
Analysis of Bounds on Hybrid Vector Clocks∗

Sorrachai Yingchareonthawornchai1, Sandeep Kulkarni2, and
Murat Demirbas3

1 Michigan State University, MI, USA
yingchar@cse.msu.edu

2 Michigan State University, MI, USA
sandeep@cse.msu.edu

3 University at Buffalo, SUNY, NY, USA
demirbas@buffalo.edu

Abstract
Hybrid vector clocks (HVC) implement vector clocks (VC) in a space-efficient manner by ex-
ploiting the availability of loosely-synchronized physical clocks at each node. In this paper, we
develop a model for determining the bounds on the size of HVC. Our model uses four parameters,
ε: uncertainty window, δ: minimum message delay, α: communication frequency and n: number
of nodes in the system. We derive the size of HVC in terms of a differential equation, and show
that the size predicted by our model is almost identical to the results obtained by simulation. We
also identify closed form solutions that provide tight lower and upper bounds for useful special
cases.

Our model and simulations show the HVC size is a sigmoid function with respect to increasing
ε; it has a slow start but it grows exponentially after a phase transition. We present equations to
identify the phase transition point and show that for many practical applications and deployment
environments, the size of HVC remains only as a couple entries and substantially less than n.
We also find that, in a model with random unicast message transmissions, increasing n actually
helps for reducing HVC size.

1998 ACM Subject Classification C.2.4 Distributed Systems, distributed databases, D.1.3 Con-
current Programming, D.4.2. Distributed memories, D.4.3 Distributed file systems

Keywords and phrases Vector Clocks, Physical Clocks, Large Scale Systems

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.34

1 Introduction

Work on theory of distributed systems abstract away from the wall-clock/physical-clock
time and use the notion of logical clocks for ordering events in asynchronous distributed
systems [12, 10, 13]. The causality relationship captured by these logical clocks, called
happened-before (hb), is defined based on passing of information, rather than passing of
time.1 Lamport’s logical clocks [12] (LC) prescribe a total order on the events: A hb B =⇒
lc.A < lc.B but vice a versa is not necessarily true. Vector clocks [10, 13] (VC) prescribe
a partial order on the events: A hb B ⇐⇒ vc.A < vc.B and A co B ⇐⇒ (¬(vc.A <

vc.B) ∧ ¬(vc.B < vc.A). Using LC or VC, it is not possible to query events in relation to
physical time. Moreover, for capturing hb, LC and VC assume that all communication occur

∗ This work is supported by NSF CNS 1329807, NSF CNS 1318678, NSF XPS 1533870, and XPS 1533802.
1 Event A hb event B, if A and B are on the same node and A comes earlier than B, or A is a send event

and B is the corresponding receive event, or this is defined transitively based on the previous two.

© Sorrachai Yingchareonthawornchai, Sandeep Kulkarni, and Murat Demirbas;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 34; pp. 34:1–34:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.34
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34:2 Analysis of Bounds on Hybrid Vector Clocks

in the present system and there are no backchannels. This assumption is obsolete for today’s
integrated, loosely-coupled system of systems. Finally, the space requirement of VC is shown
to be Θ(n) [3], the number of nodes in the system, and is prohibitive.

Practice of distributed systems, on the other hand, employ loosely synchronized clocks,
mostly using NTP [15]. Unfortunately, there are fundamental limits to clock synchroniza-
tion and perfect synchronization is unachievable due to the nature of distributed systems:
messaging with uncertain latency, clock skew among processors, and NTP glitches [15].
Even using atomic clocks, as in Google TrueTime [5], it is hard to reduce ε, the uncer-
tainty of the clock synchronization, to less than a couple milliseconds. This requires that
operations/transactions wait out these ε uncertainties, which takes its toll on the performance.

Recently, we introduced a third option, hybrid clocks [6, 11]. Hybrid clocks combine the
best of logical and physical clocks; hybrid clocks are immune to their disadvantages while
providing their benefits. Hybrid clocks are loosely synchronized using NTP, yet they also
provide provable comparison conditions as in LC or VC within ε uncertainty. Hybrid clocks
also address the backchannel communication issue by introducing the notion of ε− hb that
captures the intuition that if event B happened far later than event A, then event A can
affect event B due to out-of-bound communication. If events A and B are close, then the
causality relation is taken into account to identify whether A can affect B.

