
Negotiated Assessment Criteria and Peer Assessment in Software
Engineering Group Project Work: A Case Study

Ian Utting
Computing Laboratory

University of Kent at Canterbury, UK
e-mail: I.A.Utting@ukc.ac.uk

The core second level course in Software Engineering for Computer Science students at the
University of Kent (UKC) has, for many years, included a substantial design-and-build group
project component. In recent years, this has been enhanced to address a number of issues
crucial to students’ development as reflective, professional practitioners
Problems (for both staff and students) in the implementation of these enhancements to group
learning and the educational experience are addressed, and identified beneficial solutions are
described. The value of this approach is situated firstly in terms of changes to the students’
approach to subsequent, less constrained, project work, and secondly against the stated
learning outcomes of the project; their improved technical and professional practices.

1 Introduction

In common with most undergraduate Computer Science programmes (in the UK), the
University of Kent at Canterbury (UKC) runs a small-group design-and-build software
development project as part of the second year of its three year degree programme. In our
case, this project is primarily in support of the core Software Engineering unit. More
unusually, the Computer Science degrees at UKC also include a group project in the final year
of the programme.
Over recent years, we have seen both an increase in student numbers, and an increasing
sophistication of the types of work undertaken by students in their final year project. In
response to these issues, we have adopted a number of strategies designed to increase the
value of the project for students both in terms of the technical outcomes of the work and in the
extent to which we can encourage them to reflect on their maturation as professional
practitioners in software engineering.
Particularly, we have enhanced those aspects of the work concerned with:
• Group allocation and formation.
• Technical and non-technical goal setting within the context of the taught material. These

goals are used both to guide practice and as a basis for assessment.
• Students’ critical evaluation of their own and others’ achievements, in the context of

moderated self and peer assessment.
Although the work is assessed as a group, it has proved possible to account for variations
between individuals’ efforts using a novel questionnaire based approach initially developed at
the University of Exeter.
Many of the techniques we have drawn upon in this work have been identified by a national
project on “Effective Project work in Computer Science” (project EPCoS), in which the
author is a partner. EPCoS's goals are “To identify, make explicit and systematise existing
best practices in Computer Science student project methods and techniques in order to make
existing knowledge and experience readily accessible for the achievement of threshold
standards in Computer Science graduates” (Fincher, 1998).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Group Allocation

Sensible allocation of scarce resources against competing requirements is one of the major
lessons we would like students to learn from this project work. As such, we allow them to
select groups and allocate tasks for themselves, but place a number of constraints in their way.
The project that the students undertake has changed over time but always asks them to
undertake the development of a small software system, focussing on the development
processes involved rather than the end result. The systems are typically well specified
(sometimes formally in, e.g., Z) and fall fairly readily into two halves. Each group of students
develops one half of the system, integrating their work with that of another group, who are
developing the other half.
This is the second piece of group in the software engineering course. Before attempting it,
students have spent some 10 weeks working on a professional-issues case study undertaken in
groups of about a dozen (Fincher & Utting, 1998). The fact that these (large) groups have
been formed for an entirely different purpose – to reflect on professional (non-technical)
responsibilities, and to generate a short group report each week – makes the task of dividing
resources between the two halves of the development project an interesting one.
In a study of the factors affecting students’ choice of the ways to break down their large-scale
groups, Thorn (1998) observed that, despite the taught material in the course on resource
allocation, the major factor influencing the students’ choice was how much they “liked” the
other members of the group. Nonetheless, in a survey of students' experiences of this work
and its relevance to their final year projects, “experience of working in a group” and
“allocation of tasks to group members” were the most-quoted advantages of having done the
work.

