
Computing with Exat Real Numbers in aRadix-r System1
Alexander Kaganovsky15 Otober, 1999

1This report is a revised version of the paper presented at the BirminghamCOMPROX Workshop (1997) whih appears in [7℄.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


AbstratThis paper investigates an arithmeti based upon the representation of om-putable exat real numbers by lazy in�nite sequenes of signed digits in apositional radix-r system. We disuss advantages and problems assoiatedwith this representation, and develop well-behaved algorithms for a ompre-hensive range of numeri operations, inluding the four basi operations ofarithmeti.



1 IntrodutionThe standard implementations of real numbers on a omputer are approxi-mately held to some �xed number of signi�ant �gures. The aumulationof rounding errors leads to well-known diÆulties alulating aurate nu-merial results for sienti� and engineering problems. Going to double,quadruple or even multiple preision in no way eliminates these problems,but merely ameliorates them. No matter how muh preision is provided,there are always problems for whih it is insuÆient to produe reliable re-sults. Perhaps one of the worst features of oating point arithmeti is thatthe omputer an give us no indiation of how many of the digits printed areatually meaningful, so with a poor hoie of algorithm it is quite easy togenerate numerial answers that are ompletely meaningless. An illustrativeexample of suh rounding anomalies is given in [9℄ (also in [8℄), where om-putation of a simple funtion on single preision oating point is shown toprodue ompletely wrong results after only 14 divisions and 12 subtrations.As omputing power beomes heaper, it seems reasonable that we maywish to move to a form of real arithmeti that is perhaps more expensive butwhih will generate results to numerial alulations that arry with themsome easily understood guarantee of auray. Modern programming lan-guages provide ertain omputing abstrations | in�nite lists, higher orderfuntions | whih make it possible to represent real numbers exatly as theyare de�ned in mathematis, using any of several possible methods.Mathematially a real number is de�ned as an in�nitary objet | for ex-ample, a onverging sequene of rationals. Sine all our omputers are �nite,it stands to reason that only �nitely many entries of an in�nite sequene anbe instantiated in �nite time. It also follows that not all real numbers anbe represented on a omputer | only those whose de�ning sequene an bedetermined by a �nite amount of information.The onept of a omputable real number was �rst introdued by AlanTuring in his lassial paper [16℄. He de�ned a omputable real as one whosedeimal1 expansion an be written down by a Turing mahine. Roughlyspeaking, a real number is omputable if there exists a �nite omputer pro-gram that an e�etively approximate it to any degree of preision. Whenmore preision is desired, the omputation may take longer, but the pro-gram itself does not hange. Herefrom, it follows that not all real numbersare omputable; at least, beause the set of all �nite omputer programs isountable, whereas the set of all real numbers is not.In lassial mathematial analysis, real numbers are de�ned in a variety1Any other radix r > 1 ould be used in exatly the same way.1



of ways, all of whih are equivalent to eah other, so that the hoie of a par-tiular representation is matter of onveniene. In onstrutive mathematis,however, some funtions on the omputable reals, and even the four basiarithmeti operations, are ritially dependent on the representation, andwith a poor hoie of the latter may beome non-omputable. For instane,onventional �xed-radix positional weighted number systems, for whih theweight of the i-th digit is r�i and the range of eah digit is f0; 1; � � � ; r� 1g,appear to be unsuitable for exat omputations, beause it is sometimes im-possible to ompute even the �rst digit of a result without having to inspetan in�nite number of the operands' digits. A spei� example an be founde.g. in [10℄.One of the pioneer investigators of this problem was Wiedmer who sug-gested the use of redundant signed-digit systems to e�et omputability [20℄.Although signed-digit notation was proposed as a means of avoiding arrypropagation hains in hardware arithmeti as early as in 1960's, and hasbeen well known among hardware designers, having led to the developmentof digit-pipelined or on-line arithmeti [6℄, it was probably Wiedmer who �rstsuggested its use in the ontext of exat omputations. His PhD thesis [21℄ontains a detailed investigation of the algorithms neessary for exat realarithmeti on redundant signed-digit sequenes.In 1981-2, Carl Pixley at Burroughs Corporation undertook a study ofWiedmer's work, implementing a omplete pakage of funtions for exat realarithmeti in the lazy funtional language SASL [18℄. Pixley spent some timeanalyzing the eÆieny of the algorithms, in partiular for division, whihis the most subtle of the four basi operations. Although never formallypublished, Pixley's work [11℄ was privately irulated and stimulated interestin the topi.In 1986, Boehm, Cartwright, et al. [3℄ reported their two implementationsof exat real arithmeti | as lazy in�nite sequenes of deimal digits, and asfuntions mapping rational errors to rational approximations. Having arriedout a omparative study of the two methods, they ontended that the lazysequene method led to unsatisfatory implementations and performed verypoorly, while the funtional method performed surprisingly well. Their laimwas partially based on what they alled \the granularity e�et" | omputa-tion of arguments to one digit's more auray than neessary, whih makesthe evaluation of expressions suh as x1 + (x2 + (x3 + (� � �+ xn))) highlyineÆient. Sine then, an extensive literature has arisen devoted to repre-sentations of exat reals [4, 5, 8, 13, 19℄; yet, no further attempts have beenmade to �nd out whether the laimed advantage of funtions over lazy listsof digits was simply an artifat of a partiular lass of implementations oflazy languages, or evidene of something more fundamental.2



The purpose of this paper is to investigate the properties of the redundantsigned-digit representation of the reals, and �nd whether it an be renderedfree from the objetions whih have aused its rejetion by the majority of theresearhers, who have deserted altogether its line of approah. In so doing,we develop algorithms for a wide range of numerial operations, inludingthe four basi operations of arithmeti, disuss the omplexity issues, andexamine various fators that an a�et implementations.2 Radix-r redundant signed-digit expansionsA number system is said to be redundant if there are at least two distintrepresentations that are mapped onto the same number; otherwise, it is non-redundant. A radix r number system requires at least r digit symbols; if thisnumber is greater than r, the system beomes redundant.The following variation of the �xed-radix number system was originallyused by Avizienis [1, 2℄ to eliminate arry propagation hains in addition andsubtration.De�nition 1. A radix-r redundant signed-digit (SD) number system is onebased on a digit set S� = ��; : : : ; 1; 0; 1; : : : ; �	 ;where x denotes �x, 1 � � � r � 1, and � � r=2.The last ondition allows eah digit to assume more than r values andthus gives rise to the redundany. We an measure the degree of redundanyof a given SD system by alulating the redundany oeÆient�(S�) = �r � 1 :A digit set is said to be maximally or minimally redundant if its redun-dany oeÆient is maximal or minimal for the assoiated radix. Thus, forradix-10, the digit set �5; : : : ; 1; 0; 1; : : : ; 5	 is minimally redundant, while�9; : : : ; 1; 0; 1; : : : ; 9	 is maximally redundant.Throughout this paper, we shall use the symbols N and N0 to denote thesets of all positive and non-negative integers respetively.If x 2 R is a real number, r > 1 an integer, and (xi)i2N0 a sequene ofintegers with �� � xi � � for all i 2 N suh thatx = 1Xi=0 xir�i;3



