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Abstract
This paper describes qualitative spatial representations relevant to cartoon motion incorporated
into NarrativeML, an annotation scheme intended to capture some of the core aspects of narrative.
These representations are motivated by linguistic distinctions drawn from cross-linguistic studies.
Motion is modeled in terms of transitions in spatial configurations, using an expressive dynamic
logic with the manner and path of motion being derived from a few basic primitives. The manner
is elaborated to represent properties of motion that bear on character affect. Such representations
can potentially be used to support cartoon narrative summarization and question-answering. The
paper discusses annotation challenges, and the use of computer vision to help in annotation. Work
is underway on annotating a cartoon corpus in terms of this scheme.
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1 Introduction

Motion is the essence of animated cartoons. Animators go to great lengths to create
gestures and sequences of poses that create a vivid and appealing illusion of many different
varieties of motion. What would the Road Runner cartoons be without the thrill of the
chase, the characters’ prolonged braking motions and sudden propulsions? Why are we so
entertained by Wile E. Coyote’s fantastic object-penetrating collisions and varieties of chasm
plunges? One would expect that qualitative representations of the characters’ spatiotemporal
dynamics would be more relevant to narrative than their precise geometries or the equations
describing their highly constrained, cartoon-physics trajectories. Ideally, these qualitative
representations should reflect the narratologically-relevant cognitive abstractions used by the
audience in describing movies, and at the same time, be computable. This paper describes
qualitative spatial representations relevant to cartoon motion incorporated into NarrativeML
[28], an annotation scheme intended to capture certain core aspects of narrative.

As the film theorist David Bordwell [3] explains, films offer the same rich stimuli for
inferring motion that are presented in the real world. He quotes Paul Messaris [31]: “What
distinguishes images (including motion pictures) from language and from other modes of
communication is the fact that images reproduce many of the informational cues that people
make use of in their perception of physical and social reality.” These inferences about motion
involve, as is well-known, optical flow [13], which tracks the changing positions of points in
sequences of images impinging on the retina (see Section 4). Building on Bordwell’s account,
I suggest that language-mediated inferences about static and dynamic spatial relations
are crucial for narrative. In such an analysis, the spatial concepts are best represented
qualitatively, a proposal which may be novel to humanities (including film) narratologists.
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3:2 Animation Motion in NarrativeML

Figure 1 (a) Bugs entering the painting. (b) Woozy motion.

In any medium, manner of movement can be relevant for inferring character properties,
including affect and traits. However, cartoon motion seems very different from the motions
characters undergo in narrative texts (e.g., the ghost stories studied by [16]). In addition to
expressing a parody of motion in the real world, cartoon physics allows for all sorts of creative
manners of motion. Consider, as an example, the manner of motion in the 2003 cartoon
movie Looney Tunes: Back in Action(LTBIA)1. In Figure 1(a), Bugs Bunny is about to leap
into the painting The Persistence of Memory to escape Elmer Fudd, but in Figure 1(b), his
motion within the landscape of the painting has become sluggish, as has that of Daffy who
has joined him, as their shapes experience Daliesque distortions in this embedded storyworld.
Such woozy movements are narratologically significant, as they convey struggle as well as
exhaustion.

A large corpus of cartoon movies annotated with systematic characterizations of motion
and other narratologically-relevant information would be useful in examining similarities and
differences across medium and genre. Such an effort could have implications for humanities
narratology [29] by way of providing a precise conceptual framework to enhance narratological
theories for media such as cartoons. Corpora annotated with such representations can
potentially also be of practical use for training algorithms aimed at movie scene search and
summarization.

In ‘silent’ cartoon movies like the Road Runner ones, the fact that we are speakers of
natural language influences our narratological inferences, even when these are drawn from
non-textual media. This suggests that annotating the narrative content of a movie should
start with an ekphrasis consisting of brief descriptions in natural language. Using natural
language descriptions as an additional input for the annotator, beyond the video, not only
leverages information that is not directly present in the video, but in addition allows one to
harness the rich conceptual resources that natural language provides. Earlier work by [27]
has described how qualitative spatial representations can be used to formally represent and
reason about well-known aspects of the semantics of spatial prepositions and motion verbs.
The contribution of this paper is twofold: extending the representations in NarrativeML to
incorporate motion, and the application to the narratives in animated cartoons.

NarrativeML is based on multiple layers of annotation, relying on tagging predicates
and arguments in the sentences of the text using PropBank [33]. Events and their temporal
relations are represented using TimeML [34], which in turn leverages the interval calculus [1].
The automatic application of TimeML to classical narratological analyses of text is discussed
in [25]. NarrativeML also includes a partial temporal ordering of narrative events that share
a common protagonist, called a Narrative Event Chain (NEC) [4]. Once incidental events
are pruned away, the NEC answers the question as to what the protagonist did in the story.
References to places and simple static relations between them are modeled using SpatialML

1 https://www.youtube.com/watch?v=97PLr9FK0sw.

https://www.youtube.com/watch?v=97PLr9FK0sw
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[26] and ISO-Space [36]. All these concepts form part of the fabula (or story). NarrativeML
also represents the mapping to sjuzhet (or discourse), including the seven varieties of ordering
described by [11] as well as narrative tempo and subordinated discourse2.