Our hybrid clocks come in two flavors: hybrid logical clocks (HLC) [11] and hybrid vector
clocks (HVC) [6]. HLC satisfy the logical clock comparison condition as in LC [12]. HLC finds
applications in multiversion distributed database systems [4] and enable efficient querying of
consistent snapshots for read transactions, while ensuring commits of write transactions do
not get delayed despite the uncertainties in NTP clock synchronization [11]. HVC satisfy the
vector clock comparison condition as in VC [10, 13], and can serve in applications that HLC
become inadequate. In contrast to HLC that can provide a single consistent snapshot for a
given time, HVC is able to provide all possible/potential consistent snapshots for that given
time. As such, HVC finds applications in debugging for concurrency race conditions of safety
critical distributed systems and in causal delivery of messages to distributed system nodes.

HVC reduces the overhead of causality tracking in VC by utilizing the fact that the clocks
are reasonably synchronized. When ε is infinity, HVC behaves more like VC used for causality
tracking in asynchronous distributed systems. When ε is very small, HVC behaves more like
a scalar physical synchronized clock, but also combines the benefits of causality tracking
in uncertainty intervals. Although the worst case size for HVC is Θ(n), we observe that if
j does not hear (directly or transitively) from k within ε time then hvc.j[k] need not be
explicitly maintained. In that case, we still infer implicitly that hvc.j[k] equals hvc.j[j]− ε,
because hvc.j[k] can never be less than hvc.j[j] − ε thanks to the clock synchronization
assumption. Therefore, in practice the size of hvc.j would only depend on the number of
nodes that communicated with j within the last ε time and provided a fresh timestamp that
is higher than hvc.j[j]− ε. In other words, by using temporal slicing, HVC can circumvent
the Charron-Bost result [3] and can potentially scale the VC benefits to many thousands of
processes by still maintaining small HVC at each process.

Contributions of this paper. But how effective are HVC for reducing the size of VC? What
bounds should we expect on the number of entries in HVC for a given ε? Determining these
bounds on HVC would help developers to budget the size of the messages the nodes send,
the size of the memory to maintain at the nodes, and the scalability and performance of
their system. In this paper, we derive and identify these bounds.

To this end, we develop an analytical model that uses four parameters, ε: uncertainty
window, δ: minimum message delay, α: message rate, and n: number of nodes in the system.

S. Yingchareonthawornchai, S. Kulkarni, and M. Demirbas 34:3

We derive the size of HVC in terms of a differential equation, and show that the size predicted
is almost identical to the results obtained by simulation experiments. We also identify closed
form solutions that provide tight lower and upper bounds for useful special cases.

Our model and simulations show the HVC size is a sigmoid function with respect to
increasing ε; it has a slow start but it grows exponentially after a critical phase transition.
Before the phase transition threshold, HVC maintains couple entries per node, however when
a threshold is crossed, a node not only gets entries added to its clock from direct interaction
but also indirect transfer from another processes HVC, and this makes the HVC entries blow
up. We present equations to identify this transition point. Specifically, for the common case
of α ∗ δ < 1, we derive this threshold as (1

α + δ)(ln((2−
√

3)(n− 1))).
Using this equation, we describe how to avoid/delay the threshold point. If an application

developer reduces α, the phase transition is delayed, and small HVC sizes are still achievable
for a given ε and δ. Moreover, while in VC the size increases directly with n, we find that in
HVC, surprisingly, the increase of n, in fact, benefits in reducing the size of HVC. Using a
model with random unicast message transmissions, for larger n, the probability of indirect
HVC entry addition/transfer reduces slightly, and hence larger n, in fact delays the phase
transition to large HVC sizes.

We show in our discussion section that for most practical applications and deployment
environments, the size of HVC remains only as a couple entries and substantially less than n.
Yet, when it is needed HVC expands on demand to allow more entries to capture causality
both ways in the ε uncertainty slices.

Outline of the rest of the paper. After presenting the preliminaries in Section 2, we present
our analytical solutions in Section 3, and solutions for useful special cases in Section 4. We
present evaluation results in simulation to show how well the analytical models capture the
HVC bounds in Section 6. We discuss practical implications of our findings in Section 7,
related work in Section 8, and conclude in Section 9.

