
Constraint Propagation and Explanation over
Novel Types by Abstract Compilation∗

Graeme Gange1 and Peter J. Stuckey2

1 Department of Computing and Information Systems, The University of
Melbourne, Melbourne, Australia
gkgange@unimelb.edu.au

2 Data61, CSIRO and Department of Computing and Information Systems,
The University of Melbourne, Melbourne, Australia
pstuckey@unimelb.edu.au

Abstract
The appeal of constraint programming (CP) lies in compositionality – the ability to mix and
match constraints as needed. However, this flexibility typically does not extend to the types of
variables. Solvers usually support only a small set of pre-defined variable types, and extending
this is not typically a simple exercise: not only must the solver engine be updated, but then the
library of supported constraints must be re-implemented to support the new type.

In this paper, we attempt to ease this second step. We describe a system for automatically
deriving a native-code implementation of a global constraint (over novel variable types) from a
declarative specification, complete with the ability to explain its propagation, a requirement if
we want to make use of modern lazy clause generation CP solvers.

We demonstrate this approach by adding support for wrapped-integer variables to chuffed,
a lazy clause generation CP solver.

1998 ACM Subject Classification F.4.1 Mathematical Logic, I.2.2 Automatic Programming

Keywords and phrases constraint programming, program synthesis, program analysis

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.13

1 Introduction

A large factor in the success of constraint programming (CP) is compositionality – the
flexibility to freely mix and match constraints as needed. However, we are reliant on the
underlying solver to provide efficient propagator implementations for the constraints of
interest. If we require some problem-specific global constraint we must either design and
implement bespoke propagation (and, if we want to use modern lazy clause generation
solvers [17], explanation) algorithms or decompose our global constraint into supported
primitives.

CP solvers typically support only integer, Boolean and occasionally set variables. Suppose
we wish to solve problems over some other algebraic structure – a finite semiring, or the
two’s complement (or wrapped) integers. In this case, we need some way to represent variable
domains, encode the semantics of operations, and provide implementations of all constraints
of interest.

This can be done by representing variables with existing types and emulating constraints
by decomposition into existing primitives. However, a decomposition into existing primitives

∗ This work was supported by Australian Research Council DE160100568.

© Graeme Gange and Peter J. Stuckey;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 13; pp. 13:1–13:14

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62923088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.ICLP.2016.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


13:2 Constraint Propagation and Explanation over Novel Types by Abstract Compilation

lex_lt([X|_], [Y|_]) :- X < Y.
lex_lt([X|Xs], [Y|Ys]) :-

X = Y, lex_lt(Xs, Ys).

lex_lt1(X1, X2, Y1, Y2) :- X1 < Y1. % c1
lex_lt1(X1, X2, Y1, Y2) :- % c2

X1 = Y1, lex_lt2(X2, Y2).
lex_lt2(X2, Y2) :- X2 < Y2. % c3

(a) (b)

Figure 1 Specification of a strict lexicographic order, and concrete instantiation on arrays of
length 2.

Prop(lex_lt1)(s0):
s1 := R#(v1 < v3)(s0)
s2 := R#(v1 = v3)(s0)
s3 := Rename(s2, [(v1← v2), (v2← v4)])
s4 := R#(v1 < v2)(s3)
s5 := Splice(s2, s4, [(v2← v1), (v4← v2)])
s6 := R#(v1 = v3)(s5)
s7 := Join([s1, s6])
return s7

Expl(lex_lt1)([s1, . . . , s7], e0):
e1 := ER# (v1 = v3)(e0, s5)
e2 := ESplice(e1, s2, s4,

[v1← v2, v1← v4])
e3 := ER# (v1 < v2)(e2[2], s3)
e4 := ERename(e3, s2,

[(v2← v1), (v4← v2)])
e5 := Meet([e4, e2[1]])
e6 := ER# (v1 = v3)(e5, s0)
e7 := ER# (v1 < v3)(e0, s0)
e8 := Meet([e7, e6])
return e8

Figure 2 Propagator and explanation computations derived for the constraint in Figure 1.

may be non-obvious and may be quite large. The decomposition may also be quite un-
wieldy, as customized decompositions must be provided for all global constraints of interest.
Decomposition approaches may also sacrifice efficiency and propagation (and explanation)
strength.

A more convenient (for the user) way of handling decomposition approaches is as a
model transformer; an extended language is defined, supporting the new types of interest,
and are compiled down to the core modelling language. This is the approach adopted for
finite-extension [5] and option types [15]. Though convenient for modelling, this requires
building a parser and compiler, in addition to the expressive limitations of decompositions.

The alternate approach is to integrate the new variable type natively into the solver.
Native integration is typically a very substantial undertaking, so is rarely done.

In this paper, we develop a method for dynamically compiling native-code implementa-
tions of propagators from declarative specifications. We then use this to construct global
propagators for integer variables with two’s complement semantics. We have implemented
the described approach as a standalone library, which we then integrated into the chuffed [6]
lazy clause generation constraint programming solver.

The key insight of our approach is that propagation is a form of abstract interpretation,
and hence we can use abstract compilation to generate implementations of propagators

I Example 1. Consider defining strict lexicographic inequality constraint. A possible checker
for this constraint is shown in Figure 1(a). If we wish to instantiate a propagator for a
particular constraint, we need to unfold the definition using the structure of the constraint.
The unfolded definition for lex_lt([X1,X2],[Y1,Y2]) is shown in Figure 1(b).