In contrast to film narratology such as [2], NarrativeML takes the position that there
is always a narrator, but she may or may not be present in the film. For focalization, the
annotator of a movie will have to record from whose point of view the scene is being displayed,
deciding whether it is the narrator, the ‘camera’, the audience, or a particular character. Here
film presents a challenge. Genette’s three-way characterization of focalization into omniscient,
internal, and external as in [11], [12] is text-based and involves overlapping categories, as [8]
among others has argued. In film, as [21] points out, there may be many different shades
of focalization, based on camera angles, deep focus, shot length and scale, etc. A related
question is what sort of theory of mind the narrator has with respect to the characters; in
the case of a silent movie, gazing into minds may be realized by thought balloons or the
focus of attention of the ‘camera’. NarrativeML sidesteps the complexities here by allowing
for focalization a fourth mixed category, called OTHER, while requiring that the annotator
record the position of the viewer relative to figure and ground objects. Thus, above and
beyond its role in motion, spatial representation is key to capturing narrative information
related to focalization.

2 Spatial Representation

The spatial representations discussed here are motivated by linguistic analyses of prepositions
and motion verbs across languages. Being qualitative and linguistically motivated, they are
at an entirely different level of abstraction from the fine-grained ones used in animation
systems. However, as I will argue, they are useful in representing static and dynamic spatial
aspects of narrative.

2.1 Static Spatial Relations
The analysis of spatial prepositions and adpositions in language has come from a variety of
theoretical frameworks, including AI and psycholinguistics, e.g., [30], descriptive linguistics,
[17], formal semantics, [46], and cognitive linguistics, [23], [18]. Much of the analysis has
focused on representing phrases like “the book on the table” and “the fruit in the bowl” in
terms of topological relations between objects involving notions of coincidence, contact and
containment. To formally represent such relations, ISO-Space, and thus NarrativeML, uses
the Region Connection Calculus (RCC-8) [37]. In RCC-8, objects are conceived as non-empty,
equi-dimensional regions. Based on a single primitive relation of connection between regions,
RCC-8 defines the set of eight base relations shown in Figure 2(a). Thus, “the book on the
table” may be represented by EC(book, table) and “the fruit in the bowl” by IN(fruit,
bowl), where IN is the disjunction of the base relations TPP and NTPP.

In addition to topological relations, languages distinguish spatial relations that reflect
orientations of objects. Studies across languages [24] reveal that they use a basic inventory
of three varieties of coordinate systems to describe orientation, that are unevenly distributed
across languages. In the intrinsic frame, used in examples like “in the front of the picture”
and “by the side of the boat”, the linguistic relation R between a figure object (F) and

2 Other aspects of NarrativeML, involving characters, their goals, plot structure, and audience responses
are not discussed here.
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3:4 Animation Motion in NarrativeML

Figure 2 (a) RCC-8 relations. (b) Double Cross Calculus example.

a ground object (G) is characterized in terms of particular facets of the ground object G,
e.g., “front”, “nose”, “sides”, etc., which are dependent on the object’s affordances and are
highly culture-dependent. In this frame, F lies “in a search domain extending from G on the
basis of an angle or line projected from the center of G, through an anchor point A (usually
the named facet ‘R’)” [24] (p. 42-3). The absolute frame of reference, e.g., “due north of
St. Croix”, involves a coordinate system where F is described in terms of fixed bearings
(related to compass points and/or landscape markers) with respect to an origin on G. The
relative frame involves a ternary relation, between F, G, and a third object, the viewer V,
as in examples like “to the right of Bugs”. Here a coordinate system is centered on V, with
possibly another coordinate system centered on G arising from a geometric projection from
V’s coordinate system to G’s, in turn providing intrinsic facets to G via V. Languages that
have a relative frame always have an intrinsic frame as well, introducing ambiguity.

The ISO-Space representation, and as a result, NarrativeML, is neutral with respect to
which qualitative representations should be used to capture orientation relations. Here we
introduce three representations that will be used in the example under discussion.

A representation relevant to the intrinsic frame is the Dipole Calculus of [32], [7], which
represents spatial relations based on oriented line segments called dipoles. Each dipole
divides the plane into a left and right half, and the calculus accordingly specifies orientation
relations between the start and end points of each dipole and the other. A start or end point
on dipole B can be relatively to the left (l) or the right (r) of, or else start (s) or end (e)
of, dipole A. Thus, in Figure 1(b), llrr(Bugs, Daffy), meaning that the start and end of
Daffy are to the left of Bugs and the start and end of Bugs are to the right of Daffy. This
representation is compatible with “Daffy is to the left of Bugs” and “Bugs is on Daffy’s right”.
When augmented with additional orientations: back (b), interior (i), and front (f), one gets
a calculus with 69 base relations [32], which we will refer to as DC-69.

