded (possibly after reordering of atoms by the ompiler), whih is oneof the reasons for its remarkable performane [24℄.De�nition 3.1 [well moded℄ A query Q = p1(s1; t1); : : : ; pn(sn; tn) is wellmoded if for all i 2 f1; : : : ; ng and L = 1vars(si) � i�1[j=L vars(tj) (1)The lause p(t0; sn+1) Q is well moded if (1) holds for all i 2 f1; : : : ; n+1g and L = 0. A program is well moded if all of its lauses are well moded.Note that a one-atom query p(s; t) is well moded if and only if s is ground.Another widely used onept is the following.De�nition 3.2 [niely moded℄ A query Q = p1(s1; t1); : : : ; pn(sn; tn) isniely moded if t1; : : : ; tn is a linear vetor of terms and for all i 2 f1; : : : ; ngvars(si) \ n[j=i vars(tj) = ;: (2)2Sine the MGU is unique up to variable renaming, we may assume that wheneverpossible, an MGU � is used suh that dom(�) \ vars(s�) = ;.



The lause C = p(t0; sn+1) Q is niely moded if Q is niely moded andvars(t0) \ n[j=1 vars(tj) = ;: (3)A program is niely moded if all of its lauses are niely moded.Note that a one-atom query p(s; t) is niely moded if and only if vars(s) \vars(t) = ; and t is linear. We an thus state the following propositionwhih follows from the de�nitions.Proposition 3.1 A one-atom query p(s; t) is well and niely moded if andonly if s is ground and t is linear.Example 3.1 The program in Ex. 1.2 is well and niely moded in modefpermute(I ;O); delete(I ;O ;O)g. It is neither well moded nor niely modedin mode fpermute(O ; I ); delete(O ; I ; I )g, however it an easily be made welland niely moded by interhanging the two body atoms in the seond lause.The example shows that multiple modes of a prediate an be obtained bymaintaining multiple (renamed) versions of a prediate, whih di�er in the or-der of atoms in the lause bodies. This is why some authors assume that eahprediate has a �xed mode [12, 19, 24℄. However, in those works, assuminga �xed mode is, from a formal point of view, a real restrition.In this paper, assuming a �xed mode for eah prediate is not at all arestrition. It is merely for notational onveniene that we assume, in allformal statements, a \left-to-right" data ow in the above de�nitions. Ourresults generalise to multiple modes without having multiple versions of eahprediate, sine we onsider derivations where the textual position of an atomwithin a query is irrelevant for its seletion. For reasons of spae, we annotexplain this in more detail, and refer to [20, Subset. 5.3℄.The following lemmas state persistene properties of well-modedness andniely-modedness.Lemma 3.2 Every resolvent of a well moded query Q and a well modedlause C, where vars(C) \ vars(Q) = ;, is well moded [2, Lemma 16℄.Lemma 3.3 Every resolvent of a niely moded query Q and a niely modedlause C, where vars(C) \ vars(Q) = ; and the head of C is input-linear, isniely moded [2, Lemma 11℄.For input-onsuming derivations, the requirement that the lause head isinput-linear an be dropped. It is assumed that the seleted atom is suÆ-iently instantiated, so that a multiple ourrene of the same variable in theinput arguments of the lause head annot ause any bindings to the query.Note that requiring input-linear lause heads is a severe restrition sine itrules out input arguments of the seleted atom being tested for equality.



