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Abstract
In 1998, Beals, Buhrman, Cleve, Mosca, and de Wolf showed that no super-polynomial quantum
speedup is possible in the query complexity setting unless there is a promise on the input. We
examine several types of “unstructured” promises, and show that they also are not compatible
with super-polynomial quantum speedups. We conclude that such speedups are only possible
when the input is known to have some structure.

Specifically, we show that there is a polynomial relationship of degree 18 between D(f) and
Q(f) for any Boolean function f defined on permutations (elements of [n]n in which each alpha-
bet element occurs exactly once). More generally, this holds for all f defined on orbits of the
symmetric group action (which acts on an element of [M ]n by permuting its entries). We also
show that any Boolean function f defined on a “symmetric” subset of the Boolean hypercube
has a polynomial relationship between R(f) and Q(f) – although in that setting, D(f) may be
exponentially larger.
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1 Introduction

When can quantum computers provide super-polynomial speedups over classical computers?
This has been one of the central questions of quantum computing research since its inception.
On one hand, Shor [10] showed that quantum computers can be used to factor an n-bit
integer in O(n3) time – exponentially faster than the best known classical algorithm (which is
only conjectured to achieve eO(n1/3 log2/3 n) time [6]). On the other hand, quantum algorithms
are not believed be able to solve NP-complete problems efficiently, which heavily restricts
the set of problems for which they may offer such a speedup. The intuition, then, is that
quantum algorithms help only for certain “structured” problems, but not for unstructured
ones.

In the query complexity model, we can hope to formalize this intuition. To this end, in
1998, Beals, Buhrman, Cleve, Mosca, and de Wolf [5] showed that the classical and quantum
query complexities of any total Boolean function are polynomially related. On the other
hand, partial functions – functions that assume the input satisfies some promise – can exhibit
exponential quantum speedups [11, 8, 2]. However, we still do not have an understanding of
which partial functions should be expected to provide such speedups.

I Open Problem 1. Can we characterize the partial functions f for which Q(f) = R(f)o(1)?
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Although we are currently far from such a characterization, a natural first step would be
to find any type of promise for which we can show a polynomial relationship between R(f)
and Q(f) (similar to the Beals et al. result for total functions). In this work, we give the
first such relationship. We show that when the promise is “the input is a permutation of
{1, 2, . . . , n},” there is a power 18 relationship between quantum and deterministic query
complexities. We also show that when the promise has the form “the input has Hamming
weight in the set S” (with S ⊆ N), there is a power 18 relationship between quantum and
randomized query complexities (though it’s possible for the deterministic query complexity
to be exponentially larger). We generalize these results to other classes of promises.

1.1 Previous Work
In 1998, Beals, Buhrman, Cleve, Mosca, and de Wolf [5] proved the following theorem.

I Theorem 1 ([5]). Let f : {0, 1}n → {0, 1} be a total function. Then Q(f) = Ω(D(f)1/6).

Their result easily extends to larger alphabets:

I Theorem 2. Let f : [M ]n → {0, 1} be a total function. Then Q(f) = Ω(D(f)1/6).

This tells us that there is never a super-polynomial quantum speedup for total functions.
Note that these results compare quantum query complexity to deterministic query complexity,
which is stronger than comparing to randomized query complexity. However, no better
relationship is known, even between Q(f) and R(f). For more information, see [7].

Another interesting result was proved by Aaronson and Ambainis [1]. They defined a
function f to be permutation-invariant if

f(x1, x2, . . . , xn) = f(τ(xσ(1)), τ(xσ(2)), . . . , τ(xσ(n))) (1)

for all inputs x and all permutations σ ∈ Sn and τ ∈ SM . Here f may be a partial
function, but the domain of f must itself be invariant under these permutations. As an
example, if M = 2, the domain of f might contain all binary strings of Hamming weight in
{1, 2, n− 2, n− 1}, and f(x) will depend only on the Hamming weight of x (with the value
of f being equal on Hamming weights k and n− k). Note in particular that the Collision
problem – in which we’re promised that the input either contains no repeated alphabet
symbol, or else repeats each symbol exactly twice, and must discern which is the case – is a
permutation-invariant function.

Aaronson and Ambainis [1] proved the following theorem.

I Theorem 3. Let f be permutation-invariant. Then Q(f) = Ω̃(R(f)1/7).

This theorem means that if f is unstructured in a way that looks like the Collision
problem, Q(f) and R(f) are polynomially related. However, the property of “looking like
Collision” places strong constraints on both the function and its promise. In this work,
we will show a relationship that holds for all functions defined defined over a fixed promise
P : we will not assume anything about the structure of f . However, our results will not
generalize Theorem 3 (we will provide a generalization of Theorem 1 instead).

Recently, Aaronson and Ben-David [3] characterized the total Boolean functions f that
can be “sculpted” to give an exponential quantum speedup; that is, the functions f that can
be restricted to a promise P on which quantum algorithms provide an exponential advantage.
They showed that the sculptable total functions are those with a large number of large
certificates. In particular, this means most total functions are scultable. One interpretation
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of this is that quantum speedups are all about the promise – if we can carefully chose the
promise, we can make almost any function exhibit an enormous quantum speedup over
classical algorithms.

The question we study here flips the quantifiers: on which promises does there exist
a function that exhibits a large quantum advantage? Plausibly, there are very few such
promises, which means that characterizing them is a useful way to approach Open Problem
1. Unfortunately, proving the non-existence of quantum-friendly functions can be difficult.

1.2 Our Results
Our first result is a polynomial relationship between Q(f) and D(f) for all functions whose
domain is the set of permutations.