The absolute frame can be represented in the Cardinal Direction Calculus of [15], [39].
Here the minimum bounding rectangle of the ground region is made the central tile of a
9-element grid, and is labeled ‘B’, for bounding box. The figure region is then positioned on
the grid, and the tiles it falls into are used to describe its orientation with respect to that
central tile, yielding nine regions in all: B, S, SW, W, NW, N, NE, E, and SE. Thus, in
Figure 1(b), with B over Bugs, we have ESE(Daffy, Bugs). Given that the calculus has a
base set of 511 relations, we will refer to it as CDC-511.

For the relative frame of reference, the Double Cross Calculus (DCC) of [10], [38], is
relevant. Here we have a ternary relation between figure, ground, and viewer. As shown
in Figure 2(b), the figure object F, viewer V, and ground G are construed as points, and a
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line Y from V to G is extended to create a pair of half-planes, left (l) and right (r). A pair
of lines, one (X1) perpendicular to the line Y and through V, and the other (X2) parallel
through it and through G, creates three regions, forward (f), back (b), with a central region
(c) in between. Consider applying it to F=Bugs in Figure 1(a). He is in the plane between
the viewer and the ground G, the painting, so we have rf(Bugs, PersistenceofMemory,
Viewer). This is compatible with “Bugs is in front of the painting” and “Bugs is on the
right in front of the painting”. Likewise, in Figure 1(b), Daffy is to the right of Bugs from
the viewer’s point-of-view, so we have rc(Daffy, Bugs, Viewer). Adding the relations of
equality and inequality, we get a base set of 17 relations (DCC-17).

2.2 Motion
Having represented aspects of time and space, one needs to incorporate motion into Narra-
tiveML. A fundamental cross-linguistic insight regarding motion comes from Leonard Talmy
[40], [41], who points out that languages have two distinct strategies for expressing concepts
of motion. In manner-type languages (English and other Germanic languages, also Slavic
languages), the main verb expresses the manner or cause of motion, while path information is
expressed elsewhere in the form of ‘satellite’ constituents3. In contrast, in path-type languages
(Romance, Turkish, Semitic, and other languages), the verb expresses the path, whereas the
manner is optionally expressed by adjuncts.

Adopting this classification, which has been extensively studied cross-linguistically along
with its exceptions, [27] introduce a procedural semantics for motion in natural language,
where motion is viewed in terms of transitions in spatial configurations. A distinction is made
between action-based predicates (for manner-of-motion verbs like “bike”, “drive”, “fly”, etc.)
and location-based predicates (e.g., for path verbs like “arrive”, “depart”, etc.). Action-based
predicates do not make reference to distinguished locations, but rather to the ‘assignment’ and
‘reassignment’ of locations of the object, through the action. The location-based predicates
focus on points on a path, and thus they reference a distinguished location, and the location
of the moving object is ‘tested’ to check its relation to this distinguished value.

The semantics for these predicates is expressed in Dynamic Interval Temporal Logic
(DITL) from [35], a first-order dynamic logic (introduced by James Pustejovsky) where
events are modeled as programs, and states refer to preconditions or post-conditions of these
programs. This approach to modeling the semantics of motion, is explained in detail in
[27]. The following programs, from [27] (p. 95-107), describe the basic constructs of motion
needed.

Definition 1 shows how directed movement away from a source is represented in DITL4:

I Definition 1 (Moving away).

DITLmoveaway ( c , s r c ) ≡ y:= s r c ;
( l o c ( c ):=z , z 6= y , d i s t (y , s r c ) < d i s t ( z , s r c ) ; y:=z )+ /∗

1 . Assign y to ob j e c t l o c a t i o n .
2 . Then r e a s s i g n i t s l o c a t i o n to z , which i s f u r t h e r away

from source than y .
3 . I t e r a t e s t ep s 1−2 one or more t imes . ∗/

3 A satellite is “any constituent other than a noun-phrase or prepositional-phrase complement that is in a
sister relation to the verb root” [40] (p. 102).

4 In DITL, semicolon is a program sequencing operator and comma is a (higher-precedence) predicate
conjunction operator.
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One can now define non-primitive programs corresponding to motions that are lexicalized
by motion verbs. Arriving is shown in Definition 2.

I Definition 2 (Arriving as making contact at end of path).

reach ( c , des t ) ≡ ( y:= l o c ( c ) ; RCC−8DC(y , des t ) ? ; movetoward ( c , des t ) )+ ;
( y:= l o c ( c ) ; RCC−8EC(y , des t ) ? ) /∗

1 . Test i f ob j e c t i s d i s connected from the d e s t i n a t i on .
2 . I f so , move towards the d e s t i n a t i on
3 . I t e r a t e s t ep s 1−2 one or more t imes
4 . Test i f ob j e c t touches the d e s t i n a t i on . ∗/

Manner of motion is not treated as a primitive, but arises as an elaboration of the
components of the motion, namely figure, ground, event, path, and medium. This allows one
to distinguish various manners of motion; for example, one can define sliding (Definition 3),
which involves maintaining an extended connection with a surface, as well as bouncing
(Definition 4), which involves alternating between an extended connection and disconnection.

