
UML specification of distr ibuted system environments

D.H.Akehurst, A.G.Waters

Technical Report : 18-99
Computing Laboratory, University of Kent at Canterbury,

 Canterbury, Kent CT2 7NF, UK
{ D.H.Akehurst, A.G.Waters} @ukc.ac.uk

The specification of distributed systems is a complex task, which is made easier
by the use of object-oriented design methodologies. With the advent of UML as
a standard notation for object-oriented software design, the application of this
notation to the design of distributed systems is appropriate. The design of
distributed systems involves both software and hardware specifications,
however, the UML notation is primarily directed at the design of the software
within a system and the facilities directed towards the specification of the
physical environment are limited. Specification of the physical environment
using UML can be achieved, but by using alternative parts of the notation to the
proposed ‘ implementation diagrams’ . Using the alternatives presented in this
paper enables a satisfactory specification, which is for example, detailed
enough for the automatic generation of performance models.

1 Introduction

Many different processes, methodologies and notations cover the design and
development of the software in a system. However, very little consideration is given
to the context in which the system operates and the physical environment that
empowers it to execute.

From a performance engineering perspective both of these two areas are of vital
importance. The relationship between the system and the context in which it operates
determines the load on the system, and drives or determines its behaviour. The other
relationship, the mapping between the physical structure of the system and its logical
behaviour is equally important; this effectively determines the capability, of both the
system and its behaviour, to respond to the stimulus from the operating context.

The UML language has many facilities for the description of the software of a
system, and these facilities are being extensively exercised and developed by the
community. The facilities for definition of the hardware and system context are
however, minimal and in the case of the hardware description notation, appear to be
rarely used.

This paper discusses how to use the UML for the specification of the physical
environment of a distributed system, and the mapping of the application components
onto the physical environment. The method described in this paper has resulted from
the Performance Modelling of ATM Based Applications and Services

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(PERMABASE) project carried out by British Telecom and the University of Kent at
Canterbury, and funded by British Telecom.

The paper starts by placing the research within the context of the PERMABASE
project. This is followed by some background information including a discussion
regarding the UML version 1.1 implementation diagrams, and a look at the
PERMABASE concepts with regard to the ISO Reference Model for Open
Distributed Processing (RM-ODP, [14]) to see how its viewpoint specifications
address the problem area.

The main body of the paper provides a critique of UML version 1.1 deployment
diagrams as a means to illustrate physical environment specifications. The critique
comes from a distributed systems perspective, by reference to conventions developed
under the PERMABASE project.

The PERMABASE adaptation of UML version 1.1 was developed in parallel and
independently of UML version 1.31, the paper continues by providing a comparison
with features introduced in UML version 1.3, and commends version 1.3 as a
significant improvement. The PERMABASE adaptations are shown to be inline with
the version 1.3 improvements, but in fact go further. The extra solutions proposed
could be usefully adopted to extend version 1.3.

The paper concludes with a look at other work related to the area of distributed
system modelling, in particular discussing other proposed solutions to the
specification of the physical environment and comparing them with our approach, and
a summary of the research documented in this paper.

2 Overview of PERMABASE

The PERMABASE project ([2], [3], [4]) is concerned with bringing the advantages of
performance modelling into the realm of the distributed system designer. Although
the performance model generation is of primary concern within the project, it should
be secondary to the system designer. The system, hardware, and software designers
should be primarily concerned with the process of designing the system, and not
spending their time and energy on the generation of a performance model.

The PERMABASE philosophy is therefore, to automatically generate performance
models directly from the system design model. The rise of the UML within the design
community as a standard notation for object-oriented software design, suggested that
this would be a suitable notation, on which to base the project’s prototype toolkit.

The project identified three distinct domains involved in the specification of the
entire system design, and also the distinction between declaring the types (or classes)
of components that exist in the system, and the instances of those components that
form the deployed system.

