
A REVISED TEXTUAL TREE TRACENOTATION FOR PROLOGC. N. Taylor, J. B. H. du Boulayy, and M. J. PatelzDepartment of Computer Siene, City University, London.yShool of Cognitive and Computing Sienes, University of Sussex, Brighton.zAppliteh Researh, Usmanpura, Ahmedabad, India.Abstrat This paper desribes a \textual tree trae" (TTT) notation forrepresenting the exeution of Prolog programs. Compat, textual and non-linear, it provides detailed information about variable binding and exeutionhistory, and distinguishes several modes of goal failure. The revised formgiven here, yet to be tested empirially, is partly informed by Paul Mulhol-land's empirial omparisons of Prolog trae notations, in whih an earlierversion of the TTT notation was amongst those studied and ritiised. Thework presented here is an updated version of a previous workshop paper(Taylor, du Boulay, & Patel, 1994).1 INTRODUCTIONProlog is now a well-established language, with a wide range of appliations.Its simple, uniform syntax and powerful inbuilt features of uni�ation andbaktraking often allow algorithms to be enoded more elegantly than inother, more onventional languages. However, these same features oftenpresent diÆulties for novie Prolog programmers (Pain & Bundy, 1987;Taylor, 1988). Consequently, Prolog trae notations and tools have not onlya debugging role, but also an important didati role.Prolog traers vary onsiderably in their notations, interfaes, and thefaets of Prolog exeution whih they display (for example, Byrd, 1980;Eisenstadt, 1984; Mellish, 1984; Eisenstadt & Brayshaw, 1988; Plummer,1988; Hors�eld, Boa & Dahmen, 1990; Rajan, 1990). The developmentand now widespread availability of powerful graphial workstations and in-reasingly sophistiated graphial user interfaes and programming tools hasprovided a muh wider range of possibilities to explore regarding the designof traing tools. However, it should not be assumed that graphial modes ofdisplay are invariably superior to textual ones, partiularly in the ontext ofprogram traing, where muh of the information ontent involved is inher-1
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ently textual. In pratie, of ourse, graphial and textual approahes arenot mutually exlusive, and an omplement one other. Thus, although thenotation desribed in this paper is omposed entirely of text, its e�etive-ness in a traing tool might well be enhaned by the use of graphial deviessuh as olouring, shading, ashing, and so on.The work desribed here arose from a projet entitled \Explanation Fa-ilities for Prolog", in whih existing Prolog traing tools and notations wereinvestigated (see Patel, du Boulay & Taylor, 1991 & 1997) | partiularlythe standard \Spy" or \Byrd Box" textual traer (Byrd, 1980; Cloksin& Mellish, 1981); the EPTB or \Extended Prolog Traer for Beginners",a prototype textual traer giving very detailed information (Dihev & duBoulay, 1989); and the TPM or \Transparent Prolog Mahine", a graphialtree traer developed at the Open University and available in several ver-sions (Eisenstadt & Brayshaw, 1988; Eisenstadt, Brayshaw & Paine, 1991).During this projet a new TTT (\textual tree trae") notation and traingtool were proposed, intended to ombine some novel features with usefulfeatures from previous notations and tools. Only the notation | whih usesa textual, non-linear, sideways tree format | is addressed here. Some issuesrelating to interfae and tool design were disussed in the initial spei�ationof notation and tool given in Taylor, du Boulay & Patel (1991).Following the initial design, a prototype TTT meta-interpreter was im-plemented (in Prolog), and the notation ontinued to evolve. After a limitedempirial study (Patel, du Boulay & Taylor, 1994) of its stati features sug-gested that the initial notation was over-omplex and potentially onfusing,a simpler and more ompat intermediate form was developed. Mulhollandompared similar intermediate TTT notations with other Prolog trae no-tations in two �ne-grained protool-based studies (Mulholland 1994, 1995& 1997). The �rst omparison involved novies and inluded initially alsothe Spy and PTP (both linear textual notations) and the TPM (a graphialtree notation), and subsequently the Plater notation (another linear textualnotation, devised by Mulholland). The subjets used short traes in variousnotations, ontrolled via a uniform traer interfae, to dedue how a simpleprogram being traed di�ered from a program text visible to them. The ex-perimental protools looked at the types of misunderstandings, informationand strategies involved. Statistially signi�ant di�erenes were observedfor some measures, with some notations better in some aspets but worsein others. Overall, Mulholland's TTT performed better than the TPM andSpy, and slightly worse than the PTP, whih in turn was outperformed byMulholland's Plater notation. In the seond omparison, whih involved2