Lemma 3.4 Every resolvent of a niely moded query Q and a niely modedlause C, where the derivation step is input-onsuming and vars(C) \vars(Q) = ;, is niely moded. (Proof see [21℄.)For a niely moded program and query, it is guaranteed that every input-onsuming derivation step only instantiates other atoms in the query thatour to the right of the seleted atom.Lemma 3.5 Let P be a niely moded program, Q = Q1; p(s; t); Q2 a nielymoded query, and hQ; ;i; hQ1;B;Q2; �i an input-onsuming derivation step.Then dom(�) \ vars(Q1) = ;.Proof. Sine the derivation step is input-onsuming, dom(�) \ vars(Q) �vars(t). Thus sine Q is niely moded, dom(�) \ vars(Q1) = ;. 2This setion mainly served the purpose of realling some well-known modeonepts. However, Lemma 3.4 is an original result.4 Controlled CoroutiningIn this setion we de�ne atom-terminating prediates. A prediate p is atom-terminating if (under ertain onditions) all input-onsuming derivations of aquery p(s; t) are �nite. Like Etalle et al. [12℄, we then show that terminationfor one-atom queries implies termination for arbitrary queries.For LD-derivations, it is almost obvious that it is suÆient to show termi-nation for one-atom queries, and it only requires that programs and queriesare well moded [12, Lemma 4.2℄. Given an LD-derivation � for a querya1; : : : ; an, the sub-derivations for eah ai do not interleave, and therefore �an be regarded as a derivation for a1 followed by a derivation for a2 and soforth. The following example illustrates that in the ontext of interleavingsub-derivations (oroutining), this is by no means obvious.Example 4.1 Consider the usual append programappend([℄,Y,Y).append([X|Xs℄,Ys,[X|Zs℄) :-append(Xs,Ys,Zs).in mode append(I ; I ;O) and the queryappend([℄; [℄; As); append([1jAs℄; [℄; Bs); append(Bs; [℄; As):This query is well moded but not niely moded. Then we have the followingin�nite input-onsuming derivation:append([℄; [℄; As); append([1jAs℄; [℄; Bs); append(Bs; [℄; As);append([℄; [℄; As); append(As; [℄; Bs0); append([1jBs0℄; [℄; As) ;append([℄; [℄; [1jAs0℄); append([1jAs0℄; [℄; Bs0); append(Bs0; [℄; As0); : : :This well-known termination problem of programs with oroutining has beenidenti�ed as irular modes [19℄.



To avoid the problem, we require programs and queries to be niely moded.Reall that by Prop. 3.1, a one-atom query p(s; t) is well and niely modedif and only if s is ground and t is linear.De�nition 4.1 [atom-terminating prediate/atom℄ Let P be a well and nie-ly moded program. A prediate p in P is atom-terminating if for eahwell and niely moded query p(s; t), all input-onsuming derivations of P [fp(s; t)g are �nite. An atom is atom-terminating if its prediate is atom-terminating.The following lemma says that an atom-terminating atom annot proeedinde�nitely unless it is repeatedly fed by some other atom. It is similar to [22,Lemma 4.2℄. For spae reasons, we annot state the preise di�erenes, butnote that here, we do not require that lause heads are input-linear. There isa lemma [20, Lemma 6.2℄ whih subsumes [22, Lemma 4.2℄ and Lemma 4.1,but using this lemma would ompliate this paper onsiderably.Lemma 4.1 Let P be a well and niely moded program and F; b;H a welland niely moded query where b is an atom-terminating atom. An input-onsuming derivation of P [ fF; b;Hg an have in�nitely many b-steps onlyif it has in�nitely many a-steps, for some a 2 F . (Proof see [21℄.)The following theorem is a onsequene of Lemma 4.1 and states that atom-terminating atoms on their own annot produe an in�nite derivation.Theorem 4.2 Let P be a well and niely moded program and Q a welland niely moded query. An input-onsuming derivation of P [ fQg an bein�nite only if it ontains in�nitely many steps where an atom is resolvedthat is not atom-terminating. (Proof see [21℄.)Theorem 4.2 provides us with the formal justi�ation for restriting our at-tention to one-atom queries. Thus the question is how it an be shown thata prediate is atom-terminating.5 Showing that a Prediate is Atom-TerminatingTermination proofs usually rely, more or less expliitly, on measuring the sizeof the input in a query [1, 3, 7, 8, 9, 10, 12℄. We agree with Etalle et al. [12℄that it is reasonable to make this dependeny expliit. This gives rise to theonept of moded level mapping [12℄, whih is an instane of level mapping [6℄.BP denotes the set of ground atoms using prediates ourring in P .De�nition 5.1 [moded level mapping℄ Let P be a program. j:j is a modedlevel mapping if1. it is a level mapping, that is a funtion j:j : BP ; IN,