Four model viewpoints were defined, one for specifying the declaration of
components from each separate domain, and the fourth to specify the instances of the
components and their connectivity. They are described as follows:

                                                          
1 In draft form at the time of writing.



1. Workload – Specification of classes of component considered as external to
the system, but that drive or load the system.

2. Application – Specification of classes of component that form the software or
logical behaviour of the system.

3. Execution Environment – Specification of classes of component that are
physical components, providing the resources used by the application during
system operation.

4. System Scenario – Defines the instances of declared components, and the
connections between them, which form a specific system architecture or
configuration.

Combining the specifications from each of the four domains, a Composite Model
Data Structure (CMDS) of the entire system specification is produced. The CMDS is
checked for consistency, and via a number of transformations, is finally translated
into a discrete event simulation, performance model, of the system.

The results of executing the performance model are ‘ fed back’  to the system
designer(s), and can be used to adjust the system design specification such that it
meets any performance requirements that have been imposed upon it.

It was the intention that each of the model viewpoint specifications be described
using a standard notation and tool. However, the application model is the only
specification area that already receives significant notation and tool support.
Consequently, we determined to use, and adapt if necessary, the UML notation for the
representation of all four domain specification areas. The adaptation of the UML to
the representation of the Execution Environment and System Scenario specifications
is discussed in this paper.

3 Background

Within the UML, the two implementation diagrams are the intended aspects of the
notation for the portrayal of the type of information specified by the PERMABASE
Execution Environment and System Scenario specification viewpoints. However, as
we will see, the UML version 1.1 standard’s definition of these diagrams is
inadequate for the detailed specification of a distributed systems physical
environment, as required by the PERMABASE project.

In this section, we discuss the UML implementation diagrams, indicating their
unsuitability for the specification of distributed system physical environment issues.
This is followed by an RM-ODP perspective on such a specification.

The discussion is based on early literature definitions of the UML version 1.1 that
were available during the PERMABASE project. This sets the background for the
ideas proposed in the paper. Since the project termination, and the subsequent release
of UML version 1.3, the definition of the implementation diagrams has been
significantly improved. The impact of the changes on the PERMABASE solutions is
discussed later in the paper.



3.1 UML Implementation diagrams

There are two types of UML Implementation diagram, the Component Diagram and
the Deployment Diagram. They both appear to be evolutions of diagrams originally
part of the Booch Notation ([9]) – Module and Process Diagrams. Neither diagram is
given much discussion in most of the literature on UML, and the impression of the
author (although not founded on any quantified measures), is that the diagrams are not
frequently used, or commonly understood how to be used.

The component diagram, as defined in the UML version 1.1 standard ([1]), “…
shows the dependencies among software components, including source code
components, binary code components, and executable code components.”  Fowler
([10]) indicates that components correspond to packages, and hence does not include
component diagrams in his book.

 If we look back to the component diagram’s ancestor, the module diagram, Booch
([9]) states that “A module diagram is used to show the allocation of classes and
objects to modules in the physical design of the system.”  with a heavy indication that
the components tie up with (implementation) code files.

The Deployment diagrams, from the version 1.1 standard, “… show the
configuration of run-time processing elements and the software components,
processes, and objects that live on them. Software component instances represent run-
time manifestations of code units.”  Fowler says much the same thing, that they “…
show the physical relationships among software and hardware components in the
delivered system.”  He also states that he has not “ In practice, …seen this kind of
diagram used much. Most people do draw diagrams to show this kind of information,
but they use informal cartoons.”

It can be seen from these descriptions that the diagrams are, as their collective
name suggests, diagrams to aid implementation. The physical environment is assumed
to be in existence, and the diagrams show the “deployment”  of the software design
over it. From the perspective of distributed system design, there are two major issues
or difficulties with the use of these diagrams:

1. The physical environment is not necessarily a ‘given’ , it may also be in
the process of being designed.

2. The assumption of ‘distribution transparency’ , and the fact that we are
working with high level designs, eliminates the necessity to think about
modules and code files; instead we wish to specify the location of objects
and the connections between them.