experts, and a slightly improved TTT notation whih showed intermediatebindings, the results were less learut, and the Prolog expertise of the sub-jets seem to dominate, allowing them to perform reasonably well using anyof the notations onerned.Mulholland's work goes further than previous empirial work in its detailand in looking at both stati and dynami aspets of notations. However,his experiments are still very limited in sope. His main study with noviesis based on very short traes of just one program, a task (trying to �ndhow an invisible program being traed di�ers from a visible program text)untypial of the way traers are atually used in pratie, and one partiularseletion of omparison measures. Without a muh wider range of ompar-ison measures, traes, and tasks, his onlusions must be interpreted withsome aution. For example, with large traes, one might expet a non-linearnotation like the TTT to perform better than than any of the linear nota-tions, whih display information in a less ompat and loalised way, andso would require a lot more srolling. This was not tested in Mulholland'sexperiment, in whih traes were short enough to �t easily on one sreenwindow, in any notation. Nonetheless, the latest version of the TTT no-tation, yet to be tested empirially, is partly informed by his experimentalevidene.Mulholland's main ritiisms of the earlier TTT notation | partiularlyregarding its use by novies - inlude the following:1. DiÆulty of traking non-linear development. The TTT nota-tion is non-linear, so that hanges often our within a trae, ratherthan always at the end, as is the ase with linear notations. Commentsfrom subjets and timing misunderstandings suggested that noviesfound this harder to follow than linear development, at least initially.To help with this problem, Mulholland's TTT notation distinguishedthe most reently ativated all from the other alls.2. Tree display method. TTT's sideways tree format was desribedby Mulholland as pereptively less lear than a vertial tree format(although the basis for this opinion was not stated expliitly). It wassuggested that inreasing the indentation o�set of subgoals relative totheir parents (originally one harater-width) would help to emphasisethe tree struture.3. Clause-goal misunderstandings. Some novies onfused goals withlauses beause the TTT notation does not have separate lines marking3



lause entry.4. InsuÆient visual emphasis of all status. The status of alls wassaid to be not lear enough visually, beause all status informationwas given only at the right-hand end of eah line. It was reommendedthat some status information should be given at the left-hand end ofeah all line.Regarding 1), non-linearity annot be abandoned without destroying thewhole harater of the notation, but has ompensating advantages in show-ing the struture of the omputation more expliitly. Novies may indeed�nd it harder to understand at �rst than linear development, but possiblymight �nd it more helpful in the long run, although there is insuÆient ev-idene to establish whether or not this is the ase. To aid omprehensionof the non-linear development, the latest TTT notation marks every newlyappeared line or line whih has just hanged, so that any hanges betweenone stage and the next an be spotted more easily and quikly.As far as 2) is onerned, a sideways tree atually has some advan-tages as far as the display of textual information is onerned. The vertialtree format used in the TPM's \long-distane view" leaves insuÆient spaebetween sibling nodes to display all arguments, and in some ases eventhe prediate names are trunated or not shown, with the result that suhinformation has to be aessed by opening, losing and srolling of subwin-dows, rather than being immediately visible, as it is in the TTT's sidewaystree format. As for indentation, a parent-hild indentation o�set of oneharater-width was hosen as the default to keep the trae ompat in theleft-to-right dimension, but this ould easily be left for the user to adjust onrequest.The lak of separate lines marking lause entries, remarked on in 3),is a onsequene of a general design aim of ompatness (see setion 2),the overall bene�ts of whih hopefully outweigh the drawbaks, partiularlywhen large traes are generated. For this reason, no revisions to the TTTnotation have been made in onnetion with this problem. However, theresulting lause-goal onfusions, observed in Mulholland's experiment withnovies, might perhaps be ameliorated by some kind of separate ommentaryline, as proposed e.g. by Rajan (1990). Another simple remedy for reduingmisunderstandings | as some of the novie subjets suggested, regardingtrae notations in general | might be for the traing tool to provide asymbol key or annotated example, whih ould be displayed on the sreen4