2. for any t and u, jp(s; t)j = jp(s;u)j.For a 2 BP , jaj is the level of a.Thus the level of an atom only depends on the terms in the input positions.The following onept is useful for proving termination for a whole pro-gram inrementally, by proving it for one prediate at a time [1℄.De�nition 5.2 [depends on℄ Let p; q be prediates in a program P . We sayp refers to q if there is a lause in P with p in its head and q in its body,and p depends on q (written p w q) if (p; q) is in the reexive, transitivelosure of refers to. We write p = q if p w q and q 6w p, and p � q if p w qand q w p.Abusing notation, we shall also use the above symbols for atoms, wherep(s; t) w q(u;v) stands for p w q, and likewise for = and �. Furthermore,we denote the equivalene lass of a prediate p with respet to � as [p℄�.The following de�nition provides us with a riterion to prove that a pred-iate is atom-terminating.De�nition 5.3 [ICD-aeptable℄ Let P be a program and j:j a moded levelmapping. A lause C = h  B is aeptable for input-onsumingderivations (with respet to j:j) if for every substitution � suh that C�is ground, and for every a 2 B suh that a � h, we have jh�j > ja�j. Weabbreviate aeptable for input-onsuming derivations by ICD-aeptable.A set of lauses is ICD-aeptable with respet to j:j if eah lauseis ICD-aeptable with respet to j:j.Let us ompare this onept with some similar onepts in the literature:reurrent [6℄, well-aeptable [12℄ and aeptable [4, 10℄ programs.Like Deorte and De Shreye [10℄ and Etalle et al. [12℄ but unlike Apt andPedreshi [4℄ and Bezem [6℄, we require jh�j > ja�j only for atoms a wherea � h. This is onsistent with the idea that termination should be proveninrementally: to show termination for a prediate p, it is assumed that allprediates q with p = q have already been shown to terminate. Therefore wean restrit our attention to the prediates q where q � p.Like Bezem but unlike Apt and Pedreshi, Deorte and De Shreye andEtalle et al., our de�nition does not involve models or omputed answersubstitutions. Traditionally, the de�nition of aeptable programs is basedon a model M of the program, and for a lause h  a1; : : : ; an, jh�j >jai�j is only required if M j= (a1; : : : ; ai�1)�. The reason is that for LD-derivations, a1; : : : ; ai�1 must be ompletely resolved before ai is seleted. Bythe orretness of LD-resolution [15℄ and well-modedness [5℄, the aumulatedanswer substitution �, just before ai is seleted, is suh that (a1; : : : ; ai�1)�is ground and M j= (a1; : : : ; ai�1)�.Suh onsiderations ount for little when derivations are merely requiredto be input-onsuming. This is illustrated in Ex. 1.2. In the third line of



the derivation, permute([1jZ00℄; X0) is seleted, although there is no instaneof delete([℄; U0; Z00) in the model of the program. This problem has beendesribed by saying that delete makes a speulative output binding [19, 23℄.Theorem 5.1 Let P be a well and niely moded program and p be a predi-ate in P . Suppose all prediates q with p = q are atom-terminating, and alllauses de�ning prediates q 2 [p℄� are ICD-aeptable. Then p, and heneevery prediate in [p℄�, is atom-terminating. (Proof see [21℄.)Obviously the above theorem applies in partiular if there exists no q suhthat p = q, in whih ase trivially all prediates q with p = q are atom-terminating.Example 5.1 We now give a few examples. We denote the term size of aterm t, that is the number of funtion and onstant symbols that our in t,as TSize(t).The lauses de�ning append(I ; I ;O) (Ex. 4.1) are ICD-aeptable, wherejappend(s1; s2; t)j = TSize(s1). Thus append(I ; I ;O) is