
An Isomorphism betweenAbstract Polyhedral Conesand De�nite Boolean FunctionsFlorence Benoy and Andy KingComputing Laboratory, University of Kent at Canterbury,CT2 7NF, UK. fpmb6, a.m.kingg@ukc.ac.ukAbstractPolyhedral cones can be represented by sets of linear inequalities that express inter-variablerelationships. These inequalities express inter-variable relationships that are quanti�ed bythe ratios between the variable coe�cients. However, linear inequalities over a non-negativevariable domain with only unit variable coe�cients and no constants other than zero canrepresent relationships that can be valid in non-numeric domains. For instance, if variablesare either non-negative or zero itself, that is, a strictly two-point domain, then f0 � x; 0 �y; x � yg; expresses a dependency between x and y; since if y is known to be zero, then sois x: By de�ning an abstraction operator that e�ectively puts aside the scaling coe�cientswhilst retaining the inter-variable aspect of these relationships polyhedral cones can expressthe same dependency information as Def , a class of Boolean function. Boolean functionsare considered over a �xed �nite set of variables and Def is a subset of the positive Booleanfunctions, which return the value true when every variable returns true: Def is a completelattice ordered by logical consequence and it will be shown that the abstract cones also forma complete lattice, ordered by set inclusion, that is isomorphic to Def :1 IntroductionMathematical structures that allow the characterisation of inter-variable dependencies can be usedto capture the results of program analyses. For example, in the context of Logic Programming,downward closed properties such as groundness, can be captured by Boolean functions; the answerpattern for the query p(x, y),might be represented by the formula x $ y indicating that if psucceeds, then x is ground i� y is ground. Information with respect to groundness is valuableboth in its own right and as a contributing factor in other analyses. It is well known that Booleanfunctions are useful for characterising inter-variable dependency relationships. There are variousclasses of Boolean function that can be used in this way, particularly the class of functions whichmap to true when all the variables themselves map to true. These functions are known as positiveBoolean functions and the class is referred to as Pos: The functions in Pos; that are de�nite arereferred to as Def ; and although generally Pos; is more expressive than Def ; it has been shown[A. King, P. Hill and J.Smaus 1998] that an e�cient implementation of Def ; as a Share based set-of-sets representation can produce dependency analyses that have better scaling behaviour thansome Pos implementations and even compare favourably with Pos; for speed.Linear equations and inequalities can be viewed as a characterisation of inter-variable relation-ships over numeric domains. The scalar coe�cients of variables in those equations or inequalitiesquantify the ratios that qualify the relationships. For example x � 3y expresses a relationshipbetween the variables x and y such that the upper bound on x is three times the upper boundon y: In fact, solving linear equations and inequalities amounts to deducing the smallest possiblerange of values for each variable. If both x and y are constrained to non-negative values this canbe represented by the set of non-strict linear inequalities f0 � x; 0 � y; x � yg: Interestingly, the1
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non-negative constraints here allow the characterisation of a dependency of x on y since if y is zero,then so is x: If all variable coe�cients are unitary then the relationships involve only one-to-oneratios. Whilst in general a scaled dependency can only relate to variables with numeric domains,dependency relationships involving only one-to-one ratios can clearly characterise inter-variabledependency relationships in non-numeric domains, in the same way as Boolean functions.It is clear that there is a connection between those linear inequalities that can characteriseinter-variable dependencies and some class of Boolean function. Consider a set of non-strict linearinequalities with unitary coe�cients throughout and no constants; this set can be also be viewedas a representation of the spatial intersection of its elements. Given the constraints on the linearinequalities themselves the spaces so represented will be closed convex cones that are a particularsubset of all cones and their degree of expressiveness matches exactly that of the de�nite Booleanfunctions, a sub class of positive Boolean functions.Cones can be thought of as the union of a set of half lines emanating from the origin and withthe exception of the origin, a special case, they are unbounded in at least one direction. Thisde�nition means that cones are supported, either by closed half spaces, which can be representedas non-strict inequalities, for instance x � y;; or by open half spaces which can be representedby strict inequalities, for instance x < y: Concern is only with closed cones as it is the non-strictness of the inequalities that allows the characterisation of dependency as illustrated in theprior example. Further, since concern is only with linear relationships, the cones will also beconvex. A convex set is a set of points that delineate a space such that all linear combinations ofthose points are within that space and closed convex cones are known as polyhedral cones. If theinter-variable dependencies that are encoded in the delineation of these cones are to be useful, theyneed operators that allow their manipulation. However, if the usual mathematical operators wereapplied they would introduce non-unit coe�cients and with them the notion of scaling and this hasno meaning in a non-numeric domain. Di�erent polyhedral cones may embody the same unscaledinter-variable dependencies. For example, f0 � x; 0 � y; 3x � 4yg; f0 � x; 0 � y; 1:2x � 0:01ygand f0 � x; 0 � y; x � yg; express the same dependency with respect to the assignment of zero,namely that if y is zero then so is x: These scaled inter-variable dependencies express a level ofprecision relevant only in a numerical domain, but they can be abstracted to an unscaled form,that is, to a form with only one-to-one ratios between coe�cients, by an abstraction operator thatis de�ned solely with respect to the assignment of zero to variables. In this example, all threesets can be abstracted to the third set. These abstract cones can be manipulated with the usualoperators from the more expressive domain, as any cone that is generated by their operationscan be generalised by abstraction to a cone delineated by the simplest expression of variabledependency. It will be shown that abstraction collapses the in�nite domain of convex cones intoa �nite subset of itself which, ordered by set inclusion, forms a complete lattice.The aim of deduction in propositional logic is to deduce which variables are true and to capturevariable dependency where it exists. Since the only deduction rule for propositional logic is modusponens, a class of Boolean function that can be represented by a conjunction of de�nite clausesallows a representation in the form of a set of deduction rules. The aim of deduction in the domainof abstract cones is, similarly, to deduce which variables have the unique value, zero, and to capturevariable dependency where it exists. The abstraction operator prescribes a representation that isunique, in the form of a complete set of deduction rules entailed by the delineation of the cone.It is not surprising then, that these abstract cones are analogous to Boolean functions that canbe expressed as a conjunction of de�nite clauses. Functions in Pos; the set of positive Booleanfunctions can be represented by a conjunction of de�nite clauses. Def ; a subset of Pos; comprisesthose positive functions that can be expressed without the use of disjunction and it is preciselythis subset that is analagous to the abstract cones.Both domains are complete lattices and the visual representation in Figure 1, of the lattices inthe dyadic case, con�rms [B.A. Davey and H.A. Priestley 1990] the analogy, as dependencies mapexactly from one lattice to the other.The remainder of this paper is in four sections. Section 2 describes the domains in questionand the notation that is used to reference them. Section 3 describes the abstraction and Section4 con�rms the isomorphism. Section 5 discusses possible future work and conclusions.2



(true) �X���� HHHH ���� HHHH(x y) (x! y) fx � yg [ �X fx � yg [ �XHHHH ���� HHHH ����(x) (y)(x$ y) fx = 0g [ �X fy = 0g [ �Xfx = yg[�X(x ^ y) fx = 0; y = 0g [ �XHHHH ���� HHHH ����(i) DefX (ii) Abstraction of ConeX where �X = f0 � x; 0 � ygFigure 1: DefX and the abstraction of ConeX in the dyadic case.2 Domains and De�nitionsNon-strict inequalities and propositional formulae are considered over a totally ordered, �nite setof variables, X, where n = jXj: Throughout ~x stands for an n-tuple denoting a point in IRn;positive scalar multiplication of a set of points S by � > 0; is de�ned �S = f�~x j ~x 2 Sg and ;denotes the empty set. Note that square brackets, [] are used to limit the scope of both universaland existential quanti�ers.De�nition 2.1 A lattice is a partly ordered set L such that for any two elements, l1; l2 2 L thereis a meet, l1 u l2 and a join, l1 t l2; [G. Birkho� 1948].Theorem 2.1 Due to [G. Birkho� 1948], the Lattice Identities 1 - 4 completely characterise alattice L: For all l1; l2; l3 2 L;1. l1 u l1 = l1 and l1 t l1 = l1;2. l1 u l2 = l2 u l1 and l1 t l2 = l2 t l1;3. l1 u (l2 u l3) = (l1 u l2) u l3; and l1 t (l2 t l3) = (l1 t l2) t l34. l1 u (l1 t l2) = l1 and l1 t (l1 u l2) = l1:A lattice L is represented as hL;v;t;ui where v denotes the ordering, and a complete lattice ashL;v;t;u;>;?i; where > denotes the top or greatest element of L and ? denotes the bottom orleast element of L:2.1 Polyhedra and ConesDe�nition 2.2 Let S � IRn, then the convex hull of S, conv(S), consists of all the convexcombinations of the points in S, that is, conv(S) = f�~x1 + (1� �)~x2 j~x1; ~x2 2 S ^ 0 � � � 1g:De�nition 2.3 Let S � IRn, then S is a convex set i� S = conv(S):De�nition 2.4 The distance between any two points, ~x1 and ~x2 is denoted d(~x1; ~x2) = h~x1 �~x2; ~x1 � ~x2i1=2 in terms of the inner product. For any point ~x1 in IRn and � > 0 the open ballB(~x1; �) with centre ~x1 and radius � is B(~x1; �) � f~x2 2 IRn: d(~x1; ~x2) < �g; [S. Lay 1982].De�nition 2.5 A point ~x is an interior point of the set S if there exists a � > 0 such thatB(~x; �) � S: A set S is open if each of its points is an interior point of S [S. Lay 1982].3