I Theorem 4. Let M = n, and let P ⊆ [M ]n be the set of permutations. Then for all
f : P → {0, 1}, Q(f) = Ω(D(f)1/18).

We prove this result as a special case of a more general theorem. To state the general
version, we need a few definitions.

Given x ∈ [M ]n, the orbit orb(x) of x is the set of all strings in [M ]n that can be reached
by permuting the characters of x (in other words, the orbit under the symmetric group
action acting on the entries of the input). Note that each orbit is uniquely identified by a the
multiset {x1, x2, . . . , xn} of characters that appear in the strings of that orbit. We will use
τ(x) to refer to this multiset. If T ⊆ [M ]n is an orbit, we will also use τ(T ) to refer to τ(x)
for any x ∈ T . For example, the orbit of x = (1, 1, 2) is orb(x) = {(1, 1, 2), (1, 2, 1), (2, 1, 1)},
and corresponds to the multiset τ(x) = {1, 1, 2}.

We prove the following generalization of Theorem 4.

I Theorem 5. Let T ⊆ [M ]n be an orbit, and let f : T → {0, 1}. Then Q(f) = Ω(D(f)1/18).

Note that this is a relationship between quantum query complexity and deterministic
(not randomized) query complexity. In this sense, the result is similar to Theorem 2, and
indeed we use some similar tools in its proof. However, unlike for total functions, a function
defined on an orbit might have certificate complexity exponentially smaller than D(f), which
prevents the techniques of [5] from directly applying. We develop some new tools to get
around this.

Our second result extends the previous theorem from promises that are orbits to promises
that are unions of orbits; that is, the promise may be any “symmetric” set. Here we are only
able to prove a polynomial relationship when M is constant.

I Theorem 6. Let M be constant. If f : X → {0, 1} is a function on any symmetric promise
X ⊆ [M ]n (that is, a set X satisfying x ∈ X ⇒ τ(x) ⊆ X), then Q(f) = Ω

(
R(f)1/(18(M−1))).

In particular, when M = 2, we have Q(f) = Ω
(
R(f)1/18), so any function defined on a

symmetric subset of the Boolean hypercube does not exhibit a super-polynomial quantum
speedup.

Unlike the previous theorem, this one only relates quantum query complexity to ran-
domized (rather than deterministic) query complexity. This is necessary; indeed, if X is the
set of binary strings of Hamming weight 0 or bn/2c and f is defined to be 0 on 0n and 1
elsewhere, then D(f) = bn/2c+ 1 but R(f) is constant.

Notice that this last theorem applies even to the promise X = [M ]n (for constant M), so
it can be viewed as a generalization of Theorem 1 (although our polynomial relationship has
higher degree, and our generalization replaces D(f) with R(f)).

TQC 2016



7:4 The Structure of Promises in Quantum Speedups

As a final note, we remark that our results are incomparable with the Aaronson-Ambainis
result (Theorem 3). When M is constant, our Theorem 6 is much more general (since it
doesn’t place restrictions on the function). However, when M is constant, Theorem 3 is not
very difficult in the first place; most of the work in [1] went towards dealing with the fact
that M may be large (as it is in the Collision problem).

2 Preliminaries

In query complexity, there is a known (possibly partial) function f : [M ]n → {0, 1} and an
unknown string x in the domain of f . The goal is to determine the value of f(x) using as few
queries to the entries of x as possible. Here [M ] := {0, 1, . . . ,M − 1} is the input alphabet;
often we set M = 2, so the domain is {0, 1}n.

The query complexity achieved by an algorithm A is defined to be the number of queries
used by A over the worst-case choice of x. The query complexity of the function f is then
defined to be the minimum query complexity achieved by any algorithm A.

When A is a deterministic algorithm, we denote the query complexity of f by D(f);
when A is a bounded-error randomized algorithm, we denote it by R(f); and when A is
a bounded-error quantum algorithm, we denote it by Q(f). We also define the zero-error
randomized query complexity R0(f) to be the expected number of queries used by the best
zero-error randomized algorithm (over the worst-case choice of input x). As expected, we
have the relationship D(f) ≥ R0(f) ≥ R(f) ≥ Q(f) for every function f . We denote the
domain of f by Dom(f). We sometimes refer to the domain as the promise of f .

A partial assignment is a string p ∈ ([M ] ∪ {∗})n that represents partial knowledge of a
string in [M ]n. An input x ∈ [M ]n is consistent with a partial assignment p if for all indices
i, either pi = xi or pi = ∗. The size |p| of p is the number of non-star entries in p.

A partial assignment is called a 0-certificate for f if the only strings in Dom(f) it is
consistent with are 0-inputs to f . 1-certificates are defined similarly. A partial assignment is
a certificate if it is a 0- or 1-certificate. The certificate complexity Cx(f) of an input x is
the minimum size of a certificate for f consistent with x. The maximum of Cx(f) over all
x ∈ Dom(f) is the certificate complexity C(f) of f .

A block is a set of indices in {1, 2, . . . n}. We say that a block B is sensitive for a string
x ∈ Dom(f) if there is a string y ∈ Dom(f) that agrees with x outside of B, and satisfies
f(y) 6= f(x). The maximum number of disjoint sensitive blocks of x is the block sensitivity
of x, denoted by bsx(f). The maximum block sensitivity of x over all x ∈ Dom(f) is called
the block sensitivity of f , denoted by bs(f).

If f : [M ]n → {0, 1} is a total function, we can also define the sensitivity sx(f) of a string
x as the maximum number of disjoint sensitive blocks of size 1, and the sensitivity s(f) of f
as the maximum value of sx(f) over all x ∈ [M ]n. However, since we will be dealing with
non-total functions, we will define sensitivity slightly differently in the next section.

