
A Semantic Basis for
Specialising Domain Constraints

Jacob M. Howe1 and Andy King2
Computing Laboratory, University of Kent, Canterbury, CT27NF, UK

Abstract

This paper formalises an analysis of finite domain programs and the resultant program
transformation. The analysis adds low valency (domain) constraints to clauses in order to
reduce search. The technique is outlined with a worked example and then formalised using
abstract interpretation. Correctness of the analysis and of the transformation is proved.

1 Introduction

Abstraction interpretation centres on tracing properties of programs using descrip-
tions. In the context of constraint programming, descriptions often capture numeric
properties of the store. For example, LSign is useful for checking the satisfiabil-
ity of linear constraints [11,13]; intervals have been proposed for refining domain
constraints of finite domain programs [1]; polyhedra have been applied to optimise
CLP(R) programs [10]. To obtain finiteness, analyses usually trace information
in an approximation of the concrete domain. This paper, however, uses a slightly
different tactic. Finite domain constraint programs are reinterpreted asconstraint
programs over linear equations, and polyhedral abstraction is then applied to prop-
agate information in this domain. This enables information to be inferred which
cannot be deduced with an approximation of the concrete domain.

Howe and King argue in [6] that constraint propagation performed at compile-time
by an analysis should complement the run-time propagation of the solver. Specif-
ically, they demonstrate that a significant speedup (sometimes of several orders of
magnitude) can be obtained by using polyhedra to infer deep inter-variable relation-
ships in finite domain programs which cannot be traced by run-time (interval based)
bound propagation. The crucial tactic is to combine the constraints deduced by the1 Supported by EPSRC grant GR/MO8769.2 Supported, in part, by COTIC working group 23677.

Preprint submitted to Elsevier Preprint 14 September 1999

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

analysis with a program specialisation based on projection. To be precise, finite do-
main constraints are interpreted as relations over sets of points. These constraints
are over-approximated and represented as a polyhedron. The intersection of poly-
hedra corresponds to composing constraints. Projection onto an integer grid gives
(low valency) domain constraints that can be added to the program without com-
promising efficiency. The speedup follows from reducing the search. Interestingly,
the analysis can be interpreted as a compile-time solution to combining constraint
solvers [12].

This paper formalises the analysis of [6] in terms of abstract interpretation. Cor-
rectness of the analysis and of the associated program transformation is established.
The analysis is constructed in terms of operations on polyhedra, for example, calcu-
lating the closure of the convex hulls of polyhedra, and also uses fixed-point accel-
eration techniques, such as widening, to obtain convergence. Correctness is proved
with respect to a ground fixpoint semantics for (definite) constraint logic programs
[7]. The analysis does not preserve the set of computed answer constraints (but
increases it).

Work that is particularly closely related to this paper is an analysis of deductive
database queries [9] that uses polyhedral abstractions to propagate constraints. The
current paper applies similar abstraction techniques, though the analysis and the
transformation differ significantly in detail. One crucial difference inthe work pre-
sented here is the way that projection is used to constrain individual program vari-
ables of finite domain programs with domain constraints. Without this step, the
analysis would have little effect.

The structure of the paper is as follows: section 2 works through an example pro-
gram to illustrate how the analysis works; section 3 gives details of the abstract
interpretation; section 4 proves the correctness of the analysis; section 5describes
the program transformation and establishes its correctness; and finally, section 6
concludes.

2 Calculating Factorials

This section works through an example to illustrate the polyhedral analysis. The
analysis requires machinery which includes: the closure of convex hulls, projec-
tion, and widening. The example program calculates factorials. The objective isto
infer bounds on the variables. Usually this reduces searching, but in this case it
only improves the termination behaviour of the program. The program (in SICStus
syntax) is:

2

:- use_module(library(clpfd)).
fac(0, 1).
fac(N, NewF) :-

NewF #= N*F,
M #= N-1,
fac(M, F).