De�nition 2.6 A set S is closed if its complement � S � IRn=S is open. The closure of a set Sis the intersection of all closed sets containing S and is denoted cl(S); [S. Lay 1982].De�nition 2.7 A set of points in IRn which can be expressed as the intersection of �nitely manyclosed half-spaces is called a polyhedron.PolyX denotes the set of all polyhedra de�ned over the variable set X: Polyhedra are ordered byset inclusion.Proposition 2.1 hPolyX ;�;[;\i is a lattice, where 8P1; P2 2 PolyX[P1 [ P2 = cl(conv(P1 [ P2 ))]:ProofIt is su�cient to show that the described lattice identities hold. Let P1; P2; P3 2 PolyX ;1. P1 \ P1 = P1; by de�nition of intersection. and P1 [ P1 = P1; by De�nition 2.2.2. P1 \ P2 = P2 \ P1; by de�nition of intersection and P1 [ P2 = P2 [ P1; by De�nition 2.2.3. (i) P1 \ (P2 \ P3) = (P1 \ P2) \ P3; by de�nition of intersection.(ii) By [R. Rockafellar 1970, Theorem 19.6], the closure of the convex hull is associative,hence, P1 [ (P2 [ P3 = (P1 [ P2) [ P3:4. (i) P1\(P1 [ P2) = P1: Let P 0 = P1 [ P2: By De�nition 2.2 P1 � P 0; therefore, by de�nitionof intersection P1 \ P 0 = P1;(ii) P1 [ (P1 \ P2) = P1:Let P 00 = P1 \ P2: By de�nition of intersection P 00 � P1; therefore, by De�nition 2.2P1 [ P 00 = P1:De�nition 2.8 A subset C of IRn is called a cone if it is closed under positive scalar multiplication,that is C = �C forall � > 0:De�nition 2.9 A subset C of IRn is a polyhedral cone i� it can be expressed as a �nite set ofclosed half spaces whose boundary hyperplanes pass through the origin [R. Rockafellar 1970].The preceding de�nition means that all polyhedral cones are closed, convex and include the originand the set of all polyhedral cones is denoted ConeX :De�nition 2.10 If P1; P2 represent convex spaces in IRn; then their sum is de�ned:P1 + P2 = f ~x1 + ~x2 j ~x1 2 P1; ~x2 2 P2gProposition 2.2 hConeX ;�;[;\i is a lattice.ProofSince all polyhedral cones are in PolyX ; the lattice identities hold and it is su�cient to show that(i) the closure of the convex hull of an arbitrary number of polyhedral cones is a polyhedral cone,(ii) the intersection of an arbitrary number of polyhedral cones is a polyhedral cone.Let C1; C2 2 ConeX :� (i) conv(C1 [C2) = C1+C2 andC1+C2 is a convex cone, [R. Rockafellar 1970, Theorem 3.8].Since addition is both associative and commutative, it follows that the convex hull of anarbitrary collection of n polyhedral cones is a convex cone. Therefore the closure of theconvex hull, cl(�ni=1Ci); is a closed convex cone, that can be expressed as a �nite set ofclosed half spaces whose boundary planes pass through the origin, that is a polyhedral cone,by De�nition 2.9. 4



� (ii) The intersection of an arbitrary collection of convex cones is a convex cone[R. Rockafellar 1970, Theorem 2.5], and the intersection of an arbitrary collection of poly-hedra is a polyhedra. Therefore since all closed convex cones are polyhedra, the intersectionof an arbitrary collection of closed convex cones, is itself a polyhedral cone.The non-negative orthant of IRn, is fhx1; : : :xni j 0 � x1; : : : ; 0 � xng; [R. Rockafellar 1970], andthis is a polyhedral cone.2.2 DefX a Class of Boolean FunctionDe�nition 2.11 Let Bool = ffalse; trueg; and the set of Boolean functions over a totallyordered, �nite set of variables X; where n = jXj; be BoolX : Therefore, if f 2 BoolX ; thenf : Booln ! Bool:A propositional formula or the Boolean function it represents is denoted by f; without distinction.De�nition 2.12 modelX :BoolX ! }(}(X)) and the set of models for a function f is:modelX (f) = fM � X j y = � true xi 2Mfalse xi 62M � ;f(hx1; : : :xni) = truegNote that modelX is bijective.Example 2.1 Let X = fx; yg; the function fhtrue; truei 7! true; htrue; falsei 7! false;hfalse; truei 7! false; hfalse; falsei 7! falseg; can be represented as the formula x ^ y; andmodelX (x ^ y) = ffx; ygg:Since Boolean functions can be distinguished by their sets of models, ordering is de�ned withrespect to models. Let f1; f2 2 BoolX : If modelX (f1) = modelX (f2); then f1 is logically equivalentto f2 and this is denoted f1 � f2: If modelX (f1) � modelX (f2); then f1 is strictly more precisethan f2 and this is denoted f1 � f2: If modelX (f1) � modelX (f2); then f2 is a logical consequenceof f1; that is f1 entails f2 and this relation prescribes the ordering of Boolean functions and isdenoted j= : If modelX (f1) 6j= modelX (f2); and modelX (f2) 6j= modelX (f1); then f1 and f2 aresaid to be incomparable and this is denoted f1 6k f2:De�nition 2.13 A function f 2 BoolX is positive i� X 2 modelX (f).The set of positive Boolean functions over X is denoted PosX .De�nition 2.14 A function f 2 PosX is de�nite i� 8M; M 0 2 modelX (f) : (M \M 0) 2 modelX (f):The set of de�nite, Boolean functions over X is denoted DefX . Note that a Boolean function withmodels that are closed under intersection may or may not be positive.Example 2.2 Let X = fx; yg and f = x ^:y: Therefore, modelX (f) = ffxgg and modelX (f) isclosed under intersection, but X 62 modelX (f) and therefore f 62 PosX :De�nition 2.15 Let " S = fM 0 jM 2 S ^ M � M 0 � Xg: A function f 2 BoolX is said to bemonotonic i� " modelX (f) = modelX (f):The set of monotonic Boolean functions over X is denoted MonX :Example 2.3 Let X = fx; yg; then (x y) 2 DefX ; since X 2 modelX (x y) = f;; fxg; fyg;fx; ygg and modelX (x  y) is closed under intersection. However, (x _ y) 2 PosX but (x _ y) 62DefX , as fxg; fyg 2 modelX (x _ y) but (fxg \ fyg) = ; and ; 62 modelX (x _ y):Both hDefX ; j=; __;^i and hPosX ; j=;_;^; i are complete lattices, where the join in DefX is denotedby __ [T. Armstrong et al. 1992]. The meet in both cases is classical conjunction, however, whilstthe join in PosX is classical disjunction this is not the case in DefX , see Example 2.3.5