atom-terminating.The same holds for append(O ;O ; I ), de�ning jappend(t1; t2; s)j = TSize(s).The lauses de�ning delete(I ;O ;O) (Ex. 1.2) are ICD-aeptable, wherejdelete(s; t1; t2)j = TSize(s). Thus delete(I ;O ;O) is atom-terminating.The same holds for delete(O ; I ; I ), de�ning jdelete(t; s1; s2)j = TSize(s2).In a similar way, we an show that permute(O ; I ) is atom-terminating.3However, permute(I ;O) is not atom-terminating.The book on the G�odel language [14, page 81℄ shows a program thatontains a lause, whih in Prolog would be written asslowsort(X,Y) :-permute(X,Y),sorted(Y).The meaning and the modes of the prediates should be obvious from theirnames, and there are delay delarations to ensure that derivations are input-onsuming. The prediate slowsort is not atom-terminating, but it ouldbe made atom-terminating by replaing permute(X,Y) with permute(Y,X),so that permute is used in the mode in whih it is atom-terminating.Note that aording to the G�odel spei�ation, no guarantees are givenabout the seletion rule that go beyond ensuring that derivations for theabove program are input-onsuming. Hene the program is not guaranteedto terminate even for a \well-behaved" query suh as slowsort([1; 2℄; Y).Even though Hill and Lloyd do not laim that the program terminates, onewould still expet it to do so. However, we an modify the program as stated,and guarantee that the modi�ed program terminates using the method of thispaper.3Here we assume that the program is made well and niely moded by interhanging thebody atoms of the seond lause.



nqueens(N,Sol) :-sequene(N,Seq),permute(Seq,Sol),safe(Sol).safe([℄).safe([N|Ns℄) :-safe_aux(Ns,1,N),safe(Ns).
safe_aux([℄,_,_).safe_aux([M|Ms℄,Dist,N) :-no_diag(N,M,Dist),Dist2 is Dist+1,safe_aux(Ms,Dist2,N).no_diag(N,M,Dist) :-Dist =\= N-M,Dist =\= M-N.Figure 1: A program for n-queensFigure 1 shows a fragment from a program for the n-queens problem. Themode is fnqueens(I ;O); sequene(I ;O); permute(I ;O); safe(I ); is(O ; I );safe aux(I ; I ; I ); no diag(I ; I ; I ); =\=(I ; I )g. Again using as level mappingthe term size of one of the arguments, one an see that the lauses de�ningfno diag; safe aux; safeg are ICD-aeptable and thus these prediates areatom-terminating. Note that for eÆieny reasons, this program relies oninput-onsuming derivations where atoms using safe are seleted as early aspossible [22℄.As a more omplex example, onsider the following program, whose modeis fplus one(I ); minus two(I ); minus one(I )g.plus_one(X) :- minus_two(su(X)).minus_two(su(X)) :- minus_one(X).minus_two(0).minus_one(su(X)) :- plus_one(X).minus_one(0).We de�ne jplus one(s)j = 3 � TSize(s) + 4jminus two(s)j = 3 � TSize(s)jminus one(s)j = 3 � TSize(s) + 2Then the program is ICD-aeptable and therefore all prediates are atom-terminating.We see that whenever in some argument position of a lause head, thereis a ompound term of some reursive data struture, suh as [XjXs℄, andall reursive alls in the body of the lause have a strit subterm of thatterm, suh as Xs, in the same position | then the lause is ICD-aeptableusing as level mapping the term size of that argument position. Sine thissituation ours very often, it an be expeted that an average programontains many atom-terminating prediates. However, it is unlikely that inany real program, all prediates are atom-terminating.The last example shows that more omplex senarios than the one de-sribed above are possible, but we doubt that they would often our in