2 System Model

We use n to denote the number of processes in the system. Although processes can be
added dynamically, we assume that each of them has a distinct identifier. Each process j
is associated with a physical clock pt.j. We assume that clock synchronization algorithm
such as NTP [15] is used to provide a reasonable but imperfect clock synchronization to the
processes. For ease of presentation, we assume the existence of an absolute time: this time is
not accessible to processes themselves, and it is used only for the presentation and proofs
associated with our algorithm. Specifically, we assume that at any given time the difference
between any two clocks at processes, pt.j and pt.k, is bounded by ε, ε ≥ 0.

Processes communicate via messages. We make no assumptions such as FIFO ordering
or bounded delivery time. In other words, messages could be delivered out of order. They
could also be delivered a long time after they are sent. We assume that there is a minimum
message delay δmin (as computed by the absolute global time) before message is delivered.

In our analytical model to compute the size of HVC at any process, we assume that
at each absolute time tick, each process sends a message to some other process (selected
randomly) with probability α. We permit messages to be delivered as early as possible, we
allow a process to receive multiple messages simultaneously.

Let sj(t) be a random variable representing size of active HVC of process j at time t.
Thus, our goal is to identify an expected average active HVC size Ψ(t) = E[

∑
j sj(t)/n], and

OPODIS 2015

34:4 Analysis of Bounds on Hybrid Vector Clocks

ψ(t) = Ψ(t)/n. We aim to find an analytical solution to ψ(t) given four parameters ε, δ, α,
and n.

2.1 Unconstrained and Constrained Time Models
To develop this analytical solution, we develop two models: 1) an unconstrained model where
we compute the size of HVC by assuming that ε = ∞, and 2) a constrained model that
considers the value of ε. Without loss of generality, we focus on one sender process, say j.
Our goal is to identify the number of processes that maintain he clock of this process at a
given time t. In turn, this enables us to find the expected size of each HVC entry. To make
this analysis simpler to understand, we introduce the notion of a color –red or green– for
each process. The color of process k is red at time t iff k is maintaining the clock of process
j at time t. In other words, color.k is red iff the knowledge that k has about the clock of j is
more than that provided by clock synchronization. Clearly, in the initial state t = 0, j is red
and all other processes are green.

Model 1: unconstrained time model. Given the notion of color maintained by each process,
we can observe that if a red process sends a message to a green process, then the green process
learns information about the clock of j. In other words, it makes the recipient red. Messages
sent by green process can be ignored since they do not provide non-trivial information about
the clock of j.

In this model, let Y (t) denote number of red processes at time t. Note that n− Y (t) is
number of green processes at time t. Also, let y(t) = Y (t)/n be the fraction of red process at
time t. We aim to analytically compute y(t) given δ, α, n for ε→∞.

Model 1 captures the case where ε =∞. The reason we consider this model is due to an
important result (shown in Theorem 13) that demonstrates that the value of Y (ε) can be
used to compute the number of red processes in the ε-constrained model (discussed next)
that utilizes the actual value of ε in the given system.

Model 2: ε-constrained time model. To capture the effect of the hybrid model where ε
has a finite value (and hence, a red process will turn green if it does not hear recent clock
information of process j), we define τ -message as a message that is originated by the initial
red process j at time τ . τ -message triggers green process to be red if τ + ε ≤ t. Otherwise,
even if the green process receives information about the clock of j, this information is still
beyond the uncertainty interval. Let Yε(t) be number of red processes of Model 2 at time t.
We aim to compute an analytical solution to yε(t) = Yε(t)/n for given ε, δ, α, and n.

3 Analytical Solutions

Given that ε-constrained time model can be answered by unconstrained time model as shown
in Theorem 13, this means analytical solution to unconstrained time model implies the
solution to our system model.

Based on the definition of color.k, in the initial state, color.j is red and color.k is green
for any k 6= j. It follows that at time t = [0..δ], j is the only red process as message sent by
j has not been received by anyone. When a green process receives a message it turns red
and stays red forever. Let Y (t) be number of red processes at time t. Note that number of
green processes at time t is then n− Y (t). Since message delay for every message is δ, Y (t)
depends upon Y (t− δ), i.e., the number of processes that were red δ time before.

S. Yingchareonthawornchai, S. Kulkarni, and M. Demirbas 34:5

Our first result in this context, given in Lemma 1, captures the number of messages
delivered at time t to green processes.