2.2.1 Representation in DefXVarious representations of Boolean functions can be derived from the conjunctive normal form ofa de�nite sentence, ^mi=1(_ni=1xij ) where each xij is either a propositional variable or the negationof a propositional variable [A.G. Hamilton 1988]. Reduced Monotonic Body Form[T. Armstrong et al. 1992, P. Dart 1991] is such a variant where each variable occurs exactly onceas a head and each body is not only monotonic, but the variable in the head does not occurin the body. A function f 2 DefX i� f can be represented in Reduced Monotonic Body Form[T. Armstrong et al. 1992, P. Dart 1991].De�nition 2.16 A formula, n̂i=1xi  Miis in Reduced Monotonic Body Form (RMBF), i� each Mi 2MonXnfxig:Orthogonal RMBF (ORMBF) is such that transitive dependencies are explicit, for example, (x y) ^ (y  z) becomes (x (y _ z)) ^ (y  z):De�nition 2.17 A formula, n̂i=1xi  Miin Reduced Monotonic Body Form (RMBF), is in orthogonal form i� for every set Y � X(f ^VY ) j= xi) i� (VY j= (Mi _ xi))[T. Armstrong et al. 1992].ORMBF is such that every deduction rule embodied in the function is explicit in the representation,but there are no pair of deduction rules such that one entails the other. DMBF is derived fromORMBF, by throwing away tautologies and reformulating disjunction in the form of distinctconjunctions such that the body of every deduction rule is itself a positive function with a set ofmodels that is closed under intersection.Proposition 2.3 If a formula f 2 DefX then f can be represented in De�nite Monotonic BodyForm.See A.2 for proof.De�nition 2.18 A function f 2 DefX is described by a formula, VF; in De�nite MonotonicBody Form (DMBF) where,F = fy  VY j (f j= y  VY ) ^ 8Y 0 � Y [f 6j= y  VY 0]gand where y 2 X and Y � X=fyg:3 The Abstraction of ConeXInterest here is con�ned to non-strict linear inequalities de�ning closed half planes that passthrough the origin and therefore have no constants.By constraining variables to non-negative values and restricting variable assignment only tozero, non-numeric dependencies can be characterised by considering only non-strict linear inequali-ties with variables that have unitary coe�cients, for example f0 � x; 0 � y; x � yg; which capturesa dependency of x on y; as if y = 0 then x = 0: The intersection of a set of such non-strict lin-ear inequalities with unit variable coe�cients throughout, spatially represents a polyhedral cone.Hereinafter, dependencies characterised by these non-strict linear inequalities with only unit vari-able coe�cients will be referred to as unscaled. However, many non-strict inequalities can embody6



the same unscaled dependencies between variables, for example, x � 3y; and x � 0:6y express thesame dependency as x � y: By de�ning an abstraction operator with respect to the propagationof variable assignment to zero in a domain with variables constrained to non-negative values, thisin�nite domain of polyhedral cones is collapsed into a �nite subset of itself. Since the abstractionmaps from ConeX to ConeX it is clear that the elements can be ordered by set inclusion and willretain their relative ordering as in ConeX :3.1 The Abstraction OperatorThe abstraction operator is de�ned with respect to the propagation of variable assignment of zero,allowing extraneous precision to be discarded. Throughout, let non-negative constraints on allvariables in X be denoted �X = f0 � x j 8x 2 Xg; and E� denote a set of non-strict inequalitiesas mapped by the abstraction. Hence, the union, �X [ E�; represents a polyhedral cone in thenon-negative orthant of n-dimensional space.De�nition 3.1 Let �X [ E 2 ConeX ; y 2 X ; Y � (X nfyg):�(�X [ E) = �X [ E�; where,E� = fy � �Y j (�X [E ^ Sy02Y y0 = 0) j= y = 0 ^8Y 0 � Y [(�X [E ^ Sy02Y 0 y0 = 0) 6j= y = 0]gNote that the structure of E� mandates that, (y � �Y 2 E�) ! (8Y 0 � Y : y � �Y 0 62 E�)Example 3.1 Let X = fx1; x2; x3g and C = �X [ f3x1 � x2g then, �(C) = �X [ fx1 � x2g:Clearly (�X [fx1 � x2g[ fx2 = 0g) j= (x1 = 0); but also, (�X [fx1 � x2g[ fx2 = 0; x3 = 0g) j=(x1 = 0): and whilst x1 � x2 and x1 � x2 + x3 are both in E0; only x1 � x2; is in E�:In E� there may be more than one non-strict inequality with the same variable on the left handside of the inequality sign. If this is the case then all non-strict inequalities in the abstraction set,E� that can infer zero assignment for that variable will be incomparable.Example 3.2 Let C = �X [ f3x � y; 0:5x � 2zg; then �(C) = �X [ fx � y; x � zg; andfx � yg 6k fx � zg:The abstraction operator will have the e�ect of relaxing the scaled relationships �rstly by makingall coe�cients unitary and secondly by relaxing equations of the form �Y � �Y 0, to fy ��Y 0 j 8y 2 Y g:Example 3.3 LetX = fx1; x2; x3; x4g; and C 2 ConeX ;where C = �X[f2x1+x2 � 4x3+1:5x4g:�(C) = �X [ fx1 � x3 + x4; x2 � x3 + x4gThe abstraction operator is such that � is a many-to-one, idempotent mapping with no inverseand it follows that �(ConeX ) is a �nite, strict subset of ConeX :3.2 The meet and join in �(ConeX)The cones in �(ConeX) are also in ConeX and there are prescribed join and meet operatorsfor ConeX : Despite the fact that these operators take into account a level of precision that isnot relevant in �(ConeX) the intersection of cones in �(ConeX ) will not result in a cone thatis not itself in �(ConeX ): The reason for this can be seen by considering the De�nition 2.8 ofa polyhedral cone. A polyhedral cone can be represented by the intersection of a set of closedhalf spaces with boundary hyperplanes that all pass through the origin. The intersection of anynumber of polyhedral cones is also a polyhedral cone and by de�nition of intersection it will bebound by some subset of all the boundary hyperplanes of the original polyhedral cones. It followsthat such a cone will be in �(ConeX ): However, the closure of a convex hull of two or more conesin �(ConeX) may not be in �(ConeX); but, an unscaled dependency will be encapsulated in theouput from this operation and can be abstracted using the abstraction operator.7



Example 3.4 Let C�1 ; C�2 2 �(ConeX), where X = fx1; x2; x3; x4g, C�1 = �X [ fx1 � x3; x2 �x4g and C�2 = �X [ fx1 � x4; x2 � x3g: Hence,C�1 [ C�2 = �X [ fx1 + x2 � x3 + x4g;but �X [ fx1+x2 � x3+x4g 62 �(ConeX): Now, �(C�1 [ C�2 ) = �X [ fx1 � x3+x4; x2 � x3+x4g;and although C�1 [ C�2 � �(C�1 [ C�2 ); if x3 = 0 and x4 = 0 then in both cases it can be deducedthat both x1 = 0 and x2 = 0; and abstraction preserves the propagation of variable assignment tozero.It should be noted that output from these operators will not introduce constants other than zerosince zero is the only constant that can be present in the operands. Cones in �(ConeX ) aredenoted C� to distinguish them from those that are not in �(ConeX ):It is precisely because C�1 [ C�2 is not always in �(ConeX ) that �(ConeX) is not a sublattice ofConeX ; [B.A. Davey and H.A. Priestley 1990]. However, the propagation facility with respect tovariable assignment to zero embodied in C�1 [ C�2 can be safely abstracted by �: Since all cones inConeX can be reduced to their abstraction, the application of � to the output of the [ operatoron cones in �(ConeX) ensures that this bound remains within �(ConeX ): This e�ectively allowsthe de�nition of both the join and meet in this more general domain allowing it to be viewed asa lattice in its own right.De�nition 3.2 Let C�1 ; C�2 2 �(ConeX); then the join in �(ConeX ); is de�ned:C�1 [� C�2 = �(C�1 [ C�2 )Lemma 3.1 Let C1 = �X [ E1; C2 = �X [ E2 2 ConeX and X1 = fy11; : : : yn1g; X2 =fy12; : : : yn2g so that jXj = jX1j = jX2j; then C1 [ C2 = f ~X j ~X = ~X1 + ~X2 ^ �X1 [ EX1 ^�X2 [ EX2g; where �X1 [ EX1 ; denotes the projection of the constraints on C1 over X1 and�X2 [ EX2 the projection of the constraints on C2 over X2:ProofSince polyhedral cones are closed under positive scalar multiplication, from [R. Rockafellar 1970,Theorem 19.5, Theorem 19.6,] the convex hull of two polyhedral cones reduces to their sum and itfollows that C1 [ C2 = C1+C2; that is C1 [ C2 = f ~X j ~X = ~X1+ ~X2 ^ �X1[EX1 ^ �X2[EX2g:De�nition 3.3 Forall C�1 = �X [ E�1 ; C�2 = �X [ E�2 2 �(ConeX) if 9yi � �Y 1i ; yi0 � �Y 1i0 2E�1 ^ 9yi � �Y 2i ; yi0 � �Y 2i0 2 E�2 ^ Y 1i = Y 2i0 ^ Y 1i0 = Y 2i then yi and yi0 are said to beinterchangeable.In example 3.4, x1 and x2 are interchangeable, and when there are pairs of interchangeable variablesin the representations of the operands the convex hull of the two abstract cones will not be anabstract cone itself.The lemma that follows con�rms the intuition that convexity will determine that if a variableyi is constrained by the summation of a set of variables Yi1 in one cone and yi is constrained by thesummation of a set of variables Yi2, in another cone then yi will be constrained by the summationof the union Yi1 [ Yi2 in the convex hull of the two cones; and further that if a variable yi is notconstrained in both of two cones, then it will not be constrained at all in the convex hull of thetwo cones.Lemma 3.2 Let C�1 [� C�2 = �X [E�h ; and C�i = �X [E�i :(yi � �Yi1 2 E�1 ^ yi � �Yi2 2 E�2 ) $ (yi � �(Yi1 [ Yi2) 2 E�h )ProofI. (yi � �Yi1 2 E�1 ^ yi � �Yi2 2 E�2 )  (yi � �(Yi1 [ Yi2) 2 E�h ):8