I Definition 3 (Sliding).

s l i d e ( c , s u r f ) ≡ y:= l o c ( c ) ,
( l o c ( c ):=z , z 6= y , RCC−8EC( z , s u r f ) ; y:=z )+

I Definition 4 (Bouncing).

bounce ( c , s u r f ) ≡ y:= l o c ( c ) ,
( l o c ( c ):=z , z 6= y , RCC−8EC( z , s u r f ) ; y:=z ;
l o c ( c ):=z , z 6= y , RCC−8DC( z , s u r f ) ; y:=z )+

For representing affect associated with manners of motion, one has to introduce additional
features into the framework. Here I build on the approach of [5], [45], who use natural
language in input specifications to drive the motion of animated characters. I focus here on
Effort, a concept taken from analysis of dance [22]. Effort is characterized (Table 1) in terms
of four factors: Space, Weight, Time and Flow, with the left and right columns labeling the
low and high ends respectively of a scale.

Thus, the woozy movement in Figure 1(b) is represented in NarrativeML as the event
e, where effort(e, f1) is associated with the four factors, each on a five-point scale:
space and weight as space(f1, very_low) & weight(f1, very_high), with time and
weight as time(f1, very_low) & flow(f1, very_high). Bugs’ and Daffy’s flight across
the landscape of the painting is increasingly tortured and slow, so in previous frames the
flow value would have been freer.

Prolonged braking, a device essential to Road Runner and other cartoons, may be viewed
as sliding with decreasing speed, as seen in Definition 5. A frazzled variant can be expressed
via its Effort.

I Definition 5 (Prolonged Braking).

slow−brake ( c , s u r f ) ≡ y:= l o c ( c ) ;
( l o c ( c ):=z , z 6= y , RCC−8EC( z , s u r f ) , speed ( c , z ) < speed ( c , y ) ;
y:=z )+
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Table 1 Effort in Laban’s system, from [5].

Space: attention to the surroundings
Indirect: flexible, meandering, wandering,
multi-focus waving away bugs, slashing through
plant growth surveying a crowd of people, scan-
ning a room for misplaced keys

Direct: single focus, channeled, undeviating
pointing to a particular spot, threading a needle,
describing the exact outline of an object

Weight: attitude towards the impact of one’s movement
Light: buoyant, delicate, easily overcoming
gravity, marked by decreasing pressure dabbing
paint on a canvas, pulling out a splinter, de-
scribing the movement of a feather

Strong: powerful, having an impact, increas-
ing pressure into the movement punching, push-
ing a heavy object, wringing a towel, expressing
a firmly held opinion

Time: lack or sense of urgency
Sustained: lingering, leisurely, indulging in
time stretching to yawn, stroking a pet

Sudden: hurried, urgent swatting a fly, lung-
ing to catch a ball, grabbing a child from the
path of danger, making a snap decision

Flow: amount of control and bodily tension
Free: uncontrolled, abandoned, unable to stop
in the course of the movement waving wildly,
shaking off water, flinging a rock into a pond

Bound: controlled, restrained moving in slow
motion, tai chi, fighting back tears, carefully
carrying a cup of hot liquid

3 Annotation Example

Sheep in the Island is a 2007 ‘silent’ cartoon film from Korea that features a sheep stranded
on a tropical island with a dragon duck5. It is a shipwreck narrative, with typical themes of
dominance over nature and survival on a deserted island. Inspired by K-Pop culture, the
film aims for universal appeal by limiting the presence of text and restricting the audio to
non-linguistic verbal sounds and instrumental background music. It thus provides a simple
test case for ekphrasis-based narrative annotation. A few sample frames relevant to the
discussion below are shown in Figure 3.

The narrative is pre-segmented into sets of time intervals in the video, suggestive segment
labels indicated with line comments (//). The time intervals are ordered chronologically, but
are not contiguous. The input given to the annotator is shown here highlighted in yellow in
Annotation 1. Its ekphrasis is shown alongside, along with the indices of events, entities, and
times in NarrativeML6.

I Annotation 1 (SHEEP IN THE ISLAND).
1 . // SETTING
2 . 0:02-0:07t1 i s l a nd x1 with rockx2 and sandx4 seen ac ro s s seax3

3 . // BOATS IN MOTION
4 . 0:08-0:12t2 gunboatm1 approachese1 from r i gh t pa r t l y in f r on t o f i s l a nd x1

5 . 0:13-0:17t3 gunboatm1 approachese2 seen from f r on t looming l a r g e
6 . 0:18-0:20t4 gunboatm1 approachese3 from l e f t , seen from i s l a nd x1

7 . 0:21-0:26t5 l a r g e r boatm2 approachese4 from r i gh t as gunboatm1

approachese5 from l e f t

5 https://mayhemandmuse.com/sheep-in-the-island-part-1/ and https://www.youtube.com/
watch?v=YvR8LGOUpNA.

6 This paper and the annotation environment use logical expressions rather than the underlying XML to
which it is mapped. XML DTDs for NarrativeML are at http://tinyurl.com/inderjeetmani/home/
NarrativeML.
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Figure 3 Sheep in the Island at 7, 11, 14, 19, 25, and 34 seconds.