I Lemma 1. The expected number of messages delivered to green processes at time t is
αY (t− δ)(1− Y (t)/n)

Proof. The expected number of red messages delivered at time t is αY (t− δ) since each red
process in Y (t− δ) has α probability to send a unicast message. At time t, the probability
of a message getting delivered to green is the fraction of green process at time t, 1− Y (t)/n
assuming that each process has equally likely change to receive such message. The result
follows immediately by linearity of expectation. J

Although Lemma 1, counts the number of red messages sent to green processes, it
overcounts the processes that can become red, as one green process may receive multiple
messages. To analyze the number of processes that turn red, we observe that this problem
can be viewed as throwing a number of balls (i.e., messages sent by red processes) into a
set of bins (i.e., the green processes) to identify the expected number of non-empty bins
(i.e., processes that receive at least one ball and therefore turn red). In this context, we use
Lemma 2.

I Lemma 2. Consider occupancy problem where there are A balls and B bins. All balls are
thrown to random bins. Expected number of non-empty bins is B(1− (1− 1/B)A).

Proof. Fix one bin. Probability of the bin being empty is (1− 1/B)A since all balls must
miss this bin. By linearity of expectation, expected number of empty bins is B(1− 1/B)A.
Hence, expected number of non-empty bins is B minus number of empty bins. J

Now, we can compute the change of red processes at time t by applying Lemma 2 using
A = αY (t− δ)(1− Y (t)/n) (from Lemma 1) and B = n− Y (t) since B is number of green
process at time t. Hence, dY (t)

dt is (n− Y (t))(1− (1− 1
(n−Y (t)))αY (t−δ)(1−Y (t)/n))

We can simplify the expression by using the fact that limn→∞(1 +x/n)n = ex. We adjust
some terms in Equation above and let x = −1

(1−Y (t)/n) , we obtain

(n− Y (t))(1− (1− 1
n(1−Y (t)/n))αnnY (t−δ)(1−Y (t)/n)) = (n− Y (t))(1− e

−αY (t−δ)
n)

Since y(t) = Y (t)/n, we get dy(t)
dt = (1− y(t))(1− e−αy(t−δ))

Finally, based on the initial values, we have y(t) = 1/n for t < δ. And, since we can
consider each process j independently, which means the expectation does not change. Thus,
we have the following Theorem.

I Theorem 3. The expected average size of hvc per process of ψ(t) satisfies the following
delay differential equation.

dψ

dt
= (1− ψ(t))(1− e−αψ(t−δ))

where initial condition is ψ(t) = 1/n for t < δ.

From this point on, we use ψ(t) (random variable of fraction of average size of hvc) and
y(t) (random variable of fraction of red processes) interchangably since they have same
expactation value.

OPODIS 2015

34:6 Analysis of Bounds on Hybrid Vector Clocks

4 Explicit Solutions for Special Cases

Theorem 3 provides a mechanism to compute the size of hvc. Since the differential equation
in Theorem 3 cannot be solved explicitly, one must utilize numerical tools, such as MATLAB
and Mathematica, to obtain the size of hvc from that equation.

However, closed form solutions —that can be computed with a basic calculator— may be
more desirable since they can offer a quick insight into the size of hvc.

In this section, we provide closed form solutions for some special cases. Specifically, when
α is arbitrarily small, we obtain an explicit solution to Theorem 3 given that α ∗ δ is small.
If α ∗ δ is not necessarily small, we derive an yet explicit solution up to ε ≤ 3δ for arbitrary δ.
Using simplification technique, we can obtain upper and lower bounds solution to Theorem 3
if α is not necessarily small. Based on our evaluation, the value of α ∗ δ < 1 is sufficient to
obtain accurate closed form solutions. Otherwise, ε ≤ 3δ can capture almost all value of y.

These bounds are fairly tight as shown in the simulation results in Section 6. The problem
for computing closed form solution where δ > 0 and ε > 3δ is currently open.

4.1 Explicit Solution for Arbitrarily Small α and α ∗ δ
We put two main simplifications to obtain explicit solutions. First, we assume that α
is small (typically, α < 0.1) so that we have good approximation of 1 − e−αy(t−δ) using
Taylor’s series expansion. The expansion is αy − α2y2/2 + O(α3y3). If α is small, this
expansion is approximately αy. Hence, the differential equation in Theorem 3 becomes
dy
dt = α(1− y(t))y(t− δ). Second simplification is suppose α ∗ δ that is arbitrarily small. We
have the following Lemma.