The concept of components and deployment of components is still valid, but with a
different emphasis. The components of the system are not organised into modules and
are not only the objects, or classes, but are also the platforms, networks, users and any
other entity that is part of the system or it’ s environment. The deployment of these
components includes their instantiation (as the components are all definitions of
types) and connection both physically and logically. Physical connections show which
hardware objects are connected together and which platforms the software objects
‘ run’  on. Logical connections show how the software objects are configured.



3.2 An RM-ODP perspective on physical environment specifications

The Reference Model for Open Distributed Processing (RM-ODP, [14]) is a well
recognised standard related to distributed system design. It is not prescriptive in
defining a specific design process or notation, but it identifies areas and concepts that,
if addressed, will aid the success of the design, and that must be addressed in order
that the design can be considered an ‘Open Distributed System’ .

The area of design specification relating to physical parts of the system within the
RM-ODP, are covered within its Engineering and Technology Viewpoint models and
definitions, and the mapping of Computational (Viewpoint model) objects to
Engineering (Viewpoint model) objects. Also relevant are the distribution
transparency mechanisms identified by the RM-ODP standard.

From the perspective of the application design (the logical or behavioural domain)
we take a philosophy of distribution transparency, in particular, location transparency.
Any object may communicate with any other object (provided it has a reference to it)
and no attention is given to the mechanism used to enable that communication.

From a performance engineering perspective, it is vitally necessary to know the
location of each object. There are two important relationships, dependent upon the
object location, which significantly affect the performance of the system:

• Between the platform providing the execution resources and the objects using
those resources.

• Between the location of the platform supporting an object and the location of
the platforms supporting other objects it communicates with, and hence the
network specifications providing the communications path.

The PERMABASE performance engine and the translation process between the
design model and the performance model provide the location transparency
mechanism.

In fact, the performance model engine, and the translation process from CMDS to
the performance model, automatically provide all of the engineering transparencies
and functionality required to support the execution of the designed software
application (or computational objects).

There is only one Engineering Viewpoint piece of information that the system
design is required to provide: The initial configuration of objects on platforms, or in
RM-ODP terms, the allocation of Computational objects to Engineering nodes. All
other engineering details are hidden by the automation.

The Technology Viewpoint requires the definition of the specific technological
components used within the distributed system. From the perspective of the
PERMABASE system model, this requires the specification of types of hardware
component. The characteristics of the hardware components must be specified such
that the quantity of resource provided, can be determined and used for performance
model generation. The specification technique, should however, be directed towards
system design not performance model design.



4 Physical environment specification

The specification of the physical environment of a distributed system is divided in
PERMABASE between two specification domains: the Execution Environment and
System Scenario specifications. The use of UML for the representation of these two
specification domains is discussed in the following subsections.

4.1 Execution Environment

The information specified within this PERMABASE viewpoint is covered completely
by the RM-ODP Technology Viewpoint requirements2. It is used to define the types
of hardware components that are used within the distributed system, and the
characteristics of those components.

GenericPlatform

processor : Constant
clock_speed : Real
operating_system : Constant
memory : Integer

PC
operating_system = Win NT 4.0

Power_PC
processor = Pentium III
clock_speed = 550 MHz
memory = 64 MB

Standard_PC
processor = Pentium
clock_speed = 150 MHz
memory = 64 MB

GenericPlatform
processor : Constant
clock_speed : Real
operating_system : Constant
memory : Integer

PC

operating_system = Win NT 4.0

Power_PC

processor = Pentium III
clock_speed = 550 MHz

memory = 64 MB

Standard_PC

processor = Pentium
clock_speed = 150 MHz

memory = 64 MB
(a) (b)

Fig. 1. Static Structure diagram showing a physical component type hierarchy

Although we are not specifying software or logical classes of component, we are
still specifying classes, though in this case they are classes of hardware component,
and hence a Class or Static Structure diagram is an appropriate means to represent the
information specified.