It is not hard to see that sx(f) ≤ bsx(f) ≤ Cx(f) for all x ∈ Dom(f). Also, since a
zero-error algorithm always finds a certificate, we have s(f) ≤ bs(f) ≤ C(f) ≤ R0(f) ≤ D(f).
The lower bound on Grover search implies Q(f) = Ω(

√
bs(f)) and R(f) = Ω(bs(f)). For

total functions, we have D(f) ≤ C(f) bs(f) and C(f) ≤ s(f) bs(f) [5], so

D(f) ≤ C(f) bs(f) ≤ s(f) bs(f)2 ≤ bs(f)3 = O(Q(f)6). (2)

For a nice survey of query complexity, see [7].



S. Ben-David 7:5

3 Orbit Promises

In this section, we show that the deterministic and quantum query complexity measures are
polynomially related when the promise is exactly an orbit, proving Theorem 5.

One particular case which will motivate a lot of our analysis is the case where M = n and
T is the orbit corresponding to the multiset {0, 1, . . . , n− 1} (i.e. the case where the inputs
are all permutations), together with the function f satisfying f(x) = 0 if and only if 0 occurs
in the first bn2 c entries of x. This is sometimes called the permutation inversion problem.

Informally, in this problem we are promised that the input x is a permutation of the
elements 0, 1, . . . , n− 1, and the task is to find the 0 element using as few queries as possible
(to turn this into a decision problem, we only ask whether the 0 occurs in the first half of the
entries of x). The permutation inversion problem has been shown to require Ω(

√
n) quantum

queries using a variety of methods [9]; our approach uses Ambainis’s adversary method [4].

3.1 Sensitivity on Orbit Promises
We start by attempting to mimic the proof that D(f) = O(Q(f)6) for total functions.
There are two missing pieces that don’t immediately work for partial functions. One is the
relationship C(f) ≤ bs(f) s(f); as defined, s(f) = 0 for permutation inversion, since it’s
impossible to change only one bit and stay in the promise. The other is the relationship
D(f) ≤ C(f) bs(f); for permutation inversion, we have D(f) = bn/2c but C(f) = bs(f) = 1.

We fix the former by changing the definition of s(f) for orbit promises. The latter problem
is harder to handle, and does not have an elementary solution. In the next section, we will
attack it by showing that the permutation inversion problem – in which we are looking for a
hidden marked item that’s promised to be unique – is essentially the only difficult case.

I Definition 7. Let T ⊆ [M ]n be an orbit, let f : T → {0, 1}, and let x ∈ T . We define the
sensitivity s2,x(f) of x is the maximum number of disjoint sensitive blocks of size 2 (instead
of size 1). The sensitivity s2(f) of f is the maximum value of s2,x(f) out of all x ∈ T .

Note that letting blocks have size 2 allows two entries to be swapped, maintaining the
promise. It is also clear that we still have s2,x(f) ≤ bsx(f) for all x ∈ T .

I Theorem 8. For all f : T → {0, 1} with T ⊆ [M ]n an orbit, we have C(f) ≤ 3 bs(f) s2(f).

Proof. Let x ∈ T . Then x has bsx(f) disjoint sensitive blocks; let them be b1, b2, . . . , bbsx(f),
and assume each bi is minimal (under subsets). Then

⋃
bi is a certificate consistent with x

(for otherwise, x would have more than bsx(f) disjoint sensitive blocks). We claim that the
size of a sensitive block bi is at most 3 s2(f). This gives us the desired result, because we
then have a certificate of size at most 3 bsx(f) s2(f).

Let y ∈ T agree with x outside bi with f(y) 6= f(x). Since x and y have the same orbit,
the difference between them must be a permutation on the entries of bi. In other words,
there is some permutation σ on bi such that for j ∈ bi, we have yj = xσ(j).

Consider the cycle decomposition c1c2 . . . ck of σ. Let cj = (a1, a2, . . . , am) be any cycle
in it. We claim that switching as and as+1 for s ∈ {1, 2, . . . ,m− 1} gives a sensitive block
for y of size 2. Indeed, if this was not a sensitive block, then block bi would not be minimal,
since (as, as+1)σ would be a permutation corresponding to a smaller sensitive block (with as
removed). Note that the number of disjoint sensitive blocks of size 2 we can form this way is
at least |bi|

3 , since for each cycle cj we can form b |cj |
2 c ≥

|cj |
3 of them. Thus s2(f) ≥ 1

3 |bi|, as
desired. J

TQC 2016



7:6 The Structure of Promises in Quantum Speedups

I Corollary 9. Let f : T → {0, 1} with T ⊆ [M ]n an orbit. Then R(f) = Ω(C(f)1/2) and
Q(f) = Ω(C(f)1/4).

Proof. We have C(f) ≤ 3 bs(f) s2(f) ≤ 3 bs(f)2, so bs(f) = Ω(
√

C(f)). Combined with
Q(f) = Ω(

√
bs(f)) and R(f) = Ω(bs(f)), this gives the desired result. J

3.2 The Structure of Small Certificates
The previous section showed a lower bound on Q(f) in terms of C(f) on orbit promises.
However, this result by itself cannot be used to relate Q(f) to D(f) or R(f), because the
certificate complexity of a function on an orbit promise may be much smaller than the query
complexities (an example of this is given by permutation inversion, in which C(f) = 1).

In this section, we prove the following technical lemma, which will be the main tool for
handling functions for which the certificate complexity is much smaller than the deterministic
query complexity.