I Lemma 4. if αδ > 0 is arbitrarily small, then y(t) = (1 + αδ)y(t− δ)

Proof. We can approximate the change of y(t) over δ period of time in the past. That is, the
change y(t)−y(t−δ)

δ is approximately dy
dt . Based on expression above, the change is roughly

α(1− y(t))y(t− δ). Therefore, y(t) = y(t− δ) +αδ(1− y(t))y(t− δ). The result follows from
that the product αδ is approaching zero. J

Using Lemma above, we reduce delay differential equation to ordinary differential equation
as in the following. The differential equation is elementary to be solved by standard ordinary
differential equation procedure.

I Theorem 5. For the case where α ∗ δ > 0 is arbitrarily small, the change of y over time
is dy

dt = α
1+αδ (1− y)y with initial condition y(0) = 1/n. Further, the explicit solution to the

differential equation is

y(t) = 1
1 + (n− 1)e−αt/(1+αδ) .

4.2 Phase Transition
The result for Theorem 5 implies that the graph of y is essentially a logistic function (or
Sigmoid function). One important characteristic of this function is it has slow start in the
initial state and then the function grows exponentially after a phase transition. In this
section, we discover such transition in terms of δ, α and n. We define phase transition point
εp as the earliest point where the change of slope is maximum. In particular, we show the
following result.

S. Yingchareonthawornchai, S. Kulkarni, and M. Demirbas 34:7

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
standard inequality

x
1-exp(-x)
x/2

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
tight inequality

(1-exp(-1))*x
1-exp(-x)
(1-exp(-1))*x+c

Figure 1 Standard inequality and tight inequality.

I Theorem 6. The phase transition εp for Theorem 5 is (1
α + δ)(ln((2−

√
3)(n− 1))).

Proof. The slope of y(t) is y′(t). The change of slope is y′′(t). The maximum of change of
slope is when y(3)(t) = 0. We get the result by finding third order derivative of y. Then,
we set y′′′ to 0. Suppose the function is in the following form: dy

dt = a(1 − y)y. We apply
derivative twice from dy

dt to obtain the third order derivative of y. By simple differentiation,
we have

y′′′(t) = a3(n− 1)eat(−4(n− 1)eat + e2at + (n− 1)2)
(eat + n− 1)4 .

When y′′′(t) = 0, we obtain quadratic equation in the form of eat:

e2at − 4(n− 1)eat + (n− 1)2 = 0 .

Solving quadratic quation, we obtain eat = (n− 1)(2±
√

3). We select the earlier time by
definition of phase transition. Then, t = (1/a)(ln((n− 1)(2−

√
3)). The result follows when

we substitute a = α
1+αδ . J

4.3 Explicit Solution for t < 3δ
If α is not necessarily small, we can obtain bounds in terms of upper and lower bounds. The
technique is to simplify the function so that differential equation is easily solvable. Since the
equation in Theorem 3 involves ex, in Lemma 7, we first identify a tight bound on the value
of ex when x is in the range [0..1].2

I Lemma 7. For x, α ∈ [0, 1] , this inequality holds

(1− e−α)x ≤ 1− e−αx ≤ (1− e−α)x+ ξ

where

ξ = 1− (1− e−α

α
)(1 + ln(α

1− e−α)) .

2 Remark. The standard inequality identity regarding ex is that 1− e−x ≤ x for any real number x, and
x/2 ≤ 1− e−x for some small range x. We considered using these upper and lower bounds in subsequent
results. However, these bounds are not tight when x ∈ [0..1] as shown in Figure 1, which is the case in
Theorem 3. This is the reason we use Lemma 7 in subsequent computation.