We build a propagator by computing approximations of, for each program point, the set
of execution states which are reachable from the initial call, and the subset of those states
which could succeed.

Figure 2(a) shows the generated propagator for the constraint lex_lt([X1,X2],[Y1,Y2]),
we will discuss the detailed meaning later in the paper. Both clauses of lex_lt1 are reachable
from any initial state (s0). Clause c1 succeeds iff v1 < v3 holds, so s1 approximates its



G. Gange and P. J. Stuckey 13:3

success set. For c2, s2 approximates the set of states which may reach the call to lex_lt2,
which is mapped onto the formal parameters in s3. At s4, we have computed the success set
for lex_lt2. s5 and s6 then compute the corresponding success set for c2. s7 combines the
succeeding states for c1 and c2, returning newly pruned variable domains.

The explanation procedure given in Figure 2(b) simply retraces the computations per-
formed by the propagator: for each instruction I with predecessor spre and necessary condition
epost, we compute some epre such that spre v epre, and I#(epre) v epost. J

The contributions of this paper are as follows:
A high-level declarative language for specifying constraints
A procedure for partial evaluation of this high-level language down to a simple constraint
logic programming language
A procedure for deriving abstract propagator and explanation algorithms from these
constraint definitions
A method for synthesizing concrete implementations from these abstract propagators and
explainers over novel variable types.

In the following section, we give a brief overview of constraint propagation and abstract
interpretation. In Section 3, we describe the correspondence between propagation and
static analysis, then in Sections 4 and 5, we show how to use this correspondence to derive
propagation and explanation algorithms from implementations of checkers. In Sections 6
and 7, we describe integration of these propagators into a solver, and deriving checkers from
a more expressive declarative language. Finally, Section 8 gives an example application of
this approach, we describe related work in Section 9 then conclude in Section 10.

2 Preliminaries

In this paper, we restrict ourselves to finite domain constraint satisfaction and optimization
problems (CSPs and COPs). To avoid confusion, we shall denote logical implication with ⇒,
and the set of functions with →.

Propagation-based constraint solving

A CSP is defined by a tuple (V,D, C) consisting of a set of variables V where each variable v
may take values from a fixed finite set D(v), and a set of constraints C. A constraint c ∈ C has
a scope, scope(c) which is a set of variables in V . A constraint c with scope(c) = {v1, . . . , vn}
is a set of assignments mapping each vi ∈ scope(c) to a value in D(vi). A solution to a CSP
is an assignment to each v ∈ V such that every constraint in C is satisfied. In an abuse
of notation we say assignment θ ∈ D, if θ(v) ∈ D(v) for all v ∈ V. A domain is singleton
if it represents a single assignment, e.g. |D(v)| = 1, v ∈ V ars. We denote the valuation
corresponding to a singleton domain D as θD.

A propagator f for a constraint c is a decreasing function, from domains to domains
which eliminates values which are not part of any solution to c. A propagator is correct
if it does not exclude any satisfying assignments – that is, θ ∈ c ∧ θ ∈ D ⇒ θ ∈ f(c)(D).
A propagator is checking if it is exact for singleton domains, i.e. f(D) = D for singleton
domains iff θD ∈ c.

In a nogood-learning/lazy clause generation [17] solver, inferences/domain reductions are
couched in terms of a formal language of atomic constraints, which form a complemented,
partially ordered set. A common example in finite-domain solvers is the language of integer
bounds and (dis-)equalities: {〈x ≤ k〉 , 〈x > k〉 , 〈x = k〉 , 〈x 6= k〉}, for some variable x and

ICLP 2016 TCs



13:4 Constraint Propagation and Explanation over Novel Types by Abstract Compilation

integer constant k. Where a solver integrates nogood-learning/lazy clause generation [17]
techniques, each inference inf resulting from a propagation f(c)(D) is associated with a
corresponding explanation E. E is a conjunction of atomic constraints such that D ⇒ E and
c ∧ E ⇒ inf . The first condition ensures E is true under the current state, and the second
ensures E ⇒ inf is globally valid in the problem. When a conflict is detected, inferences
participating in the conflict are successively replaced by their explanations to derive a valid
nogood which eliminates the current branch of the search tree.

Static program analysis by abstract interpretation

The construction of our propagation and explanation algorithms will be based on the
machinery of program analysis.

Abstract interpretation [7] is a framework for inferring information about the behaviour
of a program by performing computation on an abstraction of the program. The domain
A of program states is replaced by an abstraction A#. The abstract domain A# forms a
lattice, equipped with the usual operators (v,t,u). Correspondence between concrete and
abstract states is established by a pair (α, γ) of an abstraction and a concretization function,
which form a Galois connection.

Each program instruction T : A → A is similarly replaced with an abstraction T # :
A# → A#. Properties of the program are inferred by executing this abstracted program.
Rather than directly executing (possibly infinitely many) control paths, abstract interpreters
typically store a single approximation of each program point. Where multiple control paths
merge (after conditional statements, at loop heads, or function entries), the incoming abstract
states are instead combined: ϕp =

⊔
q∈preds(p) ϕq. Thus, ϕp consists of the strongest property

(representable in A#) which holds in all predecessor states. This avoids the so-called path-
explosion problem, but sacrifices precision at join points. Starting with all program points
(except the entry) unreachable, state transformers are repeatedly evaluated until a fixpoint is
reached. If each transformer is a sound overapproximation, any property which holds at the
fixpoint also holds in any reachable concrete state. A typical application of this is to infer
numerical properties which must hold at each program point. This is a so-called forward
analysis, as properties at a given program point are derived from its predecessors.