The convex hull of two polyhedral cones reduces to their sum [R. Rockafellar 1970] as in de�-nition 2.10, therefore if a variable is unconstrained in either or both of the operands it will beunconstrained in the convex hull.II. (yi � �Yi1 2 E�1 ^ yi � �Yi2 2 E�2 ) ! (yi � �(Yi1 [ Yi2) 2 E�h ):From Lemma 3.1 C�1 [ C�2 = f ~X j ~X = ~X1 + ~X2 ^ �X1 [ EX1 ^ �X2 [ EX2g; where X1 =fy11; : : : yn1g; X2 = fy12; : : : yn2g: It will be shown that any variable constrained in both operandswill be constrained in the convex hull and it is su�cient to consider all the pairwise combinations ofconstraints on any yi that is constrained in both operands. There are two cases to consider, wheretwo such variables are interchangeable and where the constrained variable is not interchangeablewith another variable.i) A variable is not interchangeable with another and is constrained in both operands.Let yi � �Yi1 2 E�1 and yi � �Yi2 2 E�2 then by Corollary 3.1 8yi 2 X[yi = yi1 + yi2]; andin general, yi � �YiX1 + �YiX2 : There are four cases to consider:1. Yi1 = Yi2; that is, 8yk1 2 YiX1 [9yk2 2 YiX2 ] ^ 8yk2 2 YiX2 [9yk1 2 YiX1 ]: For example,YiX1 = fy21; y31; y51g, YiX2 = fy22; y32; y52g: In this case yi � �YiX1 + �YiX2 reduces toyi � �Yi where Yi = Yi1; but since Yi1 = Yi2; the above premise holds.2. Yi1 � Yi2; that is 8yk1 2 YiX1 [9yk2 2 YiX2 ] ^ 9yk2 2 YiX2 [6 9yk1 2 YiX1 ]: For example,Yi1 = fy21; y31g, Yi2 = fy22; y32; y52g: In this case yi � �YiX1 + �YiX2 reduces to yi ��Y 0i + �Y 00i where Y 0i = fykjyk 2 Yi1 ^ yk 2 Yi2g and therefore Y 0i = Yi1 \ Yi2; andY 00i = fyk2j9yk2 2 YiX2 ^ 6 9yk1 2 YiX1g; and since 8yk2[yk � yk2] it follows that Y 00i can berelaxed to fykjyk 2 Yi2 ^ yk 62 Yi1g: It is clear then that from yi � �Y 0i + �Y 00i it can bededuced that yi � �(Yi1 [ Yi2):3. (Yi1 \ Yi2 6= ;) ^ (Yi1 6� Yi2); that is, 9yk1 2 YiX1 [9yk2 2 YiX2 ] ^ 9yk1 2 YiX1 [6 9yk2 2YiX2 ]^ 9yk2 2 YiX2 [6 9yk1 2 YiX1]: For example, YiX1 = fy11; y21; y31g; YiX1 = fy22; y32; y42g:Following the same principle as in the previous case, yi � �YiX1 + �YiX2 reduces to yi ��Y 0i + �Y 00i where Y 0i = fykjyk 2 Yi1 ^ yk 2 Yi2g and therefore Y 0i = Yi1 \ Yi2; and here,Y 00i = fyk2jyk2 2 YiX2 ^ 6 9yk1 2 YiX1g [ fyk1jyk1 2 YiX1 ^ 6 9yk2 2 YiX2g and since8yk2[yk � yk2] and 8yk1[yk � yk1] it follows that Y 00i can be relaxed to fykjyk 2 Yi2 ^ yk 62Yi1g [ fykjyk 2 Yi1 ^ yk 62 Yi2g: It is clear then that from yi � �Y 0i +�Y 00i it can be deucedthat yi � �(Yi1 [ Yi2):4. Yi1 \ Yi2 = ;; that is, 8yk1 2 YiX1 [6 9yk2 2 YiX2 ] ^ 8yk2 2 YiX2 [6 9yk1 2 YiX1 ]: Here,following the same principle in part as in the previous case, since there are no variables incommon, yi � �YiX1 + �YiX2 reduces to yi � �Y 00i where Y 00i = fyk2jyk2 2 YiX2 ^ 6 9yk1 2YiX1g [ fyk1jyk1 2 YiX1 ^ 6 9yk2 2 YiX2g and since 8yk2[yk � yk2] and 8yk1[yk � yk1] itfollows that Y 00i can be relaxed to fykjyk 2 Yi2 ^ yk 62 Yi1g [ fykjyk 2 Yi1 ^ yk 62 Yi2g: It isclear then that from yi � �Y 00i it can be deduced that yi � �(Yi1 [ Yi2):By the de�nition of �; if yi � �(Yi1 [ Yi2) 2 Eh then yi � �(Yi1 [ Yi2) 2 E�h :ii) yi and yi0 ; are interchangeable variables, constrained such that yi � �Yi1; yi0 � �Yi01 2 E�1and yi � �Yi2; yi0 � �Yi02 2 E�2 ; where Yi1 = Yi02 and Yi01 = Yi2: There are three cases toconsider, in the �rst when Yi1 = Yi01; the convex hull is not more precise than its abstraction, butin the other two cases it is and abstraction generalises, allowing the premise that holds when thereare no interchangeable variables to hold in all cases.1. Yi1 = Yi01In this case the closure of the convex hull of the two abstract cones is equal to its abstraction.From the previous part, i), since Yi1 = Yi01; it follows that yi � �Yi1; yi0 � �Yi1 2 Eh andthis is unchanged in the abstraction, so yi � �Yi1; yi0 � �Yi1 2 E�h :2. (Yi1 6= Yi01) ^ (Yi1 \ Yi01 6= ;)Here the closure of the convex hull of the two abstract cones is more precise than its abstrac-tion as it introduces a scaled constraint on the sum of the interchangeable variables. That is9



yi + yi0 � ��(Yi1 [ Yi01) 2 E�h ; where in an abuse of notation, � is a vector of coe�cients inf1; 2g; each associated with the variables in the union of the two sets. Variables that are notcommon to both sets have the coe�cient 1, and variables that are common to both sets, thecoe�cient 2. Here �(�X [Eh) = �X [E�h is such that the constraint on the sum is relaxed tothe individual constraints on yi and yi0 so that yi � �(Yi1 [ Yi01); yi0 � �(Yi1 [ Yi01); 2 E�h :3. Yi1 \ Yi01 = ; :Once more the closure of the convex hull of the two abstract cones is more precise than itsabstraction as it introduces a constraint on the sum of the interchangeable variables. In thiscase, similar in part to the previous one, yi + yi0 � �(Yi1 [ Yi01) 2 Eh: The abstraction�(�X [Eh) = �X [E�h is such that this relationship is relaxed and yi � �(Yi1 [Yi01); yi0 ��(Yi1 [ Yi01) 2 E�h :Hence, in all cases(yi � �Yi1 2 E�1 ^ yi � �Yi2 2 E�2 ) ! (yi � �(Yi1 [ Yi2) 2 E�h )By the de�nition of �; if yi � �(Yi1 [ Yi2) 2 Eh then yi � �(Yi1 [ Yi2) 2 E�h :Therefore, (yi � �Yi1 2 E�1 ^ yi � �Yi2 2 E�2 ) $ (yi � �(Yi1 [ Yi2) 2 E�h )Proposition 3.1 [� is associative, that is, 8 C�1 ; C�2 ; C�3 2 �(ConeX );C�1 [� (C�2 [� C�3 ) = (C�1 [� C�2 ) [� C�3Proof1. Let C�2 [� C�3 = �X [ E�h1 and C�1 [� C�h1 = �X [ E�h2:8yi 2 X[(yi � �Yi2 2 E�2 ^ yi � �Yi3 2 E�3 ) ! (yi � �(Yi2 [ Yi3) 2 E�h1)]; by Lemma3.2.8yi 2 X[(yi � �Yi1 2 E�1 ^ yi � �Yih1 2 E�h1) ! (yi � �(Yi1 [ (Yi2 [ Yi3)) 2 E�h2)];and therefore 8yi 2 X[(yi � �Yih2 2 E�h2) ! (Yih2 = (Yi1 [ Yi2 [ Yi3)]): by Lemma 3.2.2. Let (C�1 [� C�2 ) [� C�3 = �X [ E�h3:Similarly, it can be shown that 8yi 2 X[(yi � �Yih3 2 E�h3) ! (Yih3 = (Yi1 [ Yi2 [ Yi3)]):Hence, C�1 [� (C�2 [� C�3 ) = (C�1 [� C�2 ) [� C�3 :Proposition 3.2 h�(ConeX);�;?;>;[�;\i is a complete lattice.Proof(i) The lattice identities hold, and therefore �(ConeX) is a lattice.Let C1� ; C�2 ; C�3 2 �(ConeX):1. C�1 \ C�1 = C�1 ; by de�nition of intersection, and C�1 [� C�1 = C�1 ; by De�nitions 2.2 and3.2.2. C�1 \ C�2 = C�2 \ C�1 ; by de�nition of intersection and C�1 [� C�2 = C�2 [� C�1 ; byDe�nitions 2.2 and 3.2.3. (i) C�1 \ (C�2 \ C�3 ) = (C�1 \ C�2 ) \ C�3 ; by de�nition of intersection.(ii) C�1 [� (C�2 [� C�3 ) = (C�1 [� C�2 ) [� C�3 ; since [� is associative by Proposition 3.1.10