3 Negotiating project goals and assessment criteria

It has often been observed that students are focussed strongly on software development as a
code-writing activity. This is particularly problematic in the teaching of software engineering
where limitations of available student time and effort make it difficult for them to develop
software of a scale and complexity sufficient to require the techniques being taught. Surveys
over time at UKC have suggested that, working from a simple specification of a small
program, final year CS students write 15 lines of code per assessment hour. With a total
available time per course of 120 hours, this means that even if nothing is done except coding
the average student could produce only 1800 lines of code. A program of this size hardly
requires the sort of design and project management techniques suitable for large-scale
systems. Thus we need to constrain students into using apparently less appropriate techniques,
in order to give them (at least some) practice in them before they move on to systems where
their use will be critical.
By the time that they come to start the project component of this course, the students have
already been introduced to the basic principles of managing software development. This
allows us to negotiate with them (in a fairly abstract manner) the kinds of tasks that they will
have to undertake in order to successfully complete the project, and identify the products of
the project in which evidence for the completion of those tasks will be found. As part of this
process, conducted as a group discussion, we also look at the relative weights of the different
tasks identified (in terms of both scale and complexity), which leads to the weight they will
each be given in assessment. Although the outcome of this discussion varies (marginally)
from year to year, a typical result is shown in Table 1.

Table 1: Assessment criteria with weightings

Section Group 1 Group 2
Planning 10 10
Quality Management 10 10
Design and Design Documentation 15 15
Implementation 15 20
User Documentation 15 0
Testing 15 15
Interface Specification 0 10
Records of Meetings 10 10
Integration 10 10
Total 100 100

An example of the description of what evidence might be found for these activities, and
where, is given below:

Quality Assurance and Management
Evidence for these activities will mainly be found in the records of project meetings
and also in the delivered QA documentation.
In particular, it should be evident that:
• The responsibilities of group members for quality issues have been identified.
• Checks on the quality of deliverables have been performed and the results

documented.
• Standards (for coding and documentation) have been specified and adhered to.
• Configuration management and source code control have been used where

appropriate, to keep track of different code and document versions, and to
identify those responsible for their modification.

The act of having negotiated such criteria with the students both encourages them to
understand the real worth of the individual tasks (especially "implementation"), and provides
them with early guidance on the way in which their work will be judged. The fact that the
assessment criteria are aligned with software engineering “good practice” is of immense
benefit to the learning process.

4 Encouraging critical reflection – peer and self assessment

Given the inevitable delay between submission of work for assessment and its return, and the
competing calls on students’ attention, even the best crafted feedback can easily lose its
relevance, at least until the next time similar work must be performed, and by then students’
understanding of what they had done and why has often faded. For this reason, many students
focus their attention on the mark that they are eventually awarded, and much of the value of
feedback in developing their understanding of their work is lost.
In order to address these problems we instituted a "peer assessment" approach to the
assessment of this project work. Getting students to evaluate the work of others is important
in developing their own ideas as well as for the feedback they receive. Knowing that they will
have to judge the work of others against the developed criteria also serves to keep them
focussed on those criteria in their own work.
The process adopted requires groups of students who have themselves undertaken a particular
half of the project to meet and assess the work of another such group, writing a short report as
well as providing marks. A member of staff then moderates the marks before returning them.
This moderation process reveals no significant difference between the marks awarded by

students and by staff, and no significant correlation between the mark eventually awarded to a
particular group and the accuracy of that groups’ marking of the work of others.
In early versions of this process, following the return of marked work there was a period
during which the assessed group could appeal against the assessment, and a meeting was
convened at which both sides could present their case for (and against) the assessment before
a binding agreement was reached. Typically, this route was taken by some 15% of groups.
Partly this was a result of the number of criteria against which the work had been assessed –
with more criteria, there is more room for detailed disagreements – but more frequently it was
a result of an unreasonable expectation of the accuracy of assessment. During the moderation
process, a discrepancy of ±5% overall was judged as acceptable – well within the bounds of
error to be expected when work on such a scale is marked by more than one assessor. Such
variation is normally hidden from students, relying on their trust of the judgement of staff.
Such trust is clearly suspended when students are judged by their peers, even though the
variation in mark is no wider than would be expected from multiple staff assessors.
In the current version of the process, groups are asked to submit (along with their project
deliverables) a self-assessment of their own work against the negotiated criteria. This was
instituted to assist in their reflection, to give them more of a basis against which to judge the
work of others, and to provide input to the moderation process. Unexpectedly, it also has the
effect of reducing the number of groups who are dissatisfied with the mark awarded them by
their peers from 15% to 5% (one group). So marked is this effect that even the added
complication of a substantial cash prize for the best project group resulted in no increase in
the number of disagreements.