I Lemma 10. Let f : T → {0, 1} with T ⊆ [M ]n an orbit. Fix any k ≤ 1
2
√

D(f). If
k ≥ C(f), then there is

a partial assignment p, consistent with some input in T , of size at most 4k2, and
a set of alphabet elements S ⊆ [M ], of size at most 4k2, whose elements each occur less
than 2k times in τ(T )− τ(p)

such that for any x ∈ T consistent with p and any certificate c consistent with x of size at
most k, at least one of the alphabet elements of c− p is in S.

Some clarifications are in order. By τ(T )−τ(p), we mean multiset subtraction between the
alphabet elements in T and those occurring in p (multiset subtraction is defined analogously
to set subtraction; the frequency count of an element in τ(T ) − τ(p) is the difference of
frequency counts in τ(T ) and τ(p), or 0 if this difference is negative). By c− p, we mean the
string d with di = ci when pi = ∗ and di = ∗ otherwise.

Intuitively, this lemma is saying that if we fix a few input coordinates p and restrict to
inputs consistent with p, then there is a small set S ⊆ [M ] of alphabet elements such that an
element of S must exist in any small certificate. For example, for the problem of inverting
a permutation, we can choose p = ∗n, S = {0}, and k = bn/2c − 1; then any certificate of
size less than k must include the alphabet element 0. The intuition, then, is that solving the
function quickly requires searching for an alphabet symbol in S, which will be a difficult task
since there are few of them and each occurs a small number of times.

The proof of this lemma is motivated by the proof that D(f) ≤ C(f)2 for total boolean
functions. That proof describes a deterministic algorithm for computing f(x): repeatedly
pick 0-certificates consistent with the entries of x seen so far, and query the entries of
x corresponding to the non-∗ entries of that certificate. Since each 0-certificate conflicts
with all 1-certificates, each time we do this we reveal a new entry of every 1-certificate.
Therefore, after C(f) iterations, a certificate has been revealed and the value of f(x) has
been determined.

Our proof works similarly, except that it is no longer true that each 0-certificate must
contradict every 1-certificate on some entry. Instead, it might be possible that a 0-certificate
and a 1-certificate disagree on the location of an alphabet element. However, in that case we
can conclude that there are a few alphabet elements that are included in all small certificates.

Proof. Fix such T , f , and k. The proof is based on the following algorithm, which either
generates the desired p and S or else computes f(x) for a given input x. We will proceed
by arguing that the algorithm always generates p and S after at most 4k2 queries, which
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must happen before it computes f(x) when x is the worst-case input (as guaranteed by the
requirement that k ≤ 1

2
√

D(f)). The algorithm is as follows.

1: Get input x
2: Set p = ∗n, S = ∅, R = ∅
3: loop
4: Find any certificate c (consistent with a legal input) that

has size at most k
is consistent with p
has the property that c− p has no alphabet elements in S.

5: If there are no such certificates, output p and S and halt.
6: Add all the alphabet elements of c to R.
7: Set S to be the set of elements i of R that occur less than 2k times in τ(T )− τ(p).
8: Query x on all domain elements of c and add the results to p.
9: If p is a 0-certificate, output “f(x) = 0” and halt; if it’s a 1-certificate, output

“f(x) = 1” and halt.

We claim that this algorithm will go through the loop at most 4k times. Indeed, each
iteration through the loop selects a certificate. A 0-certificate must conflict with all 1-
certificates, and vice versa. There are two ways for certificates to conflict: either they
disagree on the value of an entry, or else there is some alphabet element i that they claim to
find in different places (and in addition, there must be few unrevealed instances of i in x).

This motivates the following definition: for a certificate c, let hp,S(c) be |c − p| +
| alphabet(c) − S| if c is consistent with p, and zero otherwise (here alphabet(c) denotes
the set of alphabet elements occurring in c). Note that at the beginning of the algorithm,
hp,S(c) ≤ 2|c| ≤ 2k for all certificates c of size at most k. Now, whenever the algorithm
considers a 0-certificate c0, the value of hp,S(c1) decreases for all 1-certificates c1 of size at
most k (unless it is already 0). This is because either c0 and c1 conflict on an input, in which
case an entry of c1 is revealed and included in p, decreasing |c1 − p| (or contradicting c1), or
else c0 and c1 both include an alphabet element i which has less than 2k occurrences left
to be revealed (if it had at least 2k unrevealed occurrences, it wouldn’t be the source of a
conflict between c0 and c1, since they each have size at most k). In the latter case, i is added
to S, which decreases | alphabet(c1)− S|.

We have shown that each iteration of the algorithm decreases hp,S(c) either for all 0-
certificates or for all 1-certificates (of size at most k). This means that unless the loop is
terminated, one of the two values will reach 0 in less than 4k iterations. We claim this cannot
happen, implying the loop terminates in less than 4k iterations.

Suppose by contradiction that hp,S(c) reaches 0 for all 0-certificates. This means p is
either a certificate – in which case the value of f(x) was determined, which is a contradiction
– or else p is not a certificate, and conflicts with all 0-certificates of size at most k. In the
latter case, there is some input y consistent with p such that f(y) = 0, and there are no
certificates consistent with y of size at most k. Thus C(f) > k, contradicting the assumption
in the lemma.

This shows the loop always terminates in less than 4k iterations, which means it cannot
calculate f(x), and must instead output p and S. This gives the desired result, since all
certificates of size at most k that are consistent with p have the property that c− p has an
alphabet element in S. J

Note that if we restrict to inputs consistent with p, then the lemma asserts that finding a
small certificate requires finding an element of S. This gives us the following corollary.

TQC 2016
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I Corollary 11. If f : T → {0, 1} with T ⊆ [M ]n an orbit, then we have

R0(f) = Ω(min(D(f)1/2, n1/4)) = Ω(D(f)1/4). (3)

When M = n and T is the set of permutations, R0(f) = Ω(min(D(f)1/2, n1/3)) = Ω(D(f)1/3).