The clausefac(0,1). is the first considered. The arguments are described by the
polyhedronP1 = f(x; y)jx = 0; y = 1g. Next, the second clause is considered. The
problem here is to compute a two dimensional polyhedron that describes the coor-
dinate space (N, NewF). First observe thatfac(M, F) can be described by the
polyhedronf(N;NewF;M;F)jM = 0;F = 1g. Note too, that the constraintM #= N
- 1 is represented by the polyhedronf(N;NewF;M;F)jM = N� 1g. The intersec-
tion of these two polyhedra,f(N;NewF;M;F)jM = 0;F = 1;M = N�1g, represents
the conjunction of the two constraints. The non-linear constraintNewF#=N*F can-
not, by itself, be accurately represented by a polyhedron. Note, however, that the
polyhedronf(N;NewF;M;F)jNewF = N;M = 0;F = 1;M = N� 1g accurately de-
scribes all the constraints. Projecting the four dimensional polyhedron onto the co-
ordinate space(N;NewF) gives the polyhedronf(N;NewF)jNewF = N; 0 = N�1g,
or equivalentlyP 02 = f(x; y)jx = 1; y = 1g.
To avoid representing disjunctive information, the solution setP1 [P 02 is over-
approximated by the closure of the convex hull,P 002 = f(x; y)j0 � x � 1; y = 1g.
(Note that the bound information extracted by projection from the convex hull is
exactly the same as that extracted by projection from the union of the original
pair of polyhedra.)P 002 is the second iterate. Continuing in this fashion will give a
sequence of increasing polyhedra which does not stabilise. A fixpoint acceleration
technique, widening, is therefore used to force convergence, albeit at the expense
of some precision. The widening essentially finds stable bounds on the sequence of
polyhedra.P1 is widened withP 002 to give the polyhedronP2 = f(x; y)j0 � x; y =1g. P2 6= P1, and so the fixpoint stability check fails and thus the next iteration is
calculated. Continuing as before results in the polyhedraP 03 = f(x; y)jx � 1; y �1g, P 003 = f(x; y)jx � 0; y � 1g andP3 = f(x; y)jx � 0; y � 1g. P2 6= P3 and
stability has still not been reached. However,P3 = P4, and the fixpoint is found.
ProjectingP3 onto the first and second arguments gives the boundsx � 0; y � 1.
Specialising the program by adding these low valency constraints results in:

:- use_module(library(clpfd)).
fac(0, 1):-

0 #>= 0, 1 #>= 1.
fac(N, NewF):-

N #>= 0, NewF #>= 1,
NewF #= N*F,
M #= N-1,
fac(M, F).

3

The redundant constraints in the first clause can be removed. Note that the spe-
cialised program has improved termination behaviour. For example, the queries
fac(-1,) andfac(, 5) fail, whereas previously both led to non-terminating
computations. More generally, the experimental work and benchmarking reported
in [6] suggests that this technique can often significantly improve performance.

3 Polyhedral Analysis

This section formalises and describes the analysis. Abstract interpretation is used to
connect a (concrete) ground semantics for finite domain constraint programs [7,8]
to an (abstract)s-semantics [3]. A Galois insertion links the concrete domain (the
set of ground interpretations) and the abstract domain (the set of interpretations
over constrained unit clauses). Convex hulls are used to obtain a small non-ground
interpretation and widening is used to ensure termination.

3.1 Concrete Domain

For a (finite domain) programP , let � denote the set of predicate symbols that
occur inP and let� denote the set of constant, integer (Z) and function sym-
bols that occur inP . Let DFD be the set of finite trees over the signature�. LetRFD be the set of constraint predicates.CFD is the system of finite domain con-
straints generated fromDFD andRFD. Elements ofCFD are regarded modulo
logical equivalence andCFD is ordered by entailment,j=FD. (CFD; j=FD;^) is
a (bounded) meet-semilattice with bottom and top elementstrue andfalse. CFD
is closed under variable elimination and9fx1; :::; xngc (projection out) abbreviates9x1 : : :9xn:c. 9Xc (projection onto) is used as a shorthand for9(var(c) n X)c,
wherevar(o) denotes the set of variables occurring in the syntactic objecto. The
interpretation base forP is BFD = fp(t) j p 2 �; t 2 (DFD)ng. The concrete
domain is(P(BFD);�;\;[), a complete lattice.