In a backwards analysis, properties of states are derived from their successors. Numerical
backwards analyses are typically rarer than forward analyses. In this case, it is important to
distinguish necessary preconditions, which must hold in any predecessor of a given state, from
sufficient conditions, which guarantee the given property will hold. Inference of necessary
conditions have been used to infer preconditions from assertions [9].

To perform a backward analysis in the abstract interpretation framework, we must con-
struct state transformers under/over-approximating the pre-image T − of program statements.
The analysis proceeds in a similar manner to the forward analysis, but proceeds backwards
along the flow of execution, replacing the abstract transformer T # with an abstraction T −#

of the pre-image.
In this paper, we shall require both forms of analysis; forwards to compute reachable

states, and backwards to determine which of these satisfy a constraint.

3 Propagation as Static Analysis

Consider some constraint c, and a checker program CH(c) which maps valuations θ over
scope(c) to true/false such that CH(c)(θ) = true⇔ c(θ). The semantics of c is exactly the
set of assignments θ such that executing CH(c) returns true (from a logic programming



G. Gange and P. J. Stuckey 13:5

τ → ident | const | ident(τ∗)

α → ident | const | ident(α∗)
| α⊗ α | 	 α

def → ident := α

guard → α op α, op ∈ {=, 6=, <,≤}
call → ident(τ∗)

stmt → def | guard | call
clause → ident(τ∗) :- stmt∗

τ → ident | const
α → ident(τ∗) | τ ⊗ τ | 	 τ

def → ident := α

guard → τ op τ, op ∈ {=, 6=, <,≤}
call → ident(τ∗)

stmt → def | guard | call
clause → ident(τ∗) :- stmt∗

(a) (b)

Figure 3 (a) A LP-style specification language L for constraints, and (b) The simplified interme-
diate language L−, having eliminated complex terms, expressions and recursion. ⊗ is a binary infix
arithmetic operator, 	 is a unary arithmetic operator.

perspective, this is the set of answers of CH(c)). Indeed, any backwards reachability analysis
(from true) on CH(c) computes a sound approximation of c.

If we interpret the solver’s domain store D as an abstraction of assignments, then a
propagator P (c) is simply an approximation of the answers of CH(c) restricted to γ(D).
This is, in fact, equivalent to the contract precondition inference problem described in [9] –
given a transition system (the program) and initial states (the domain), find the strongest
properties which eliminate only bad states.

Not every analysis is a valid propagator, however. Propagators will be called on a complete
assignment to verify that the assignment is a solution. Each propagator must therefore be
checking to ensure soundness. This is an extremely uncommon property for a general numeric
analysis to have – even from a concrete initial state, precision may be lost at join points, and
widening [8] discards properties to ensure termination in the presence of unbounded loops.

Nevertheless, this gives us the rough skeleton of an approach: given some specification
of a constraint and suitable implementations of abstract operations, we shall generate a
native-code implementation of an answer-set analysis for the specification.

But first, we must choose the manner of our specifications.

3.1 Programs as Constraints
While this derivation of propagators from programs is possible for arbitrary source languages,
in practice we must consider both ease of specification (from the user’s perspective) and
effectiveness of analysis.

For the remainder of this paper, we consider specifications given in a small (C)LP-style
language, L, shown in Figure 3(a). The syntactic category τ denotes the usual language of
terms. α is the syntactic category of arithmetic expressions, which will be eagerly evaluated
during execution. We impose two additional syntactic restrictions. First, free variables
cannot be introduced in clause bodies. Second, all (possibly indirect) recursion must be
structurally decreasing. That is, if some call p(X’) is reachable from a call p(X), X’ must
be strictly smaller than X with respect to some well-founded measure on term structure
(independent of the values of variables/constants).

This language L is reasonably expressive, and provides natural formulations for many
global constraints, but does not necessarily seem amenable to numeric analysis.

However, the first condition above ensures that all computations are performed on ground
values – this will be needed to ensure the propagators correctly reject invalid total assignments.
The second condition similarly guarantees that recursion can be statically expanded. When

ICLP 2016 TCs



13:6 Constraint Propagation and Explanation over Novel Types by Abstract Compilation

a constraint is instantiated, we can partially evaluate the specification to construct a much
simpler acyclic program consisting only of primitive guards, definitions and calls, which we
shall use to derive our propagators.

The reduced language L− is shown in Figure 3(b), which eliminates structured terms,
complex expressions and all functions (except primitive operators and guards).

4 Constructing propagators from programs

Given a program in the intermediate language L− described in Section 3, we must con-
struct a program which, for a given input domain, computes an overapproximation of the
corresponding concrete inputs which succeed. To do so, we first construct an intermediate
representation of the computations performed by the propagator.

Propagator operations

The instructions used in the constructed propagators: postcondition T #(stmt)(q), pre-
condition T −#(stmt)(q), relation R#(rel)(q), disjunction Join([q1, . . . , qn]), conjunction
Meet([q1, . . . , qn]), projection Rename(q, [y1 ← x1, . . . , y1 ← xn]), and partial update
Splice(q, q′, [y1 ← x1, . . . , yn ← xn]). Each operation computes an approximation of exe-
cution states from one or more previous states. Join and Meet respectively compute the
least upper bound (t) and greatest lower bound (u) of abstract states under A#. T # and
T −# are respectively post- and precondition transformers for function applications, and R#

applies a relation to an existing state. The remaining operations, are used in dealing with
predicate calls. Rename maps variables at a call site onto the formal parameters of the
callee. Splice copies a given state q, but takes the domains of variables v1, . . . from some
other state q′. This is used to weave the results of a call back into state of the caller.