then the symbol on the right side ofx = (x0; x1; x2; : : : ; xn; : : : )r (1)is alled an in�nite radix-r redundant signed-digit expansion for x. If xi = 0for all i > p � 1, we also writex = (x0; x1; x2; : : : ; xp)rThis is a �nite or terminating radix-r expansion for x. In ase r = 10 theseare alled deimal signed-digit expansions and the subsript 10 is omitted.If we allow the �rst digit of signed-digit expansions to be unbounded,x0 2 Z, then for every real number x there exist an in�nite number ofdi�erent radix-r redundant signed-digit expansions of the form (1). How areall these expansions related to eah other? In order to answer this question,we shall introdue a few onepts and de�nitions.De�nition 2. Let (an)n2N0 be a sequene of integers suh that the series1Xn=0 anr�n (2)is onvergent. A sequene of integers (bn)n2N0 is said to be equivalent to(an)n2N0 if 1Xn=0 anr�n = 1Xn=0 bnr�n(and, in partiular, the series on the right is also onvergent). To indiatethe equivalene of two sequenes, we shall use the symbol �.If we denote by S the set of all integer sequenes (an)n2N0 for whih theseries (2) onverges, then obviously � is an equivalene relation on S, andusing the fat that for any number x 2 R there exists at least one expansionof the form (2), the equivalene lasses are in one-to-one orrespondene withthe reals: R = S= �.We next de�ne a family of funtions f : S ! S suh that f(s) � s for alls 2 S.De�nition 3. Let i 2 Z be an integer, i 6= 0. We de�nef0 �(an)n2N0� = (an)n2N0fi �(an)n2N0� = (bn)n2N0 , where bj = 8<: aj + sgn(i), if j = jij � 1aj � sgn(i) � r, if j = jijaj, otherwise.4



Now let (ik)mk=1 be a �nite sequene of integers. We de�nefi1i2���im def= fim Æ : : : Æ fi2 Æ fi1For example, if r = 10, (an)n2N0 = (5; 5; : : : 5; : : : ), we havef1 (5; 5; 5; : : : 5; : : : ) = (6;�5; 5; : : : ; 5; : : : )f�1 (5; 5; 5; : : :5; : : : ) = (4; 15; 5; : : : ; 5; : : : )f1;2 (5; 5; 5; : : :5; : : : ) = (6;�4;�5; 5; : : : ; 5; : : : )f�1;3 (5; 5; 5; : : : 5; : : : ) = (4; 15; 6;�5; : : : ; 5; : : : )One an see that the n-th element of a sequene an only be hanged byf�n and f�(n+1), so our next step is to arry over the de�nition of f(ik) to thease where (ik) is an in�nite sequene.De�nition 4. Let (ik)k2N, ik 6= 0 be an unbounded sequene of integers suhthat the sequene (jikj)k2N is nondereasing. We then de�nef(ik)k2N�(an)n2N0� def= (bn)n2N0 ,where bn = �fi1���ijn �(an)n2N0��n and (jn)n2N0 is any sequene of natural num-bers with jijn�1j � n < jijn j (it is easy to verify that the value of bn does notdepend on the hoie of (jn)n2N0 ).Sine f0 is the identity funtion, we an also allow zeros to appear in thesequene (ik)k2N by agreeing to alulate the value of f(ik)k2N asf(ik)k2N def= f(i0k)k2Nwhere the sequene (i0k)k2N is obtained from the original sequene (ik)k2N byskipping all enountered zeros.One of the main properties of the funtions f(ik) is that they do not takeus out of the equivalene lasses with respet to �, i.e. for any (an)n2N0 2 Sfi1i2���im �(an)n2N0� � (an)n2N0f(ik)k2N�(an)n2N0� � (an)n2N0Among other properties, we an indiate thatfm;�m = f�m;m = f0 for all m 2 N5



Theorem 1. Let r 2 N, r > 1 be a radix value, � be an integer with 1 �r=2 � � � r � 1, and let x 2 R. Then there exists a sequene (an)n2N0 ofintegers suh that �� � an � � for all n 2 N, andx = 1Xn=0 anr�nMoreover, if (bn)n2N0 is any other (aj 6= bj for some j) sequene of integerssuh that �� � bn � � for all n 2 N; bn 6= r�1 (or bn 6= �r+1) for in�nitelymany n (if � = r � 1), and x = 1Xn=0 bnr�n; (3)then there exists a (possibly �nite) integer sequene (ik)k2N suh that (jikj)k2Nis nondereasing and (bn)n2N0 = f(ik)k2N�(an)n2N0�.Proof. Let x0:x1x2 : : : xn : : : be the onventional radix-r expansion of x, i.e.x0 2 Z, 0 � xi < r for all i 2 N . Then we de�ne(an)n2N0 = f(in)n2N�(xn)n2N0�where in = � n; if � � xn � r � 10; if 0 � xn � �� 1It is quite easy to see that janj � � for all n 2 N: we know that 0 � xn < r,and an is obtained from xn through appliation of fi1:::ik for some i1; : : : ik.Thus, if xn 2 [0; �� 1℄, it may only be hanged by fn+1, in whih ase it willbe inreased by 1; if xn 2 [�; r � 1℄, then fn will redue its value by r, andthe resulting value may, in its turn, be also inreased by 1 by fn+1. In eitherase, we have �� � an � �, and x =P1n=0 anr�n.Now suppose that (3) obtains for some sequene (bn)n2N0 of integers wherejbnj � � for all n 2 N , and bj 6= aj for some j. Let k = inf fj 2 N : aj 6= bjg ;then we have 1Xn=k anr�n = 1Xn=k bnr�nor bk = ak + 1Xn=1 (an+k � bn+k) r�n6