Proof. Fix T and f , and let k = bmin( 1
2
√

D(f), 1
4n

1/4)c − 1 (in the case of permutations,
let k = bmin( 1

2
√

D(f), 1
4n

1/3)c − 1). Since a zero-error randomized algorithm must find a
certificate, if k < C(f), the result follows. It remains to treat the case where k ≥ C(f).

In this case, let p and S be as in the lemma. We restrict to inputs consistent with p. Any
zero-error randomized algorithm A must find a certificate on such inputs. If A uses R0(f)
expected queries, then it finds a certificate with probability at least 1/2 after 2 R0(f) queries.

If 2 R0(f) ≤ k, then A must find a certificate of size at most k with probability 1/2. But
this means that on all inputs x, A finds an element of S in x outside p with probability at
least 1

2 . However, there are at most 2k|S| = 8k3 such elements in the entries of x outside p
(in the case of permutations, at most |S| = 4k2 such elements), and the size of the domain is
n − |p| ≥ n − 4k2 ≥ n

2 . If x is generated by fixing p and permuting the remaining entries
randomly, the chance of a query finding an element of S is at most 16k3

n , so by the union
bound, the chance of finding such an element after k queries is at most 16k4

n (in the case of
permutations, this becomes 8k3

n ). Since k < 1
2n

1/4 (or k < 1
2n

1/3 in the case of permutations)
gives the desired contradiction. J

3.3 Lower bounds on R(f) and Q(f)
We now put everything together to prove lower bounds on R(f) and Q(f) in terms of D(f),
proving Theorem 5.

I Theorem 12. Let f : T → {0, 1} with T ⊆ [M ]n an orbit. Then:

R(f) = Ω(min{D(f)1/6, n1/9}) = Ω(D(f)1/9) ,

Q(f) = Ω(min{D(f)1/12, n1/18}) = Ω(D(f)1/18).

Throughout this proof, we will identify a partial assignment q ∈ ([M ] ∪ {∗})n with the
set {(i, qi) : i ∈ N, qi 6= ∗}. This will allow us to use set theoretic notation to manipulate
partial assignments; for example, if q and q′ are consistent partial assignments, then q ∪ q′,
q ∩ q′, and q − q′ are all also a partial assignments.

Proof of Theorem 12. Apply Lemma 10 with k = min{ 1
4
√

D(f), 1
3n

1/3}. If C(f) > k, then
we’re done by Corollary 9. Otherwise, we get p and S from the lemma, with all certificates
of size at most k that are consistent with p having alphabet elements in S.

We use Ambainis’s adversary method (see Appendix A) to get a lower bound for Q(f),
which will look very similar to the lower bound for permutation inversion found in [4]. In
order to apply the adversary method, we use p and S to find some specific inputs to our
function f .

First, let Y be the multiset of alphabet symbols in τ(T )− τ(p), except for the alphabet
symbols found in S. Note that there are at most 4k2 alphabet symbols in S, and each
occurs at most 2k times outside of p. Since |τ(T )| = n and |τ(p)| ≤ 4k2, we have |Y | ≥
n− 4k2 − 8k3 ≥ n− 12k3 ≥ n/2.

We now run the following procedure.
We now describe the modification in step 5. We make c consistent with p in two sub-steps:

in step A, we expand c by setting ci = γ for various choices of i ∈ [n] and γ ∈ [M ]; and in
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1: Initialize the partial assignment r = ∗n.
2: Initialize the multiset Z = Y .
3: while |r| ≤ k do
4: Pick any 0-certificate c consistent with r of size at most C(f).
5: Modify c to get c′ consistent with p and r, as described below.
6: Replace any alphabet symbols of c′ − p that are in S by symbols from Z to get c′′.
7: Update Z by removing the used symbols from it.
8: Add the entries of c′′ to r.
9: If |r| > k, stop. Otherwise, repeat steps 4-8 for a 1-certificate.

step B, we permute the non-∗ entries of c − r. The choices of i in step A will always be
entries with ci = ri = ∗, and the choices of γ will always be alphabet symbols from either Z
or τ(p− r). When we use symbols from Z, we also update Z to remove those symbols.

Explicitly, we do the following. First, note that c is consistent with r and r is consistent
with p. Let d = c − r and let q = p − r. We will modify d to make it consistent with q.
First, for each symbol γ in the multiset τ(d) ∩ τ(q), we ensure there is a distinct entry i
such that di 6= ∗ and qi = γ. If there isn’t one, we pick i with qi = γ and di = ∗ and set ci
to an element of Z (and remove that element from Z). This step ensures that all alphabet
elements of d that “must be” part of q can be placed inside q by permuting the non-∗ entries
of d. Next, for each i such that di 6= ∗ and qi 6= ∗, we ensure there is a distinct j such that
dj = qi. If there isn’t one, we pick j such that rj = pj = qj = dj = cj = ∗ and set cj = qi.

It is not hard to see that after these additions to c, we can permute the non-∗ entries
of c− r to make it consistent with p− r: we can ensure the intersection of non-∗ entries of
p− r and c− r get filled with the correct alphabet symbols, and doing this also ensures that
the only alphabet symbols used in the remainder of the partial assignment are not necessary
for p. Hence we get c′ consistent with p and r. c′ was formed by increasing the size of c′ by
at most 2|c|, so |c′| ≤ 3|c| ≤ 3 C(f).

We note a few invariants of this algorithm. The first invariant is that any alphabet
symbols of c′ − p that are in S do not occur in τ(p− c′). This means that after the current
iteration, these symbols will not occur in τ(p− r), so they will be swapped for elements of Z
whenever they occur outside of r.

