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Abstract

This paper formalises an analysis of finite domain progrants the resultant program
transformation. The analysis adds low valency (domainktraints to clauses in order to
reduce search. The technique is outlined with a worked elaamul then formalised using
abstract interpretation. Correctness of the analysis atiedransformation is proved.

1 Introduction

Abstraction interpretation centres on tracing properties of programs usiogpes
tions. In the context of constraint programming, descriptions often capture numeric
properties of the store. For example, LSign is useful for checking the satisfiabil
ity of linear constraints [11,13]; intervals have been proposed for refining domain
constraints of finite domain programs [1]; polyhedra have been applied to optimise
CLP(R) programs [10]. To obtain finiteness, analyses usually trace information
in an approximation of the concrete domain. This paper, however, uses a slightly
different tactic. Finite domain constraint programs are reinterpretexm@straint
programs over linear equations, and polyhedral abstraction is then applied to prop-
agate information in this domain. This enables information to be inferred which
cannot be deduced with an approximation of the concrete domain.

Howe and King argue in [6] that constraint propagation performed at compile-time
by an analysis should complement the run-time propagation of the solver. Specif-
ically, they demonstrate that a significant speedup (sometimes of sedees of
magnitude) can be obtained by using polyhedra to infer deep inter-variable relation-
ships in finite domain programs which cannot be traced by run-time (interval based)
bound propagation. The crucial tactic is to combine the constraints deduced by the
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analysis with a program specialisation based on projection. To be precitedbni

main constraints are interpreted as relations over sets of points. Thesteagnts

are over-approximated and represented as a polyhedron. The intersection of poly-
hedra corresponds to composing constraints. Projection onto an integer grid gives
(low valency) domain constraints that can be added to the program without com-
promising efficiency. The speedup follows from reducing the search. Integsti

the analysis can be interpreted as a compile-time solution to combining éohstra
solvers [12].

This paper formalises the analysis of [6] in terms of abstract interpoatatior-
rectness of the analysis and of the associated program transformatiomisketh

The analysis is constructed in terms of operations on polyhedra, for example, calcu-
lating the closure of the convex hulls of polyhedra, and also uses fixed-point accel-
eration techniques, such as widening, to obtain convergence. Correctnes&t pro
with respect to a ground fixpoint semantics for (definite) constraint logic programs
[7]. The analysis does not preserve the set of computed answer constraints (but
increases it).

Work that is particularly closely related to this paper is an analysis dlicte/e
database queries [9] that uses polyhedral abstractions to propagate constraints. The
current paper applies similar abstraction techniques, though the analysis and the
transformation differ significantly in detail. One crucial differencétia work pre-

sented here is the way that projection is used to constrain individual program var
ables of finite domain programs with domain constraints. Without this step, the
analysis would have little effect.

The structure of the paper is as follows: section 2 works through an example pro-
gram to illustrate how the analysis works; section 3 gives details of theaabst
interpretation; section 4 proves the correctness of the analysis; seat&stibes

the program transformation and establishes its correctness; and finatignsé
concludes.

2 Calculating Factorials

This section works through an example to illustrate the polyhedral analysis. The
analysis requires machinery which includes: the closure of convex hulls, projec-
tion, and widening. The example program calculates factorials. The objectve is
infer bounds on the variables. Usually this reduces searching, but in this case it
only improves the termination behaviour of the program. The program (in SICStus
syntax) is:



.- use_nodul e(library(clpfd)).
fac(0, 1).
fac(N, NewF) :-

NewF #= N*F,

M#= N1,

fac(M F).