Sine jan+kj � �, jbn+kj � �, we an estimate����� 1Xn=1 (an+k � bn+k) r�n����� � 1Xn=1 jan+k � bn+kj r�n � 1Xn=1 2�r�n = 2�r � 1Generally, we have 1 < 2�=(r � 1) � 2, but the pathologial equalitybk = ak � 2 may only hold true in the ase where � = r � 1 and x =(a0; a1; : : : ; ak;��;��;�� : : : ) = (b0; b1; : : : ; bk;��;��;��; : : : ), whih wehave exluded from onsideration. Hene, we dedue thatbk = ak � 1Now we set i1 = � k; if bk = ak + 1�k; if bk = ak � 1and if (a0n)n2N0 = fi1 �(an)n2N0�, then bn = a0n, n 2 f1; : : : ; kg.One i1; : : : ; in�1 have been hosen, let in = jinj � sgn (in), wherejinj = inf nj 2 N0 : bj 6= �fi1:::in�1 �(an)n2N0��josgn (in) = ( 1; if bjinj = �fi1:::in�1 �(an)n2N0��jinj + 1�1; if bjinj = �fi1:::in�1 �(an)n2N0��jinj � 1It may happen that in = 0 for all n > p, p 2 N . In this ase, we shallonsider the resulting sequene (i1; : : : ; ip) to be �nite. This onludes theproof.3 The representationWe aim to represent real numbers by sequenes from the representation setS, as de�ned in Setion 2. For example, one might de�ne a omputableexat real number x as a triple (r; E;M), where E 2 Z is an exponent, M isa mantissa whih is a sequene of numbers (an)n2N0 2 S, and the value of xis omputed as x = rE � 1Xn=0 anr�n: (4)Suh a representation, however, would be too loose a onept to be usefulby itself. We must also provide some onstrutive ondition in order to guar-antee onvergene of the series in (4) and be able to make useful inferenesabout a number from a �nite amount of information about its representation.7



In this light, we de�ne a representation of an exat real number x to bea quadruple (r; �; E;M), where r 2 N , r > 1 is the radix value, the rangeparameter � is an integer with r=2 � � � r � 1, E 2 Z is a signed exponent,M is a mantissa, whih is an e�etively given2 sequene of integers (an)n2N0suh that janj � Cn; n 2 N ; (5)where C > 0 is a onstant, ommon to all real numbers in a given system| we therefore do not inlude it in the representation3. The representation(r; �; E; (an)n2N0 ) is said to be anonial or normalized, ifjanj � �; n 2 N0 :The value of x = (r; �; E; (an)n2N0 ) is taken as in (4). Later on we willentre on the fators that a�et the hoie of appropriate values for theparameters r and �.For brevity and ease of reading, we shall not always distinguish betweena number x and its representation (r; �; E;M), and refer to a number asnormalized if its representation is normalized, and vie versa. We shall alsoassume that r and � are �xed and sometimes use the notation (E;M) insteadof (r; �; E;M).Observe that we an view a �nite number as being in�nite, by attahingan in�nite sequene of zeros at the end of its mantissa:rE � NXi=0 air�i = rE � 1Xi=0 air�i,where we have set ai = 0 for i > N . We an therefore assume, without anyrestrition of generality, that the mantissas of all operands are in�nite, unlessotherwise spei�ed.4 NormalizationMost algorithms presented in this and subsequent hapters assume that alloperands are normalized, and also require normalization of the results, so2The sequene (an)n2N0 ould in priniple be given by an orale | it does not neessar-ily have to be omputable in the sense of being the sequene of values g(0); g(1); g(2); : : :of a general reursive funtion g(x).3The onvergene riterion (5) is somewhat arbitrary and only required to ensure e�e-tive onvergene of the sequene. If a sequene were found to violate (5), an error messagewould be produed at run-time. The value of C = 2 (r � 1)2 ould be given as a roughestimate that satis�es the algorithmi requirements.8



we shall now disuss the algorithms for normalizing real numbers. We reallthat normalization refers to the proess of restoring the individual digits ofa real number's mantissa (ai)i2N0 to the anonial range [��; �℄.Let (ai)i2N0 be an unnormalized mantissa of a real number a = rE �1Pi=0 air�i. We shall �rst on�ne our attention to the ase where jaij � r+��1; i 2 N0 , and show how to obtain a new exponent E 0 and mantissa (a0i)i2N0suh that 1) a = rE � 1Xi=0 air�i = rE0 � 1Xi=0 a0ir�i2) ja0ij � �; i 2 N0 (6)To this end, we �rst onsider 1Pi=0 air�i and repeatedly divide ai by r forall i 2 N0 : ai = dir +mi; jmij < r; sgn(mi) = sgn(di) (7)We have: 1Xi=0 air�i = 1Xi=0 (dir +mi) r�i = 1Xi=0 dir�i+1 + 1Xi=0 mir�i= (d0r +m0 + d1) + 1Xi=1 (mi + di+1) r�i (8)Now jaij � r + � � 1 implies jdij � 1, jmij � r � 1 (i 2 N0) and, thus,jmi + di+1j � r. We, however, aim to obtain a value less or equal to � (insteadof r). Let us introdue the following notation:d0i = � di; if jmij < �di + sgn (mi) ; if jmij � �m0i = � mi; if jmij < �mi � sgn (mi) � r; if jmij � � (9)a0i = m0i + d0i+1 (i 2 N); a00 = a0 + d01From (9) it an be seen that ai = d0ir + m0i. and, similarly to (8), wearrive at 1Xi=0 air�i = (a0 + d01) + 1Xi=1 �m0i + d0i+1� r�i = 1Xi=0 a0ir�i9



Let us now verify that ja0ij � � for all i 2 N . For this purpose we notethat jd0ij � 1 for all i 2 N0 , so if jmij < �, then m0i = mi, jm0ij < �,and ja0ij = ��m0i + d0i+1�� � �. If jmij � �, then m0i = mi � sgn (mi) � r,1 � jm0ij � r � �, and ja0ij = ��m0i + d0i+1�� � r � � + 1. Now we requirer � �+ 1 � � or, equivalently, � � r + 12 (10)whih in its turn implies that (r + 1) =2 � r � 1 or r � 3. Using (10), we�nally obtain ja0ij � � for all i 2 N . For i = 0, however, the inequality doesnot neessarily hold true. On the other hand, from the de�nition of a00 wean onlude that a0 � 1 � a00 � a0 + 1.In this manner, we have onstruted a funtion f : N2 � ZN0 ! ZN0 (itwill be referred to as redue) whih assigns to any triple �r; �; (ai)i2N0� thesequene (a0i)i2N0 , alulated aording to formulae (7) and (9). Evaluationof this funtion an be performed totally in parallel (Fig. 1).? �������?
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a0 a1 a2 a3 � � �a0 m01 m02 m03 � � �d01 d02 d03 d04 � � �a00 a01 a02 a03 � � �Figure 1: Totally parallel normalizationReturning to formula (6), we now onstrut the promised number asfollows: E 0 = � E; if ja0j � �� 1E + 1; if ja0j � �(a0i)i2N0 = � f �r; �; (ai)i2N0� ; if ja0j � �� 1f (r; �; (0; a0; a1; : : : ; an; : : : )) ; if ja0j � �Now let us onsider a more general ase where jaij � M; i 2 N0 , whereM > 0 is an arbitrary positive integer. We an now easily show that it ispossible to normalize mantissa (ai)i2N0 in a �nite number of steps. Indeed,applying redue, we shall obtain a sequene (a0i)i2N0 , satisfying the following10