The execution of some clause c operates on an execution environment E mapping names
to constants. Each guard evaluates the current context, and execution fails if the constraint
is violated. A definition adds a new binding to the current environment. At each call site,
we rename the call parameters and execute the predicate with the resulting environment.
For predicates, each clause is simply executed in turn under the current environment, until
some clause succeeds. If all clauses fail, the predicate likewise fails.

Analysis of c simply mirrors the program execution. From an abstract state Qc, we
compute approximations of the reachable states after executing each statement Ac. After
computing the abstract solutions of predicate calls, we apply inverse state transformers to
determine which initial environments correspond to the solutions. For predicates, the analysis
is straightforward: compute the solution sets [Ac1 , . . . , Ack

] for each clause [c1, . . . , ck], and
compute the abstract join of these, so Ap = Ac1 t . . . t Ack

. Throughout the analysis, we
maintain the property that Qi v Ai – every ‘solution’ is (abstractly) reachable. This is
relatively easy to preserve for guards (which are descending) and definitions. As definitions
are total functions, executing some definition x := E only introduces a new binding x.
For any state ϕ, we then have ∃x. T #(x := E)(ϕ) = ϕ. Thus, even the trivial pre-image
computation T −#(x := E)(ϕ) = ∃ x. ϕ preserves this invariant. The upshot of this is that
we need not explicitly compute Ai = Ai uQi, as this is naturally preserved.

We run into some complications at the predicate level, however. As mentioned in Section 2,
abstract interpreters perform abstract join operations (t) to combine states whenever a
program point is reachable along multiple control paths. If p is called in several contexts,
if we directly retrieve the solutions to p at the call-site, we may lose the property that



G. Gange and P. J. Stuckey 13:7

Query computation

p(x1, ...) :- c1; ...; ck

s = push_state(Join(retrieve_callers(p)))
save_clause(c1, Q(s | c1))
. . .
save_clause(c1, Q(s | ck))

Q(s | ∅) s

Q(s | x := E, c) Q(push_state(T #(x := E)(s)) | c)

Q(s | x op y, c) Q(push_state(R#(x op y)(s)) | c)

Q(s | p(x1, ...), c) save_call(p, push_state(Rename(s, [x1, ...]))); s
Answer computation

p(x1, ...) :- c1; ...; ck

s1 = A(retrieve_clause(c1) | c1)
. . .
sk = A(retrieve_clause(ck) | ck)
s = push_state(Join)([s1, . . . , sk])
save_answer(p, s)

A(s0 | ∅) s0

A(s0 | x := E, c) push_state(T −#(x := E)(A(s0 | c)))

A(s0 | x op y, c) push_state(R#(x op y)(A(s0 | c)))

A(s0 | p(x1, ..., xn), c)

spost = A(s0 | c)
sproj = push_state(Rename(spost, [x1, ...]))
sret = retrieve_answer(p)
smeet = push_state(Meet([sret, sproj ])
push_state(Splice(spost, smeet, [x1, ..., xn]))

Figure 4 Computing approximations of reachable and satisfying states during checker execution.
Reachability computations are performed for predicates in topological order, and answers are
computed in the reverse order.

Ai v Qi. Worse, the loss of precision can interfere with the requirement that the propagator
be checking.

I Example 2. Consider the following program:

p(x, y) :- q(x, y). p(x, y) :- q(y, x). q(u, v) :- u = v.

Consider analysing this program under {x→ 3, y→ 4}. q is reachable under two environ-
ments: {u→ 3, v→ 4}, and {u→ 4, v→ 3}. Before processing q, the calling contexts are
combined into {u→ [3, 4], v→ [3, 4]}. Applying u = v here does nothing. Notice that the
answer set of q is weaker than either call state. When we combine this back into the call site,
both calls appear feasible, so we do not detect failure. J

To preserve the descending property, we must instead compute the meet of the calling
state with the answer set of the predicate. To ensure the propagator is checking, we exploit
the fact that bindings are functionally defined. We transform the checker to ensure all calls
to a predicate to have identical argument definitions (in terms of input variables). We can
perform this step by traversing the program tracking the definition of each variable, and
renaming apart predicate calls with different definitions. In the case of Example 2, q becomes
two separate predicates q1 and q2.

The algorithm for constructing a propagator from a checker is given in Figure 4. push_state
adds a new state to the propagator, and returns the new state’s identifier. In addition to the
generated instructions, we also need to keep track of three sets of states: states which call
some predicate p, the final state of each clause c, and the answer set of each predicate p – we

ICLP 2016 TCs



13:8 Constraint Propagation and Explanation over Novel Types by Abstract Compilation

Instruction Generated code Resulting state
T #(z := f(x, y))(c, σ) v′ := emit(T #(f)(σ(x), σ(y))) (c, σ[z 7→ v′])

T −#(z := f(x, y))(c, σ)
b, u′, v′ :=

emit(T −#(f)(σ(z), σ(x), σ(y)))
c′ := c ∧ b

(c, σ[x 7→ u′, y 7→ v′] \ {z})

R#(x rel y) b, u′, v′ := emit(R#(rel, σ(x), σ(y)))
c′ := c ∧ b (c′, σ[x 7→ u′, y 7→ v′])