The clausé ac( 0, 1) . isthe first considered. The arguments are described by the
polyhedronP, = {(x,y)|z = 0,y = 1}. Next, the second clause is considered. The
problem here is to compute a two dimensional polyhedron that describes the coor-
dinate spaceN, NewF). First observe thatac(M F) can be described by the
polyhedron{ (N, NewF, M F)|M= 0, F = 1}. Note too, that the constraiit #= N

- 1 is represented by the polyhedrdfN, NewF, M F)|M= N — 1}. The intersec-

tion of these two polyhedrg(N, NewF, M F)|M= 0, F = 1, M= N—1}, represents

the conjunction of the two constraints. The non-linear constNemf#=N* F can-

not, by itself, be accurately represented by a polyhedron. Note, however, that the
polyhedron{ (N, NewF, M F)|NewF = N,M= 0, F = 1,M= N— 1} accurately de-
scribes all the constraints. Projecting the four dimensional polyhedron onto the co-
ordinate spacéN, NewF) gives the polyhedrofi(N, NewF)|NewF = N, 0 = N—1},

or equivalentlyP; = {(z,y)|r =1,y = 1}.

To avoid representing disjunctive information, the solution BetJ P, is over-
approximated by the closure of the convex hitf, = {(z,y)|0 <z <1,y = 1}.

(Note that the bound information extracted by projection from the convex hull is
exactly the same as that extracted by projection from the union of the original
pair of polyhedra.)Py is the second iterate. Continuing in this fashion will give a
sequence of increasing polyhedra which does not stabilise. A fixpoint acceleration
technique, widening, is therefore used to force convergence, albeit at the expense
of some precision. The widening essentially finds stable bounds on the sequence of
polyhedra.P; is widened withP}' to give the polyhedro®, = {(z,y)|0 < z,y =

1}. P, # Py, and so the fixpoint stability check fails and thus the next iteration is
calculated. Continuing as before results in the polyhédra- {(x,y)|z > 1,y >

1}, P = {(z,y)[z > 0,y > 1} andPs = {(z,y)[z > 0,y > 1}. P, # P; and
stability has still not been reached. HowevBy,= P,, and the fixpoint is found.
ProjectingP; onto the first and second arguments gives the bounds), y > 1.
Specialising the program by adding these low valency constraints results in:

.- use_nodul e(library(clpfd)).
fac(0, 1):-
0 #= 0, 1 #>= 1.
fac(N, NewF): -
N #>= 0, Newk #>= 1,
NewF #= N*F,
M#= N1,
fac(M F).



The redundant constraints in the first clause can be removed. Note that the spe-
cialised program has improved termination behaviour. For example, the queries
fac(-1, ) andfac(_, 5) fail, whereas previously both led to non-terminating
computations. More generally, the experimental work and benchmarking reported
in [6] suggests that this technique can often significantly improve performance.

3 Polyhedral Analysis

This section formalises and describes the analysis. Abstract inte¢rpnataused to
connect a (concrete) ground semantics for finite domain constraint programs [7,8]
to an (abstracty-semantics [3]. A Galois insertion links the concrete domain (the
set of ground interpretations) and the abstract domain (the set of interpretations
over constrained unit clauses). Convex hulls are used to obtain a small non-ground
interpretation and widening is used to ensure termination.

3.1 Concrete Domain

For a (finite domain) progran®, let II denote the set of predicate symbols that
occur in P and letX denote the set of constant, integé) @nd function sym-
bols that occur inP. Let Dy be the set of finite trees over the signatdrel et
Rrp be the set of constraint predicatés:p is the system of finite domain con-
straints generated fromrp, and Rrp. Elements ofCrp are regarded modulo
logical equivalence and'sp, is ordered by entailment=rp. (Crp, Erp, A) is

a (bounded) meet-semilattice with bottom and top elemenisand false. Crp

is closed under variable elimination ail:4, ..., z,, } ¢ (projection out) abbreviates
31 ... 3z,.c. IXc (projection onto) is used as a shorthand $ovar(c) \ X)c,
wherewvar (o) denotes the set of variables occurring in the syntactic objethe
interpretation base foP is Brp = {p(t) | p € TI,t € (Drp)"}. The concrete
domainis(P(Brp), C,N,U), a complete lattice.