Fig. 1a shows an example Static Structure diagram, specifying some Execution
Environment (or physical) components. As can be seen in the figure, the
                                                          
2 Although conversely, it is recognised that there may be other information specified within an

RM-ODP Technology Viewpoint specification, which is not specified here.



generalisation relationship can be used to group types of component, and/or aid with
the re-use of components and (predefined) component libraries.

By using the UML facility to represent a stereotyped component by an alternative
icon, the diagram can be made more visually recognisable, as in Fig. 1b. This
technique, however, does not strictly conform to the UML standard. Stereotypes are
intended for the definition of new semantic variations of the original UML meta-
model element, not for defining alternative icons, on a per-project basis, for particular
components.

4.2 System Scenar io

The System Scenario PERMABASE viewpoint is for specifying the particular
configuration of component instances and connectivity that represents the instance of
the overall system that is being designed (or of which we wish to predict the
performance). The specification is covered by both the Computational and
Engineering Viewpoint models from the RM-ODP, relevant aspects of which, define
the connectivity and instantiation of application (computational) objects, the
allocation of those objects to hardware platforms, and the connectivity of the
platforms.

We start by looking at how to use the current (UML version 1.1) deployment
diagrams, for the representation of a System Scenario specification. We illustrate a
number of problems with this approach, followed by our alternative representation
using Object diagrams. The new approach demonstrates the solutions to the problems
identified with existing deployment diagrams.

Finally we look at the future UML version 1.3 deployment diagrams, indicating
how these change the significance of the problems.

4.2.1 Using version 1.1 deployment diagrams
Within the UML, the obvious place to look for notation to specify System Scenario

information is the UML Deployment diagram, as it is intended for illustrating the
deployment, or configuration, of a system. However, if we look at the example in fig.
2, we see a number of shortcomings.

User_Terminal Server

LAN and WAN connection
browser store

Fig. 2. A UML deployment diagram

We would like the diagram to represent a system of ten user terminals connected
via a local area network and wide area network link to an off-site server. The users
access a store of information, located on the offsite server, which they browse
randomly at will.



The main drawback of deployment diagrams, is the lack of documentation on how
to use them (as discussed above), but for this particular example there are specific
difficulties in representing the required information:
1. The nodes are intended to represent the physical platforms that support the

behavioural aspects of the system, however there is no mechanism for connecting
the node instance with a specification of the class of type node, i.e. one of the
Execution Environment components specified.

2. A simple line and label represent the communication path between the two nodes.
Distributed systems are often deployed across complex network topologies, which
cannot be adequately represented without a more sophisticated notation. Fig. 2 is a
good (simple) example of this problem.

3. The objects supported by the various nodes should indicate their type3 or class.
4. There is no mechanism for indicating multiple instances of nodes, other than

drawing each individually. The above example requires the specification of ten
user terminals; this has not been indicated in the deployment diagram of fig. 2.

5. There needs to be a mechanism for defining the connectivity of the application
objects. In this example, there could be more than one store of information, with
some browsers connected to one and some to another.

6. This type of diagram is likely to be used to show non-experts the configuration of
the system being designed. Hence, the possibility of using icons that give a visual
representation of the system components would be useful.

7. Although not demonstrated by this example, there is no mechanism for
implementing hierarchy in the diagrams. Many (particularly large) systems could
not sensibly be represented on a single diagram.

4.2.2 Using object diagrams as an alternative
An object diagram, defined in version 1.1 of the UML standard as a Static Structure
diagram that shows only objects and not classes, is a more flexible and appropriate
mechanism for showing the specification of a system scenario, or configuration.

The deployment diagram does not add anything, other than a three dimensional
icon for node objects, above the notation provided by an object diagram, and in fact it
is more limited in its notational capabilities. Using an object diagram, each of the
problems with the deployment diagram representation can be addressed and
satisfactorily solved.