8 . // A SHIPWRECK
9 . 0:33-0:38t6 boatsm1,m2 crash e6

10 . 0:38-0:41t7 boatsm1,m2 s ink e7 as three boxesm3,m4,m5

f l o a t e8 towards i s l a nd x1

11 . 0:42-O:46t8 one boxm3 a r r i v e s e9 on i s l a nd x1

12 . 0.47-1:05t9 boxm3 bouncese10 on sandx4

13 . // ENTER THE SHEEP
14 . 1:10-1:14t10 sheepc1 emergese11 from boxm3 , seen from above
15 . 1:15-1:17t11 sheepc1 jumpse12 and lands e13 on sandx4

16 . 1:20-1:22t12 sheepc1 approachese14

17 . 1:23-1:26t13 sheepc1 turns e15 and walkse16 away
18 . 1:27-1:28t14 sheepc1 turns e17 f a c i n g forward in head shot
19 . // A HUNT INTERRUPTED
20 . 1:30-1:32t15 sheepc1 obse rves e18 f r o g c2 hoppinge19 on sandx4 in f r on t
21 . 1:33-1:35t16 sheepc1 pursuese20 f r o g c2

22 . 1:36-1:41t17 sheepc1 catches e21 and holds e22 f r o g c2

23 . 1:41-1:42t18 sheepc1 ge t s readye23 to devoure24 f r o g c2

24 . :43-1:48t19 sheepc1 no t i c e s e25 a l a r g e boxm4 to i t s l e f t
25 . 1:49-1:56t20 sheepc1 slamse26 f r o g c2 about
26 . 1:58-2:03t21 sheepc1 s t r o l l s e27 around boxm4 to r i g h t edgez1 ,

with stampz2 ‘DANGER’ on f r on t f a c e z3

27 . 2:05-2:06t22 boxm4 shakese28

28 . // ENTER THE DRAGON
29 . 2:07-2:11t23 dragon clawy4 emergese29 from boxm4 ,

seen from above along with sheepc1
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The individuation of events is based on the text, annotated in TimeML along with the
time intervals7. The crucial thing in the BOATS IN MOTION segment is that in line 4, the
gunboat m1 (with a front-protruding gun in the video) is seen in profile heading to the left
parallel to the viewer V1 who is away from the island. This can also be seen visually in
Figure 3 at 11 seconds.

Then, in line 5, the scene switches to a front shot of the same boat (Figure 3 at 14
seconds), the inference being that the viewer has changed orientation, not the boat8. In line
6, the gunboat is now seen from the island where the viewer now is, instead of from the sea,
and it is now to the left of and parallel to the viewer (Figure 3 at 19 seconds). In line 7,
the larger boat m2 (not the gunboat) approaches from the right, with the viewer still in the
same position on the island (Figure 3 at 25 seconds), gearing up for a collision in the next
segment A SHIPWRECK (line 9 ff., and Figure 3 at 34 seconds).

I Annotation 2 (SETTING).

1 . 0:02-0:07t1 i s l a nd x1 with rockx2 and sandx4 seen ac ro s s seax3

2 . na r r a t i v e ( i 1 ) & medium( i1 , cartoon_animation ) & na r r a t i v e ( i 2 )
& medium( i2 , text_annotat ion ) & narrat ive_segment ( i1 , i 3 )
& t i t l e ( i3 , ‘SETTING’ )

3 . & nar ra to r ( i1 , N0) & narrator_type (N0 , absent ) & nar ra to r ( i2 , N1)
4 . & narrat ive_t ime (N0 , =) & narrat ive_time (N1 , =)
5 . & narrat ive_order (N0 , CHRONICLE) & narrat ive_order (N1 , CHRONICLE)
6 . & RCC−8EC (x2 , x4 ) // rockx2 i s connected to sandx4

7 . & RCC−8NTPP (x4 , x1 ) // sandx4 i s part o f i s l a nd x1

8 . & RCC−8NTPP (x2 , x1 ) // rockx2 i s part o f i s l a nd x1

9 . & RCC−8EC (V1 , x3 ) // ViewerV 1 i s on seax3

10 . & DCC−17 s f ( x1 , x3 , V1)
// i s l a nd x1 i s in f a r background with r e sp e c t to ViewerV 1

Annotation 2 shows the NarrativeML annotation of the SETTING segment. Line 2
distinguishes the filmic narrative from the textual description. Line 3 indicates that the
narrator of the description is in fact the annotator N1, differentiated from the filmic narrator
N0, who is absent. Line 4 states that N1 narrates the scene descriptions as in a running
commentary, so that the narrative time is simultaneous. The filmic narrator is also not using
any devices to suggest retrospective or other temporal distance. Line 5 indicates that the
events are narrated by the film as well as by the annotator in (i.e., CHRONICLE) order of
occurrence. The RCC-8 relations in lines 6-9 capture coarse-grained topological relations in
the SETTING, and the Double Cross Calculus (DCC-17) in line 10 is used to convey point
of view, namely the relative frame where the viewer ‘camera’ is shooting across the sea to
the island.