3.2 Abstract Domain

Let Dy, be the set of rational number®, Let C},;, be the system of linear con-
straints overD;;, and the set of constraint predicat®s,,. Cr;, iS quotiented
by equivalence and ordered by entailméat,;,. (Crin, =rLin, A) IS @ (bounded)
meet-semilattice and is closed under projection 8uand projection ontaj. Unit
clauses have the forp(X) < ¢ wherec € Cy,;,. Equivalence on clauses, is de-
fined as follows{p(X) + ¢) = (p(X') < ) iff Jvar(X)c = Jvar(X)(¢ A(X = X')).
The interpretation base for program is Br;, = {[p(X) < cd=|p € I, ¢ €



Crin}. Entailment induces an order relatian, on P(By;,) as follows:I C I’
iff V[p(X) < c]=z € I.3[p(X) < ]z € I'.c Fprin . P(BLi,) ordered byC is a
preorder. Quotienting by equivalence, gives the abstract domai{®(B;,)/ =
,C, ), a complete join-semilattice (wherg®, [[;]= = [U°, [;]=).

Proposition 1 [Us?, ;] is the least upper bound §fI;|=|i € N}.
PROOF Sincel; C UX,I;, it follows that /; T U, I; and thereford/;]= C
(U2, I;]=. Supposel;]= C [J]= for all i € N and let[p(X) < c|]= € U2, ;. There

must existj € N such thafp(X) < ¢|]= € I;. Hence there exisip(X) < |z € J
such that =p;, ¢. Thusu2, I, C J. [ ]

3.3 Concretisation

A concretisation map is defined in terms of a map, Cr;, — Crp, thatinterprets
a linear constraint over the rationals as a finite domain constraint as #llow

(i@x.<ﬁ>+—i%m<@ whereD = d ﬁd
d;"" ~ d S od T dY =

=1 "

Note that the coefficients aoff, are inZ. The concretisation map; : Cr;, —
Crp, is simply defined as

Y(crLin) = Cfm
The abstraction mapy : Crp — Cp,;, can be defined in terms ofas follows:

a(crp) = Ncpinlcrp Erp Y(cLin) }

Lemmal «,~y form a Galois insertion.

PROOF First observe that andy are monotonic. By definition

a(y(crin)) = McLinlV(cLin) Erp Y(cLin)} Frin CLin

This shows that there is a Galois connection. To prove that there is a Galois in-
sertion, injectivity ofy is demonstrated. Given thatc) = ~(¢), assume that

¢ # ¢. Without loss of generality; F.;, ¢, henced™ [£pp ¢*. Together with

() = v(c) E=pp ct, this givesy(¢) Fpp ¢ . This contradicts the definition of

7, thereforec = ¢'. [ |

The concretisation map: P(BL:,)/= — P(Brp) On interpretations is defined in
terms of the concretisation map for constraints:

Y(l7l=) = {pOp(X) =€ I, X=1) Frp 7(c)}



The abstraction map : P(Brp) — P(BLin)/ = is defined as follows:

a(J) =[{[p(X) < c=lp(t) € Ja(X =1) = c}|=

Proposition 2 The concretisation map on interpretationsjs monotonic and there-
fore well-defined.

PROOF. Supposeé!]= C [I']=. Letp(t) € y([I]=). Then there exist®(X) + c|= €
I such tha{Xx =t) Erp v(c). There exist$p(X) < ¢'|= € I' such that Er;, ¢
But, (X =1) E=rp 7(¢) Frp 7(¢') and hence(t) € y([I']=). u

Proposition 3 « and-y on interpretations form a Galois insertion.