The second invariant is that r is consistent with p and that r−p uses no alphabet elements
in S. By Lemma 10, r is not a certificate as long as |r| ≤ k. Hence step 4 of the algorithm
(where a certificate is chosen) never fails. Moreover, each iteration of the algorithm increases
|r| by at most 6 C(f). Thus the loop repeats at least k

6 C(f) times.
Consider the entries of r that were added by the selection of 0-certificates. Let the first α

of them be the partial assignments a(0)
1 , a

(0)
2 , . . . , a

(0)
α , with α = b k

6 C(f)c. Each a
(0)
i is equal

to c′′ − r at the i-th round of the algorithm. Similarly, let the subsets of r that were added
by 1-certificates be a(1)

1 , a
(1)
2 , . . . , a

(1)
α .

Let W be the multiset τ(T ) − τ(p) restricted to S; that is, the collection of alphabet
symbols in S outside of p. Note that if some of the non-∗ alphabet symbols in a(0)

i were
replaced by some symbols from S and the non-star entries of a(0)

i were permuted, we would
get a 0-certificate, and similarly for a(1)

i . By the first invariant, it is actually sufficient to
replace the alphabet symbols of a(0)

i or a(1)
i by those from the multiset W . We use this fact

to construct the sets for the adversary method.
Let A be the sub-multiset of W consisting of the symbols in W that actually need to be

swapped in for some a(0)
i or a(1)

i . Since the total size of the a(0)
i and a(1)

i sets is |r| ≤ k, we
have |A| ≤ k.
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To each a(j)
i , we add an arbitrary block of |A| entries outside r with alphabet symbols

from Y . To be able to do this, we require that 2|A|α ≤ n − |r| − 2k|A| (the 2k|A| term
appears because each alphabet element in A may occur up to 2k times), and also that
|Y | − |r| ≥ 2|A|α. Since |r| ≤ k, |A| ≤ k, α ≤ k/6, |p| ≤ 4k2, and |Y | ≥ n/2, and since
k ≤ n1/3/3, it is easy to check that these conditions hold.

Now, for each j ∈ {0, 1} and each i = 1, 2, . . . , α, we can place all the alphabet elements
of A inside a(j)

i and permute its non-∗ entries in a way that restores the j-certificate. We can
thus generate 2α inputs, α of which have value 0 and α of which have value 1, such that the
only difference between the inputs is which of the 2α disjoint bins has the alphabet elements
of A (and has been shuffled). This is essentially a version of permutation inversion.

It’s clear that a classical randomized algorithm must make Ω(α) queries, since it must
find the special bin containing the alphabet elements of A. For the quantum lower bound,
we use Theorem 17. Let X be the set of inputs in which the elements of A were placed for
a 0-certificate bin, and let Z be the set of inputs in which the elements of A were placed
for a 1-certificate bin. Our relation R will simply be X × Z. Then each element of X has α
neighbors in Z, and vice versa. However, for each entry t and (x, y) ∈ R, we have lx,t = 1 or
ly,t = 1, so lx,tly,t ≤ α. Thus we get a quantum lower bound of Ω(

√
α).

Finally, to complete the proof, we note that α = Ω(min(nk ,
k

C(f) )) = Ω( k
C(f) ) (since

n ≥ k2), so that, combining with Corollary 9, R(f) = Ω(β) and Q(f) = Ω(
√
β) with

β = max(
√

C(f), k
C(f) ). Note that this satisfies β = Ω(k1/3). This gives:

R(f) = Ω(min{D(f)1/6, n1/9}) ,

Q(f) = Ω(min{D(f)1/12, n1/18}). J

4 Symmetric Promises with Small Alphabets

In this section, we show a polynomial relationship between Q(f) and R(f) for any function
on a symmetric promise whose alphabet size is constant, proving Theorem 6. We will
use the term symmetric to refer to invariance under permutation of the indices of the
inputs. That is, a promise X is symmetric if xσ ∈ X for all x ∈ X and σ ∈ Sn, where
xσ = (xσ(1), xσ(2), . . . , xσ(n)), and a function f : X → {0, 1} is symmetric if X is symmetric
and f(x) = f(xσ) for all x ∈ X and σ ∈ Sn.

4.1 The case of Symmetric Functions
We start by dealing with the case where the function f is itself symmetric.

I Theorem 13. Let f : X → {0, 1} be a symmetric function. Then Q(f) = Ω
(

R(f)1/8

M log1/8 M

)
.

To prove this theorem, we relate Q(f) and R(f) to g(f), which we now define.

I Definition 14. If T1, T2 are orbits on alphabet [M ], the distance d(T1, T2) between T1 and
T2 is the maximum over all i ∈ [M ] of the difference between the multiplicity of i in T1 and
the multiplicity of i in T2. If f : X → {0, 1} is a symmetric function, let d(f) be the minimum
of d(T1, T2) for orbits T1, T2 ⊆ X with different values under f . Define g(f) := n

d(f) .

We proceed to prove lemmas relating g(f) to R(f) and Q(f) to g(f).

I Lemma 15. For any x ∈ [M ]n, O(n
2 logM
d2 ) queries suffice to find an orbit T such that

d(T, τ(x)) < d with probability at least 2
3 (where τ(x) denotes the orbit of x). Hence, if

f : X → {0, 1} is symmetric, R(f) = O(g(f)2 logM).
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Proof. We describe a classical randomized algorithm for estimating the orbit of input x. The
algorithm is simply the basic sampling procedure that queries random entries of x and keeps
track of the number ri of times each alphabet element i was observed. The orbit T is then

formed by T (i) = round
(

ri∑
i∈[M]

ri
n

)
, where the rounding operation sometimes rounds up

and sometimes down, in order to preserve the sum of T (i) being n. Note that the ratios
T (i)/n are within 1/n of the observed frequency of i.