4. (i) C�1 \ (C�1 [� C�2 ) = C�1 :Let C�0 = C�1 [� C�2 : By De�nitions 2.2 and 3.2 C�1 � (C�1 [ C�2 ) � C�0 ; therefore, byde�nition of intersection C1 \ C�0 = C�1 :(ii) C�1 [� (C�1 \ C�2 ) = C�1 :Let C�00 = C�1 \ C�2 : By de�nition of intersection C�00 � C�1 ; therefore, by De�nition 2.2,C�1 [ C�00 = C�1 ; and since � is idempotent, C�1 [� C�00 = C�1 :(ii) Since �(ConeX) is �nite, it is a complete lattice, [G. Szasz 1963], with top element: the origin,and bottom element: the non-negative orthant in n-dimensional space.3.3 Representation in �(ConeX)Let C�1 ; C�2 2 �(ConeX) and, C�1 = �X [ E�1 and C�2 = �X [ E�2 : It is clear that if E�1 = E�2 ;then C1 and C2 each represent the same set of points. It can be shown that the abstractionoperator maps to a representation of cones in �(ConeX) that is unique. In the discussion andlemmas that follow it is shown that if the representation of any two cones in �(ConeX) is notequal, up to reordering of the elements of the sets of inequalities in the representations then therepresentations do not describe the same space.In general, di�erent syntactic representations may represent the same set of points, and linearcombination can disclose hidden entailed dependencies. The de�nition of � has a signi�cantimpact on the possible outcome of linear combination in this context. Each non-strict inequalityin E� is of the form y � �Y that describes a deduction rule for some variable with respect tothe assignment of zero and by de�nition of � every rule is explicit including those derived fromtransitive dependencies. Direct dependencies and those derived from transitive dependencies areconsidered to be non-redundant (the formal de�nition follows). It can be shown that any non-redundant linear combination of a set of non-strict inequalities, �X [ E� that represents a conein �(ConeX); will already be explicit in the representation. This means that the representation ofany cone in �(ConeX ) as prescribed by �; is unique up to ordering of the elements in �X [ E�:3.4 Linear Combination in �(ConeX)Linear combination allows the explicit expression of information that is entailed in the combinationof some or all of a set of linear inequalities that describe a space. All but one of the examplesin this discussion are binary combinations, since addition is associative and commutative, theyillustrate without loss of generality. Note that throughout the discussion that follows, the indexi associated with a variable, indicates its position in the ordered set of variables over which thenon-strict inequalities are considered, and the index j indicates the jth element of a set of mnon-strict inequalities. Consider the motives for linear combination in the context of �(ConeX ) :� rather than assigning a variable to an arbitrary constant, variables are only ever assignedthe value zero,� since variables are only assigned to zero, and all variables are greater than or equal to zero,restricting a variable to a range of constants is not applicable in �(ConeX );� deduction of inter variable dependencies facilitates variable assignment to zero, since wherey � �Y; if all the variables in Y are known to be zero, then y is zero. This deduction rule isanalogous to modus ponens in DefX :De�nition 3.4 The linear combination of a set of m non-strict inequalities with n variablesconstrained to non-negative values can be described in the following way, with �i; and �j , non-negative scalars, and at least two �i or �j are greater than zero.�ni=1�i:0 + �n+mj=n+1�jyj � �ni=1�iyi +�n+mj=n+1�j(�Yj)11



Let li be a linear inequality and the symbol++ describe any binary linear combination of inequal-ities. Hence the linear combination of k linear inequalities, 1 < k is l1++ : : :++lk = l0:De�nition 3.5 A linear combination, �Z � �Z 0 of the n + m non-strict linear inequalities�X [ E� 2 �(ConeX ); is considered redundant i�,[9(Z [ Z 0):(�X [ f�Z � �Z 0g) 6j= 9(Z [ Z 0):(�X [ E�)]Example 3.5 Consider X = fx1; x2; x3g and C� = �X [ fx1 � x2; x2 � x3; x1 � x3g; and thelinear combination, 0:0 � 0:x1 ++ 0:0 � 0:x2 ++ 0:0 � 0:x3 ++ x1 � x2 ++ 2x2 � 2x3 ++ 0:x1 �0:x3 = x1 + x2 � 2x3: Since, 9X 0 � X[9X 0:�X [ fx1 + x2 � 2x3g 6j= 9X 0:�X [ E�]; it followsthat fx1 + x2 � 2x3g is redundant.Example 3.6 Consider X = fx1; x2; x3g and C� = �X [ fx1 � x2; x2 � x3; x1 � x3g; and thelinear combination, 0:0 � 0:x1 ++ 0:0 � 0:x2 ++ 0:0 � 0:x3 ++ x1 � x2 ++ x2 � x3 ++ 0:x1 �0:x3 = x1 + x2 � x2 + x3 = x1 � x3: Since, 9X 0 � X[9X 0:�X [ fx1 � x3g 6j= 9X 0:�X [ E�];it follows that fx1 � x3g is non-redundant.De�nition 3.6 Let Sd be a system of non-cyclic transitive dependencies of depth d > 2 andp; q 2 f1; : : : ; dg ordered such that,Sd = Sdi=1 fyi � �Yi j (yi 62 Yi) ^ (8 i : 2 � i � d [9 p : 1 � p < i : yi 2 Yp])gA non-redundant linear combination of such a system will be of the form y1 � �Y 0 where Y 0 �Sdi=1 Yi: In the context of �(ConeX ); when the variables in Y 0 are zero, y1 is also zero, andtherefore this expresses a variable dependency, or deduction rule for y1; and y1 is said to be theroot of the system.Example 3.7 Let fx; y; z; p; q; r; sg � X; and �X hold,x � y + z ++y � p+ q ++p � r ++q � sx � z + r + sIn Example 3.7 linear combination of the system is a variable dependency, x � z + r + s for theroot of the system, x:To show that the representations of cones in �(ConeX ) are unique, the circumstances in whicha linear combination of the non-strict inequalities, that represent a cone in �(ConeX ); is non-redundant must be considered. Linear combination with variable elimination allows the explicitrepresentation of entailed constraints on variables. If no variables are eliminated in the combinationprocess then the linear combination is a relaxation of the explicit constraints on variables. Further,since the inequalities in E� are of the form yj � �Yj ; any linear combination of the form �Y ��Y 0; where yj 2 Y and Yj � Y 0 will be redundant, since the constraints on yj will be relaxed.Therefore a non-redundant linear combination will be of the form y � �Y: Since positive scalarmultiplication aids variable elimination in linear combination (see De�nition 3.4 where �i; �j � 0),its e�ectiveness in the context of �(ConeX); where scalar values are of no consequence, is alsoconsidered.3.5 Scalar multiplication in �(ConeX)Consider how scalar multiplication facilitates variable elimination.1. A variable can be eliminated if it occurs on the same side of each inequality with coe�cientsof the same cardinality, but di�erent signs.12