ondition: ja0ij = ��m0i + d0i+1�� � jm0ij+ ��d0i+1�� � �� 1 + �Mr �+ 1;or ja0ij �M1 def= �Mr � + �:Applying redue again, we get another sequene (a00i )i2N0 , satisfyingja00i j �M2 def= �M1r �+ �;et. The sequene M;M1;M2; : : : is a sequene of dereasing natural num-bers, and if M = mnrn + : : :+m1r +m0, the algorithm will terminate in atmost n + 1 steps.More spei�ally, we an prove the following result.Theorem 2. Let (ai)i2N0 be a sequene with jaij � M , i 2 N, where Mis an arbitrary positive integral number. In order that the sequene (ai)i2N0be normalized to an equivalent sequene (bi)i2N0 with jbij � N , i 2 N onapplying redue at most n times, it is suÆient that M � g(n)(N), whereg(n)(x) = rnx+ Cn, Cn = (rn � 1)(1� �).Proof. To prove the suÆieny of the ondition imposed upon M , we needbut note that the funtions g(n)(x) satisfy the following reurrene formulaeg(n)(x) = r � g(n�1)(x) + C1; n 2 N ;where g(0)(x) � x. Equivalently,g(n)(x) = g Æ g Æ � � � Æ g| {z }n times (x);where g(x) = g(1)(x) = rx+ C1:Thus, it suÆes to show that any sequene (ai)i2N0 with jaij � g(x), i 2 Nan be redued, in a single step, to a sequene (a0i)i2N0 with ja0ij � x, i 2 N .Let (ai)i2N0 be any suh sequene, i.e. jaij � rx+C1; i 2 N . As indiatedabove, jaij �M implies ja0ij �M1 = �Mr �+�, and thus piking M = rx+C1yields M1 = �x+ (1� �) r�1r �+ � < x+ (1� �) + � = x+ 1, i.e.ja0ij � x;whih is what had to be proved. 11



Corollary 1. If (ai)i2N0 is a sequene satisfying jaij � g(n) (�) for somen 2 N and all i 2 N, it an be fully normalized by redue in at most n steps.This follows immediately from the theorem: n normalizations give us asequene (a0i)i2N0 with ja0ij � �.The onverse statement is not neessarily true: even if jakj > g(n)(N) forsome k 2 N , after n normalizations we may still get a (bi)i2N0 with jbij � Nfor all i 2 N . Suppose, for instane, that ak = g(N) + 1 = r(N � � + 1) + �for some k 2 N and jaij � g(N) for i 6= k. This implies that dk = N � �+ 1,mk = � and, therefore, d0k = N � � + 2, m0k = �� r. Realling thata0k�1 = m0k�1 + d0k; k 2 N ;one an see that the larger-than-usual value of d0k an only a�et the (k�1)-stelement of the resulting sequene, and, further still, only if m0k�1 = �� 1, inwhih ase a0k�1 = � � 1 +N � � + 2 = N + 1. However, the value of m0k�1depends solely on ak�1, and an be anywhere in the range from �� + 1 to�� 1, irrespetive of the value of the next element, ak. If it so happens thatm0k�1 6= �� 1, we will have ��a0k�1�� � N , and onsequently | sine the a0i fori 6= k � 1 have remained intat | ja0ij � N for all i 2 N .This example shows that the funtions g(n)(x) give us, in fat, the bestupper bound one ould possibly have in order that any sequene boundedby it be safely normalized. More preisely, for any integer funtion f (n)(x) >g(n)(x) there is a sequene (ai)i2N0 with jaij � f (n) (�) that annot be fullynormalized in n appliations of redue.By way of illustration, let us give a few examples.Example 1. Let r = 6, � = 4, (ai)i2N0 be a sequene with jaij � 3500 forall i 2 N. How many times does one have to apply redue to obtain anequivalent sequene (a0i)i2N0with ja0ij � 100, i 2 N?We have g(100) = 6 � 100� 15 = 585g(2)(100) = g(585) = 6 � 585� 15 = 3495g(3)(100) = g(3495) = 6 � 3495� 15 = 20955Sine g (100) < g(2)(100) < 3500 < g(3)(100), 3 normalizations will be suÆ-ient by theorem 2.Example 2. Let r = 10, � = 6. Find the bound for the elements of asequene that an be fully normalized in 3 appliations of redue.Aording to Corollary 1, we need but alulateg(3)(6) = 1000 � 6 + 999 � (�5) = 1005:12



Thus, if jaij � 1005, i 2 N, (ai)i2N0 an be fully redued in three passes.The funtions g(n)(x) have a muh simpler form when x = �: indeed, itis easy to see that gn(�) = rn + �� 1; n 2 N : (11)The right-hand side of equality (11) is solvable for n, whih enables usto determine the number of times one has to apply redue in order to fullynormalize a given sequene (ai)i2N0 . In more exat terms, let (ai)i2N0 be asequene with jaij �M , i 2 N . By theorem 2,n = min�k 2 N ��M � gk(�)	 :Solving the inequality M � gk(�) for k 2 N , we �nd thatk � logr (M � �+ 1) ;or, n = dlogr (M � �+ 1)e (12)As a onlusion, let us take note of the fat that, as it follows from (10),in order for our system to allow totally parallel normalization, i.e. abseneof arry propagation hains, it must not be minimally redundant. For r = 2,for instane, there is only one possible digit set, �1; 0; 1	; thus, in the binaryase the ondition � � (r + 1) =2 = 3=2 annot be satis�ed. Heneforth, onlynon-minimally redundant systems will be onsidered.5 Basi arithmeti operations5.1 Addition and subtrationIn this setion, we shall disuss algorithms for the operations of exat realaddition and subtration. The emphasis will mainly be on the former, sinesubtration is usually arried out as the addition of a negated number. Weshall �rst disuss addition of two numbers and then look at multiple numberaddition.5.1.1 Addition of two numbersLet a = rEa � 1Pi=0 air�i and b = rEb � 1Pj=0 bjr�j be the two normalized radix-r numbers to be added. Sine the addition operation is ommutative, we13