I Annotation 3 (BOATS IN MOTION).

1 . 0:08-0:12t2 gunboatm1 approachese1 from r i gh t
pa r t l y in f r on t o f i s l a nd x1

2 . IC−13EQUAL( e1 , t2 ) & @(RCC−8DC(m1, x1 ) , e1 )
// gunboatm1 i s d i s connected from i s l a nd x1

3 . & narrat ive_segment ( i1 , i 4 ) & t i t l e ( i4 , ‘BOATS IN MOTION’ )

7 The BEFORE temporal relations indicating the chronological ordering of events in the fabula are left
out for reasons of space.

8 I use prime notation (V1’, m1’, etc.) in Figure 3 to remind the reader of an object’s changed viewpoint.

CMN 2016
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4 . & @(RCC−8EC(m1, x3 ) , e1 ) // gunboatm1 f l o a t s on seax3

5 . & fa c e (m1, y1 ) & @(DC−69 r r r l ( y1 , m1) , e1 ) // l e f t f a c e y1 o f gunboatm1

6 . & @(DCC−17 rc ( y1 , x1 , V1) , e1 )
// l e f t f a c e y1 i s between i s l a nd x1 and viewer

7 . & @(DIT Lmoveaway ( y1 , RB) , e1 )
// RB = r i gh t boundary o f v iewing frame

8 . 0:13-0:17t3 gunboatm1 approachese2 seen from f r on t looming l a r g e
9 . IC−13EQUAL( e2 , t3 ) & @(RCC−8DC(m1, x1 ) , e2 ) & e f f o r t ( e2 , f 1 )
10 . & space ( f1 , very_high ) & weight ( f1 , very_high )

& time ( f1 , high ) & f low ( f1 , high )
11 . & @(RCC−8EC(m1, x3 ) , e2 ) & edge (m1, y2 ) & @(DC−69 s b s i ( y2 , m1) , e2 )

// f r on t edgey2 o f gunboatm1

12 . & @(DIT Lmovetoward ( y2 , V1) , e2 )
13 . 0:18-0:20t4 gunboatm1 approachese3 from l e f t , seen from i s l a nd x1

14 . RCC−8EC(V1 , x1 ) & IC−13EQUAL( e3 , t4 ) // viewer i s on i s l a nd x1

15 . & @(RCC−8EC(m1, x3 ) , e3 )
16 . & fa c e (m1, y3 ) & @(DC−69 l l l r ( y3 , m1) , e3 )

// r i g h t f a c e y3 o f gunboatm1

17 . & @(DCC−17 l f ( y3 , x1 , V1) , e3 )
// r i g h t f a c e y3 i s to the l e f t o f v iewer

18 . & @(DIT Lmovetoward ( y3 , RB) , e3 )
19 . 0:21-0:26t5 l a r g e r boatm2 approachese4 from r i gh t as gunboatm1

approachese5 from l e f t
20 . RCC−8EC(V1 , x1 ) & IC−13EQUAL( e4 , t5 ) & e f f o r t ( e4 , f 2 )
21 . & space ( f2 , very_high ) & weight ( f2 , high ) & time ( f2 , neu t ra l )

& f low ( f2 , high )
22 . & IC−13EQUAL( e5 , t5 ) & e f f o r t ( e5 , f 3 )
23 . & space ( f3 , high ) & weight ( f3 , high )

& time ( f3 , neu t ra l ) & f low ( f3 , n eu t ra l )
24 . & @(RCC−8EC(m2, x3 ) , e4 ) & @(RCC−8EC(m1, x3 ) , e5 )

// boats f l o a t on seax3

25 . & @(RCC−8DC(m2, x1 ) , e4 ) & @(RCC−8DC(m1, x1 ) , e5 )
// boats d i s connected from i s l a nd x1

26 . & fa c e (m2, y4 ) & @(DC−69 r r r l ( y4 , m2) , e4 ) // l e f t f a c e y4 o f boatm2

27 . & fa c e (m1, y3 ) & @(DC−69 l l l r ( y3 , m1) , e5 )
// r i g h t f a c e y3 o f gunboatm1

28 . & @(DCC−17 l f ( y3 , x1 , V1) , e5 )
// r i g h t f a c e y3 i s to the l e f t o f v iewer

29 . & @(DCC−17 r f ( y4 , x1 , V1) , e4 )
// l e f t f a c e y4 i s to the r i g h t o f v iewer

30 . & @(DIT Lmoveaway ( y4 , RB) , e4 ) & @(DIT Lmovetoward ( y3 , RB) , e5 )