Meet([(cA, σA), (cB , σB)])
bx, vx := σA(x) u σB(x) for x ∈ σA

c′ := cA ∧ cB ∧
∧
bx

σ′ := {x 7→ vx | x ∈ σA}
(c′, σ′)

Join([(cA, σA), (cB , σB)])
vx :=

(
σB(x) if ¬cA

σA(x) if ¬cB

σA(x) t σB(x) else

)
for x ∈ σA

c′ := cA ∨ cB

σ′ := {x 7→ vx | x ∈ σA}

(c′, σ′)

Rename((c, σ), M) (c, {y 7→ σ(x)
| (y ← x) ∈M})

Splice((c, σ), (csp, σsp),M) (csp, σ[y 7→ σsp(x)
| (y ← x) ∈M ])

Figure 5 Constructing concrete code implementing an abstract propagator. emit() denotes
dispatch to an externally-provided transfer function.

use the corresponding save/retrieve functions to keep track of these sets. Q(s | c) constructs
the computation of final reachable states of clause c starting from state s, and records the
context of any predicate calls made.

4.1 Generating Propagator Implementations
The propagator descriptions described above make no assumptions as to the concrete
representation of propagator states, other than being elements of a lattice with associated
state transformers. For the remainder of the paper, we shall assume states are abstracted by
a non-relational (‘independent attribute’) domain. The concrete representation of a state is
then a tuple (c, σ), where c is a Boolean flag indicating whether the state is feasible, and σ
is a mapping from variables to the corresponding domain representation.

Under this non-relational representation, generating concrete implementations of these
propagators is relatively straightforward. Propagator computation consists of three phases:
a prologue, where domain representations are extracted from solver variables, the propagator
body, and an epilogue, where we compare the initial and revised domains for each variable, and
post any updated domains to the solver. The propagator body simply computes values for the
sequence of states appearing in the abstract propagator we constructed. State transformers
for operations on individual domain approximations must be externally provided, which we
then lift to operations on propagator states.

Rules for state computation are given in Figure 5. We assume machine code is written to
a global buffer. In the generated code, Rename and Splice become no-ops; they simply
re-bind existing values to new names. T #, T −# and R# are similarly straightforward,
computing new values for those variables touched by the instruction (using the externally
provided implementations), and updating the corresponding bindings. Here emit denotes
calls to an external code generator, which emits instructions implementing the specified
primitive, and returns the location of the resulting values. Join and Meet implement the



G. Gange and P. J. Stuckey 13:9

usual lifting of t and u operations to the Cartesian product. We show here code only for
binary functions, as well as meet and join; the n-ary operators follow the same pattern.

5 Inferring Explanations

In nogood-learning solvers, we have an additional complication: explanations. Assume a
propagation step f(c)(D) infers the atomic constraint at. During conflict analysis, we will
need to replace at with some set of antecedents l1, . . . , lk such that D ⇒ l1 ∧ . . . ∧ lk, and
c ∧ l1 ∧ . . . ∧ lk ⇒ at.

When it comes to dealing with novel variable types, we have two problems: first, how
to represent atomic constraints in general, and how to infer explanations for arbitrary
constraints, while avoiding imposing too heavy a burden on the solver author.

To this end, we make a pair of perhaps trivial observations. First, a variable domain is
always expressible as a conjunction of atomic constraints. Second, the generated propagators
always admit some valid explanation consisting of a conjunction of variable domains. This
hints at a possible approach - collect explanations using the same domain representation as
the propagation algorithm, and have the solver extract the corresponding atomic constraints
before returning.

Note that we can’t absolve the solver developer from integrating atomic constraints into
the solver core; handling propagation, implication and resolution of atomic constraints is
still something that needs to be done.1 However, with this approach they do not need to
somehow communicate the semantics of atoms to the synthesis engine, nor provide bindings
for the full set of operations (subsumption, disjunction, etc.) on atoms.

In terms of generating the explanation itself, the trivial explanation is always sound,
relatively efficient to construct and requires no additional information from the solver, but
is of limited value:

∧
{D(v) | v ∈ scope(c)} ⇒ at . We can do much better by taking the

correspondence between static analysis and propagation one step further, and observe that
explanation is just an analysis of P (c). Recall the computation of P (c), illustrated to the
right. From some initial state D, we apply a sequence of state transformers [T1, . . . , Tn]
computing states [D1, . . . , Dn], Dn being the approximate solution set.

For an inference Dinf , we wish to find Dexpl such that D v Dexpl, and P (c)(Dexpl) v Dinf .
We can compute such a state by pushing the condition backwards along the computation of
P (c). We first find some state En−1, with Dn−1 v En−1 and Tn(En−1) v Dinf . We continue
in this manner, at each step computing Ei−1 from Di−1 and Ei. The final state, E0 is thus
guaranteed to be a valid explanation.

T # T −#

Qpre

Qpost

Apre

Apost

Figure 6 Flow of computation in P (c).

1 Though the developer may be able to re-use atoms for existing types – encoding option types with pairs
of integers [15], or bit-vectors by tuples of Booleans.