an assume e = Ea � Eb � 0 without loss of generality. The proedure foraddition or subtration is as follows:a + b = rEa � 1Xi=0 air�i + rEb � 1Xi=0 bir�i = rEa  1Xi=0 air�i + r�e � 1Xi=0 bir�i!= rEa � 1Xi=0 (ai + b0i) r�i;where (b00; b01; b02; � � � ; b0n; � � � )r = 0�0; 0; � � � ; 0| {z }e zeros ; b0; b1; b2; � � �1Ar :Thus, in order to perform addition, we must �rst adjust the mantissa ofone of the operands to make the two exponents equal (align the radix points),and then add the two sequenes digit by digit. The resulting sequene(a0 + b00; a1 + b01; � � � ; an + b0n; � � � )ran then be normalized in a single pass, sinejan + b0nj � janj+ jb0nj � 2� � r + �� 1:5.1.2 SubtrationSubtration is arried out in the usual way by negating the minuend andadding the result to the subtrahend. Negation is performed as follows:� 1Xi=0 air�i = 1Xi=0 (�ai) � r�i5.1.3 Addition of several numbersThe above addition algorithm an be readily modi�ed to operate with n num-bers, where n > 2. The proedure is essentially the same | the mantissas ofall n numbers are �rst aligned to math the one with the largest exponent,and then added digit-by-digit. As it follows from (12), the resulting sequenean be normalized by applying redue dlogr (n�� �+ 1)e times.Note that this is onsiderably more eÆient than adding the n numberspairwise using (n� 1) nested additions, as we disuss later (Setion 6.1).14



5.2 MultipliationLet the multiplier and multipliand be denoted by a; b 2 R respetively, withthe following normalized sequenes of signed digits:(a0; a1; a2; � � � ; an; � � � ); (b0; b1; b2; � � � ; bn; � � � );i.e. a = rEa � 1Xi=0 air�i; b = rEb � 1Xj=0 bjr�jThen ab = rEa+Eb � 1Xi=0 air�i! � 1Xj=0 bjr�j!The Cauhy produt of the two series 1Pi=0 air�i and 1Pj=0 bjr�j is the series1Xm=0 mr�m = 1Xm=0 mXi=0 aibm�i! r�m;where m = � mPi=0 aibm�i�. Sine both series a = 1Pn=0 anr�n and b = 1Pn=0 bnr�nare absolutely onvergent, by Mertens' theorem (see e.g. [15℄) their Cauhyprodut 1Pn=0 nr�n onverges to ab.Sine (ai)i2N0 and (bi)i2N0 are anonial representations of a and b, wehave jmj � �2 � (m+ 1) ; m 2 N0 :Now we want to �nd the result in the formab =  = rE � 1Xm=0 0mr�m;where �� � 0m � � for all m 2 N0 . However, the sequene (m)m2N0 annotbe normalized diretly, beause generally it is not bounded by any positiveinteger. Instead, we an reursively apply redue to small bounded portionsof (m)m2N0 , as shown in Figures 2 and 3.15



a0b0 a0b1 � � � a0bn�1 a0bn a0bn+1 a0bn+2 � � � a0b2n�1 a0b2na1b0 � � � a1bn�2 a1bn�1 a1bn a1bn+1 � � � a1b2n�2 a1b2n�1. . . ... ... ... ... . . . ... ...an�1b0 an�1b1 an�1b2 an�1b3 � � � an�1bn an�1bn+1anb0 anb1 anb2 � � � anbn�1 anbnan+1b0 an+1b1 � � � an+1bn�2 an+1bn�1an+2b0 � � � an+2bn�3 an+2bn�2. . . ... ...a2n�1b0 a2n�1b1a2nb0Figure 2: Multipliation | before normalizing00 01 � � � 0;n�1 0n 0;n+1 0;n+2 � � � 0;2n�1 0;2nan+1b0 an+1b1 � � � an+1bn�2 an+1bn�1an+2b0 � � � an+2bn�3 an+2bn�2. . . ... ...a2n�1b0 a2n�1b1a2nb0Figure 3: Multipliation | after normalizing �rst (n + 1) linesNamely, let us hoose some n 2 N , then for all m > n we write:mXi=0 aibm�i = nXi=0 aibm�i + mXi=n+1 aibm�iWe have:1Xm=0 mr�m = 1Xm=0 mXi=0 aibm�i! r�m= nXm=0 mXi=0 aibm�i! r�m + 1Xm=n+1 nXi=0 aibm�i + mXi=n+1 aibm�i! r�m= 1Xm=00�min(m;n)Xi=0 aibm�i1A r�m + 1Xm=n+1 mXi=n+1 aibm�i! r�m (13)16



Now the sums min(m;n)Pi=0 aibm�i are bounded for all m 2 N0������min(m;n)Xi=0 aibm�i������ � (n + 1) �2; (14)so we an apply redue to the sequene  min(m;n)Pi=0 aibm�i!m2N0 . Having doneso m(n) times, wherem (n) = �logr �(n+ 1) �2 � � + 1�� ;we shall obtain an equivalent sequene (0m)m2N0 satisfying j0mj � � for allm 2 N0 , i.e.1Xm=00�min(m;n)Xi=0 aibm�i1A r�m = 1Xm=0 0mr�m, where j0mj � �: (15)Returning to (13), we rewrite it in the form1Xm=0 mr�m = n�1Xm=0 0mr�m + r�n 1Xm=0 (1)m r�m;where (1)0 = 0n (16)(1)m = 0;n+m + n+mXi=n+1 aibn+m�i; m 2 NProeeding reursively with the series1Xm=0 (j)m r�m = n�1Xm=0 jmr�m + r�n 1Xm=0 (j+1)m r�m; j 2 N;we obtain an equivalent sequene (0m)m2N0 :1Xm=0 mr�m = n�1Xm=0 0mr�m + r�n n�1Xm=0 1mr�m + r�n n�1Xm=0 2mr�m + : : := n�1Xm=0 0mr�m + 2n�1Xm=n 1;m�nr�m + 3n�1Xm=2n 2;m�2nr�m + : : := 1Xk=00�(k+1)n�1Xm=kn k;m�knr�m1A = 1Xm=0 0mr�m;17