Example 3.8 x � 3y + 2z ++q � p� 2zx+ q � 3y + p2. A variable can be eliminated if it occurs on both sides of the resulting inequality withcoe�cients of the same cardinality and sign. This can only occur if there is at least oneinstance of transitive dependency. See Example 3.7.Generally, positive scalar multipliers are applied in linear combination to equate the cardinalityof like variables. However, since all variables in any system of non-strict inequalities have posi-tive unit coe�cients, further positive scalar multiplication is ine�ective, as the following lemmademonstrates. It can be shown that variable elimination can only be e�ected, if at each step thecurrent coe�cient of the root, y1 is equated with that of the next linear inequality in Sd to belinearly combined. Therefore, the only possible non-redundant linear combination can, in fact, beobtained by using �j = 1 throughout, where yj � �Yj 2 Sd.Lemma 3.3 Let �X [ E� 2 �(ConeX) and Sd be a non-cyclic system of transitive dependen-cies such that Sd � E�: The only non-redundant linear combination, �ni=1�i:0 + �n+mj=n+1�jyj ��ni=1�iyi + �n+mj=n+1�j(�Yj) where �i = 0 ^ (�j > 0 $ yj � �Yj 2 Sd) can be derived with allnon-zero �j = 1:ProofSince the linear combination of an ordered system of non-cyclic transitive dependencies is consid-ered, the proof is by induction on the depth d of the system.Let Sd = fy1 � �Y1; : : : ; yd � �Ydg; be a system of non-cyclic transitive dependencies, andtherefore, Sd � f�1y1 � �1�Y; : : : ; �dyd � �d�Ydg:� Base step: Consider the linear combination of a system of non-cyclic transitive dependenciesof depth d = 2: �1y1 � �1Y1 ++�2y2 � �2Y2�1y1 + �2y2 � �1Y1 + �2Y2By De�nition 3.6 y1 is the root and y2 2 Y1: Therefore the result of linear combination canbe expressed as, �1y1 + �2y2 � �1(Y1=fy2)g+ �1y2 + �2Y2In order to facilitate the elimination of y2 from both sides of the inequality �1 must equal�2:� Induction step: Consider the linear combination of a system of non-cyclic transitive de-pendencies of depth d > 2. Let the result of linear combination of a system of non-cyclictransitive dependencies of depth d� 1 be R = �1y1 � �1(�Y 01) + : : :+ �d�1(�Y 0d�1); whereY 0i is the residue of Yi after variable elimination. By the induction hypothesis,R � �1y1 � �1(�(Y 01 [ : : : Y 0d�1)):Now consider a system of depth d and its linear combination, the result of linear combinationof d� 1 elements combined with the dth element in the system.�1y1 � �1(�(Y 01 [ : : :[ Y 0d�1)) ++�dyd � �dYd�1y1 + �dyd � �1(�(Y 01 [ : : :[ Y 0d�1)) + �dYdBy de�nition, yd 2 (Y 01 [ : : :[ (Y 0d�1); therefore the result can be expressed as,�1y1 + �dyd � �1(�(Y 01 [ : : :[ Y 0d�1)=fydg) + �1yd + �dYdAs before, in order to facilitate elimination, here of yd; �1 must equal �d:13



Therefore, by the principle of mathematical induction, in order to facilitate variable eliminationin a linear combination of a system of non-cyclic transitive dependencies, the scalar multipliersemployed at each combination step must be the same. Since variables throughout the system haveunit coe�cients to begin with, the only linear combination of a system of non-cyclic transitivedependencies that is non-redundant, can be derived with multipliers equal to one.It can be shown that linear combination of the representation of a cone in �(ConeX); cannotyield a non-redundant result that is not already explicit in its representation. The proof is bycontradiction.Lemma 3.4 Let �X [E� represent a polyhedral cone, in �(ConeX ); then(�X [E� j= (y � �Y ))$ 9(y � �Y ) 2 E� where y � �Y is non-redundant.Proof1. �X [E� j= (y � �Y ) 9(y � �Y ) 2 E� Elementary.2. �X [E� j= (y � �Y )! 9(y � �Y ) 2 E�Let �X [ E� represent a cone in �(ConeX); suppose that (�X [ E�) j= (y � �Y ); wherey � �Y is non-redundant and assume that 6 9(y � �Y ) 2 E�: This assumption asserts thatthere is some linear combination of elements in �X [E� that is equal to y � �Y: Considerpossible linear combinations of the of the elements in �X [E� :(a) In all cases, linear combination that includes non-negative constraints will be redundant.(i) (ii)0 � y1 ++y1 � �Y10 � �Y1 0 � y1 ++y2 � �Y2y2 � y1 +�Y2(b) Without variable eliminationThe non-strict inequalities are of the form y � �Y and hence, any linear combinationof non-strict inequalities, without variable elimination, will be of the form �Y � �Y 0and this will relax the upper bound on each of the variables in Y: Hence, in thesecircumstances, linear combination will be redundant.(c) With variable eliminationi. A variable can be eliminated if it occurs on the same side of each inequality withcoe�cients of the same cardinality, but di�erent signs. This method is inapplicable,since in any linear combination,�ni=1�i:0 + �n+mj=n+1�jyj � �ni=1�iyi + �m+nj=n+1�j(�Yj)there are no variables with negative coe�cients on the right hand side of the in-equality. Re-arrangement by subtraction of a variable on the left hand side of theinequality sign will render the linear combination redundant.ii. Variable elimination can occur when facilitated by a system of non-cyclic transi-tive dependencies, however, by Lemma 3.3, any linear combination of a system ofnon-cyclic transitive dependencies that is non-redundant can be derived with unitmultipliers (�js).Hence, the only non-redundant linear combinations are derived through transitive depen-dencies, and all transitive dependencies are explicit in E�; by de�nition of �: Therefore, itfollows that where �X [ E� j= (y � �Y ); and y � �Y is non-redundant, the assumption6 9(y � �Y ) 2 E�; is false, since no linear combination of non-strict inequalities can derivea non-redundant non-strict inequality that is not already explicit in E�: That is, wherey � �Y is non-redundant, �X [E� j= y � �Y ! 9(y � �Y ) 2 E�:14



Hence, �X [ E� j= (y � �Y )$ 9(y � �Y ) 2 E�Corollary 3.1 By relaxing the non-redundant condition on y � �Y; Lemma 3.4 generalises to,(�X [E j= y � �Y ) $ 9(y � �Y 0) 2 E� : (Y 0 � Y )To recap, deduction in �(ConeX) is driven by these aims, to assign variables to zero or todeduce dependency relationships, in the form y � �Y; for as many variables as possible andthereby facilitate their assignment to zero. Since no further non-redundant non-strict inequalitycan be derived from linear combination of the prescribed representations, it follows that therepresentations embody a set of deduction rules that are entailed by the delineation of the abstractcones. Further, it is clear that in this context, the only deduction rule is of the form y � �Y;and the prescribed representation of a cone in �(ConeX) as the union of non-negative variableconstraints with a set of deduction rules is unique.4 A Lattice IsomorphismThere is clearly a connection between the variable dependencies that are encoded in the represen-tation of abstract cones in �(ConeX) and Boolean functions in DefX . Abstract cones are uniquelyde�ned as sets of points and functions in DefX as sets of models. In both cases set intersectionis the meet operator but generalisation of set union is required to achieve a join operator that isclosed. The signi�cant characteristic of these abstract cones that indicates the necessity for gen-eralisation is their convexity. This characteristic disallows a straightforward join that comprisesthe union of those points that are in either or both operands, as the resulting set must conform tothe constraint that any linear combination of points in the join must itself be in the join. Thereare instances when the union of two particular polyhedra cannot be represented in terms of asingle polyhedra, that is, the union can only be represented as two distinct, albeit possibly abut-ting, polyhedra. Hence, the union cannot be uniformly represented in terms of a single polyhedrawithout generalisation and this is precisely what the closure of the convex hull is, a generalisationthat is the smallest convex space that contains all the points in both operands. Similarly, thereare instances when the join of two functions in DefX that in terms of models is the union of thesets of models for each function, is such that the union of models represents a function that is notitself in DefX ; since its models are not closed under intersection. The generalisation required isanalogous to that required in �(ConeX):Representations in �(ConeX ) are an explicit set of non-strict inequalities that prescribe the meansof deducing that a variable on the left hand side of each inequality is zero. There may be morethan one such rule, for each variable, or there may be none for a particular variable. This conditionis consistent with that of a DMBF representation in DefX : DMBF is such that where f 2 DefXand f � VF; each implication in F is a deduction rule for the variable that occurs in the head.Every possible rule is explicit, but no rule is entailed by any other, and if nothing is knownabout a particular variable it will not occur in the head of any implication. Deduction andpropagation follow one from the other and Dart [P. Dart 1991] considers that such implicationscan be thought of, alternatively as propagation rules. It is clear that however these rules areviewed, the inequalities in the representation of elements in the abstraction of ConeX serve thesame purpose as the implications in DMBF representations of functions in DefX :4.1 From Polyhedral Cones to Boolean FunctionsThe propagation of the assignment of zero to a variable in the non-negative orthants of n-dimensional space in �(ConeX ) has an analogy to the the propagation of the assignment of true toa variable in DefX : Since elements from both domains can be expressed as sets of deduction rulesthe mapping is described in these terms. '0X maps a cone C� 2 �(ConeX ) to a set of implications,de�nite clauses, the conjunction of which represents a formula in DefX :15