by default, at least until a user was suÆiently familiar with the notationfor this to be superuous.Regarding 4), the latest TTT notation follows Mulholland's reommen-dation of giving more visual emphasis to di�erenes in all status, by provid-ing urrent status information at the left-hand end of eah line, in additionto the more detailed information shown at the right-hand end of eah line(see setion 3 for details). One further hange made to the notation is amethod of showing variable bindings di�erent to that used in the originalTTT notation and in Mulholland's experiment with novies. This resemblesMulholland's later TTT notation, used with his expert subjets, in showinginitial and intermediate bindings as well as all exit bindings, but improveson that further by displaying suh bindings using a strutured sideways treeformat.2 DESIGN PRINCIPLESThe TTT notation reets the following design aims, whih overlap withRajan's (1990), although his onern interfaes as well as notations.� Loalisation of information. Information about a partiular aspetof exeution | e.g. a partiular all or variable | should be loalised,rather than being widely distributed aross the trae, thereby redu-ing the amount of srolling and visual sanning required to �nd suhinformation.� Enoding of omputational struture. The overall struture ofthe omputation should be enoded expliitly. An obvious way to dothis is to adopt a tree format of some kind.� Correlation with soure ode. The notation should failitate or-relation of trae output with the program being traed.� Avoidane of abstrat symbolism. Symbols should have self-evident meanings, as far as possible.� Expliit representation. Information should be represented expli-itly rather than impliitly, i.e. in a way that minimises the amountof inferene required to extrat the information. For example, thenumbers of mathing lauses should be shown expliitly.5



� Attention to variable bindings. The trae should indiate thehistory of variable binding and unbinding, so that the onstrutionand deonstrution of omplex data-strutures an be observed.� Cumulative notation. At any stage, it should be possible to seethe whole history of exeution up to that stage, i.e. trae informationshould not be overwritten. Of ourse, one may wish to ut down ondetail, but those details should be available for display.� Standard ASCII representation. Traes should be onstrutedfrom the standard ASCII harater set. This does not prelude theuse of extra visual devies suh as highlighting and olouring to aidomprehension, but it ensures that the basi notation an be displayedand printed easily on any kind of terminal or printer.3 MAIN FEATURESThe main features of the notation are illustrated here by a summary ofthe symbols used (see Table 1), and by seleted stages of a simple trae.The trae output is shown here with a onstant level of detail; in a fully-developed TTT traer, the level of detail would be ontrolled by both defaultrestritions and expliit user ommands (for example, intermediate variablebindings would typially not be shown).To illustrate the use of some of the symbols, onsider the trae generatedfrom the following program lauses (numerially labelled in the leftmost ol-umn).1 prefix([℄, L).2 prefix([H|T℄, [H|T1℄):-prefix(T,T1). [ ℄ is a pre�x of any L[HjT℄ is a pre�x of [HjT1℄if T is a pre�x of T1Suppose the following query is evaluated against these lauses:?- prefix(P, [a,b℄), fail.Comparison with the more familiar `Spy' notation provides a useful per-spetive on the TTT notation. Spy traers produe a simple linear trae,typially unindented, reording the events at eah of four ports. Variablesare notated using internal numbers, e.g. _3, whih bear no relation to thevariable names in the user's program. Figure 1 shows an intermediate stage6