where 0m = m divn;mmodn; j0mj � �; m 2 N0(km)m2N0 � 0�0�min(m;n)Xi=0 d(k)i;m�i1Am2N01A ; jkmj � �d(k+1)ij = � k;j+n; i = 0d(k)i+n;j; i 2 Nd(0)ij = aibj(k+1)m = mXi=0 d(k+1)i;m�i(0)m = mThus, (0m)m2N0 is the required result of multipliation.5.3 DivisionThe intention here is to develop algorithms for division of exat real numbers.Let N 2 R be the dividend, D 2 R, D 6= 0 | the divisor, their redundantsigned-digit radix-r representations given byN = rEN � 1Xi=0 nir�i; D = rED � 1Xi=0 dir�i;where jnij � �; jdij � � for i 2 N . The task is to ompute a real quotientQ = rEQ � 1Xi=0 qir�isuh that N = Q �D and jqij � �, i 2 N .A onsiderable body of work exists in the literature on the methods ofsigned-digit division, most of whih in one way or another owe their originto an algorithm due to Robertson [12℄. The substane of the algorithm lieswith an iterative proess that produes one digit of the quotient per yleaording to the following reurrene equationPn+1 = r (Pn � qnD) ; n 2 N0 ; (17)where P0 = N , Pn is the urrent partial remainder, Pn+1 is the next partialremainder, and qn is the quotient digit inferred from Pn and D. It is easy tosee that Pn = rn �N � �q0 + q1r�1 + : : :+ qn�1r�n+1�D� ; n 2 N ;18



and so imposing an upper bound on the value of jPnj will ensure onvergeneof the algorithm, provided that seletion of the quotient digit qn results inthe next partial remainder Pn+1 adhering to the same allowed range as Pn.The existing signed-digit division algorithms primarily di�er in their se-letion of quotient digits, restrition of the range of the possible values ofthe divisor, dividend and partial remainders and, �nally, normalization teh-niques.The onventional, non-redundant algorithms also use relation (17) butalways produe orret quotient digits | the multipliations of the divisorby the digits of the quotient are done by repeated subtration, and a guesseddigit is known to be inorret if it is either too large and the subsequentsubtration leaves a negative result, or it is too small and the subtrationleaves a result that exeeds a multiple of the divisor in that digit position.In redundant signed-digit representations, however, the sign of an inter-mediate result may not be readily available for inspetion, beause a numberof its most signi�ant digits, generally unknown in advane, may happen tobe all zero. The usual way to get around this problem is to make a guessabout qn based on the inspetion of several most signi�ant digits of Pn andD. Even though this ould result in some quotient digits qn seleted in thisway being inorret, the redundany allows reovery from wrong guesses bytaking an appropriate orretion step in the next quotient digit. As longas the next q an orret an error in the previous step, onvergene of thealgorithm is guaranteed.The method of division put forward here is a modi�ation of the originalRobertson's signed-digit division algorithm and is similar to that reentlyreported by David Smith [14℄.The algorithm uses the above reurrene relation (17) and the followingdigit seletion funtion: qn = �����pn0d0 ����� � sgn�pn0d0 � ; (18)where pn0 is the �rst digit of the n-th partial remainder Pn, and d0 is the �rstdigit of the divisor D whih, being non-zero4, is so saled that jd0j � r2. Be-ginning with P0 = N , we have the following sequenes of digits representingPn+1, n 2 N0 :Pn+1 = r � (pn0 � qnd0; pn1 � qnd1; � � � ; pnk � qndk; � � � )r= (r(pn0 � qnd0) + (pn1 � qnd1); pn2 � qnd2; � � � ; pnk � qndk; � � � )r4Note that sineD is represented by an in�nite sequene of digits, one annot e�etivelyhek whether or not it is non-zero. 19



The early algorithms fully normalized Pn, n 2 N at eah step in order tokeep the entries of the sequene bounded. However, as reently shown in [14℄(and also suggested by Carl Pixley in the early 1980's), it is possible to skipthe full normalization of the partial remainders, and instead normalize only afew leading digits. The details of the algorithm analysis are given in [14℄, andalthough onsidering the operands to be �nite and given in non-redundantform, readily lend themselves to the elaboration neessary to extend themethod to operate with in�nite sequenes of signed digits.The elimination of most intermediate digit normalizations makes the di-vision algorithm run in double-quik time, and at high preision nearly asfast as multipliation.6 Complexity analysisThe hief and omputationally most signi�ant part of the algorithms pre-sented in this paper is the normalization funtion, whih is for the greaterpart responsible for the omplexity of the four arithmeti operations.The normalization proedure relies upon unbounded integer arithmetifor its operation, and hene the speed of normalization is ruially dependenton the speed of same. As seen in Fig. 1, normalization always requires one-digit arry-look-ahead | to produe N radix-r digits of a normalized result,it is neessary to ompute N + 1 digits of the number being normalized,whereafter N out of the N +1 digits (exluding the �rst one) are divided byr, and the results of the divisions | added, possibly in parallel, resulting ina total of N integer divisions by r, and N integer additions. If r is a powerof 2, the divisions by r an be done by simple shifts.Similarly, if normalization is to be performed m times, in order to obtainN digits of the result, we need N +m digits of the original number, as wellas N + (N + 1) + : : :+ (N +m� 1) = m(N + (m� 1)=2) divisions by r andadditions.6.1 Addition and subtrationThe omputation of N digits of the sum of two numbers requires N + 1digits of the operands, N integer divisions by r and 2N +1 integer additions.Addition of n numbers, where n > 2, requires N +m digits of the operands,m(N + (m� 1)=2) divisions by r and m(N + (m� 1)=2) + (n� 1)(N +m)additions, where m = dlogr (n�� �+ 1)e. This is, of ourse, muh betterthan the repeated binary addition x1+(x2 + (x3 + (� � �+ xn))), whih results20