3.2 Abstract Domain

Let DLin be the set of rational numbers,Q . Let CLin be the system of linear con-
straints overDLin and the set of constraint predicatesRLin. CLin is quotiented
by equivalence and ordered by entailment,j=Lin. (CLin; j=Lin;^) is a (bounded)
meet-semilattice and is closed under projection out,9, and projection onto,9. Unit
clauses have the formp(x) c wherec 2 CLin. Equivalence on clauses,�, is de-
fined as follows:(p(x) c) � (p(x0) c0) iff 9var(x)c = 9var(x)(c0^(x = x0)).
The interpretation base for programP is BLin = f[p(x) c]�jp 2 �; c 2

4

CLing. Entailment induces an order relation,v, on P(BLin) as follows:I v I 0
iff 8[p(x) c]� 2 I:9[p(x) c0]� 2 I 0:c j=Lin c0. P(BLin) ordered byv is a
preorder. Quotienting by equivalence,�, gives the abstract domain(P(BLin)= �;v;t), a complete join-semilattice (wheret1i=1[Ii]� = [[1i=1Ii]�).

Proposition 1 [[1i=1Ii]� is the least upper bound off[Ii]�ji 2 Ng.
PROOF: SinceIi � [1i=1Ii, it follows that Ii v [1i=1Ii and therefore[Ii]� v[[1i=1Ii]�. Suppose[Ii]� v [J]� for all i 2 N and let[p(x) c]� 2 [1i=1Ii. There
must existj 2 N such that[p(x) c]� 2 Ij. Hence there exists[p(x) c0]� 2 J
such thatc j=Lin c0. Thus[1i=1Ii v J . �
3.3 Concretisation

A concretisation map is defined in terms of a map,�+ : CLin ! CFD, that interprets
a linear constraint over the rationals as a finite domain constraint as follows: mXi=1 nidi xi � nd!+ = mXi=1 D:nidi xi � D:nd ; whereD = d: mYi=1 di
Note that the coefficients ofc+Lin are inZ. The concretisation map, : CLin !CFD, is simply defined as (cLin) = c+Lin
The abstraction map,� : CFD ! CLin can be defined in terms of as follows:�(cFD) = ^fcLinjcFD j=FD (cLin)g
Lemma 1 �, form a Galois insertion.

PROOF: First observe that� and are monotonic. By definition�((cLin)) = ^fc0Linj(cLin) j=FD (c0Lin)g j=Lin cLin
This shows that there is a Galois connection. To prove that there is a Galois in-
sertion, injectivity of is demonstrated. Given that(c) = (c0), assume thatc 6= c0. Without loss of generality,c0 6j=Lin c, hencec0+ 6j=FD c+. Together with(c0) = (c) j=FD c+, this gives(c0) 6j=FD c0+. This contradicts the definition of, thereforec = c0. �
The concretisation map : P(BLin)=�! P(BFD) on interpretations is defined in
terms of the concretisation map for constraints:([I]�) = fp(t)j[p(x) c]� 2 I; (x = t) j=FD (c)g

5

The abstraction map� : P(BFD)! P(BLin)= � is defined as follows:�(J) = [f[p(x) c]�jp(t) 2 J; �(x = t) = cg]�
Proposition 2 The concretisation map on interpretations,, is monotonic and there-
fore well-defined.

PROOF: Suppose[I]� v [I 0]�. Letp(t) 2 ([I]�). Then there exists[p(x) c]� 2I such that(x = t) j=FD (c). There exists[p(x) c0]� 2 I 0 such thatc j=Lin c0.
But, (x = t) j=FD (c) j=FD (c0) and hencep(t) 2 ([I 0]�). �
Proposition 3 � and on interpretations form a Galois insertion.