PROOF. Observe thatr is monotonic and, by Proposition 2,is also. By the defi-
nitions ofa and~ on interpretations and Lemma 1,

a(y([1lz)) = {Ip(X) « d=lp®) € v([]z),aX =1) = c}]= E [I]

This shows that there is a Galois connection. To prove that there is a Galois in-
sertion, injectivity ofvy is demonstrated. Given that[/]=) = ~([I']z), assume

[Il= # [I']=. Then3[p(X) < c|= € I such thatV[p(X) < |z € I'.c FLin €.
Thus~(c) Frp v(c). By the definition ofy, (X = t) Erp v(c) E ~v(¢). This
contradicts the assumption and therefdie = [I']-. |

3.4 Concrete Semantics

The fixpoint semanticsFrp, is defined in terms of an immediate consequences
operatofT : P(Brp) — P(Brp), defined by

w € P,w=p(X) < ¢,p1(X1), ..., pn(X

T = {p(f) pi(ti) € I, (R =1) Frp Jvar(X) (AL T(LY =) Ac) }

T? is continuous, thus the least fixpoint exists &fe, [P] = [ fp(T3).

3.5 Abstract Semantics

To define the immediate consequences operator for the abstract semanticgla spec
conjunction operatof sy, : Crp X Cr;n — Crin IS introduced. The operator:;, is
assumed to satisfy the propettyp Av(crin) Erp Y(crp Arr crin)- This operator
allows the approximation of non-linear finite domain constraints.



The fixpoint semanticsF;;,, is defined in terms of an immediate consequences
operatorl;, : P(Brin)/= — P(BLin)/=, defined byl ([I]=z) = [J]=, where

( )

w € Pyw=p(X) < ¢, p1(X1), ..., pn(Xn),
[wil= € I,w; = pi(¥;) < ¢,

J = {[p(X) « cl= | Vi.(var(w) Nvar(w;) = ¢),

Vi # j.(var(w;) Nvar(w;) = ¢),

c=d Arr, (N (R =Y;) Aci)) )

T} is continuous, thugfp(T}) exists. SinceP(B;,)/ = is a complete partial
order, Kleene iteration [4] can be used to comphtg,[P] =1 fp(T3) = U2, Tp 1t
i, whereTs 10=¢andTy ti+1=T5(T} 11).

3.6 Space-Efficient Over-Approximation

T3 1 1 can contain many unit clauses for the same predicate. Furtheriyore2

will contain as many, if not more, unit clauses. Thus, to make the fixpoint calcu-
lation manageabl€]} 1 k is over-approximated by an interpretatidr(that is,

T3 1 k £ I) which contains at most one unit clause for each predicate symbol.

The join for the domain of linear constraints; Cy;, X Crin — Crin, IS defined by

c1 Ve =Nc € Cprinler ELin ¢ ¢ FrLin ¢} When the constraints are interpreted

as defining polyhedra, the meet corresponds to the closure of the convex hull, that
is, the smallest enclosing closed convex set. The operator is liftedgesto an
operator on the abstract domain. First it is lifted to the interpretatior,bas

Bi,, x Bi;, = Bi:,, WhereBi, = Br;, U { L}, as follows:

[p(x) — Cl]E \% [p(x) — = = [p(Y) — C V CQ]E

p(X) ]z VvV [4y) <z = L ifp#q
p(X) == Vv L = [p(X) « d=

il VvV [p(X)+cl= = [p(X) « c]=

This in turn defines the unary functiow, : P(BLi,)/= — P(Brin)/ =, On the
abstract domain given by

\/([I];) = [Uwel{vuel(wvu)}]z

Since for everyl € P(Bpi,)/ =, T5(I) T Vo TE(I), it follows thatlfp(T5) C
lfp(v oT}). Hencev does not compromise safety.



3.7 Termination of the Polyhedral Analysis

As before, Kleene iteration can be used to compfip¢V o T3 ). However the chain
of iteratesv o 7% 1 k£ may not stabilise in a finite number of steps. In order to obtain
convergence, a fixpoint acceleration technique, called widening [4], is applied.

A widening, Vv, on a partially ordered séf, C, LI) is an operatof’ : L x L — L
such thav'z,y € L.x C zvy andVz,y € L.y C xVy and for all increasing chains
xg C x; C ..., the increasing chain defined by = o, ..., ¥i:1 = ¥;iVZiy1, ...
stabilises, that is, for some, v,,, 11 C 4.