OPODIS 2015

34:8 Analysis of Bounds on Hybrid Vector Clocks

Proof. We only need to find slope and y-intercept for two lines. The lower bound is easily
attainable by considering two points (0, 0) and (1, 1 − e−α). For the upper line, we know
that the slope must be equal to the lower line, which is 1− e−α. We want the upper line
to touch exactly one point above the function 1− e−αx in some point x ∈ [0, 1]. The only
remaining part is to find y-intercept. First, we find a point of the function 1− e−αx such
that the line passing it has slope of 1− e−αx. Using basic derivative and solve for x we get
x = 1

α ln(α
1−e−α)

Substituting x in the function 1− e−αx yields 1− (1−e−α

α). Finally, we find y-intercept
of upper line given slope of 1− e−α.

y = mx+ c

1− (1− e−α

α
) = (1− e−α)

α
(ln(α

1− e−α)) + c

c = 1− (1− e−α

α
)(1 + ln(α

1− e−α)) J

Subsequently, we use the upper and lower bounds identified in Lemma 7 in Theorem 3
for the case where δ is arbitrary but t ≤ 3δ. In other words, this allows us to capture how
the size of hvc grows in the first 3δ time. This gives us another explicit function if α ∗ δ > 1
and is evaluated in the Simulation section. Note that the bound in Lemma 7 is quite tight
as we can see the result presented in Section 6.3.

I Theorem 8. The solution ψ(t) to Theorem 3 is bounded by the following time condition.
For t ∈ [δ, 2δ],

ψ(t) = 1− ke−αt/n

where k = (1− 1/n)eαδ/n.
For t ∈ [2δ, 3δ],

1− k`H(t) ≤ ψ(t) ≤ 1− kuH(t)eξ(t−δ)

where H(t) = e(1−e−α)(kne−α(t−δ)/n/α+t−δ) and

k` = (1− (1− ke−2δα/n))e(1−e−α)(knα e
−δα/n+δ)

ku = k`e
δξ

ξ = 1− (1− e−α

α
)(1 + ln(α

1− e−α))

Proof. For t ∈ [δ, 2δ], we can model as a sequence of single unicast message from the past
t− δ and quantify the change accordingly. During t ∈ [δ, 2δ], there is at most one message
delivered because during t − δ there is only one green process, i.e., process j. Therefore,
at any time the change of y depends only current y and one message with probability
α. The expected change of fraction of Y over time is given a simple differential equation:
dy
dt = α

n (1− y) with initial condition y(δ) = 1/n. Solving ordinary differential equation is an
easy exercise.

I Lemma 9. The solution to differential equation: dy
dt = α

n (1 − y) with initial condition
y(δ) = 1/n is y1(t) = 1− ke−αt/n where k = (1− 1/n)eαδ/n.

For t ∈ [2δ, 3δ], we replace the term 1− e−αy with corresponding lower and upper bounds
in Lemma 7. Consider the delay differential equation in Theorem 3 dy

dt = (1−y)(1−e−αy(t−δ))

S. Yingchareonthawornchai, S. Kulkarni, and M. Demirbas 34:9

During t ∈ [2δ, 3δ], the function y(t− δ) becomes y1(t− δ) = 1− ke−αt/n By Lemma 9. We
use the tight lower and upper bounds as in Lemma 7 to obtain the equation:

(1− y)Ay ≤ dy

dt
≤ (1− y)(Ay + ξ)

where A = (1− e−α). Then, we instantiate value of y = y1 = 1− ke−α(t−δ)/n to obtain the
following inequality:

(1− y)((1− e−α)(1− ke−α(t−δ)/n)) ≤ dy

dt
≤ (1− y)((1− e−α)(1− ke−α(t−δ)/n) + ξ) .

From this expression, we can consider only the equation dy
dt = (1 − y)((1 − e−α)(1 −

ke−α(t−δ)/n) + ξ) as the lower bound term follows immediately from upper bound result
when instantiating b = 0 of Lemma 10, which is easily verified.

I Lemma 10. We have the following integral results∫
((1− e−α)(1− ke−α(t−δ)/n) + b)dt = (1− e−α)(kn

α
e−α(t−δ)/n + (t− δ)) + b(t− δ) +C .

The remaining part is to use the result from Lemma 10 to solve ordinary differential equation
and find a constant term with initial condition y(2δ) = 1− ke−2δα/n.

dy

dt
= (1− y)((1− e−α)(1− ke−α(t−δ)/n) + ξ)∫

(1
1− y)dy =

∫
((1− e−α)(1− ke−α(t−δ)/n) + b)dt

y = 1− k0e
−((1−e−α)(knα e

−α(t−δ)/n+t−δ)+b(t−δ))

The results follow since k0 can be solved with initial condition y(2δ) = 1 − ke−2δα/n.
This completes the proof. J

5 Reduction of ε-Constrained Time Model to Unconstrained Time
Model

In this section, we show that unconstrained and ε-constrained time model are closely related.
In particular, in Theorem 13, we show that ε-constrained time model can be solved by the
solution for the unconstrained time model.