Let the orbit of x be τ(x) = (t1, t2, . . . , tM ), so that the multiplicity of alphabet element
i in τ(x) is ti. A version of the Chernoff bound states that if we have k ≥ 3

ε2 ln 2
δ samples

estimating the proportion p of the population with some property, the proportion of the
sample with that property is in (p− ε, p+ ε) with probability at least 1− δ.

Suppose d ≥ 2. Setting ε = d−1
n and δ = 1

3M , we see that O(n
2 log(M)
d2 ) samples suffice

for T (i)
n to be within d

n of ti
n with probability at least 1 − 1

3M . In other words, we have
|T (i)−ti| < d with probability 1− 1

3M for each i. The union bound then gives us |T (i)−ti| < d

for all i with probability at least 2
3 . This shows that d(T, τ(x)) < d, as desired.

When d = 1, we set ε = 1
2n and δ = 1

3M to get frequency ratios within 1
2n of the true

values ti
n with probability at least 2/3. The closest integer orbit to the observed frequency

ratios will then be exactly correct with probability at least 2/3.
To compute f(x) for symmetric f , a randomized algorithm can estimate the orbit of x to

within d(f)
2 , and then just output the value of f on any input of the orbit within d(f)

2 of the
estimated orbit T . Since g(f) = n

d(f) , we get R(f) = O(g(f)2 logM). J

I Lemma 16. If f : X → {0, 1} is symmetric, then Q(f) = Ω(g(f)1/4/M2).

Proof. Let S and T be orbits with distance d(f) such that if x has orbit S and y has orbit
T then f(x) 6= f(y). We claim that a quantum algorithm cannot distinguish between these
orbits in less than the desired number of queries.

We proceed by a hybrid argument. We form a sequence of orbits {Si}ki=0 with k ≤ M

such that S0 = S, Sk = T , and for all i = 0, 1, . . . , k − 1, the orbits Si and Si+1 differ in the
multiplicity of at most 2 alphabet elements and have distance at most d(f).

We do this as follows. Set S0 = S. Let A be the set of alphabet elements on whose
multiplicities the current Si agrees with T ; at the beginning, A is the set of alphabet elements
on which S and T have the same multiplicity, which may be empty. To construct Si+1 given
Si, we simply pick an alphabet element r for which Si has a larger multiplicity than T and an
alphabet element r′ for which Si has a smaller multiplicity than T . We then set Si+1 to have
the same multiplicities as Si, except that the multiplicity of r is reduced to that in T and the
multiplicity of r′ is increased to make up the difference. Note that the multiplicity of r is then
equal in Si and T , so r gets added to A. Moreover, note that d(Si, Si+1) ≤ d(Si, T ), and also
d(Si+1, T ) ≤ d(Si, T ). Since this is true for all i, it follows that d(Si, Si+1) ≤ d(S, T ) = d(f).

Since an alphabet element gets added to A each time and the elements are never removed,
this procedure is terminated with Sk = T after at most M steps. Thus k ≤ M . Also,
consecutive orbits differ in the multiplicities of 2 elements and have distance at most d(f).

We now give a lower bound on the quantum query complexity of distinguishing Si from
Si+1. Without loss of generality, let the alphabet elements for which Si and Si+1 differ be 0
and 1, with 0 having a smaller multiplicity in Si. Let a be the multiplicity of 0 in Si, and let
b be the multiplicity of 1 in Si, with 0 < b− a ≤ d(f). Let c and d be the multiplicities of 0
and 1 in Si+1, respectively. Then c+ d = a+ b. Let e = a+ b = c+ d.

We prove two lower bounds using Ambainis’s adversary method, corresponding to e being
either large or small. For the small case, consider an input x of orbit Si split into 2α = bne c
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blocks B1, B2, . . . , B2α of size e each, such that all the 0 and 1 elements lie in block B1. To
change the input from orbit Si to Si+1, we must simply change the first block. Also, note
that rearranging the blocks does not change the orbit. Let X be the set of inputs given by
rearranging the blocks of x so that the block B1 ends up in the first α blocks, and let Y be
the set of inputs given by replacing B1 to get orbit Si+1 and then rearranging the blocks so
that B1 ends up in the last α blocks. We now have a reduction from permutation inversion,
so using Ambainis’s adversary method, we get a lower bound of Ω(

√
α) = Ω(

√
n
e ).

For the case when e is big, we restrict to inputs in which all elements are fixed except for
those with value 0 or 1. A lower bound of Ω(

√
e/d(f)) then follows from the appendix of [1].

If e ≤
√
nd(f), the former bound gives a lower bound of Ω(( n

d(f) )1/4) for distinguishing
Si from Si+1 by quantum queries. If e ≥

√
nd(f), the latter bound gives the same. Thus we

have a lower bound of Ω(g(f)1/4) in all cases.
Finally, note that if a quantum algorithm could compute f(x) in Q(f) queries, then for

some i it could distinguish Si from Si+1 with probability Ω( 1
M ). Thus we could use M2 Q(f)

queries to distinguish Si from Si+1 with constant probability, so Q(f) = Ω(g(f)1/4/M2). J

These two lemmas combine to prove Theorem 13.

4.2 The General Case
We now prove Theorem 6. The proof proceeds by describing a classical algorithm that doesn’t
use too many more queries than the best quantum algorithm. An interesting observation
is that this classical algorithm is mostly deterministic, and uses only O(Q(f)8M16 logM)
randomized queries at the beginning (to estimate the orbit of the input).