Annotation 3 turns to motion, which has until now not been represented in NarrativeML.
In line 2, the @ predicate indicates that the separation of the gunboat from the island holds
throughout e1. In line 5, the intrinsic left face y1 of the gunboat is characterized with
an additional primitive spatial relation called face, using the Dipole Calculus (DC-69) to
represent the left one, i.e., the gunboat dipole m1 is viewed as to the right and orthogonal
to the left face dipole, i.e., y1↑m1→, yielding the relation rrrl(y1, m1). This left face is
moving away from the right boundary, as indicated by the moveaway predicate in line 7. In
line 8, the scene changes to the front view of the gunboat, with its increased Effort, impelled
as if by a sinister force, indicated in line 10. The gunboat’s intrinsic front edge (another
primitive) y2 is identified in line 11 using DC-69, where the two dipoles are represented as
being on the same line. The DC-69 relation sbsi(y2, m1) expresses the fact that the start
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of the gunboat m1 is at the start of its front edge and its end is behind its front edge, and
the start of its front edge is at the start of the gunboat and its end is in the interior of the
gunboat. The gunboat’s front edge y2 is moving towards the viewer as indicated in line
12. Capturing the fact that the gunboat is speeding towards the viewer V1 while looming
steadily larger is narratologically important, as actions with the viewer as target have the
potential to increase suspense.

The movement to the right of the other boat is captured in the remaining lines. The
Effort of the boats approaching each other is indicated in lines 21 (larger boat) and 23
(gunboat), with the larger boat with its greater apparent momentum indicated by increased
Effort.

I Annotation 4 (A SHIPWRECK).

1 . 0:33-0:38t6 boatsm1,m2 crash e6

2 . RCC−8EC(V1 , x1 ) & IC−13EQUAL( e6 , t6 )
& @( reach (m1, m2) , e6 ) & narrat ive_segment ( i1 , i 5 )
& t i t l e ( i5 , ‘A SHIPWRECK’ )

3 . & @(RCC−8EC(m1, x3 ) , e6 ) & @(RCC−8EC(m2, x3 ) , e6 )
4 . & @(RCC−8EC(m2, x3 ) , e6 ) & @(RCC−8EC(m1, x3 ) , e6 )
5 . & @(RCC−8DC(m2, x1 ) , e6 ) & @(RCC−8DC(m1, x1 ) , e6 )
6 . & @(RCC−8PO(y3 , y4 ) , e6 )

// r i g h t f a c e o f gunboatm1 t e l e s c o p e s in to l e f t f a c e o f boatm2

7 . & e f f o r t ( e6 , f 4 ) & space ( f4 , very_high ) & weight ( f4 , very_high )
& time ( f4 , very_high ) & f low ( f4 , very_high )

8 . 0:38-0:41t7 boatsm1,m2 s ink e7 as three boxesm3,m4,m5

f l o a t e8 towards i s l a nd x1

9 . & fa c e ( x3 , y5 ) & DC−69 s f s i ( y5 , x3 ) // bottom of seax3

10 . & RCC−8EC(V1 , x1 ) & @( DIT Lmovetoward (m1, y5 ) , e7 )
& @( DIT Lmovetoward (m2, y5 ) , e7 )
& IC−13EQUAL( e7 , t7 ) & IC−13EQUAL( e8 , t7 )

11 . & @(RCC−8NTPP(m1, x3 ) , e7 ) & @(RCC−8NTPP(m2, x3 ) , e7 )
// boats submerged

12 . & @(RCC−8EC(m3, x3 ) , e8 ) & @(RCC−8EC(m4, x3 ) , e8 )
& @(RCC−8EC(m5, x3 ) , e8 )

13 . & @(DIT Lmovetoward (m3, x1 ) , e8 ) & @(DIT Lmovetoward (m4, x1 ) , e8 )
& @(DIT Lmovetoward (m5, x1 ) , e8 ) // towards i s l a nd x1

14 . 0:42-O:46t8 one boxm3 a r r i v e s e9 on i s l a nd x1

15 . RCC−8EC(V1 , x1 ) & IC−13EQUAL( e9 , t8 ) & @( reach (m3, x1 ) , e9 )
16 . 0.47-1:05t9 boxm3 bouncese10 on sandx4

17 . RCC−8EC(V1 , x1 ) & IC−13EQUAL( e9 , t9 ) & @( bounce (m3, x4 ) , e10 )
18 . & NEC(m1, <e1 , . . , e7> & NEC(m2, <e4 , e6 , e7>)
19 . & NEC(m3, <e8 , . . , e10 )>) & NEC(m4, <e8>) & NEC(m4, <e8>)
20 . & e f f o r t ( e10 , f 5 ) & space ( f5 , low ) & weight ( f5 , very_low )

& time ( f5 , low ) & f low ( f5 , low )

Annotation 4 begins with the boats crashing, which is seen as the right face of the gunboat
telescoping into the left face of the larger boat (Figure 3 at 34 seconds). Line 7 indicates
that the Effort is at the maximum for all its factors. In line 11, the boats are submerged
below the sea, expressed in RCC-8. Line 12 has the three boxes floating on the sea, and
in line 14 they move towards the island. The boxes emerge as by-products born of the
crash, which is an early inflexion-point in the plot. In line 15, one box reaches the island,
and in line 17, it bounces on the sand. Lines 18-19 indicate the NECs for the boats and
the boxes. Line 20 characterize the effort involved in the bouncing of box m3, which is
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Figure 4 Annotating A SHIPWRECK at 0:33–0:38.

relatively unconstrained, propelled as the box is by the energy of the creature trapped inside.
The self-propelled bouncing of the box foreshadows the emergence of new characters. Thus,
although the entities in motion in the first three annotated segments (boats and boxes) do
not involve the lifelike characters of the sheep and dragon duck, annotating their specific
motions is relevant for plot structure as well as foreshadowing the arrival of those characters.