in the evaluation of N + n digits of the operands, (n � 1)(N + (n � 2)=2)divisions by r and 2(n� 1)N + (n� 1)2 additions.Subtration is only di�erent from addition in that negation is performedbeforehand. Negation, of ourse, does not require any look-ahead, and itsomplexity is simply that of hanging the sign of a number's digits.6.2 MultipliationThe omplexity of the multipliation algorithm depends on the value of theparameter n 2 N that appears in (14). Let us address ourselves to thequestion of hoosing an appropriate value for n. In priniple, the algorithmwill work orretly with any n 2 N , so our main onern here is to minimizethe number of operations needed to ompute N digits of the result. Notethat when n = 1, the algorithm is the same as that adopted by Avizienis [2℄.Now let N = pn+ q; 0 � q < n:We have p + 1 partial normalization groups (the �rst two groups are shownin Fig. 2), eah of whih requires at most m(n) = dlogr ((n+ 1) �2 � �+ 1)eappliations of redue (see (14)). On aount of the granularity e�et, toompute N digits of the produt, the normalization proedure requires mextra digits from the last partial normalization group, 2m extra digits fromthe seond-last one, and so on; the �rst group requiring as many as pm extradigits, thus making the total number of integer divisions and additionsNdiv = m(N + pm + (m� 1)=2) +m((N � n) + (p� 1)m+ (m� 1)=2) + : : :+m((N � pn) + (m� 1)=2)= m (N + (N � n) + (N � 2n) + : : :+ (N � pn)) +m2(p+ (p� 1) + : : :+ 1) +m(m� 1)(p+ 1)=2= 12m (p+ 1) (N + q +mp +m� 1) :The orresponding formula for the number of integer multipliations of theoperands' digits isNmult = N(N + 1)2 + (q � 1)m+ n � (2m+ : : :+ (p+ 1)m)= N(N + 1)2 +m�p2 + 3p2 n+ q � 1�21



Thus, we have to hoose n suh as to minimize the two funtionsNdiv(n;N) = 12m(n) � (p+ 1) (N + q +m(n) � p+m(n)� 1) ;Nmult(n;N) = 12N(N + 1) +m(n)�p2 + 3p2 n+ q � 1� ;where p = �Nn � ; q = N mod n;m(n) = �logr �(n+ 1) �2 � �+ 1�� :For instane, let r = 10, � = 6, thenm(n) = 8>>>><>>>>: 2; if n = 13; if 2 � n � 264; if 27 � n � 2765; if 277 � n � 2776� � � � � � � � �and the orresponding minimal values of Ndiv for N = 100 areNdiv(1; 100) = 12 � 2 � 101 � 301 = 30401Ndiv(26; 100) = 12 � 3 � 4 � 133 = 798Ndiv(276; 100) = 12 � 4 � 1 � 203 = 406Ndiv(2776; 100) = 12 � 5 � 1 � 204 = 510These data have been summarized in graphial form in Fig. 4 as plots ofNdiv andNmult versus n forN = 100. It is apparent thatNdiv(n) andNmult(n)behave similarly for other values of N , r and �. One an see that the optimalvalue of Ndiv is attained when n = N + 1, in whih ase p = 0, q = N , andthe total number of divisions is Ndiv(N + 1; N) = mN +m(m� 1)=2. Sinethe number N of required preision digits is generally unknown in advane,it is reasonable to hoose some �xed value of n that would ensure reasonableperformane of the algorithm for all N . It is also lear that we may onlyhoose n out of nk = max fn 2 N j m(n) � kg ; k 2 N ;22



Figure 4: Choie of n for multipliation | the number of integer multi-pliations Nmult and divisions Ndiv vs. n alulated for N = 100 preisiondigits
r=10, r=6, N=100
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beause if n0 > n00 and m(n0) = m(n00), we have Ndiv(n0) � Ndiv(n00).In priniple, the larger the value of n, the better; exept when n is vastlylarger than N , the number of operations Nop will ontinue to grow with N(due to the inreasing of m). On the other hand, hoosing a large value ofn would imply large values of the sequene entries (up to (n + 1) �2 | see(14)) whih, if exeeded the threshold for representing integers (usually thesize of the mahine word), would result in slower integer operations. Thevalues of n orresponding to m = 2 are obviously inadequate, resulting inan unneessarily large number of operations (e.g. Avizienis's algorithm),but any of the numbers n3; n4; : : : are equally suitable for the value of n (interms of operation ounts). Of ourse, the larger the m in nm, the morenormalizations (and therefore more spae to hold the intermediate results)will be required. In our implementation, we have used n = n3 (e.g. for r = 10and � = 6, n = n3 = 26). 23



6.3 DivisionDivision an be analyzed in muh the same way as multipliation, and is alsoquadrati. For simpliity's sake, we shall assume that the partial remaindersare normalized fully | as remarked above, the atual time estimates willonly be better.By (18), to determine the N -th digit qN of the quotient, the division algo-rithm must ompute the �rst digit of the N -th partial remainder PN , whihaording to (17), involves evaluation of PN�1 and D to 3 digits (an extradigit is required beause of the multipliation by r), that in turn demandsPN�2 and D to 5 digits, and the domino e�et applies to the rest of the par-tial remainders, so that P0 will be evaluated to 2N + 1 digits. In summary,we will have N2 = 1+ 3+ : : :+ 2N � 1 integer divisions and additions fromthe normalization of PN ; PN�1; � � � ; P1, plus N more divisions from the digitseletion guesswork in (18), as well as N(N + 2) = 3 + 5 + : : : + (2N + 1)additions and multipliations of the quotient digits qn by the digits of thedivisor D in (17).7 Elementary funtionsIn this setion, we shall disuss the evaluation of elementary funtions on ex-at real numbers. Funtions of real variables that an be de�ned for normal-ized signed-digit radix-r representations are preisely those for whih thereexist left-to-right algorithms de�ned on representations. These algorithmsmust work in an on-line fashion: digit-by-digit, most signi�ant digit �rst,inputting digits of the argument(s) and outputting digits of the result withbounded delay. The question one should ask himself when de�ning a fun-tion on representations is whether, given more digits of the argument, one anprodue more digits of the result. In partiular, only ontinuous funtionson exat reals are omputable.7.1 Absolute valueThe absolute value is probably one of the simplest funtions de�nable on thereal numbers. In oating-point systems, all that is required for its ompu-tation is hanging a number's sign bit, if need be | an operation so trivialthat it is never even onsidered as suh.In exat real arithmeti systems, however, there is no algorithm for de-iding whether or not two in�nite sequenes represent the same number. Inpartiular, the prediates =, < and > are non-omputable, and in general24



one annot even hek a number to see whether it is positive, negative, orzero.Nonetheless, the absolute value funtion is de�nable on exat reals. Let usshow that if the signed-digit radix-r system used is not maximally redundant,i.e. � < r � 1, the sign of a number is determined by the sign of the �rstnon-zero entry of its mantissa. Indeed, if ak is the �rst non-zero element of(an)n2N0 , thenr�k�ak � �r � 1� � 1Xn=0 anr�n � r�k �ak + �r � 1� ;and if the system is not maximally redundant, all of these numbers have thesame sign as ak (provided ak 6= 0). From this also results the onlusionthat in non-maximally-redundant systems zero is represented uniquely (upto di�erenes in exponents).The algorithm for evaluation of the absolute value is now obvious:abs (a0; a1; � � � ; an; � � � ) = 8<: 0 : abs (a1; a2; � � � ; an; � � � ) ; if a0 = 0(a0; a1; � � � ; an; � � � ) ; if a0 > 0(�a0; �a1; � � � ; �an; � � � ) ; otherwiseand its omplexity is that of negation.7.2 Minimum and maximumIt may ome as a surprise to some to learn that while the omparison op-erators < and > are learly non-omputable on exat reals, the funtionsminimum and maximum are. This is most readily seen from the relationsmin (a; b) = a+ b� ja� bj2 ;max (a; b) = a+ b + ja� bj2 ;whih involve only omputable funtions: addition, subtration, absolutevalue, and division by 2.The impliations of omputability of min and max are non-trivial: forexample, we an sort lists of exat real numbers using sorting algorithmsbased upon max and min, rather than upon < and > (suh as Bather'smerge sort).
25