ICLP 2016 TCs



13:10 Constraint Propagation and Explanation over Novel Types by Abstract Compilation

explain(P, e0) store_use(final_state(P ), e0)
Ex(P )

Ex(s : I, P )
Ex(P )
epost = push_state(Meet(retrieve_uses(s)))
ExI(epost, I)

ExI(e, T #(stmt)(q)) store_use(q, push_state(ET # (stmt)(e, q)))

ExI(e, T −#(stmt)(q)) store_use(q, push_state(ET −# (stmt)(e, q)))

ExI(e,R#(rel)(q)) store_use(q, push_state(ET −# (stmt)(e, q)))

ExI(e, Join([q1, . . . , qn])) store_use(q1, e); . . .; store_use(qn, e)

ExI(e,Meet([q1, . . . , qn])) e′ = push_state(EMeet(e, [q1, . . . , qn]));
store_use(q1, e

′[1]) ; . . .; store_use(qn, e
′[n]);

ExI(e,Rename(q, [x1, . . . , xn])) store_use(q, push_state(ERename(e, q, [x1, . . . , xn])

ExI(e,Splice(q, q′, [x1, . . . , xn])) e′ = push_state(ESplice(e, q, q′, [x1, . . . , xn]))
store_use(q, e′[1]); store_use(q′, e′[2])

Figure 7 Constructing an explanation from a propagator. The algorithm walks backwards along
the computation, computing a sufficient postcondition for each instruction.

Just as we constructed a propagator from a checker in Section 4, we now define a
corresponding translation scheme from propagators to explainers. It is assumed that the
explanation algorithm is executed after the propagator, and has access to all the interme-
diate stages of the propagator. The primitive operations performed during explanation
are ET #(stmt)(e, q), EMeet(e, [q1, . . . , qn]), ET −#(stmt)(e, q), ERename(e, q, [x1, . . . , xn]),
ER#(rel)(e, q), ESplice(e, q, q′, [x1, . . . , xn]), and Meet([e1, . . . , en]). Meet, as in the
propagator case, simply conjoins a set of preconditions. All other operations simply push
some postcondition back to the instruction’s predecessor states (essentially computing an
interpolant [10]).

The algorithm for translating a propagator into a corresponding ‘explainer’ is given in
Figure 7. The explanation procedure runs backwards along the computations performed
by the propagator, constructing a sufficient postcondition for each state of propagator
state. In the propagator a given state may be used by multiple successors, particularly
states corresponding to predicate heads and call sites. During explanation, each use of that
state may result in a different postcondition. We use store_use to record the individual
postconditions and conjoin them (using Meet) to construct an overall postcondition for the
state before extrapolating back to the state’s predecessors.

We have several choices in how this abstract explanation algorithm is embodied and
used. A single run of the propagator may change domains of several variables. We may
either generate a separate explanation for each domain change (which requires running the
explanation algorithm several times), or construct a common explanation for all changes
(which is cheaper, but yields less general explanations).

Another choice is how to represent preconditions. The most precise approach is to follow
the same pattern as for propagation – maintain a full propagator state as the precondition
and require externally provided explanation transformers for the necessary operations (ET #

and ET −# for functions, ER# for guards, and Eu for meet), which turn a postcondition
and incoming domains into a set of preconditions. Designing correct, efficient and precise
implementations of explanation transformers is challenging, complicated by the fact that we
need to deal with variables which are unconstrained in the postcondition (by either having an
explicit > value, a Boolean flag, or pre-computing initial domains for each propagator state).



G. Gange and P. J. Stuckey 13:11

Domain representation: t, Variable: v, Atomic constraint: a
Domain operations Transformers

equality (t, t)→ bool T #(fun) list(t)→ t
conjunction (t, t)→ (bool, t) T −#(fun) (t, list(t))→ (bool, list(t))
disjunction (t, t)→ t T #(rel) (t, t)→ (bool, (t, t))

Variable hooks Explanation hooks
get-domain v→ d to-atoms (v, d)→ list(a)
set-domain (v, d)→ bool set-domainexpl (v, d, list(a))→ bool

set-conflict list(a)→ unit

Figure 8 Operations that must be provided for domains, functions and relations in order to
execute propagators.

We can instead construct a data-flow based explanation procedure. We track which values
could have contributed to the inference of interest, and translate the corresponding domains
to atomic constraints as the explanation. For the flow-based explanation, we represent the
pre/post-condition as a pair (ec, ν), where ec indicates whether we must explain failure, and
ν is a mapping from names to Booleans indicating whether the corresponding variable is
relevant to the inference. Transformers for this analysis are straightforward. For example,
ET #(z = f(x, y))((ec, ν), (c, σ)) returns (ec, ν[x 7→ ν(x) ∨ ν(z), y 7→ ν(y) ∨ ν(z)] \ {z}).

6 Filling in the gaps

For the propagator construction of Section 4, we are missing implementations of three critical
elements: the lattice of domain abstractions, state transformers for function and relation
symbols, and hooks to communicate with the solver.

The operations needed to implement propagators are given in Figure 8. These fall into
two classes: operations on domain abstractions, and communication between the propagators
and the underlying solver. A pleasant outcome of this separation is that domain operations
are entirely decoupled from the underlying solver – once lattice operations and transformers
are defined for a given domain, they may be re-used in other solvers. The only operations
which must be defined per solver and per variable kind is the extraction and update of
domains.

For a classical CP solver, these are the only operations which must be defined. For
lazy clause generation, the solver must also provide operations for dealing with atomic
constraints. From the propagators’ perspective, atomic constraints are entirely opaque. The
solver specifies the (maximum) atom size, and each variable indicates the maximum number
of atoms required to explain its domain. Before setting domains, we allocate a buffer large
enough to fit the largest possible explanation. to-atoms writes atomic constraints to this
buffer, returning the end of the explanation so far. set-conflict and set-domainexpl will
then retrieve the explanation from this buffer.