pratie. Therefore level mappings suh as the one used in the example willrarely be needed.Consider again Def. 5.3. Given a lause h  a1; : : : ; an and an atomai � h, we require jh�j > jai�j for all grounding substitutions �, rather thanonly for � suh that (a1; : : : ; ai�1)� is in a ertain model of the program. Thisis of ourse a serious restrition. In Ex. 1.2, assuming mode permute(I ;O),there annot exist a moded level mapping suh that jpermute(Y; [UjX℄)�j >jpermute(Z; X)�j for all �. That however is not surprising sine permute(I ;O)is not atom-terminating.Similarly, there annot be a moded level mapping suh that the usualreursive lause for quiksort, in the usual mode, is ICD-aeptable, al-though we onjeture that quiksort is atom-terminating. This shows alimitation of our method. The author is urrently working on ways of over-oming this limitation, but the fat remains that many prediates are notatom-terminating.6 Applying the MethodThe requirement of input-onsuming derivations merely reets the verymeaning of input: an atom must only onsume its own input, not produe it.Thus if one aepts that (appropriately hosen) modes are useful for veri�-ation and reet the programmer's intentions, then one should also aeptthis requirement and regard any violation of it as pathologial. This does notexlude multiple modes, that is, the same program being used in a di�erentmode at eah run.The requirement of input-onsuming derivations is trivially met for LD-derivations of a well moded query and program,4 sine the leftmost atom ina well moded query is ground in its input positions. It an also be ensured byusing delay delarations as in G�odel [14℄ that require the input arguments ofan atom to be ground before this atom an be seleted. Moreover, it might beensured using guards as in GHC [25℄. Finally, it an be ensured using delaydelarations that hek for partial instantiation of the input arguments, suhas the blok delarations of SICStus. Note that under ertain onditions,delay delarations an ensure input-onsuming derivations with respet toseveral, alternative modes [20, Chapter 7℄ [22℄.Consequently, this paper is mainly aimed at logi programs with delaydelarations, but unlike previous work [2, 16, 17, 18, 19, 22, 23℄, abstratsfrom the details of partiular delay onstruts. We only assume what wesee as the basi purpose of delay delarations: ensuring that derivations areinput-onsuming.As we have said in the introdution, the lass of prediates for whihall input-onsuming derivations terminate is quite limited. In an averageprogram, some prediates are atom-terminating but some are not. In general,4In partiular, this means that it is met in Merury [24℄.



one has to make stronger assumptions about the seletion rule. We skeththree ways in whih the method presented here might be inorporated into amore omprehensive method for proving termination. This boils down to thequestion: how do we deal with prediates that are not atom-terminating?The �rst way has atually been developed already [22℄. We have pre-viously onsidered atom-terminating prediates in a more onrete settingthan here and alled them robust prediates. The default left-to-right sele-tion rule of most Prolog implementations is assumed. It is exploited that thetextual position of atoms using robust prediates in lause bodies is irrele-vant for termination. The other atoms must be plaed suh that the atomsproduing their input our earlier.Seondly, we ould build on a tehnique by Martin and King [18℄. Theyonsider oroutining derivations, but impose a bound on the depth of eahsub-derivation by introduing auxiliary prediates with an additional argu-ment that serves as depth ounter. Applying the results of this paper, weonly have to impose this depth bound for the prediates that are not atom-terminating. For the atom-terminating prediates, we an save the overheadsinvolved in this tehnique.Thirdly, we ould use delay delarations as they are provided for examplein G�odel [14℄. For the atom-terminating prediates, it is suÆient to hek forpartial instantiation of the input positions using a DELAY : : : UNTIL NONVAR : : :delaration. For the other prediates, it must be ensured that the input po-sitions are ground using a DELAY : : : UNTIL GROUND : : : delaration. Note thataording to its spei�ation, G�odel does not guarantee a (default) left-to-right seletion rule, and therefore delay delarations are ruial for termina-tion. Note also that a groundness test is usually more expensive than a testfor partial instantiation. To the best of our knowledge, there has never beena systemati treatment of the question when GROUND delarations are needed,and when NONVAR delarations are suÆient.7 