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Abstract: This paper presents a new analytical framework for the congestion control of Internet traffic using a 
queue threshold scheme. This framework includes two discrete-time analytical models for the performance 
evaluation of a threshold based congestion control mechanism and compares performance measurements through 
typical numerical results. To satisfy the low delay along with high throughput, model-I incorporates one 
threshold to make the arrival process step reduce from arrival rate α1 directly to α2 once the number of packets in 
the system has reached the threshold value L1. The source operates normally, otherwise. Model-II incorporates 
two thresholds to make the arrival rate linearly reduce from α1 to α2 with system contents when the number of 
packets in the system is between two thresholds L1 and L2. The source operates normally with arrival rate α1 
before threshold L1, and with arrival rate α2 after the threshold L2. In both performance models, the mean packet 
delay W, probability of packet loss PL and throughput S have been found as functions of the thresholds and 
maximum drop probability. The performance comparison results for the two models have also been made 
through typical numerical results. The results clearly demonstrate how different load settings can provide 
different tradeoffs between throughput, loss probability and delay to suit different service requirements. 
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1. INTRODUCTION 
 
With the enormous growth in the Internet traffic, the 
control of congestion has become one of the most 
critical issues in present networks to accommodate 
the increasingly diverse range of services and types 
of traffic [Atsumi et al. 1993]. It is also a major 
challenge to the researchers in the field of 
performance modelling. Congestion control to 
enable different types of Internet traffic to satisfy 
specified Quality of Service (QoS) constraints is 
becoming significantly important. Many systems in 
network environments require the queue to be 
monitored for impending congestion before it 
happens [Li et al. 1998].  
 
The traditional technique for managing router queue 
lengths is only to set a maximum length for each 
queue, usually equal to the buffer capacity, and then 
accept packets until queue becomes full. The 
subsequent arrivals will be blocked until some space 
become available in the queue as a result of some 
departures. This technique is known as “tail drop”, 
since the packet that arrived most recently (i.e., the 
one on the tail of the queue) is dropped when the 
queue is full. This method has been used for several 
years in the Internet, but it has two important 

drawbacks ‘Lock-Out’ and ‘Full Queues’ [Braden et 
al.1998]. In order to solve the problems, some active 
queue management (AQM) mechanisms have been 
proposed and implemented to manage the queue 
lengths, reduce end-to-end latency, reduce packet 
dropping, and avoid lock-out phenomena so that the 
control of congestion can be achieved by the use of 
appropriate buffer management schemes. These 
mechanisms include random early detection (RED) 
[Floyd and Jacobson 1993], random early marking 
(REM) [Lapsley and Low 1999; Athuraliya et al. 
2000], a virtual queue based scheme where the 
virtual queue is adaptive [Gibbens and Kelly 1999; 
Kunniyur and Srikant 2000, 2001] and a 
proportional integral controller mechanism [Hoolot 
et al. 2000], among others. Of these schemes to 
implement AQM, the RED mechanism is the one 
recommended by the Internet Society in [Braden et 
al.1998]. Quote: “Unless a developer has reasons to 
provide another equivalent mechanism we 
recommend that RED be used”.   This mechanism 
has the potential to over-come some of the problems 
discovered in drop tail mechanisms which are 
specific to the Internet traffic, such as 
synchronization of TCP flows and correlation of the 
drop events (multiple packets dropped in sequence)  
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within a TCP flow and it is therefore this mechanism 
that we will focus on in this paper. 
 
RED drops arriving packets probabilistically 
depending on setting thresholds in the queue and this 
paper uses the principle and looks at this in a 
simplified way where we set up two discrete-time 
performance models. Model-I incorporates one 
threshold with arrival rate step reduction and another 
model includes two thresholds with arrival rate 
linear reduction, respectively. Model-II can also be 
potentially used as a model for RED. 
 
The remainder of the paper is organised as follows: 
In Section 2, we introduce two discrete-time 
performance models for congestion control 
mechanism using queue thresholds, and present 
analytical expressions for various performance 
measures. Section 3 presents the performance 
comparison results of two models through typical 
numerical results. It also includes a detailed 
performance study of model-II. Conclusions and 
future work are followed in Section 4.  
 