Fig. 3 shows an object diagram illustrating the same system we attempted to show
previously in the deployment diagram. This use of an object diagram to illustrate the
system configuration, solves the problems, outlined above, of using a deployment
diagram as follows:
1. Nodes, or physical platforms, are represented by objects, whose class can be given,

which enables specification of the ‘ technology’  characteristics of the node, via a
‘node type’ .

2. Communication paths are represented by a topology of ‘communication’  or
network objects, each of which requires a class to be specified. The class defines
the communication characteristics of the network object.

                                                          
3 It is quite possible (textually) to indicate the class type of objects on the diagram, but the

version 1.1 standard does not include enough detail to show whether and if this is how the
information should be specified.



user_terminal : Standard_PC
{ multiplicity = 10}

server : Power_PC

LAN : Ethernet WAN : ATM link

browser : Browser

a_store = store

store :
Info_Store

Fig. 3. Object diagram of system deployment

3. The UML standard defines quite clearly the semantics and notation of Static
Structure Object diagrams, and how to specify objects (or class instances) within
those diagrams. The representation of an object allows for an object-type to be
specified, hence the class of the application objects can be shown.

4. Multiple instances can be shown, graphically by using the Collaboration diagram
notation for multiple objects, and a tagged value to indicate (textually) the number
of instances represented. (Strictly speaking this is not standard UML, though the
graphical notation would be recognisable from the Collaboration diagram notation,
and could be omitted if strict conformance is required.)

browser :
Browser

store :
Info_Store

a_store

Fig. 4. An object diagram showing the logical configuration

5. The application object connectivity, or logical configuration could be shown in a
number of ways. The information that is required to be illustrated, is that the value
of an attribute in one object that references another object is set to the value (name)
of some other object of the correct type. One way would be to illustrate it textually,
within the object’s attribute value compartment as shown in fig. 3. An alternative is
to show the application configuration as a separate ‘ logical configuration’  object
diagram, using association (instance) links to connect the objects. This method is
illustrated in fig. 4.

6. The diagram can be given more visually recognisable graphics (fig. 5), by the use
of stereotype icons (as with the Execution Environment specification defined
above). Again, this is not strictly a correct use of the stereotype mechanism, but is
similarly used by Bourdeau et al. in [8]. When using alternative icons for
representation of the nodes, one cannot show containment graphically by enclosing
the object inside the node box, hence an association link between an object and its
supporting node is used to convey this information.



store :
Info_Store

browser :
Browser

NETWORK

WAN : ATM_link

server :
Power_PCNETWORK

LAN : Ethernet

user_terminal :
Standard_PC

{multiplicity = 10}

Fig. 5. System configuration using alternative icons

7. The issue of hierarchical decomposition is covered in the following section.

4.2.3 Hierarchical Decomposition / Subsystems
To handle the specification of large distributed system configurations it is necessary
to break the system up into a number of subsystems. The whole system is composed
of components, some of which may be subsystems, and the subsystems are likewise
composed of components and possibly sub-subsystems etc.

Although the UML (version 1.1) semantics support a subsystem concept, they are
not given much attention in the early literature, nor are they mentioned in the notation
guide. A subsystem, according to the semantics, is both a classifier and a package,
providing the capability of hierarchical containment and instantiability. The
subsystem itself does not have any behaviour, and the instance of a subsystem equates
to the instance of its component parts. A subsystem may have interfaces, through
which the behaviour of its contents can be accessed.

We wish to use the subsystem concept within the specification of the system’s
physical configuration, and therefore, connections to the subsystem represent physical
connectivity to components of the system. This requires, similarly to behaviour
decomposition, an interface-like concept through which the connections can be made;
a more appropriate name is an ‘access point’ .

Externally to the subsystem an access point works like an interface, showing
connectivity to the subsystem and its components. Inside the subsystem, there must be
a representation of every distinct access point referenced externally. The internal
representation should be used to show connectivity of the access points to internal
components of the subsystem.