De�nition 4.1 The mapping '0X :�(ConeX)! BoolX ; is de�ned:'0X ��X [ Smj=1fyj � �Yjg� = Vmj=1 yj  VYjExample 4.1 Let X = fx1; x2; x3g;'0X (�X [ fx1 � x2; x3 � 0g) = (x1  x2) ^ (x3  true)Note that for any variable y 2 X; when y � 0 2 E� this is equivalent to y � �Y; where Y = ; and'0X maps y � �; to the implication y  true: Since all variables are constrained to non-negativevalues, (y � 0 ^ 0 � y) � (y = 0); giving a mapping from y = 0 to y  true as expected.The implications in '0X(�(ConeX )) are clearly representative of Boolean functions and it canbe shown that the constraints imposed on the representations of cones in �(ConeX) by � are suchthat when mapped to BoolX the de�nite clauses in the image conform to DMBF and a Booleanfunction can be represented in DMBF i� it is in DefX :Proposition 4.1 '0X (�(ConeX)) = DefX .Proof� '0X(�(ConeX )) � DefXA cone in �(ConeX ) can be represented by �X [ E�: By de�nition of �; E� is in orthogonalform, that is, transitive dependencies are explicit and y � �Y 2 E� ! (8Y 0 � Y : y ��Y 0 62 E�): Therefore, by de�nition of '0X ; F is also in orthogonal form and y  VY 2F ! (8Y 0 � Y : y  VY 0 62 F ): Since these are precisely the conditions that describeDMBF it follows that '0X(C�) � DefX :� DefX � '0X (�(ConeX ))Similarly, a formula f 2 DefX can be represented in DMBF and f = VF: By de�nitionof DMBF, F is in orthogonal form and y  VY 2 F ! (8Y 0 � Y : VF 6j= y  VY 0):Since the elements of F are de�nite clauses it follows that y  VY 2 F ! (8Y 0 � Y : y  VY 0 62 F ): By de�nition of � and '0X these conditions also apply to every element of'0X(C�): Therefore, DefX � 'X (�(ConeX )):Hence, 'X is de�ned:De�nition 4.2 'X :�(ConeX)! DefX :'X (�X [ E�) = '0X (�X [ E�)Proposition 4.2 'X is injective.ProofLet 'X (C�1 ) = VF1; 'X (C�2 ) = VF2; where C�1 = �X [ E�1 ; C�2 = �X [ E�2 2 �(ConeX): If'X (C�1 ) � 'X(C�2 ); then F1 = F2; since, by de�nition of DMBF, ('X (C�1 ) � 'X (C�2 )) $ (F1 =F2): Therefore, E�1 = E�2 ; by de�nition of ': It then follows that C�1 � C�2 ; since by de�nition of� and Lemma3.4 (C�1 � C�2 ) $ (E�1 = E�2 ):Hence, 'X is injective since, ('(C�1 ) � '(C�2 )) ! (C�1 � C�2 ):Proposition 4.3 'X is bijective.ProofSince by Proposition 4.2 'X is injective and by De�nition 4.2 'X(�(ConeX )) = DefX it followsthat 'X is bijective. 16



Proposition 4.4 Let C�1 ; C�2 2 �(ConeX); then (C�1 � C�2 )$ ('X (C�1 ) � 'X (C�2 )):ProofLet C�1 = �X [E�1 ; C�2 = �X [E�2 ; 'X(C�1 ) = VF1 and 'X(C�2 ) = VF2: Note that by de�nition,'X maps cones to representations of Boolean functions in DefX that are in DMBF.� (C�1 � C�2 )! ('X(C�1 ) � 'X (C�2 )Let C�1 � C�2 ; consider E�1 and E�2 :* If E�2 = ;; then �X [ E�2 = �X and 8(y1 � �Y1) 2 E�1 [�X [ (y1 � �Y1) j= C�2 ]:* Otherwise by Corollary 3.1 the following conditions both hold:8(y2 � �Y2) 2 E�2 [9(y1 � �Y1) 2 E�1 : (y1 = y2) ^ (Y1 � Y2)] ^9(y1 � �Y1) 2 E�1 [8(y2 � �Y2) 2 E�2 : (y1 6= y2) _ ((y1 = y2) ^ (Y1 � Y2))]Consider 'X (C�1 ) and 'X (C�2 ): Given the de�nition of 'X ; where E�2 6= ;; the followingconditions both hold:1. 8(y2  VY2) 2 F2[9(y1  VY1) 2 F1 : (y1 = y2) ^ (Y1 � Y2)] ^2. 9(y1  VY1) 2 F1[8(y2  VY2) 2 F2 : (y1 6= y2) _ ((y1 = y2) ^ (Y1 � Y2))]Hence, by 2., 9(y1  VY1) 2 F1 : (VF2 6j= (y1  VY1)); therefore by de�nition of DMBF,'X(C�2 ) 6j= 'X (C�1 ): Since, by 1, 'X(C�1 ) j= 'X (C�2 ); it follows that, 'X (C�1 ) � 'X(C�2 );and therefore, (C�1 � C�2 )! ('X (C�1 ) � 'X (C�2 )):� (C�1 � C�2 ) ('X(C�1 ) � 'X (C�2 ))Let 'X (C�1 ) � 'X (C�2 ); now consider F1 and F2:* If F2 = ;; then VF2 = true and 8(y1  VY1) 2 F1[(y1  VY1) j= 'X(C�2 )]:* Otherwise from the de�nition of DMBF, the following conditions both hold:8(y2  VY2) 2 F2[9(y1  VY1) 2 F1 : (y1 = y2) ^ (Y1 � Y2)] ^9(y1  VY1) 2 F1[8(y2  VY2) 2 F2 : (y1 6= y2) _ ((y1 = y2) ^ (Y1 � Y2))]Consider C�1 and C�2 : Given the de�nition of 'X ; where E�2 6= ;; the following conditionsboth hold,1. 8(y2 � �Y2) 2 E�2 [9(y1 � �Y1) 2 E�1 : (y1 = y2) ^ (Y1 � Y2)] ^2. 9(y1 � �Y1) 2 E�1 [8(y2 � �Y2) 2 E�2 : (y1 6= y2) _ ((y1 = y2) ^ (Y1 � Y2))]Hence, by 2. and Lemma 3.4, 9(y1 � �Y1) 2 E�1 : (�X [ E�2 ) 6j= (�X [ (y1 � �Y1)); andC�2 6j= C�1 : Since, by 1. and Corollary 3.1, C�1 j= C�2 ; it follows that, C�1 � C�2 ; and therefore,C�1 � C�2 ) ('X (C�1 ) � 'X (C�2 )):Hence, (C�1 � C�2 )$ ('X(C�1 ) � 'X (C�2 ))Proposition 4.5 There is a lattice isomorphism between DefX and �(ConeX).ProofBy Proposition 4.3, 'X is bijective, and by Proposition 4.4, for all C�1 ; C�2 2 �(ConeX); (C�1 �C�2 ) $ ('X (C�1 ) � 'X (C�2 )): Therefore, it follows that there is a lattice isomorphism between�(ConeX) and DefX ; the image set under 'X [B.A. Davey and H.A. Priestley 1990].17