7.3 Square rootThe square root funtion is singled out beause of its simpliity and amenabil-ity to implementation with little additional overhead beyond that of the ba-si arithmeti operations. It is also almost the only ommonly used funtionthat is evaluated iteratively. The algorithm that we will desribe is the diretanalogue of that for division and produes n digits of the result in n yles,at a rate of one digit per yle. Suh pseudo-division methods an also beextensible to higher degrees, although roots of order greater than three areusually evaluated by the same methods as xy for arbitrary y, using exponentsand logarithms, and even ube-root funtions are somewhat unommon infuntion libraries. Our primary emphasis will therefore be on evaluation ofpx.Suppose that we want to evaluate y = px in radix r. Let x be given bya normalized signed-digit sequene X = (x0; x1; : : : ; xn; : : : )r with x0 > 0;jxnj � �, n 2 N , and exponent e, so that x = re � 1Pn=0 xnr�n, x > 0. Theny = � re=2 � pX; if e is evenr(e�1)=2 � prX; if e is oddLet Y = (y0; y1; : : : ; yn; : : : ) be a mantissa of y suh that jynj � �, n 2 N .Denote Yn = y0 + y1r�1 + : : :+ ynr�nso that Y = limn!1Yn. Consider the saled partial remaindersP0 = X; Pn = rn �X � Y 2n�1� ; n 2 N :Observing that Yn = Yn�1+ynr�n, we an rewrite the next partial remainderas Pn+1 = rn+1 �X � Y 2n � = r �Pn � 2ynYn�1 � y2nr�n�The square root algorithm is based on the above reurrene relation, eahiteration of whih onsists of two subomputations:1) Determination of the result digit yn using a digit seletion funtion s,whih has Pn and Yn�1 as arguments:yn = s(Pn; Yn�1)2) Formation of Pn+1 from Pn, Yn�1 and yn:Pn+1 = r �Pn � 2ynYn�1 � y2nr�n�26



If are is exerised in hoosing y0 and the seletion funtion s is suh that: : : � jPn+1j � jPnj � : : : � jP1j � jXj ;the algorithm will onverge as��X � Y 2n �� = 1rn+1 jPn+1j � 1rn+1 jXj :As in the ase of division, we make guesses about the digits yn basedon the most signi�ant digits of the urrent remainder Pn and the urrentapproximation Yn�1. Although the guessed digits may be inorret in someases, no orretion steps would be needed if a redundant signed-digit repre-sentation of Pn was used. In partiular, it an be shown that the followingdigit seletion funtion yn = � jpn0j2y0 � � sgn pn0;where pn0 is the integer part of Pn and y0 = �px0� the �rst digit of Y , isreliable enough as long as y0 � bpr, i.e. x0 � r.8 SummaryThe foregoing analysis suggests that, notwithstanding the laim made byBoehm and Cartwright, the representation of exat real numbers by lazyin�nite sequenes of signed digits in a radix-r system an lead to reasonablyeÆient implementations of onstrutive real arithmeti. In partiular, thealgorithms presented here largely overome what they alled the granularitye�et. For the sake of simpliity, our implementation used r = 10 and� = 6, and was written in the funtional programming language Miranda5[17℄. Choosing the radix to be a large number, and using a ompiled languagesuh as C/C++ or Java, would yield a large dividend in eÆieny, whihould be improved even further on a multi-proessor system if normalizationand other funtions were multi-threaded.What are the advantages and shortomings of positional arithmeti sys-tems as opposed to others, e.g. funtional ones? Laziness is ertainly anadvantage | a demand-driven system only omputes those numbers thatare needed, and only to the preision required. It also avoids reomputingthe elements alulated earlier, so that eah digit gives a better approxima-tion to the number being omputed. Conversion of numbers into redundant5Miranda is a produt and trademark of Researh Software Limited.27



form and deoding them bak into onventional form is also very simple, asthe \onventional" systems are also positional radix-r systems.Among the shortomings we an name the problem of hoosing the subsetof �nitely representable numbers. The availability of a subset in whih num-bers are represented �nitely is important for many reasons, not least of whihis the need to ompute equality tests. For example, it is lear that all inte-gers must be �nitely represented. After the integers, the rationals seem to bethe best andidate for suh subset, but any eÆient implementation basedon the representation of the rationals as repeating radix-r numbers mustoverome nontrivial tehnial hallenges, suh as being able to reognize astate of omputation that has ourred before, or having to deal with �niterepresentations of very great lengths. Evaluation of transendental funtionsin radix-r systems is also problemati, as there are no obvious digit-by-digitalgorithms that are both simple and eÆient.All these fators must be onsidered prior to hoosing a representation ofthe exat reals most suitable for a given problem. Situations where one mightwant to use in�nite preision arithmeti inlude e.g. testing an algorithmto determine whether it su�ers from a numerial instability, or omputingsome numbers to high preision to serve as referene values for onventionalmethods.AknowledgementsSupport for this researh was provided by EPSRC Grant Ref. GR/L03279.The author wishes to thank Professor David Turner for his numerous sugges-tions and guidane in this projet all the way from ineption to ompletion.Credit is also due to Carl Pixley, whose early unpublished work at BurroughsCorporation's Austin Researh Center was a great soure of inspiration forthis researh.Referenes[1℄ Avizienis, A., \Binary-ompatible signed-digit arithmeti", Pro.AFIPS Fall Joint Comp. Conf., 1964, pp. 663-672[2℄ Avizienis, A., \Signed-digit number representations for fast parallelarithmeti", IRE Trans. El. Comp., Vol. EC-10, No. 3, Sept. 1961,pp. 389-400
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