For this proof, we will often deal with certificates c for f that only work on inputs of
some specific orbit S; that is, all inputs x ∈ X of orbit S that are consistent with c have the
same value under f . We will say c is a certificate for the orbit S.

Proof. Let f be a function. We describe a classical algorithm for computing f on an input
x, and argue that a quantum algorithm cannot do much better.

As a first step, the algorithm will estimate the orbit of x using O(Q(f)8M16 logM)
queries. By Lemma 15, this will provide an orbit T such that d(T, τ(x)) < n

CM8 Q(f)4 with
high probability, where we choose the constant C to be larger than twice the asymptotic
constant in Lemma 16. We restrict our attention to orbits that are within n

CM8 Q(f)4 of T .
Now, notice that if we fix an orbit S and assume that x has this orbit, then there

is a deterministic algorithm that determines the value of f(x) in at most α steps, where
α = O(Q(f)18). Since this is a deterministic algorithm, it must find a certificate of size at
most α for the orbit S. The only other possibility is that the deterministic algorithm finds a
partial assignment that contradicts the orbit S, in which case it cannot proceed. Running
this deterministic algorithm on orbit S will be called examining S.

Note further that we can assume we never find a 0-certificate c0 for some orbit S0 and a
1-certificate c1 for some other orbit S1 without the certificates contradicting either orbit. This
is because if we found such certificates, then we can lower bound Q(f) restricting the function
to inputs that agree with c0 and c1 and have orbit equal to either S0 or S1. The quantum
algorithm for f would then have to distinguish between these orbits, which is equivalent to
distinguishing between orbits with multisets S0 − (τ(c0) ∪ τ(c1)) and S1 − (τ(c0) ∪ τ(c1)) on
inputs of size n− |c0 ∪ c1|. These orbits have distance at most n

CM8 Q(f)4 . Since n > 4α (or
else R(f) = O(n) = O(Q(f)18)), we have n−|c0∪c1| > n

2 , and (n2 )/( n
CM8 Q(f)4 ) = CM8 Q(f)4

2 ;
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then Lemma 16 together with the choice of c imply that a quantum algorithm takes more
than Q(f) queries to distinguish these orbits, a contradiction.

For an orbit S, we now define v(S) ∈ [2α+1]M to be the vector with v(S)i = min(S(i), 2α)
for all i, where S(i) is the multiplicity of i in the orbit S. If an input has orbit S, we call
v(S) the simplified orbit of the input. We consider the partial order on simplified orbits
given by v(S) ≥ v(R) if and only if v(S)i ≥ v(R)i for all i = 1, 2, . . .M . We say a simplified
orbit v(S) is maximal if it is maximal in this partial order.

The algorithm proceeds by finding the set of maximal simplified orbits, and selecting a
representative orbit S for each maximal simplified orbit v so that v(S) = v. Let the orbits
selected this way be S1, S2, . . . , Sβ . For each Si, we then run the deterministic algorithm
that uses α queries assuming orbit Si. Let ci be the set of queries made by this algorithm
for orbit Si. Note that the total number of queries made this way is at most αβ.

For each Si, the partial assignment ci is either a certificate for Si or a disproof of the
orbit Si. Consider the pairwise unions ci ∪ cj . We restrict our attention to the orbits Si that
are consistent with ci ∪ cj for all j. We claim that there is at least one such orbit. Indeed,
if T is the true orbit of the input, then v ≥ v(T ) for some maximal simplified orbit v, and
v(Sk) = v for some k. Then Sk cannot be disproven in 2α queries, as that would disprove v
and therefore v(T ) as well.

Now, let Si and Sj be any two orbits remaining. Then they are both consistent with
ci ∪ cj . As we saw earlier, we cannot have ci be a 0-certificate for Si and cj be a 1-certificate
for Sj (or vice versa); the certificates ci and cj must agree. We conclude that the certificates
ci for the remaining orbits are either all 0-certificates (for their respective orbits) or all
1-certificates. Our algorithm will then output 0 in the former case and 1 in the latter.

To see that the algorithm is correct, recall that Sk is one of the remaining orbits, with
v(Sk) = v ≥ v(T ). Without loss of generality, suppose the algorithm output 0, so that ck
is a 0-certificate. Suppose by contradiction that f(x) = 1 for the our input. Let c be a
1-certificate consistent with x of size at most α. Then c is a 1-certificate for the orbit T .
Now, c ∪ ck cannot disprove v(T ) (since it has size at most 2α), so c ∪ ck cannot disprove T .
Since c ∪ ck cannot disprove v(T ), it also cannot disprove v, so it cannot disprove Sk. This
means T and Sk are not disproven by their 0- and 1-certificates, which we’ve shown is a
contradiction. Thus if the algorithm outputs 0, we must have f(x) = 0 as well.

The total number of queries required is O(Q(f)8M8 logM) + αβ, where α = O(Q(f)18).
We must estimate β, the number of maximal simplified orbits. This is at most the number
of maximal elements in [2α+ 1]M in our partial order. We can show by induction that this
is at most (2α+ 1)M−1: in the base case of M = 1, the value is 1, and when M increases by
1 the number of maximal elements can increase by at most a factor of (2α+ 1). This gives a
final bound of O(Q(f)18M ) on the number of queries when M is constant.

To reduce this to O(Q(f)18(M−1)), we note that some alphabet element a must occur at
least n/M times in T , by the pigeonhole principle. We could then use O(Mα) queries to
find 2α instances of a with high probability. Then each simplified orbit v will have va = 2α,
so the simplified orbits are effectively elements of [2α+ 1]M−1 instead of [2α+ 1]M . This
decreases β to (2α+ 1)M−2, so the total number of queries decreases to O(Q(f)18(M−1)). J
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