PROOF: Observe that� is monotonic and, by Proposition 2, is also. By the defi-
nitions of� and on interpretations and Lemma 1,�(([I]�)) = [f[p(x) c]�jp(t) 2 ([I]�); �(x = t) = cg]� v [I]�
This shows that there is a Galois connection. To prove that there is a Galois in-
sertion, injectivity of is demonstrated. Given that([I]�) = ([I 0]�), assume[I]� 6= [I 0]�. Then9[p(x) c]� 2 I such that8[p(x) c0]� 2 I 0:c 6j=Lin c0.
Thus(c) 6j=FD (c0). By the definition of, (x = t) j=FD (c) 6j= (c0). This
contradicts the assumption and therefore[I]� = [I 0]�. �
3.4 Concrete Semantics

The fixpoint semantics,FFD, is defined in terms of an immediate consequences
operatorT gP : P(BFD)! P(BFD), defined byT gP (I) = 8<:p(t) ������ w 2 P;w = p(x) c; p1(x1); :::; pn(xn);pi(ti) 2 I; (x = t) j=FD 9var(x)(^ni=1(xi = ti) ^ c) 9=;T gP is continuous, thus the least fixpoint exists andFFD[[P]] = lfp(T gP).
3.5 Abstract Semantics

To define the immediate consequences operator for the abstract semantics, a special
conjunction operator̂ FL : CFD�CLin ! CLin is introduced. The operator̂FL is
assumed to satisfy the propertycFD^(cLin) j=FD (cFD^FL cLin). This operator
allows the approximation of non-linear finite domain constraints.

6

The fixpoint semantics,FLin, is defined in terms of an immediate consequences
operator,T sP : P(BLin)=�! P(BLin)=�, defined byT sP ([I]�) = [J]�, where

J = 8>>>>>>><>>>>>>>:[p(x) c]� ������������� w 2 P;w = p(x) c0; p1(x1); :::; pn(xn);[wi]� 2 I; wi = pi(yi) ci;8i:(var(w) \ var(wi) = �);8i 6= j:(var(wi) \ var(wj) = �);c = c0 ^FL (^ni=1((xi = yi) ^ ci))
9>>>>>>>=>>>>>>>;T sP is continuous, thuslfp(T sP) exists. SinceP(BLin)= � is a complete partial

order, Kleene iteration [4] can be used to computeFLin[[P]] = lfp(T sP) = t1i=1T sP "i, whereT sP " 0 = � andT sP " i+ 1 = T sP (T sP " i).
3.6 Space-Efficient Over-ApproximationT sP " 1 can contain many unit clauses for the same predicate. Furthermore,T sP " 2
will contain as many, if not more, unit clauses. Thus, to make the fixpoint calcu-
lation manageable,T sP " k is over-approximated by an interpretationI (that is,T sP " k v I) which contains at most one unit clause for each predicate symbol.

The join for the domain of linear constraints,_ : CLin�CLin ! CLin, is defined byc1 _ c2 = ^fc 2 CLinjc1 j=Lin c; c2 j=Lin cg. When the constraints are interpreted
as defining polyhedra, the meet corresponds to the closure of the convex hull, that
is, the smallest enclosing closed convex set. The operator is lifted in stages to an
operator on the abstract domain. First it is lifted to the interpretation base, _ :B?Lin � B?Lin ! B?Lin, whereB?Lin = BLin [f?g, as follows:[p(x) c1]� _ [p(x) c2]� = [p(x) c1 _ c2]�[p(x) c1]� _ [q(y) c2]� = ? if p 6= q[p(x) c]� _ ? = [p(x) c]�? _ [p(x) c]� = [p(x) c]�
This in turn defines the unary function,_ : P(BLin)=� ! P(BLin)=�, on the
abstract domain given by_([I]�) = [[w2If_u2I(w _ u)g]�
Since for everyI 2 P(BLin)= �, T sP (I) v _ � T sP (I), it follows that lfp(T sP) vlfp(_ � T sP). Hence_ does not compromise safety.