We first describe the basic idea behind Theorem 13. Initially, the process j is the only
one red process. After some time, the number of red processes increases since process j sends
message to some other processes and other processes that carry active information about j
also send this entry, i.e., red processes help disseminate red messages. At the same time, if
a process does not hear a message that contains newer information (directly or indirectly)
about process j then in ε-constrained time model, this process should turn green. Therefore,
at any time, the change of number of red processes is due to (1) green processes turning red,
and (2) red processes turning green. We show that the number of red processes remains
unchanged after some period of time. That is, the increase due to (1) is equal to the decrease
due to (2), i.e., it reaches an equilibrium point.

To prove our result about ε-constrained time model (i.e., Model 2 in Section 2), we
put different time labels on color. A process is τ -red if it receives τ -message directly or
transitively, i.e., a message that is originated from process j at time τ . A process is red at
time t if and only if it is τ -red for some τ ∈ [t− ε, t].

OPODIS 2015

34:10 Analysis of Bounds on Hybrid Vector Clocks

Let rτ (t) be a set of τ -red processes at time t. Based on definition of rτ (t), we can
compute the cardinality of rτ (t).

I Lemma 11. The expected number of τ -red processes is given by

E[|rτ (t)|] =
{

0 if t ≤ τ or t > τ + ε

y(t− τ) otherwise

Proof. If t ≤ τ or t > τ + ε, it is either τ -message non-existent or expired. Otherwise, at
time τ , process j sends first τ -message. This time is the initial condition of y(t) which is
y(0). Thereafter, the number of τ -red process is equivalent to that of unconstrained time
model since the τ -message is not expired until t > τ + ε. Hence, the result follows. J

I Corollary 12. The following equation holds |rτ (t)| = |rτ+1(t+ 1)| with high probability.

Proof. The expression E[|rτ (t)|] = E[|rτ+1(t+ 1)|] holds by simply substituting t as t+ 1
and τ as τ + 1 in the Lemma 11. J

Using these two results, we show that the fraction of the red processes in the ε-constrained
time model can be derived by using the unconstrained time model as follows:

I Theorem 13. Let y(t), yε(t) be fraction of red process at time t from model 1 and 2
respectively. yε(t) can be computed by the following expression.

yε(t) =
{
y(t) if t ≤ ε
y(ε) otherwise

Proof. Define R(t) as a set of red processes at time t. This is basically a union of τ -red
processes at time t for t − ε ≤ τ ≤ t − 1. That is, R(t) =

⋃t−1
i=t−ε ri(t). We note that

r≤0(t) = ∅ by definition. Hence, R(i) for 0 ≤ i ≤ ε− 1 collects more term until i ≥ ε, which
follows terms from definition of R(t).

We show that expectation of E[|R(t)|] = E[|R(t+ 1)|] for t ≥ ε. By definition, observe
that R(t + 1) =

⋃t
i=t−ε+1 ri(t + 1) =

⋃t−1
i=t−ε ri+1(t + 1). Now, we can compare R(t) with

R(t+1) term by term. That is, we can compare ri(t) from R(t) with ri+1(t+1) from R(t+1).
By Corollary 12, we know that cardinality of both terms are equal for t − ε ≤ i ≤ t − 1.
That last thing to show is that stochastic process gives us equality. Consider the following
random process, there are n coupons. We can draw coupon ε trials by the following rule. For
i-th trial, we draw ri(t) distinct number of coupons randomly. Let X be a random variable
representing number of distinct coupons collected for ε trials. In this situation, R(t) and
R(t + 1) both represent X. Therefore, the expectation of two random variables must be
equal because R(t) and R(t+ 1) are random variables of identical stochastic process.

Hence, E[|R(t+ 1)|] = E[|R(t)|] for t ≥ ε. That is, yε(t) = y(ε) for t ≥ ε. J

This result implies that we can use t and ε interchangeably since the hvc size of ε-
constrained time model reaches equilibrium point after t ≥ ε.