General all status notation? Being tried or retried.S Sueeded.F Failed.SF Sueeded then failed on baktraking.SS Sueeded then sueeded again on baktraking.Failure modesF Default | failures resulting from subgoal failures, failures of system alls, andso on!F Cut failure | failure resulting from the ation of the ut.Fm Math failure | a prediate with the same name and arity as the all exists,but none of its lauses math (or have previously mathed) the all.Fa Arity failure | no prediate of the same name and arity as the all exists, butone of the same name and di�erent arity does.Fu Unde�ned prediate failure | no prediate of the same name as the all exists,with or without the same arity as the all.Mulholland uses Fm di�erently, to mean that there are no mathing lauses left,although some may have mathed previously, before baktraking ourred.Thus the ombination SFm sometimes appears in his TTT notation, but neverin the TTT notation desribed here, whih uses just SF in suh ases, and inwhih Fm, Fa and Fu are never preeded by S.Uni�ation and binding/ In urrent binding sequene (e.g. X/a means X uni�ed with a).# In old binding sequene, now undone (e.g. X#a means X formerly uni�ed witha)._5, _23 Numeri variable suÆxes (added to variable names to distinguish di�erentvariables with the same name).Mulholland uses = and 6= instead of / and #.Call identi�ers (for all number n in exeution order, right-justi�ed in a 5-harater �eld,padded out with �ller haraters)?>>>n: For alls urrently being tried or retried (e.g. ?>>34, ?>>>9).S<<<n: For alls returned suessfully (e.g. S<<<5, S<125).F###n: For irretrievably failed alls (e.g. F##23, F###8).Mulholland's TTT uses the >>>n: pre�x di�erently, to distinguish the mostreently ativated all, and | like the original TTT notation | uses a ***n:pre�x for all other alls.Misellaneous symbols| Marks edge of blok relating to a all.* Marks a newly appeared line or a line whih has just hanged.; Call disjuntion.(, ) Brakets for delimiting disjuntions.Table 1: Summary of TTT notation7



* ?>>>1: prefix(P, [a,b℄) 1SF 2S?|1 P#[℄|2 P/[a|T_1℄/[a℄S<<<3: prefix(T_1, [b℄) 1S|1 T_1/[℄F###2: fail FF###4: fail F** (1) Call : prefix(_1, [a, b℄)?** (1) Exit : prefix([℄, [a, b℄)?** (2) Call : fail?** (2) Fail : fail?** (1) Redo : prefix([℄, [a, b℄)?** (3) Call : prefix(_2, [b℄)?** (3) Exit : prefix([℄, [b℄)?** (1) Exit : prefix([a℄, [a, b℄)?** (4) Call : fail?** (4) Exit : fail?** (1) Redo : prefix([a℄, [a, b℄)?Figure 1: TTT trae (above) Spy trae (below)of the TTT trae (above) and the orresponding unindented Spy trae (be-low). At this stage, the seond all to the system prediate fail has failed,and the initial top-level all prefix(P, [a,b℄) is being requeried. Pointsto note:� The proof tree is shown here in maximum detail to eluidate the no-tation. A fully developed TTT interfae would provide both defaultand user ontrols on the amount of detail.� Eah all is represented by its own all blok of one or more ontiguouslines: for example, the top 3 lines of the trae relate to the �rst all.The depth of a all in the proof tree is enoded by its all blok'sindentation from the left-hand margin.� Eah all blok begins with a all line, subdivided from left to rightinto: the all identi�er; the all term; and the all status �eld (onsist-ing of one sub�eld for eah mathing lause tried, or just one undivided�eld for system prediates). For example, the �rst line of the trae issubdivided as follows: 8



Call identi�er Call term Call status �eld?>>>1: prefix(P, [a,b℄) 1SF 2S?(in two parts, for lauses 1 and 2)The initial symbol of the all identi�er, in this ase ?, indiates theall's urrent status.� The non-linearity of the notation is illustrated by the insertion of all3 between alls 1 and 2. Using di�erent line pre�xes to emphasise theurrent status of alls is a response to Mulholland's ritiism of theoriginal notation, in whih status information was on�ned to the allstatus �eld, and all identi�ers were padded out with the same �llerharater *, regardless of urrent all status. Di�erenes in status arenow visually muh learer.� The all term is shown as instantiated when the all is �rst made.Atual variable names are used, with numerial suÆxes to distinguishdi�erent variables with the same name, e.g. the variables T_1 and T_2orrespond to di�erent invoations of lause 2 of prefix/2. Top-levelvariables (in this ase, P) are left unsuÆxed.� The all status �eld provides more detailed status information thanthe all identi�er, indiating not only the all's urrent status, butalso its previous exeution history, in a ompat mnemoni notation.E.g. in the top line of the trae, 1SF 2S? shows that lause 1 (ofthe prediate prefix) mathed the all, sueeded one, and failed onbaktraking; and subsequently lause 2 mathed, sueeded initially,and is now being requeried after further baktraking.� Any lines in a all blok after the all line show variable bindings, an-notated by the lause numbers to whih they relate (unless they resultfrom system prediates), for the variables unbound in the all termwhen it is alled. In the unabbreviated notation, the bindings showninlude not just initial and �nal bindings, but intermediate ones too,e.g. the line |2 P/[a|T_1℄/[a℄ shows an ative series of bindingsfor P, assoiated with lause 2 of prefix, i.e. P was instantiated �rstto [a|T_1℄, and then to [a℄. The line above, |1 P#[℄, shows anearlier binding [℄ of P, assoiated with lause 1 and now ompletelyundone by baktraking.� A * marks a line whih has just appeared or just hanged. Here onlyone line | the �rst | is so marked, but in general there may be9