7

3.7 Termination of the Polyhedral Analysis

As before, Kleene iteration can be used to computelfp(_�T sP). However the chain
of iterates_�T sP " k may not stabilise in a finite number of steps. In order to obtain
convergence, a fixpoint acceleration technique, called widening [4], is applied.

A widening,O, on a partially ordered set(L;v;t) is an operatorO : L� L ! L
such that8x; y 2 L:x v xOy and8x; y 2 L:y v xOy and for all increasing chainsx0 v x1 v :::, the increasing chain defined byy0 = x0; :::; yi+1 = yiOxi+1; :::
stabilises, that is, for somem, ym+1 v ym.

Given a standard widening on polyhedra [2,4,5] (or equivalently, on linear con-
straints),O : CLin � CLin ! CLin, a widening,O : B?Lin � B?Lin ! B?Lin, (whereB?Lin = BLin [f?g) on the interpretation base is induced as follows:[p(x) c1]� O [p(x) c2]� = [p(x) c1Oc2]�[p(x) c1]� O [q(y) c2]� = ? if p 6= q[p(x) c]� O ? = [p(x) c]�? O [p(x) c]� = [p(x) c]�
This lifts to the abstract domain,O : P(BLin)=� � P(BLin)=�! P(BLin)=�[I1]�O[I2]� = [[w2I2f_u2I1(wOu)g]�
Proposition 4 O on interpretations is a widening.

4 Correctness of the Polyhedral Analysis

This section gives a proof of the correctness of the analysis. That is, upward itera-
tion of_�T sP , with widening, stabilises at an interpretationI with lfp(T gP) v (I).
Lemma 2 If IFD � ([ILin]�), thenT gP (IFD) � (T sP ([ILin]�)).
PROOF: Supposep(t) 2 T gP (IFD). To prove the result it needs to be shown that
there is[p(x) c]� 2 T sP ([ILin]�) such that(x = t) j=FD (c). By the hypoth-
esis and the definition ofT gP (IFD), let p(ti) 2 IFD � ([ILin]�). From the defi-
nition of ([ILin]�), there is[p(yi) ci]� 2 ILin such that(yi = ti) j=FD (ci)) (xi = yi)+ ^ (yi = ti)j=FD((xi = yi) ^ ci)) ^ni=1((xi = yi)+ ^ (yi = ti))j=FD(^ni=1((xi = yi) ^ ci))) c0 ^ ^ni=1((xi = yi)+ ^ (yi = ti))j=FD(c0 ^FL ^ni=1((xi = yi) ^ ci))) 9var(x)(c0 ^ ^ni=1((xi = yi)+ ^ (yi = ti)))j=FD(9var(x)(c0 ^FL ^ni=1((xi = yi) ^ ci)))

8

By the definition ofT gP , (x = t) j=FD 9var(x)(c0^^ni=1(xi = ti)) j=FD 9var(x)(c0^^ni=1((xi = yi)+ ^ (yi = ti))) and therefore(x = t) j=FD (9var(x)(c0 ^FL ^ni=1(xi = ti ^ ci)))
Putc = 9var(x)(c0 ^FL ^ni=1(xi = ti ^ ci)), then(x = t) j=FD (c) and[p(x c]� 2 T sP ([ILin]�), thereforep(t) 2 (T sP ([ILin]�)). �
Lemma 3 If IFD � (ILin), thenT gP (IFD) � (_ � T sP (ILin))
PROOF: (T sP (ILin)) � (_ � T sP (ILin)) follows from the definition of the convex
hull operator and the monotonicity of. The result then follows from Lemma 2.�
Lemma 4 [I]� v [I 0]� iff ([I]�) � ([I 0]�).
PROOF: Case 1.(. Suppose([I]�) � ([I 0]�). Then there exists[p(x) c]� 2 I
such that for all[p(x) c0]� 2 I 0, c 6j=Lin c0. This contradicts the hypothesis, and
the results follows.