7 Instantiating Constraints from Specifications

We now return to the problem of transforming high-level specifications into intermediate
form. The process must make two transformations: eliminating nested arithmetic expressions,
and unfolding predicate bodies. The first is done in the usual manner, introducing fresh
variables for sub-terms.

ICLP 2016 TCs



13:12 Constraint Propagation and Explanation over Novel Types by Abstract Compilation

The second amounts to partially evaluating the logic program under the given instantiation.
When evaluating a predicate call p(T ) (where T = [t1, . . . , tn]), we compute ‘canonical
arguments’ T ′ by replacing each variable appearing in T with the index of its first occurrence,
and (recursively) instantiate a copy of p with these T ′. The instantiation of p is a predicate
taking one argument for each variable appearing in T ′.

Pattern-matching in clause heads is statically resolved. Clauses with non-matching heads
or type-mismatches in expressions (e.g. arithmetic expressions instantiated on compound
terms) are discarded, as are those containing calls to a predicate with no feasible clauses.
The requirement that recursive calls be structurally decreasing is so that we may be sure the
instantiation process terminates.

I Example 3. Recall the specification of lex_lt, given in Figure 1. Consider instantiating
the constraint lex_lt([X, Y], [Z, Z]). Numbering variables in order of occurrence, we obtain
the canonical arguments [[V1, V2], [V3, V3]]. Instantiating the first clause body, we get V1 < V3.
In the second clause body, we see a recursive call to lex_lt, with (instantiated) arguments
[[V2], [V3]].

Instantiating lex_lt([V1], [V2]), we again obtain V1 < V2 for the first clause. In the second
clause, we reach a recursive call lex_lt([], []). Both clauses of lex_lt fail due to pattern
matching, which causes the second clause of lex_lt([V1], [V2]) to fail. This gives us the
instantiated checker:
lex_lt3(V1,V2,V3) :- V1 < V3. lex_lt3(V1,V2,V3) :- V1 = V3, lex_lt4(V2,V3).
lex_lt4(V1,V2) :- V1 < V2. J

8 Experimental Evaluation

We have implemented a prototype library creidhne2 implementing this method. The
library provides a C++ interface, but is implemented in OCaml using the LLVM compiler
framework [14] for code generation.

Two’s complement arithmetic

Integer arithmetic in CP operates on a subset of Z. In some applications, particularly model
checking, we instead wish to reason under machine arithmetic – the fixed-width or wrapped
integers, which are not typically supported by CP solvers. This domain has received some
attention [1, 13], but is not a common inclusion in CP or LCG solvers.

We used creidhne to integrate (signed) wrapped integers into chuffed,3 a lazy clause
generation CP solver. No modifications were needed to the underlying solver engine. Wrapped
integers variables were represented internally using existing integer variables, and existing
atomic constraints re-used. Connecting chuffed with creidhne totalled 300 lines of C++,
plus minor changes to the FlatZinc [2] parser to allow string literals in annotations. The
lattice operations and state transformers were implemented as code emitters for LLVM,
totalling around 350 lines of OCaml.

We tested the synthesized propagators on some error-localization problems using reified
8-bit machine arithmetic. The synthesized propagators appear competitive with the native
decompositions. For programmed search, the absence of introduced variables helps noticeably.
Note that 32-bit wrapped integers could not be implemented by decomposition.

2 Available at http://bitbucket.org/gkgange/creidhne.
3 http://github.com/geoffchu/chuffed

http://bitbucket.org/gkgange/creidhne
http://github.com/geoffchu/chuffed


G. Gange and P. J. Stuckey 13:13

Table 1 Average time (in seconds) and backtracks on small error-localization problems, using
programmed (seq) or activity-driven (act) search. # gives number of instances.

# native(seq) native(act) creidhne(seq) creidhne(act)
sumsquares 19 16.65 / 193800 0.51 / 4712 0.80 / 21190 0.41 / 4651
trityp 100 0.17 / 2707 0.05 / 384 0.10 / 286 0.61 / 42880

9 Related Work

The burden of formulating and implementing propagation algorithms is well recognised,
and a number of intermediate languages and compilation approaches have been proposed,
although none consider generating explanations.

The approach of [3] represents constraint checkers as finite-state automata augmented
with a finite set of counters. A constraint is instantiated by decomposing the automaton
into a conjunction of primitive constraints. In [4] constraints were formulated as predicates
denoting Boolean formulae of primitive constraints. Inference rules were derived for Boolean
operators to determine which (lazily instantiated) primitive constraints could potentially
propagate during search.

In [16], the authors propose a propagator specification language for global constraints
based on an extension of indexicals [19], and define a compiler backend for each supported
solver. The indexical-based specifications allow more finer control of propagation, but the
universe of types is fixed and propagation rules must be specified by hand.

The method of [12] directly shares our objective of inferring efficient imperative propag-
ators from arbitrary constraints. This approach eagerly pre-computes the result of enforcing
domain consistency for all values in the powerset of D(c), and compiles a lookup table from
the results. This computes extremely efficient (and domain-consistent) propagators, but is
feasible only for constraints with small domains – the pre-computation time and worst-case
memory requirements are O(|PD||vars(c)|). For global constraints over integer variables with
large domains, this approach is impractical.

Several existing works have applied ideas from abstract interpretation to constraint
programming. The observation of constraint propagation as a fixpoint procedure was used
in [18] to design an abstract interpretation based constraint solver for real variables. In [11],
techniques from abstract interpretation were used to support constraints involving loops in a
CLP formalism. These constraints were propagated by computing an approximation of the
loop under the polyhedra abstract domain, then projecting back onto the problem variables.