4.1 Group and individual marks

For simplicity's sake, a single mark is awarded to an entire group. Normally, this is
appropriate, as all members of the group have, to a first approximation, contributed equally to
the success of the project. In occasional cases, however, a particular individual has
spectacularly failed to do so. In this past, this has been catered for by a penalty clause
allowing a group to allocate a mark of 0% to one (or more!) of their members on the grounds
of their non-contribution, thus giving them some leverage during the course of the work. Such
a decision must be taken unanimously by the group, including the individual concerned. This
draconian step has only once been taken, and then against a student who was in the early
stages of deciding to withdraw from the University. There has been, to date, no mechanism
for rewarding conspicuously effective contributions to the work of a group.
In order to provide a less dramatic mechanism for accounting for the differential input of
particular students, we are adopting (from Spring 1999) a mechanism identified in project
EPCoS based on practice at the University of Exeter (Milne, 1998). Each member of a group
fills in a small questionnaire assessing the contribution of all the groups' members (including
themselves) against their expected contribution to each of the assessment criteria and to the
work of the group as a whole. This will allow the identification of individuals who have
under- or over-performed, and appropriate modification can then be made to the overall mark
awarded to that individual. The intention is not to differentiate in any great detail between
group members, but only to recognise particularly strong or weak contributions by varying the
mark by ±5 to 10%, thus encouraging a more even application of effort by the group, and
ameliorating the occasional bad feeling among those who feel that they have "carried" other
members.

5 Conclusions

The project work described addresses a number of issues in students’ development as software
engineering practitioners. At base, it represents a fairly typical example of such work as
practised in undergraduate Computer Science programmes. A number of mechanisms have
been described by which students can be encouraged to reflect on the affective goals of such
work, rather than on the superficial goals of producing working software:
• The use of groups formed for a separate purpose as means of providing constraints on

available resources.
• The negotiation with students of assessment criteria (and appropriate weightings) derived

from taught software engineering principles.
• The use of these criteria to drive students’ efforts during the work, discouraging them from

adopting simpler (but inappropriate) strategies.
• The use of (group) self- and peer-assessment to encourage reflection on the work

produced and the principles learnt.
• The (proposed) use of individual self- and peer-evaluation to modify marks awarded to

groups, recognising the differential input of individuals without detailed tracking of effort.

6 Acknowledgements

Project EPCoS is funded by the Higher Education Funding Councils for England (HEFCE)
through their “Fund for the Development of Teaching and Learning” programme.
The prize for the best overall performance in the project is provided by Philips Research
Laboratories in Redhill, UK.

REFERENCES

Sally Fincher, Effective project work in computer science: Project EPCoS. In Mette Knudsen
and Torben "Sopper" Vinther, editors, Project Work in University Studies, volume 2, pp
195-203. Roskilde University, Denmark, September 1997.

Sally Fincher and Ian Utting, Entraining students in professional issues: challenging their
structures of knowledge. In 6th Improving Student Learning Symposium: Improving
Student Learning Outcomes, September 1998.

K. Thorn, A Window on Group Formation Factors. In Mike Holcombe et al., editors, Projects
in the Computing Curriculum, pages 217-224. Springer-Verlag, July 1998.

W. Milne, Moderation Using Student Input, Project EPCoS internal document,
http://www.cs.ukc.ac.uk/national/EPCOS/data_archive/bundles/bundle1.htm, 1998.

Ian Utting is a Senior Lecturer in the Computing Laboratory at the University of Kent at Canterbury in the UK,
and Director of the UKC Authorized Academic Java Campus. His research interests are in the engineering of
large-scale distributed systems, and in the teaching of Computer Science. He teaches Object Oriented Design,
Software Engineering and Distributed Systems. He is currently working as a member of the HEFCE FDTL-
funded project EPCoS
The Computing Laboratory at UKC is ranked as one of the top 10 in the UK for the teaching of Computer
Science, and has recently become the first Sun AAJC in Europe.