Case 2.). This follows from Proposition 2. �
Proposition 5 below is asserted and proved as Proposition 13 in [4].

Proposition 5 If (L;�;g) is a partially ordered set,F : L ! L is continuous,? 2 L is such that? � F (?), gn2NF n(?) exists,L̂ is a set, : L̂ ! L, �̂
is the preorder defined byx�̂y iff (x) � (y), ?̂ 2 L̂ is such that? � (?̂),F̂ : L̂ ! L̂ is monotonic,F � � � F̂ andO : L̂� L̂ ! L̂ is a widening, then
the upward iteration sequence with widening is ultimately stationary with limitÂ
such thatlfp(F) � (Â) andF̂ (Â)�̂Â.

Corollary 1 The upward iteration sequence of_�T sP with wideningO is ultimately
stable with limitI andI is safe, that is,_ � T sP (I) v I andlfp(T gP) � (I).
PROOF: Using Lemma 3 and Lemma 4 above, Proposition 5 can be applied, giving
the result. �
5 Program Transformation and its Correctness

Once an upper approximation toFFD[[P]] is computed, it can be used to transform
the program. The following theorem details the transformation and also asserts
safety.

9

An auxiliary (partial) map,�t : CLin ! CLin, is defined in order to tighten bounds
on variables to integer values, as follows:ct = u(c) ^ l(c) whereu(c) = 8<:x � bqc if (x � q) = ctrue otherwise

; l(c) = 8<: x � dqe if (x � q) = ctrue otherwise

Theorem 1 If lfp(T gP) � ([I]�), thenFFD[[P]] = FFD[[P 0]], where

P 0 = 8>>>>>>>>>><>>>>>>>>>>:w0
����������������
w 2 P;w = p(x) c; p1(x1); :::; pn(xn);[wi]� 2 I; wi = pi(yi) ci;8i:(var(w) \ var(wi) = �);8i 6= j:(var(wi) \ var(wj) = �);c0 = c ^ (^y2var(w)((9y ^ni=1 ((xi = yi) ^ ci))t)+);w0 = p(x) c0; p1(x1); :::; pn(xn)

9>>>>>>>>>>=>>>>>>>>>>;
PROOF: The proof proceeds by showing, by induction onn, thatT gP " n = T gP 0 " n.

Base Case: T gP " 0 = � = T gP 0 " 0.

Inductive case: Suppose thatT gP " k = T gP 0 " k,

(1) To showT gP 0 " (k+1) � T gP " (k+ 1). Let p(t) 2 T gP 0 " (k+1) = T gP 0(T gP 0 "k). Thus there existsw0 2 P 0 such thatw0 = p(x) (c^c0); p1(x1); :::; pn(xn)
(wherew = p(x) c; p1(x1); :::; pn(xn)), pi(ti) 2 T gP 0 " k and(x = t) j=FD9var(x)(^ni=1(xi = ti)^(c^c0)). Therefore,(x = t) j=FD 9var(x)(^ni=1(xi =
ti) ^ c) andp(ti) 2 T gP 0 " k � T gP " k. Thereforep(t) 2 T k+1P .

(2) To showT gP " (k + 1) � T gP 0 " (k + 1). Let p(t) 2 T gP " (k + 1) = T gP (T gP "k). Then there existsw 2 P such thatw = p(x) c; p1(x1); :::; pn(xn)
and pi(ti) 2 T gP " k, (x = t) j=FD 9var(x)(^ni=1(xi = ti) ^ c). SinceT gP " k � lfp(T gP) � ([I]�) and since there is[p(yi) ci]� 2 I such that(yi = ti) j=FD (ci), then) (yi = ti) j=FD c+i) (xi = yi) ^ (yi = ti) j=FD ((xi = yi) ^ ci)+) (xi = ti) j=FD (9var(yi)((xi = yi) ^ ci))+) ^ni=1(xi = ti) j=FD (^ni=19var(yi)((xi = yi) ^ ci))+) ^ni=1(xi = ti) j=FD (9y(^ni=19var(yi)((xi = yi) ^ ci)))+) ^ni=1(xi = ti) j=FD ((9y(^ni=1((xi = yi) ^ ci)))t)+) ^ni=1(xi = ti) j=FD ^y2var(w)((9y(^ni=1((xi = yi) ^ ci)))t)+
Puttingc0 = c ^ ^y2var(w)((9y(^ni=1((xi = yi) ^ ci)))t)+ andw0 = p(x) c0; p1(x1); :::; pn(xn) it follows thatp(t) 2 T gP 0 " (k + 1).