Although subsystems are tied very closely to this configuration (or system
scenario) view of the system, they should still be included in the class and instance
dichotomy. There are likely to be occasions where a subsystem is replicated within
the system as a whole, hence implying the idea of instances of a particular subsystem
design. It must also be possible to define ‘multiple instances’  of a subsystem, as we
can with other components in this System Scenario specification. Fig. 6 shows an
example of using the subsystem concept.



store : Info_Store

server :
Power_PC

NETWORK

WAN : ATM_link: Site_Network
{ multiplicity = 2}

off-site

browser : Browser

user_terminal :
Standard_PC

{ multiplicity = 10}

NETWORK

LAN : Ethernet

off-site

Subsystem – Site_Network

Fig. 6. System configuration using subsystems

The system shown is an extension to the example running through this paper, and
assumes that the company (of ten users) has expanded, enabling a second set of ten
user terminals connected by the same WAN connection to the information store, but
on a separate Ethernet LAN.

4.2.4 The consequences of UML version 1.3
Recently two books have been released ([12] and [13]) which are based on version 1.3
of the UML4. These give a much fuller description of Deployment diagrams and how
to use them. The new, refined, version 1.3 specification of the UML Deployment
diagrams solves the majority of the issues and problems with the version 1.1 raised
above, in a similar way to that outlined by our use of Object diagrams. The authors of
[12] and [13] recognise the deployment diagram as being a variation on Static
Structure (class or object diagrams), and illustrate their use as such.

If we use version 1.3 of the UML, the improved deployment diagrams enable a
much more satisfactory representation of the system configuration. Some of the
problems identified with the use of version 1.1 have been solved by the following
changes to the deployment diagrams semantics and notation:

• A node is defined as a classifier, and it may have attributes, and tagged
values.

• Nodes, like any other UML element, can be classes or instances.
• Objects can be correctly represented on a Deployment diagram, in the same

way as on any other diagram.
• Networks can be represented as nodes.
• Deployment diagrams can exist as two variations, one showing the types of

node that can exist, the other showing actual instances.
• The Subsystem concept can be used within any UML diagram, i.e. within

Deployment diagrams.

                                                          
4 Although version 1.3 is still in draft form at the time of writing.



Using the new deployment diagram notation and semantics, our example’s
extended system configuration can be shown as in fig. 7, and as before we can use
stereotype icons to give an alternative graphical representation identical to fig. 6.

Although this diagram appears to be UML version 1.3 compliant, it is unclear from
the literature as to whether it is totally so. The use of «Subsystem» Package instances,
and interfaces (as access points), both within deployment diagrams, are not explicitly
defined as compliant uses of UML notation. However, the use of these components in
this manner, does not directly violate any aspect of the current draft 1.3 standard.

off-site

user_terminal : Standard_PC
{ multiplicity = 10}

browser :
Browser

server : Power_PC

store :
Info_Store

LAN : Ethernet

«SubSystem»
: Site_Network
{ multiplicity = 2} off-site

WAN : ATM_link

Subsystem – Site_Network

Fig. 7. System configuration, using version 1.3 Deployment diagram

The definition, within the new standard, of nodes as classifiers allows the
Execution Environment declarations (Technology Viewpoint related definitions) to be
illustrated using a deployment diagram showing node classes and the attributes of
those nodes. However, the use of this mechanism to define ‘node types’  (as in fig. 1
above) would require the use of generalisation relationships within a deployment
diagram, which is not compliant with the standard.

There is an alternative variation on ‘node type’  which adds another level of
complexity. It is quite feasible that it is required to define a ‘node type’  that shows a
specific allocation of objects on a node. A user_terminal for example, could be
thought of as a ‘node type’  that supports a Browser object. In this case we have two
conflicting ideas of the ‘ type’  of a node when specifying an instance – the type
defining its attributes, and the type defining its supported objects. A node instance can
only have one ‘ type’ .

A possible solution to this problem is to use generalisation relationships within a
‘declaration’  style of deployment diagram. Our example user_terminal could be
declared as a subtype of Standard_PC, supporting a Browser object, and instances of
this node class can be specified.