several. This is helpful with a non-linear notation, in whih hangesmay our anywhere within the existing trae, not just at the end asis the ase with linear notations.The features just desribed reet the previously stated design aims.\Call bloks", \all status �elds" and \variable binding trees" all embodyloalisation of information. The expliit display of all arguments, lausenumbers, `atual' variable names and the use of a sideways top-down left-to-right tree struture all failitate orrelation with the soure ode orrespond-ing to the trae. Avoidane of abstrat symbols is illustrated by mnemonis(suh as F for failure, S for suess) and standard symbols (/ to enode bind-ing). Finally, the notation onforms to standard ASCII representation, andwithout sari�ing the other aims of enoding of struture, expliit repre-sentation of information, and a umulative notation, it meets the importantpratial aim of ompatness. In Figure 1, the TTT trae is only 7 lines om-pared to the Spy trae's 11 lines, even though it provides muh more expliitinformation about mathing lauses, variable bindings, and the struture ofthe omputation. In some ases, a Spy trae will be shorter than the or-responding TTT trae, e.g. when there is no baktraking, and the allsontain on average 2 or more free variables at the time of alling. However,TTT traes are typially onsiderably shorter than those of any linear traer| sometimes half the length, or less if most of the alls are fully instantiatedwhen alled.4 DYNAMIC ASPECTSIn this setion, seleted stages of the trae for the prefix example illustratethe dynami aspets of the TTT notation. If the query were being traedstep-by-step, the traer would stop at eah stage, until prompted by theuser to proeed.Initial alling. When a all is �rst made, its all blok ontains only theall line, in whih the all status �eld onsists of a single ? harater. Anyall urrently being queried or requeried has a ? at the rightmost end of itsstatus �eld and a pre�x of the form ?>>. . . in its all identi�er. The �rststage of the trae illustrates this:* ?>>>1: prefix(P, [a,b℄) ? First top-level all10



Clause head mathing and resultant variable binding. When alause head mathes a all, its lause number is inserted into the all status�eld, to the left of the ?, and any resulting variable bindings are shown onseparate lines (not only those of variables initially free in the all, but also`knok-on e�ets' on other variables, as illustrated shortly). In the seondline below, the 1 indiates that the sequene of bindings beginning on thatline is assoiated with lause 1.* ?>>>1: prefix(P, [a,b℄) 1?* |1 P/[℄ Head of lause 1 mathes, andP beomes bound to [ ℄ as a result.Suess of a lause with no subgoals. When a lause sueeds, the? immediately to the right of the orresponding lause number in the allstatus �eld is replaed by an S. If the lause has no subgoals, the S appearsimmediately after the stage in whih the lause head mathing is shown, asillustrated below.* S<<<1: prefix(P, [a,b℄) 1S|1 P/[℄ Clause 1 sueeds immediately aftermathing, beause it has no subgoals.Calls to system prediates. The next stage shows a all to the systemprediate fail, whih has just failed, as indiated by a pre�x of the formF### in its all identi�er. It is easily identi�able as a all to a system predi-ate, beause its status �eld (at the right-hand end of the all line) ontainsan F not preeded by any lause number. Similarly, a suessful all to asystem prediate would have a all status �eld with an S not preeded byany lause number.S<<<1: prefix(P, [a,b℄) 1S|1 P/[℄* F###2: fail F System all fail fails.Baktraking, lause retrying and variable unbinding. The nextthree stages illustrate baktraking, lause retrying and variable unbinding.From the seond to third stages, the status �eld of all 1 hanges from 1S?to 1SF ?, rather than simply to 1SF, beause there is another lause leftto be tried (i.e. lause 2 of prefix/2) whose head also mathes all 1. Torepresent the unbinding of P whih aompanies the failure of lause 1, the/ harater between P and [℄ is replaed by a # harater. The new binding11