ThusT gP " k + 1 = T gP 0 " k + 1 and so, by induction,lfp(T gP) = lfp(T gP 0). �
10

6 Conclusions

Analysis of finite domain constraint logic programs using polyhedra promises to be
a powerful compile-time technique for reducing the search space of, and thereby
speeding up, finite domain constraint logic programs. By using program special-
isation, other methods of domain reduction can still be applied at run-time. This
paper has formally established the correctness of a polyhedral analysis and of the
associated transformation which adds low valency constraints to the program. The
technique is safe in two senses: the specialised program is never incorrect; it never
runs (significantly) more slowly that the original.

Acknowledgements

The authors would like to thank Florence Benoy, Pat Hill, Jon Martin and Barbara
Smith for their helpful comments and suggestions.

References

[1] R. Bagnara.Data-flow Analysis for Constraint Logic-based Languages. PhD thesis,
Università di Pisa, 1997. TD-1/97.

[2] F. Benoy and A. King. Inferring Argument Size Relationships with CLP(R). In
J. Gallagher, editor,Logic Program Synthesis and Transformation, volume 1207 of
LNCS, pages 204–224. Springer-Verlag, 1996.

[3] A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. Thes-semantics Approach: Theory
and Applications.Journal of Logic Programming, 19-20:149–197, 1994.

[4] P. Cousot and R. Cousot. Comparing the Galois Connectionand Widening/Narrowing
Approaches to Abstract Interpretation. Technical Report LIENS-92-16, Laboratoire
d’Informatique de l’Ecole Normal Superiéure, 1992.

[5] P. Cousot and N. Halbwachs. Automatic Discovery of Restraints among Variables
of a Program. InProceedings of the Fifth Annual ACM Symposium on Principlesof
Programming Languages, pages 84–97, 1978.

[6] J. M. Howe and A. King. Specialising Finite Domain Programs Using Polyhedra.
Submitted to Logic Program Synthesis and Transformation, 1999.

[7] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proceedings of the
Symposium on Principles of Programming Languages, pages 111–119. ACM Press,
1987.

[8] J. Jaffar and M. J. Maher. Constraint Logic Programming:A Survey.Journal of Logic
Programming, 19-20:503–582, 1994.

11

[9] D. B. Kemp and P. J. Stuckey. Analysis Based Constraint Query Optimization. In
Proceedings of the 1993 International Conference on Logic Programming, pages 666–
682. MIT Press, 1993. Long version available fromhttp://www.cs.mu.oz.au/�kemp/.

[10] K. Marriott and P. J. Stuckey. The 3 R’s of Optimizing Constraint Logic Programs:
Refinement, Removal and Reordering. InProceedings of the Twentieth Annual ACM
Symposium on Principles of Programming Languages, pages 334–344. ACM Press,
1993.

[11] K. Marriott and P. J. Stuckey. Approximating Interaction Between Linear Arithmetic
Constraints. InProceedings of the International Symposium on Logic Programming.
MIT Press, 1994.

[12] E. Monfroy. An Environment for Designing/Executing Constraint Solver
Collaborations.Electronic Notes in Theoretical Computer Science, 16(1), 1998.

[13] V. Ramachandran and P. Van Hentenryck. LSign Reordered. In Proceedings of the
Second International Symposium on Static Analysis, volume 983 ofLNCS, pages 330–
347. Springer-Verlag, 1995.

12