5 ConclusionDefX lacks the precision of PosX ; since information is lost with the join operator and since DefXis not condensing it is not suited to goal-independent analyses [T. Armstrong et al. 1992]. How-ever, despite these apparent drawbacks, in practice, the performance of DefX for goal-dependentanalyses can compare favourably with that of PosX ; particularly if the implementation is e�cient[A. King, P. Hill and J.Smaus 1998].These factors extend to �(ConeX); and its usefulness in an environment where the solvers arealready in place, for example in the context of constraint logic programming will depend on thee�ciency of the solvers, particularly with regard to the join calculation.Close inspection has revealed a natural a�nity between the two-point domain DefX ; wherevariables are assumed false until proven to be true and its two-point counterpart, �(ConeX );where variables are assumed to be non-negative until proven to be zero. De�nite Monotonic BodyForm o�ers a unique representation, as a set of de�nite clauses, for any function in DefX ; that isan explicit expression of all the deduction rules that are entailed by the function. Similarly, theabstraction operator prescribes a unique representation as a set of non-strict linear inequalities,for an abstract cone in �(ConeX) that is an explicit expression of all the deduction rules that areentailed by the delineation of the abstract cone.References[A. King, P. Hill and J.Smaus 1998] A. King, P. Hill and J.Smaus (1998) Practical DependencyAnalysis through a Share Quotient. Technical Report 587, Computing Laboratory, Universityof Kent, UK.[G. Birkho� 1948] G. Birkho� (1948) Lattice Theory. American Mathematical Society, 190 HopeStreet, Providence, Rhode Island, USA.[G. Szasz 1963] G. Szasz (1963) Introduction to Lattice Theory. Academic Press, New York andLondon and The Publishing House of the Hungarian Academy of Sciences, Budapest.[P. Dart 1991] P. Dart (1991) On Derived Dependencies and Connected Databases. Journal ofLogic Programming.[B.A. Davey and H.A. Priestley 1990] B.A. Davey and H.A. Priestley (1990) Introduction to Lat-tices and Order. Cambridge University Press.[A.G. Hamilton 1988] A.G. Hamilton (1988) Logic for Mathematicians. Cambridge UniversityPress.[R. Rockafellar 1970] R. Rockafellar (1970) Convex Analysis. Princeton University Press, NewJersey.[S. Lay 1982] S. Lay (1982) Convex Sets and their Applications. Wiley and Sons.[T. Armstrong et al. 1992] T. Armstrong and K. Marriot and P. Schachte and H. Sondergaard(1992) Two Classes of Boolean Functions for Dependency Analysis.[P. Cousot and R. Cousot 1992] P. Cousot and R. Cousot (1992) Abstract Interpretation and Ap-plication to Logic Programs. Laboratoire d'Informatique de l`Ecole Normale Superi�eure 45 Rued'Ulm, 75230 Paris C�edex 05, France. 18



A PROOFSProposition A.1 Let f � VMB andMB = fxi  Mi j 8Y � X [((f ^VY ) j= xi)$ (VY j= (Mi _ xi)]g;where Mi 2MonX=fxig: It can be shown that8Y � X [((f ^VY ) j= xi)$ (VY j= (Mi _ xi))]$8Y 0 � X=fxig [((f ^VY 0) j= xi)$ (VY 0 j= Mi)]It follows then that MB can be also be de�ned:MB = fxi  Mi j 8Y � X=fxig [((f ^VY ) j= xi)$ (VY j= Mi)]gProof1. To show that 8Y � X [((f ^VY ) j= xi)$ (VY j= (Mi _ xi))]!8Y 0 � X=fxig [((f ^VY 0) j= xi)$ (VY 0 j=Mi)]Since ((f ^ VY ) j= xi) $ (VY j= (Mi _ xi)); then (f ^ VY ) j= xi) $ ((VY j= Mi) _(VY j= xi)): Consider then Y 0 � X=fxig, since (VY j= xi) $ (xi 2 Y ) it follows that((f ^VY 0) j= xi)$ (VY 0 j=Mi).2. To show that 8Y � X [((f ^VY ) j= xi)$ (VY j= (Mi _ xi))] 8Y 0 � X=fxig [((f ^VY 0) j= xi)$ (VY 0 j=Mi)]Consider Y = Y 0 [ fxig; then if ((f ^ VY 0) j= xi) $ (VY 0 j= Mi)); it follows that((f ^VY ) j= xi)$ true: Similarly, since (VY 0 j=Mi); it follows that (VY j= (Mi_xi))$true: Therefore, ((f ^VY ) j= xi)$ (VY j= (Mi _ xi)):Hence (((f ^VY ) j= xi)$ (VY j= (Mi _ xi)))$ (((f ^VY 0) j= xi)$ (VY 0 j= Mi)))Therefore MB can also be de�ned:MB = fxi  Mi j 8Y � X=fxig [((f ^VY ) j= xi)$ (VY j= Mi)]gProposition A.2 If a function, f 2 DefX ; then f can be represented in De�nite Monotonic BodyForm.ProofA function f 2 DefX i� f can be represented in ORMBF [T. Armstrong et al. 1992]. Let f =VMB be in ORMBF where, by Proposition A.1,MB = fxi  Mi j 8Y � X=fxig [((f ^VY ) j= xi)$ (VY j= Mi)]gand Mi 2MonX=fxig:By relaxing the reduced condition, that each variable occurs at least and only once as a head, aset of implications F can be derived from those in MB such that VF � Vni=1MB: Therefore,the aim is (i) to derive a set of implications, F; such that the body of each implication in Fis a conjunction of propositional variables and (ii) to identify the constraints that qualify thoseimplications.(i) The proof is by induction on the depth, k; of the formulae that compose Mi.19



� Base Step: Consider xi  Mi where k = 0, that is, there are no connectives.{ (xi  xj) where xj is a statement variable and i 6= j; is in the required form.{ (xi  true) � (xi  V ;) [P. Dart 1991].{ (xi  false) is a tautology and can be discarded.� Induction Step: Now consider xi  Mi; where k > 0, and by the induction hypothesis, letevery formula Mi of depth k � 1 or less be expressible as a conjunction of variables in theset Xi; such that xi 62 Xi: Since Mi can only be constructed fromMonX there are two casesto consider, Mi = f1 ^ f2 and Mi = f1 _ f2:{ Case 1: xi  (f1 ^ f2): By the induction hypothesis f1 = VX1i and f2 = VX2i :Therefore, xi  V(X1i [ X2i )and is in the required form.{ Case 2: xi  (f1 _ f2): By the induction hypothesis f1 = VX1i and f2 = VX2i :Therefore, since xi  (VX1i _VX2i ) � (xi  VX1i ) ^ (xi  VX2i );it follows that xi  (f1_f2) can be replaced by the conjunction of the two implicationson the right hand side of the equivalence, that are both in the required form.(ii) Consider the four possible forms that Mi can take. If xi  false is in MB it is discarded,otherwise each implication with a single variable in the head is replaced by a set of implicationseach with that same single variable in the head. Let this set be Fi where the index i associateseach set with a particular variable. The conditions that apply to each element of MB; whereMi 6= false; map across to the conjunction of a set of implications Fi; that is logically equivalentto its counterpart in MB. The mapping is simple in cases 2 and 3, where Fi has only one element,but case 4 is not so straightforward.1. xi  false is a tautology and is discarded.2. xi  true is replaced with Fi = fxi  V;g:3. xi  VXi; where Xi � X=fxig; is replaced by Fi = fxi  VXig:4. xi  W��=1VXi�; where Xi� � X=fxig; is replaced by Fi = S��=1fxi  VXi�g:In case 4, the conditions that apply to a single implication map across to a conjoined set ofimplications. Consider the conditions that qualify each element in MB :MB = fxi  Mi j 8Y � X=fxig [((f ^VY ) j= xi)$ (VY j=Mi)]gand the case where xi  Mi 2MB and Mi = W��=1VXi�: In this case then:((f ^VY ) j= xi)$ (VY j= (W��=1VXi�))However, (VY j= (W��=1VXi�)) $ (9�0 2 f1 : : :�g [VY j= VXi�0 ]) and (VY j= VXi�0) $(Xi�0 � Y ): Therefore,(VY j= (W��=1VXi�))$ (9�0 2 f1 : : : �g [Xi�0 � Y ])It follows then that where xi  W��=1VXi� 2MB;((f ^VY ) j= xi)$ (9�0 2 f1 : : : �g [Xi�0 � Y ])20



Hence, since VFi � (xi  W��=1VXi�; Fi can be de�ned:Fi = S��=1fxi  Xi� j 8Y � X=fxig [((f ^VY j= xi)$ (9�0 2 f1 : : : �g [Xi�0 � Y ])]gIt follows then that: (yi  VY ) 2 Fi ! (8Y 0 � Y [f 6j= yi  VY 0])Let Si2f1:::ngFi = F and then VF � VMB: Since no single implication in F can entail anotherwith a di�erent single variable in the head, overall (y  VY ) 2 F ! (8Y 0 � Y [f 6j= y  VY 0]);which allows this de�nition of DMBF as VF where:F = fy  VY j (f j= y  VY ) ^ 8Y 0 � Y [f 6j= y  VY 0])g
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