of [a|T_1℄ for P, whih results from the mathing of lause 2 of prefix/2against all 1, is shown on a fresh line in the all blok for all 1. The 2on that line indiates that this binding is assoiated with lause 2, unlikethe binding of [℄ | shown on the line above | whih was assoiated withlause 1. Note that the binding for P is shown as [a|T_1℄, not as [a|T℄,although this is the �rst ourrene of T. Only variables mentioned in thetop-level all are unsuÆxed.* ?>>>1: prefix(P, [a,b℄) 1S?|1 P/[℄F###2: fail F Re-evaluating lause 1 for all 1.* ?>>>1: prefix(P, [a,b℄) 1SF ?* |1 P#[℄F###2: fail F Clause 1 annot be resatis�ed and so fails.P beomes unbound.* ?>>>1: prefix(P, [a,b℄) 1SF 2?|1 P#[℄* |2 P/[a|T_1℄F###2: fail F Head of lause 2 mathes,and a new binding for P results.Calling of subgoals. The next stage shows the alling of the subgoal oflause 2 of prefix/2. Rather than being added to the end of the trae, asit would be in a linear notation, the subgoal's all line is inserted below theall blok of its parent all, and immediately above the all line of the nextsibling of the parent all. The indentation from the left-hand margin of theall line for the subgoal is one greater than the indentation of the all linefor its parent all, thus enoding the subgoal's greater depth in the proof tree.?>>>1: prefix(P, [a,b℄) 1SF 2?|1 P#[℄|2 P/[a|T_1℄* ?>>>3: prefix(T_1, [b℄) ?F###2: fail F Subgoal of lause 2 is alled.Propagation of instantiation. The next stage illustrates how the `knok-on' e�ets of variable instantiation are represented. Here, the binding of T_1to the value [℄ results in a further instantiation of P from [a|T_1℄ to [a℄.Propagation of uninstantiation is represented in a similar way | see later.12



?>>>1: prefix(P, [a,b℄) 1SF 2?|1 P#[℄* |2 P/[a|T_1℄/[a℄* ?>>>3: prefix(T_1, [b℄) 1?* |1 T_1/[℄F###2: fail F Head of lause 1 mathes all 3,so T 1 beomes bound,and P further instantiated.Suess of a lause with subgoals. The next two stages show lause 1sueeding for all 3; and then lause 2 sueeding for all 1 (beause all 3orresponds to the only subgoal of lause 2). Suess of a all is indiated by? hanging to S in its all status �eld, and further emphasised by a hangein the pre�x of its all identi�er, from ?>>> to S<<<.?>>>1: prefix(P, [a,b℄) 1SF 2?|1 P#[℄|2 P/[a|T_1℄/[a℄* S<<<3: prefix(T_1, [b℄) 1S|1 T_1/[℄F###2: fail F Clause 1 sueeds for all 3 beause it has nosubgoals.* S<<<1: prefix(P, [a,b℄) 1SF 2S|1 P#[℄|2 P/[a|T_1℄/[a℄S<<<3: prefix(T_1, [b℄) 1S|1 T_1/[℄F###2: fail F Clause 2 sueeds for all 1 beause there areno more of its subgoals to be satis�ed.
Propagation of uninstantiation. A few stages later, a fresh all to fail(all 4) fails, and baktraking ours. In the �rst stage below, lause 2 isrequeried for all 1. In the seond stage, lause 1 is requeried for all 3;but fails sine it annot be resatis�ed, and T_1 beomes unbound again,as shown in the third stage, whih also shows the `knok-on' e�et of thepartial uninstantiation of P, resulting from the unbinding of T_1.* ?>>>1: prefix(P, [a,b℄) 1SF 2S?|1 P#[℄|2 P/[a|T_1℄/[a℄S<<<3: prefix(T_1, [b℄) 1S|1 T_1/[℄F###2: fail FF###4: fail F