5 Related Work

The majority of work related to the design or modelling of distributed systems
concentrates either on the application of behavioural elements of the system, or on the
detailed modelling of the networks and communication mechanisms of the distributed
system. The PERMABASE work covers a much broader set of requirements, enabling
the design and performance prediction of the whole system, software and hardware



components, and includes a specification of the – possibly complex – workloads or
driving component behaviour.

Jonkers et. al. ([5]) describe a system with a similar purpose to the PERMABASE
system. Their approach identifies two domains, the entity domain and the behaviour
domain, and is based on a bespoke modelling and design language – Architectural
Modelling Box (AMB), a language developed to meet design prerequisites as well as
performance modelling formalisms. Their system identifies most of the same concepts
as identified in PERMABASE, but uses bespoke notations and tools for design
specification. Of particular interest to this paper, is their identification and
representation of entity components (comparable to execution environment
components in PERMABASE). Their entity components (similarly) provide a
resource, which is used by behavioural elements. There does not appear to be a
mechanism for specifying how the system is loaded, though this is not a problem for
their approach as the behaviour specifications are simpler than those supported by
PERMABASE, modelling only the behaviour of a single process at a time.

The AUTOFOCUS project ([6] and others), although not specifically aimed at
performance engineering, is another similar project to PERMABASE, which provides
simulation, consistency checking, and code generation for a distributed system
specification. Provision for the system specification is split into four views or
description techniques, System Structure Diagrams, Data Types Definitions, State
Transition Diagrams, and Extended Event Traces. Their System Structure Diagram
attempts to describe the same area of the system specification addressed by this paper,
but it is directed towards embedded systems and describing hardware bespoke to a
particular system. The PERMABASE approach is more flexible, allowing also for the
specification of general hardware components used for supporting a variety of
software applications.

Woodside in [15] specifies the resource abstraction (physical components) directly
as a queuing model, and although this is suitable for performance modelling purposes,
we require a method more oriented towards system design.

Kandé et al. in [7] describe a relationship between UML diagrams and the ODP
viewpoints. However, this is rather a simple approach, particularly with reference to
the Technology viewpoint (which they do not attempt to represent in UML), and the
Engineering viewpoint, represented by Component and Deployment diagrams which,
as described earlier in this paper, are not really adequate for the job. The example
given is not complex enough to adequately show how they intend to use the diagrams
to give full engineering type specifications.

Bourdeau et al. [8], describe an interesting approach in which UML Collaboration
diagrams are used to represent hierarchical context diagrams. They start by treating
the system as an object, and then show the external entities interacting with it, and
then break down the system into subsystems, showing the (sub)contexts in which the
subsystems operate. They also recognise the importance of using domain specific
icons, instead of abstract boxes, to make their diagrams more visually recognisable by
non-UML experts.

The Real-Time UML book ([11]), makes some use of Deployment diagrams,
though in a manner more suited to embedded systems than distributed ones. They
define only the need to specify the deployment of active objects, whereas we require
the location of all objects whether they are active or passive.



6 Conclusion

We have demonstrated, within this paper, that it is possible to specify the physical
details of a distributed system design using the UML notation. The research illustrated
in this document has arisen from the requirement of the PERMABASE project to
enable the specification of distributed systems in such a way that a performance
model can be generated. It is clear from the results of the project ([16] and those
referenced therein) that the specification contains sufficient detail to automatically
generate a performance model of the system.

We have shown that the method developed within PERMABASE is in accordance
with the RM-ODP guidelines for the design of a distributed system’s physical
environment and is therefore appropriate for the design of distributed systems in
general.