 
2. PERFORMANCE ANALYSIS OF THE 
PROPOSED MODELS  
 
In this section, we introduce two proposed system 
models in discrete-time settings and present the 
analytical framework to be used in the remainder of 
the paper. In both discrete-time queueing systems, 
we will assume that a departure always takes place 
before an arrival in any unit time (slot). Arrivals 
form an independent Bernoulli process, with 
an∈{0,1}, n=1,2,3,…., and there is a finite waiting 
room of M packets, including any in service. The 
queueing discipline is first-come first-served. 
[Woodward 1993] 
 
2.1 Model-I: Threshold Based Step Reduction of 
Arrival Rate 
 
Model-I incorporates one threshold to make the 
arrival process step reduce from arrival rate α1 
directly to α2 once the number of packets in the 
system has been reached to the threshold value L1. 
The source operates normally, otherwise. This can 
be considered as implicit feedback from the queue to 
the arrival process. In addition, this can alternatively 
be viewed as the source continuing to send at rate α1 
but with arriving packets dropped with probability 1-
α2/α1. (c.f. Figure 1) 

α1 
β 

Arrival 
Process 

Can be considered as implicit feedback 
from queue to the arrival process 

Threshold 
(L1) 

  α2 

 
FIGURE 1. Single Buffer with One Threshold L1 

 
 
Let the probability of an arrival in a slot be α1 before 
the number of packets in the system reaches the 
threshold L1, the probability of an arrival in a slot be 
reduced to α2 after L1 and the probability of a 
departure in a slot be β. We assume that the 
queueing system is in equilibrium. The state 
transition diagram is shown in Figure 2, and the 
queue length process is a Markov chain with a finite 
state space {0, 1, …, M(M=L1+J)}. 
 
We assume that α1 ≠ β, α2 ≠ β (α1>α2) and the 
balance equations of the discrete-time finite queue 
with one threshold (L1) can be expressed as follows: 
 
π 0  = π 0 (1- α1) + π 1 [β(1- α1)]          (1)  

π 1  = π 0 α1 + π 1 [α1β + (1- α1)(1- β)] + π 2 [β(1- α1)] 
              (2) 
In general 
π i  = π 1−i [α1(1- β)] + π i [α1β + (1- α1)(1- β)]  

         + π 1+i  [β(1- α1)]   i = 2, 4,…, L1-2          (3) 

π 11−L  = π 21−L [α1(1- β)] + π 11−L [α1β + (1- α1)(1- β)]  

              + π
1L [β(1- α2)]                                         (4) 

π
1L  = π 11−L [α1(1- β)] + π

1L [α2β + (1- α2)(1- β)]  

          + π 11+L [β(1- α2)]                                           (5) 
In general 
π i  = π 1−i [α2(1- β)] + π i [α2β + (1- α2)(1- β)]  

         + π 1+i  [β(1- α2)]   i = L1+1,…, L1+J-1         (6) 

π i  = π 1−i [α2(1- β)] + π i [α2 + (1- α2)(1- β)] 

        + π 1+i  [β(1- α2)]  )]   i = L1+J (M=L1+J)       (7)  
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FIGURE 2. State Transition Diagram for Discrete-Time Finite Queue with Threshold L1 

 
 
 
Solving these equations recursively, and involving 
γ1=
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the normalising equations ∑
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JL

i
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0
π = 1, thus π 0 can be 

obtained as follows: 
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                                         (8) 
The idea is to find the generating function of the 
queue length process for this finite queue which is 
given by 
 

P(z) = ∑
+

=

JL

i

i
i z

1

0
π                                                     (9) 

Multiplying iπ by z i , and summing them together 
we can find ( )zP  . To find the mean waiting time via 
Little’s law, we must first evaluate the mean queue 
length which can be obtained from the generating 
function by taking the first derivative of ( )zP  
evaluated at 1=z , thus the mean queue length for 
this finite queue with a threshold L1 as follows: 
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      (10) 
The mean throughput of this finite queue given by 
the fraction of time the server is busy: 
 

( ) βπ ×−= 01S         (11) 
 
The delay can be obtained from Little’s law for this 
finite capacity queue as: 
 

W = 
S

)1(P(1)
          (12) 

 
Another very important performance measure is the 
probability of packet loss given by: 
 

0
221

1
21121

)1)(1)(1(
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π
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−−−
−−−

=
+JL

LP        (13) 

where π 0  is in the equation (8). 
 