10 Conclusion and Further Work

We have presented a system for synthesizing propagators (with explanation) over novel
variable types from declarative specifications, and illustrated its effectiveness. There are
numerous potential extensions, both in terms of the specification and the synthesis. These
include adding support for partial functions, exploiting opportunities for more efficient
propagation, and relaxing the restriction on unbounded recursion.

References
1 Sébastien Bardin, Philippe Herrmann, and Florian Perroud. An Alternative to SAT-Based

Approaches for Bit-Vectors. In Tools and Algorithms for the Construction and Analysis of
Systems, number 6015 in LNCS, pages 84–98. Springer Berlin Heidelberg, March 2010.

ICLP 2016 TCs



13:14 Constraint Propagation and Explanation over Novel Types by Abstract Compilation

2 Ralph Becket. Specification of FlatZinc. [Online, accessed 3 March 2015], 2012. http:
//www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf.

3 N. Beldiceanu, M. Carlsson, and T. Petit. Deriving filtering algorithms from con-
straint checkers. In CP 2014, volume 3258, pages 107–122, 2004. doi:10.1007/
978-3-540-30201-8_11.

4 Sebastian Brand and Roland H. C. Yap. Towards ‘propagation = logic + control’. In ICLP
2006, volume 4079, pages 102–116, 2006. doi:10.1007/11799573_10.

5 Rafael Caballero, Peter J. Stuckey, and Antonio Tenorio-Fornes. Two type extensions for
the constraint modelling language MiniZinc. Science of Computer Programming, 111:156–
189, 2016.

6 Geoffrey Chu. Improving Combinatorial Optimization. PhD thesis, Department of Com-
puting and Information Systems, University of Melbourne, 2011.

7 Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In POPL’77,
pages 238–252, New York, NY, USA, 1977. doi:10.1145/512950.512973.

8 Patrick Cousot and Radhia Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. In PLILP’92, volume 631, pages 269–295,
1992.

9 Patrick Cousot, Radhia Cousot, and Francesco Logozzo. Precondition Inference from Inter-
mittent Assertions and Application to Contracts on Collections. In VMCAI 2011, number
6538 in LNCS, pages 150–168. Springer Berlin Heidelberg, January 2011.

10 William Craig. Three uses of the herbrand-gentzen theorem in relating model theory and
proof theory. Journal of Symbolic Logic, 22:269–285, 9 1957. doi:10.2307/2963594.

11 Tristan Denmat, Arnaud Gotlieb, and Mireille Ducassé. An abstract interpretation based
combinator for modelling while loops in constraint programming. In CP 2013, volume 4741,
pages 241–255, 2007. doi:10.1007/978-3-540-74970-7_19.

12 Ian P. Gent, Christopher Jefferson, Steve Linton, Ian Miguel, and Peter Nightingale.
Generating custom propagators for arbitrary constraints. Artif. Intell., 211:1–33, 2014.
doi:10.1016/j.artint.2014.03.001.

13 Arnaud Gotlieb, Michel Leconte, and Bruno Marre. Constraint solving on modular integers.
In ModRef Workshop, associated to CP’2010, September 2010.

14 C. Lattner and V. Adve. LLVM: a compilation framework for lifelong program ana-
lysis transformation. In CGO 2004, pages 75–86, March 2004. doi:10.1109/CGO.2004.
1281665.

15 Christopher Mears, Andreas Schutt, Peter J. Stuckey, Guido Tack, Kim Marriott, and
Mark Wallace. Modelling with option types in minizinc. In CPAIOR 2014, number 8451
in LNCS, pages 88–103. Springer, 2014. doi:10.1007/978-3-319-07046-9_7.

16 Jean-Noël Monette, Pierre Flener, and Justin Pearson. Towards solver-independent propag-
ators. In CP 2012, volume 7514, pages 544–560, 2012. doi:10.1007/978-3-642-33558-7_
40.

17 O. Ohrimenko, P.J. Stuckey, and M. Codish. Propagation via lazy clause generation. Con-
straints, 14(3):357–391, 2009.

18 Marie Pelleau, Antoine Miné, Charlotte Truchet, and Frédéric Benhamou. A Constraint
Solver Based on Abstract Domains. In VMCAI 2013, number 7737 in LNCS, pages 434–454.
Springer Berlin Heidelberg, January 2013.

19 P. Van Hentenryck, Vijay Saraswat, and Yves Deville. Constraint processing in cc(FD).
Technical report, Computer Science Department, Brown University, 1992.

http://www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf
http://www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf
http://dx.doi.org/10.1007/978-3-540-30201-8_11
http://dx.doi.org/10.1007/978-3-540-30201-8_11
http://dx.doi.org/10.1007/11799573_10
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.2307/2963594
http://dx.doi.org/10.1007/978-3-540-74970-7_19
http://dx.doi.org/10.1016/j.artint.2014.03.001
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1007/978-3-319-07046-9_7
http://dx.doi.org/10.1007/978-3-642-33558-7_40
http://dx.doi.org/10.1007/978-3-642-33558-7_40

	Introduction
	Preliminaries
	Propagation as Static Analysis
	Programs as Constraints

	Constructing propagators from programs
	Generating Propagator Implementations

	Inferring Explanations
	Filling in the gaps
	Instantiating Constraints from Specifications
	Experimental Evaluation
	Related Work
	Conclusion and Further Work