Although some of the solutions in this paper will be superseded by the release of
UML version 1.3, this simply demonstrates that our method of use is in general
compliant with UML thinking. Given that version 1.3 solves some of the problems in
a similar way to that illustrated in this paper, we believe that the additional solutions
proposed here are suitable amendments to the use of UML. In particular we advocate
the following additions and uses:

• The use of generalisation relationships within a deployment diagram.
• The use of «subsystem» package classes and instances to enable a hierarchical

structure for the whole system deployment specification.
• The use of «interface» classes as physical ‘access points’  (or a similar

construct) to specify connections to «subsystems».

References

1. Joint submission to OMG - Rational Software, Microsoft, Hewlett-Packard, Oracle, Texas
Instuments, MCI Systemhouse, Unisys, ICON Computing, IntelliCorp; The Unified
Modeling Language, version 1.1; OMG Technology Adoptions,  ad/97-08-02 to ad/97-08-
09; November 1997.

2. Peter Utton, Brian Hill; Performance Prediction: an Industry Perspective (Extended
Abstract); Computer Performance Evaluation, Proceedings of the 9th International
Conference on Modelling Techniques and Tools (Lecture Notes in Computer Science
1245); June 1997; pp. 1-5.

3. Peter Utton, Gino Martin; Further Experiences with Software Performance Modelling;
Proceedings of the First International Workshop on Software and Performance, WOSP 98;
October 1998; pp. 14-15.

4. Gill Waters, Peter Linington, David Akehurst, Andrew Symes; Communications software
performance prediction; 13th UK Workshop on Performance Engineering of Computer and
Telecommunication Systems; July 1997; pp. 38/1-38/9.

5. H. Jonkers, W. Janssen, A. Verschut and E. Wierstra; A unified framework for design and
performance analysis of distributed systems; Proc. of the 3rd Annual IEEE Int. Computer
Performance and Dependability Symposium (IPDS’98); Sept. 1998; pp. 109-118.

6. Franz Huber, Sascha Molterer, Andreas Rausch, Bernhard Schätz, Marc Sihling, Oscar
Slotosch; Tool supported Specification and Simulation of Distributed Systems;



Proceedings International Symposium on Software Engineering for Parallel and
Distributed Systems; 1998; pp. 155-164.

7. Mohamed Mancona Kande, Shahrzade Mazaher, Ognjen Prnjat, Lionel Sacks, Marcus
Wittig; Applying UML to Design an Inter-Domain Service Management Application: A
Case Study Based on the ACTS Project TRUMPET; «UML» '98 Beyond the Notation; June
1998; pp. 173.

8. E. Bourdeau, P. Lugagne, P. Roques; Hierarchical Context Diagrams with UML: An
experience report on Satellite Ground System Analysis; «UML» '98 Beyond the Notation;
June 1998; pp. 215.

9. Grady Booch; Object-Orinted Analysis and Design with Applications, second edition; The
Benjamin/Cummings Publishing Company, Inc.; 1994.

10. Martin Fowler with Kendall Scott; UML Distilled: Applying the Standard Object Modeling
Language; Addison Wesley Longman, Inc.; 1997.

11. Bruce Powel Douglass; Real-Time UML: Developing Efficient Objects for Embedded
Systems; Addison Wesley Longman, Inc.; 1998.

12. Grady Booch, James Rumbaugh, Ivar Jacobson; The Unified Modeling Language User
Guide; Addison Wesley Longman Inc.; 1999.

13. James Rumbaugh, Ivar Jacobson, Grady Booch; The Unified Modeling Language
Reference Manual; Addison Wesley Longman Inc.; 1999.

14. ISO/IEC 10746-1/2/3; Reference Model for Open Distributed Processing – Part1:Overview
/ Part 2: Foundations / Part 3:Architecture; ISO/IEC; 1995.

15. C.M. Woodside; A Three-View Model for Performance Engineering of Concurrent
Software; IEEE Trans. On Software Engineering, Vol. 21, No. 9; Sept. 1995; pp. 754-767.

16. P. Utton; PERMABASE Document Set Overview; Technical Report 9334:PERMABASE:
BT: 047; Systems and Software Strategy Unit, British Telecom; 1998.