 
2.2 Model-II: Threshold based Linear Reduction 
of  Arrival Rate 
 
Model II incorporates two thresholds to make the 
arrival rate reduce linearly between them. (c.f. 
Figure 3) 
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FIGURE 3. Single Buffer with Two Thresholds  

(L1 and L2) 
 
 

Let the probability of an arrival in a slot be α1 before 
the number of packets in the system reaches the first 
threshold L1, the probability of an arrival in a slot be 
reduced to α2 after the number of packets in the 
system reaches the second threshold L2, and the 
probability of a departure in a slot be β. When the 
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number of packets in the system is between the first 
threshold and the second threshold, the arrival rate 
(probability) will be linearly reduced with some 
probability which is the function of α1, α2 and the 
two thresholds. So the dropping probability 
increases linearly from 0 to the maximum 1-α2/α1. 
This can be considered as implicit feedback from 
queue to the arrival process in that dropping packets 
reduces the effective arrival rate into the queue from 
α1 to α1-α2 with a linear reduction. We assume that 
the queueing system is in equilibrium. The state 
transition diagram is shown in Figure 4, and the 
queue length process is a Markov chain with a finite 
state space {0, 1, …, L2+N (L2+N=M)}. 
 
As shown in Figure 4, the arrival rate is α1 in part I 
and α2 in part III, which are all independent. 
However in part II (between two thresholds), the 
arrival rate depends on the state, that means each 
arrival rate is different with each state and will be 
linearly reduced by dropping packets. We assume 
that α1 ≠ β, α2 ≠ β (α1>α2) and the final state L2+N 
(L2+N=M) is the full buffer situation.  
 
To find the equilibrium probability, first the 
transition probabilities of arrivals and departures 
from state L1 to state L2-1 can be defined as: 

)1( βαλ −= kk  
)1( kk αβµ −= , 121 −≤≤ LkL         (14)           
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1
)1(

12

21
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−
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                                                   (15) 
and the transition probabilities of arrivals and 
departures in part I and III can also be defined as: 
 

10 αλ = , )1(11 βαλ −= , )1( 11 αβµ −=  

)1(22 βαλ −= , )1( 22 αβµ −=        (16) 
 
Similarly with model I, after solving the balance 
equations of the discrete-time finite queue with two 
thresholds L1 and L2 (L2>L1) recursively, and 

involving 
1
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FIGURE 4. State Transition Diagram for the Discrete-Time Finite Queue  
with two Thresholds (L1 and L2) 

 
 
 
Similarly with model I, by using the generating 
function of the queue length process for this finite 

queue, ∑
+

=

=
NL

i

i
i zzp

2

0
)( π , and taking the first  

 
 

 
 
derivative of ( )zP  evaluated at 1=z , the mean 
queue length for this finite queue with two 
thresholds L1 and L2 can be obtained as follows:  
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The delay can be obtained using Little’s law for this 
finite capacity queue as: 
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where S is the mean throughput of this queue given 
by the fraction of time the server is busy: 
 

( ) βπ ×−= 01S       (20) 

0π can be found in the equation (17). 
 
Another important performance measure is the 
probability of packet loss given by the following 
expression: 
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3. NUMERICAL RESULTS 
 
This section presents numerical results based on the 
two proposed models. Performance measurements 
comparison between two models is shown in the 
first part, and the further detailed performance 
study of model-II is included in the second part. 
 
3.1 Numerical Performance Results Comparison 
 
Since in both analytical performance models, the 
mean packet delay W, probability of packet loss PL 
and throughput S have been expressed as functions 

of the thresholds and maximum drop probability, 
this section presents the comparison results for both 
performance measurement parameters through 
graphical results. (c.f. Figures 6-8) 
 
Model-I is called ‘Step Reduction’ since it 
incorporates one threshold to make the arrival 
process step reduce from arrival rate α1 directly to 
α2 once the number of packets in the system has 
been reached to the threshold value L1. The source 
operates normally, otherwise. Model-II is called 
‘Linear Reduction’ since it incorporates two 
thresholds to make the arrival rate linearly reduce 
from α1 to α2 with system contents when the 
number of packets in the system is between two 
thresholds L1 and L2. The source operates normally 
with arrival rate α1 before threshold L1, and with 
arrival rate α2 after the threshold L2. 
(c.f. Figure 5) 
 
 

L1 Threshold

Arrival Rate

L2 

α1

α2

Step Reduction 

Linear Reduction

 
FIGURE 5. Step Reduction and Linear 

Reduction 
 
 
Figures 6-8 present numerical results comparison 
between step and linear reduction of arrival rate by 
setting normalised throughput, normalised delay 
and probability of packets loss against same range 
of load (α2) respectively. The performance 
advantages of using two thresholds with linear 
reduction of arrival rate compared to schemes 
which use only a single threshold with step 
reduction of arrival rate have been clearly 
demonstrated in Figure 6 and 8, where the linear 
reduction can always give a higher throughput anda 
lower packet loss probability for the same load. 
However, in Figure 7, step reduction gives the 
lower delay against the same load compared with 
linear reduction.  
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FIGURE 6. Comparison Results for Normalised 
Throughput 

 

 
 
FIGURE 7. Comparison Results for Normalised 

Delay 
 

 

 
 

FIGURE 8. Comparison Results for Probability 
of Packets Loss 

3.2 A Detailed Performance Study of Model-II 
 
Using the expressions (19) and (21) for the delay 
and probability of packet loss respectively, the 
graphical results of delay and probability of packet 
loss against L2-L1 are shown in Figures 9-12. 
 