4 Annotation Challenges

Figure 4 shows the video annotation tool PM2GO being used to annotate segments of Sheep
in the Island9. The video is shown on the left, with the player and interval selection below,
and the annotations on the right: BOATS IN MOTION, above, and A SHIPWRECK below,
using Annotations 3 and 4, respectively.

While individual movie ekphrases might be generated by crowd-sourcing, the annotations
are too dense to be efficiently executed for large corpora without some level of automatic
preprocessing. The good news here is that progress has been made on automatic labeling of
semantic roles for PropBank, e.g., [14], SpatialML tagging [26] and Semantic Role Labeling
(in the SemEval tasks) for figure-ground spatial relations [20]. For automatic TimeML
tagging, there has been progress as well, though approaches seemed to have hit a ceiling
of 70% F-measure on event-ordering across languages and tasks, e.g., TempEval [43], in
part due to the paucity of annotated data10. Unfortunately, the annotation using PM2GO

9 See http://motionbank.org/sites/motionbank.org/files/pm2go_handbook_07_14.pdf.
10Narrative texts auto-tagged with TimeML are available at http://tinyurl.com/inderjeetmani/home/

NarrativeML.

http://motionbank.org/sites/motionbank.org/files/pm2go_handbook_07_14.pdf
http://tinyurl.com/inderjeetmani/home/NarrativeML
http://tinyurl.com/inderjeetmani/home/NarrativeML
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Figure 5 (a) Person detection. (b) Character and motion labeling.

does not use any automatic pre-processing. Integrating the TARSQI toolkit for TimeML
tagging11 and the SpatialML tagger12 into an annotation pipeline is nontrivial since they
are legacy software systems. Longer-term plans include re-implementing such capabilities
on top of the far more modern Stanford CoreNLP toolkit13 as well as migrating to a more
narrative-friendly annotation workbench for video.

So far, the annotation of motion itself has not been automated. One possibility here is to
leverage the field of computer vision, which has been advancing rapidly. It seems reasonable to
populate some of the ekphrases and their annotations with suggestions from video processing.
Figure 5 shows some results from applying computer vision tools from OpenCV14 to Looney
Tunes: Back in Action. In Figure 5(a), Bugs and Daffy have been classified as people using
a Histogram of Oriented Gradients (HOG) [6] pre-trained on images of people; note that
Elmer has been missed. Figure 5(b) shows that Elmer has been detected as an object and
labeled correctly, using the Haar classifier cascade of [44], trained on labeled images from a
corpus of Bugs Bunny cartoons. The system has also correctly identified Elmer’s direction of
movement (left) using an optical flow detector [9]. In addition to improving the accuracy of
such computer vision methods with more training data, it should be possible to extend them
to automatically label the type of motion, as in [42].

While NarrativeML has been used to annotate numerous examples, it has not as such
been applied to text corpora in the large, let alone to ekphrases for movies, so important
questions of annotation reliability and efficiency remain open. These latter questions are the
focus of current research, applied to a corpus of cartoon movies. To simplify the task, the
pre-selected set of frames to be annotated is restricted to relatively short time intervals, with
the guidelines focused on creation of the ekphrasis and its NarrativeML for that set.

5 Conclusion

In terms of expressiveness, these additions to NarrativeML (constituting version 0.2) allow for
the annotation of relevant narrative information in cartoon movies, at a level of abstraction
guided by natural language and representing key semantic distinctions related to space
and motion. The annotation scheme is thus attractive for representing spatial relations,
focalization and motion in cartoons, and could potentially be used for humanities narratology
and practical applications as described in Section 1. The scheme might also be embedded in
authoring environments for animation.

11 http://www.timeml.org/tarsqi/toolkit/download.html
12 http://www.timeml.org/tarsqi/toolkit/download.html
13 http://nlp.stanford.edu/software/corenlp.shtml
14 http://opencv.org
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Of course, there is still much that is missing that would shed light on narrative. For the
intrinsic frame, where object shape is important, the dipole calculus is not that suitable. For
focalization, there needs to be a characterization of relevant shot types, as discussed in [19],
as well as the varieties of shot transition or cut. The varying distance, focus, orientation, and
area of interest of the ‘camera’ are also crucial for film narrative. In addition, for the cartoon
genre, character shape, as well as more elaborate motion manners and their velocities may
be revealing of character affect. Recording this sort of information in narrative corpora could
be very valuable. Nevertheless, reasoning with such qualitative representations is not always
tractable, and maximal tractable subsets of calculus relations, when found, often require
discarding key relations. Combining representations and adding dimensions only add to the
complexity. Finally, there are numerous annotation challenges discussed in Section 4, some
of which can be addressed by computer vision.
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