Given a standard widening on polyhedra [2,4,5] (or equivalently, on linear con-
straints),v : Cri, X Crin — ClLin, @ widening,v : B, x Bi. — Bi, , (where
Bi,, = Brin U {L}) on the interpretation base is induced as follows:

p(X) <—cil= V [p(X) < c]= = [p(X) < c1Ver)=

P(X) «—cilz VvV [qY) ]z = L ifp#gq
[P(X) == v L = [p(X) < =

1 V pX) = = [pX) =

This lifts to the abstract domaif, : P(Bri,)/= X P(Brin)/= — P(BLin)/=

[L]=V[L]= = [Vuwen{Vuern (wVu) }]=

Proposition 4 v on interpretations is a widening.

4 Correctness of the Polyhedral Analysis

This section gives a proof of the correctness of the analysis. That is, upwaxd ite
tion of Vo 7’5, with widening, stabilises at an interpretatibwith [ fp(T5) T ~(I).

Lemma2 If Irp C v([Irin]=), thenT(Irp) C Y(TE([L1in]=)).

PROOF. Supposen(t) € TE(Irp). To prove the result it needs to be shown that
there is[p(X) < c|= € T§([ILin]=) such thatX = t) =rp v(c). By the hypoth-
esis and the definition of} (Ixp), letp(t;) € Irp C Y([I1in)=). From the defi-
nition of v([I1in]=), there is[p(y;) < c¢i]= € I, suchthaty, = t;) Erp ()

= (X =¥,)" A (¥ = ) Erpr((Xi = ¥;) Aci)

= Nz (X = ¥,) " A (Y3 = 8) Erpy (N (R = ¥i) A i)

= AN (K =5:)" A (yz U)FErpY (¢ Arn Ny (X = Vi) Aci))

= Jvar(X)(¢! AN (X =¥:)" A (Y = 1)) Erpy(uar(X) (¢ App AL (R =Y,) A i)



By the definition of7'%, (X = t) =rp Jvar(X) (CAANL (X =1,)) Erp Jvar(X)(dA
A% =Y,)T A (Y; =1;))) and therefore

(Y = f) ):FD ’}/(HUGT(Y)(C /\FL /\?zl(xi = fz VAN Cz)))

), then(X =1t) Erp v(c) and[p(X +

Putc = Jvar(X)(¢ App A, (X;
- Urinl=))- u

=t
cl= € TE([ILin)=), thereforep(t) €

57
—~ O

Lemma3 If Irp C ’)/([Lm), thenT]%(IFD) C ’)/(\/ o TIS;(ILm))

PROOFE (T3 (ILin)) C v(V o TE(ILin)) follows from the definition of the convex
hull operator and the monotonicity of The result then follows from Lemma i

Lemma4 [I]= C [I']= iff y([I]=) € 7 ([I']z).

PROOF. Case 1«. Suppose/([/]=) C v([I ] ). Thenthere exist®(X) < c|]= € T
such that for al[p(X) < |= € I', ¢ }£Lin . This contradicts the hypothesis, and
the results follows.

Case 2=-. This follows from Proposition 2. [ |

Proposition 5 below is asserted and proved as Proposition 13 in [4].

Proposition 5 If (L, <, Y) is a partially ordered set/" : L — L is continuous,
1 € Lissuchthatl < F(Ll), YuenF"(L) eX|stsL isasety: L — L, <
is the preorder defined by=y iff v(z) < v(y), L € L is such thatL < ~(L1),
F: L — LismonotonicF oy <~vyo Fandv : L x L — L is awidening, then
the upward iteration sequence with widening is ultimately stationary with Limit
such that fp(F) < y(A) and F'(A)< A.