 

• α1, α2 fixed, L2 is variable, results for 
different values of L1 are compared 

 
Figure 9 indicates that the absolute value of mean 
delay is lower for the lower threshold settings, as 
expected. However, this figure also indicates that 
the change in mean delay depends only on the 
distance between the queue thresholds and is 
independent of the positions of the thresholds in the 
queue. Figure 10 shows that a lower probability of 
packet loss can be achieved by using a high setting 
for the threshold L1 and a wide separation of the 
thresholds, with the probability of packet loss 
tending to converge to the same value for a very 
wide thresholds separation. 
 
 

Delay   vs   L2-L1

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

L2-L1

De
la

y L1=5
L1=4
L1=3

 
 

FIGURE 9.  Delay  vs  L2-L1 
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FIGURE 10.  Probability of Packets Loss  
vs L2-L1  
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• α1, L1 fixed, L2 is variable, results for 

different values of α2 are compared 
 
 
Varying the parameter α2 is the equivalent of 
varying the maximum drop probability, which is 1-
α2/α1. Figure 11 shows that a higher value of 
maximum drop probability gives a lower delay for 
the same threshold separation L2- L1 whereas 
Figure 12 shows that a lower value of maximum 
drop probability gives a lower probability of packet 
loss for the same threshold separation. However, a 
lower probability of packet loss can be achieved by 
using a low maximum drop probability and a wide 
separation of the thresholds, although for a very 
wide threshold separation the probability of packet 
loss converges to the same value, irrespective of the 
maximum drop probability. 
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FIGURE 11.  Delay  vs  L2-L1 
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FIGURE 12.  Probability of packets loss vs L2-L1 
 
 
Taking the results of Figure 9-12 overall, these 
suggest that a lower delay for a specific packet loss 
probability can be obtained by using a high  
 

maximum drop probability, a low setting for the 
threshold L1 and a narrow separation of the 
thresholds. A lower probability of packet loss can 
be achieved by using a low maximum drop 
probability, a high setting for the threshold L1 and a 
wide separation of the thresholds. Settings of these 
parameters thus can be chosen to suit the type of 
service required. For example, real-time services 
require low delay whereas data services require low 
packet loss. 
 
 
4. CONCLUSIONS AND FUTURE WORK 
 
 
Two discrete-time analytical models for the 
performance evaluation of congestion control 
mechanism using queue thresholds have been 
developed and analysed in this paper. Comparison 
of performance measurements from both models 
have been clearly demonstrated through typical 
numerical results. Model-I incorporates one 
threshold to make the arrival process step reduce 
from arrival rate α1 directly to α2 once the number 
of packets in the system has been reached the 
threshold value L1. In addition, this can 
alternatively be viewed as the source continuing to 
send at rate α1 but with arriving packets dropped 
with probability 1-α2/α1. In model-II, the operation 
with the queue length between the two thresholds 
can also be interpreted as either (i) the arrival rate 
(probability) will be linearly reduced with some 
probability which is the function of α1, α2 and the 
two thresholds or (ii) the original arrival rate of α1, 
but the dropping probability increases linearly from 
0 to the maximum 1-α2/α1. This can be considered 
as implicit feedback from queue to the arrival 
process in that dropping packets reduces the 
effective arrival rate into the queue from α1 to α1- α2 
with a linear reduction. The performance model 
developed and analysed enables the best load 
settings and drop probability to be chosen to suit a 
given situation; that is, to give an appropriate trade-
off among throughput, delay and packet loss 
probability.  
 
In the future work, we aim to next generalize the 
results we have obtained to some extent by 
allowing for multiple arrivals in a slot which can be 
applied to any arrival process. Furthermore, we 
want to apply this model to Internet traffic e.g. a 
TCP/IP flow so that the technique of variable 
thresholds and blocking can be applied as a 
congestion control mechanism. 
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