DisussionWe have identi�ed the lass of prediates for whih all input-onsumingderivations are �nite. An input-onsuming derivation is a derivation wherein eah step, the input arguments of the seleted atom are not instantiated.Prediates an be shown to be in that lass using the notions of level mappingand aeptable lause [7, 10, 12℄.Most previous approahes, inluding approahes for programs with delaydelarations, an only show termination making stronger assumptions aboutthe seletion rule [16, 17, 18℄. We have argued in the previous setion thatknowing the prediates that terminate under our weaker assumptions is usefuleven for programs where not all prediates have this property.This paper builds on our own previous work [22℄, but attempts to for-mulate the results more abstratly, without getting involved in the details ofpartiular delay onstruts. For example, we previously imposed a restrition



that all lause heads in a program must be input-linear, whih is neessary sothat blok delarations an ensure input-onsuming derivations. In this pa-per, we do not impose this restrition. Hene if input-onsuming derivationsan be ensured without imposing this restrition, say by using guards as inGHC [25℄, then the results of this paper ould be applied to show termination.We have laimed that most other approahes to termination rely on theidea that the size of an atom an be pinned down when the atom is seleted.Tehnially, this usually means that the atom is bounded with respet tosome level mapping [4, 6, 12, 18℄. There are exeptions though [8, 10℄, wheretermination an be shown for the query, say, append([X℄; [℄; Zs) using as levelmapping the term size of the �rst argument, even though the term size of [X℄ isnot bounded. However, the method only works for LD-derivations and relieson the fat that any future instantiation of X annot a�et the derivation forappend([X℄; [℄; Zs). Therefore it is e�etively possible to pin down the size ofappend([X℄; [℄; Zs).In ontrast, we show that under ertain onditions, it is enough to relyon a relative derease in the size of the seleted atom, even though this sizeannot be pinned down. This is ruial to show termination of derivationswith oroutining. More preisely, we exploit that an atom in a query annotproeed inde�nitely unless it is repeatedly fed by some other atom ourringearlier in the query. This implies that every derivation for the query is �nite.Bezem [6℄ has identi�ed the lass of strongly terminating programs, whihare programs that terminate under any seletion rule. While it is shown thatevery total reursive funtion an be omputed by a strongly terminatingprogram, this does not hange the fat that few existing programs are stronglyterminating. Transformations are proposed for three example programs tomake them strongly terminating, but the transformations are ompliatedand ad-ho.On the whole, there seems to be a strong relutane to give up the ideathat the size of an atom must be pinned down when the atom is seleted. Thisis true even for Bezem [6℄. It is also true for Marhiori and Teusink [17℄, whoassume a loal seletion rule, that is a rule under whih only most reentlyintrodued atoms an be resolved in eah step. Martin and King [18℄ ahievea similar e�et by bounding the depth of the omputation introduing aux-iliary prediates. It is more diÆult to assess L�uttringhaus-Kappel [16℄ sinehis ontribution is mainly to generate delay delarations automatially ratherthan prove termination.5 However in some ases, the delay delarations thatare generated require an argument of an atom to be a rigid list before thatatom an be seleted, whih is similar to [17, 18℄. Suh uses of delay dela-rations go well beyond ensuring that derivations are input-onsuming.None of the above approahes [6, 16, 17, 18℄ an formally show terminationunder the weak assumptions we make here, even for derivations as trivial asthe one in Ex. 1.1. Apt and Luitjes [2℄ give onditions for the termination5For the reader familiar with that work, it is not said how programs are shown to besafe.
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