Attempting to resatisfy lause 2 for all 1.
13



?>>>1: prefix(P, [a,b℄) 1SF 2S?|1 P#[℄|2 P/[a|T_1℄/[a℄* ?>>>3: prefix(T_1, [b℄) 1S?|1 T_1/[℄F###2: fail FF###4: fail F Attempting to resatisfy lause 1 for all 3.
?>>>1: prefix(P, [a,b℄) 1SF 2S?|1 P#[℄* |2 P/[a|T_1℄#[a℄* ?>>>3: prefix(T_1, [b℄) 1SF ?* |1 T_1#[℄F###2: fail FF###4: fail F Clause 1 an't be resatis�ed so it fails,T 1 beomes unbound,and the binding of P reverts to [ajT 1℄.Fresh intermediate bindings. In the next stage, lause 2 mathes all 3,resulting in a new binding [b|T_2℄ for T_1, and a new intermediate binding[a,b|T_2℄ for P, whih is shown on a fresh line, with the same indenta-tion as the now unbound value [a℄. The strutured display of bindings ina `sideways tree' enodes the fat that both [a℄ and [a,b|T_2℄ are `hil-dren' of [a|T_1℄. This method of showing bindings is an improvement onthe method used in some earlier versions of the TTT notation (inludingMulholland's) in whih no intermediate bindings were shown, and top-levelvariables were shown in several alls when they uni�ed with lause variables,rather than just been shown at the top-level, as here.?>>>1: prefix(P, [a,b℄) 1SF 2S?|1 P#[℄|2 P/[a|T_1℄#[a℄* | /[a,b|T_2℄* ?>>>3: prefix(T_1, [b℄) 1SF 2?|1 T_1#[℄* |2 T_1/[b|T_2℄F###2: fail FF###4: fail F Head of lause 2 mathes all 3,and a new binding of T 1 results,bringing about a new binding of P also.Repeated suess of a lause. Several stages later, lause 2 has su-eeded for all 3, and onsequently, lause 2 sueeds again for all 1, indi-ated by a seond S after the 2 in the status �eld of all 1. At this stage,the bindings of P assoiated with eah suess of all 1 (one using lause 1,14



and twie using lause 2) an be read o� as the `leaves' of the two `sidewaysbinding trees' for P. Thus in the tree for lause 1, there is only one leaf(the binding [℄); whilst in the tree for lause 2, there are two, i.e. [a℄ and[a,b℄. The hain of bindings leading to a partiular binding an be read o�by following a path to that binding from the root of the binding tree whihontains it: for example, the hain [a|T_1℄, [a,b|T_2℄ leads to the binding[a,b℄ of P.* S<<<1: prefix(P, [a,b℄) 1SF 2SS|1 P#[℄|2 P/[a|T_1℄#[a℄| /[a,b|T_2℄/[a,b℄S<<<3: prefix(T_1, [b℄) 1SF 2S|1 T_1#[℄|2 T_1/[b|T_2℄/[b℄S<<<5: prefix(T_2, [℄) 1S|1 T_2/[℄F###2: fail FF###4: fail F
Clause 2 sueeds for the 2nd time for all 1.

The TTT notation has some other minor features, not illustrated here.These inlude speial notations for lause numbering in database-hangingprograms (those involving assert, retrat, et.), and for disjuntive alls.5 CONCLUSIONA \textual tree trae" (TTT) notation has been desribed, in whih theexeution of a Prolog goal is represented by a `sideways tree', growing right-ward and downward from a root displayed at the top left-hand margin. Thisform of tree failitates orrelation of the trae with the program lauses in-volved in its generation | partiularly if the latter are displayed with thesubgoals of a lause uniformly indented with respet to the lause head.Like some previous notations, the TTT notation shows lause head math-ing events, distinguishes several modes of failure, and shows `atual names'of variables as they appear in the program being traed (distint variableswith the same name are distinguished by adding numerial suÆxes). Theharateristi features of the notation inlude ompatness, loalisation ofinformation pertaining to eah goal, non-linear expansion of the trae and adetailed view of variable binding and unbinding. The revised form desribedhere has yet to be empirially tested, but takes some aount of Mulholland's15
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