Corollary 1 The upward iteration sequencew$ s with wideningv is ultimately
stable with limit/ and [ is safe, thatisy o T5(1) C I andlfp(T%) C ~v(I).

PrROOFE Using Lemma 3 and Lemma 4 above, Proposition 5 can be applied, giving
the result. [

5 Program Transformation and its Correctness

Once an upper approximation 8. [ P] is computed, it can be used to transform
the program. The following theorem details the transformation and alsot@sser
safety.



An auxiliary (partial) map;*
on variables to integer values, as follows=

: CrLin — CrLin, Is defined in order to tighten bounds
u(c) A l(c) where

u(c):{xSMJ if (x<q)=c Z(C):{xz(ﬂ if (x>q)=c
true otherwise’ true otherwise
Theorem 1 If [fp(T%) C v([I]=), thenFyp[P] = Frp[P'], where

w € Pyw=p(X) < ¢,p1(X1), -y Pu(Xn),

(wil= € I, w; = pi(¥;) + ci,

JE 2 Vi.(var(w) Nwvar(w;) = ¢),
Vi # j.(var(w;) Nvar(w;) = ¢),
¢ = ¢ A (Ayevar(w) (Fy Aoy (R =F3) Aei))) ),
L w' = p(x) A C,apl(xl) pn(xn) )

PROOF. The proof proceeds by showing, by inductiorvgrthat7? 1+ n = T3, 1 n.

Base Casel's 1 0=¢ =T 1 0.

Inductive caseSuppose thaty + k£ = Tp 1 k,

(1) Toshowls, 1+ (k+1) CTE 1 (k+1). Letp(t) e T8 1 (k+1)
k). Thus there exists’ € P’ such thaty' = p(X) +
(wherew = p(X) < ¢, p1(X1), ...

(2)

ThusT? 1t k+1=T} 1 k+ 1and so, by induction,fp(T3) =

~ T(TH 1
(C/\C,)apl (Xl)a apn(xn)

,n(Xa)), pi(6) € TS + kand(X = 1) Epp

Fuar(X) (A, (X; = t;)A(cAd)). Therefore(X = t) rp Tvar(X) (AL (X; =

t;)) Ac)andp(t;) € T3 + k C T3 1 k. Thereforep(t) €
ToshowI} 1+ (k+1) C T t(k+1). Letp(t) e Tp 1+ (k+1) =
k). Then there exister € P such thatw = p(X) < ¢, p1(Xy), ..
andp,(t) € T4 1
TPk Clfp(TP) €

X = 1) Frp Jvar(X) (AL (X = ) A
v([7]=z) and since there i®(y;) + ¢;]= € I such that
e

TE,

= Tp(Tp 1
- Pn(Xn)
c). Since

(V; =) F=rp 7(c;), then

)

R A

Vi=t) Fro o
V)NV =t) Fro (Ki=Y)Ac)?
X =t) Frp (Jva ( (X =Y) Ae))?
N =1) Erp (AL Fvar(Y) (% =¥;) Aci))?
Niei(Xi =t)  Frp (Fy(AisFoar(§) (X = ¥,) Aci))) ™
Ny (i =) Frp (Gy(NL (R =) Aei)))?
N (R =1) FErp Ayevar() (YN (R = 3) A i)))*
Puttlngc = ¢ A Ayevar(w) (Gy(N- (X% = ¥;) A )T andw’ = p(X)
., Pn(Xy,) it follows thatp( yeTs 1t (k+1).

d,pi(Xy), ..

Lfp(TH).

10



6 Conclusions

Analysis of finite domain constraint logic programs using polyhedra promises to be
a powerful compile-time technique for reducing the search space of, and thereby
speeding up, finite domain constraint logic programs. By using program special-
isation, other methods of domain reduction can still be applied at run-time. This
paper has formally established the correctness of a polyhedral analysis and of the
associated transformation which adds low valency constraints to the prognam
technique is safe in two senses: the specialised program is never incibmeger

runs (significantly) more slowly that the original.
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