6 Simulation Results

In this section, we evaluate our analytical model by comparing to simulation results. Since
the analytical results in this paper are captured by Theorems 3–13, we perform simulation
experiments to validate them.

S. Yingchareonthawornchai, S. Kulkarni, and M. Demirbas 34:11

epsilon
0 50 100 150

y

0

0.2

0.4

0.6

0.8

1

1.2
n=100, delta=20

Numerical
Simulation

alpha=1

alpha=0.5

alpha=0.25

epsilon
0 100 200 300 400 500 600 700 800 900 1000

y

0

0.2

0.4

0.6

0.8

1

1.2
n=100, delta=200, alpha=0.05

Simulation
Numerical

epsilon
0 50 100 150 200 250 300 350 400

y

0

0.2

0.4

0.6

0.8

1

1.2
n=100, delta=20, alpha=0.05

Simulation
Numerical

Figure 2 Simulation vs. Numerical Results from Theorem 3.

Simulation Setup. We implement according to our model in various configurations. For
the purpose of experiments, we simulate distributed processes with central absolute time
in one machine. We simulate sending event by adding a new message to priority queue
of destination process with on arrival time t + δ in future. At each absolute time, each
process checks if its inbox has messages with deliver time less than or equal to t. If so, we
perform receive events. We repeat until no such message exists in the inbox. Each process
has an access to physical time with ε-uncertainty interval guarantee. While we simulate
sending and receiving events using central absolute time, the absolute time is oblivious to
the processes. For purpose of reproducibility, all source codes for simulation are available at
http://www.cse.msu.edu/~yingchar/hvc.html. All parameters are configurable.

6.1 Analytical vs. Simulation Results (Validation of Theorem 3)

In this case, we compare the analytical model from Theorem 3 with simulation results. For
analytical solution, we use standard numerical solver dde23 in MATLAB. For experiments,
we run for sufficiently long time so that the active clock (i.e., number of hvc entries) is
stabilized. In particular, we plot the result for ε from various value of ε. For each ε, we run
simulation for t up to 2000 and calculate the average starting from t = ε since we start from
a state where a process knows only its own clock, we omit the initial clock values where the
size of the clock is small.

The results are shown in Figure 2. We overlay numerical solution and simulation results.
In Figure 2 (left), we set n = 100, δ = 20 and run for three different values of α = 1, 0.5 and
0.25 respectively. We overlay numerical solution and simulation results. In Figure 2 (mid)
and (right), we set n = 100, α = 0.05 and different values of δ = 200 and 20, respectively.
Note that the middle figure has α ∗ δ = 10 where as the right figure has α ∗ δ = 1. We notice
the difference of α ∗ δ and its effect to characteristic of the plot. When α ∗ δ is small as
suggested by Theorem 5, the graph looks like sigmoid function. This shows our analytical
model in Theorem 3 gives us an exact plot with simlation results with minimal error. We
notice slight perturbation for small value of α. This is due to discontinuity of the discrete
events.

From these results, we corroborate that the relation predicated in Theorem 3 is valid and
tight.

Given that we have an exact analytical model, we now consider the bound we have for
closed form approximation results. From now on, we use the numerical solution as a baseline.

OPODIS 2015

http://www.cse.msu.edu/~yingchar/hvc.html

34:12 Analysis of Bounds on Hybrid Vector Clocks

epsilon
0 500 1000 1500 2000 2500

y

0

0.2

0.4

0.6

0.8

1

1.2
alpha*delta =1

Numerical Solution
Explicit Function

epsilon
0 5000 10000 15000

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
alpha*delta =0.1

Numerical Solution
Explicit Function

epsilon #104
0 5 10 15

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
alpha*delta =0.01

Numerical Solution
Explicit Function

epsilon
0 100 200 300 400 500 600 700 800

y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
alpha*delta =1

Numerical Solution
Explicit Function

epsilon
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
alpha*delta =0.1

Numerical Solution
Explicit Function

epsilon #104
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y

0

0.1

0.2

0.3

0.4

0.5

0.6
alpha*delta =0.01

Numerical Solution
Explicit Function

Figure 3 We compare explicit function with numerical solution. The circle is the phase transition
εp obtained by Theorem 6. The bottom figures are zoomed version of the corresponding upper ones.

6.2 Explicit Form vs. Numerical Solutions (Validation of Theorem 5, 6
and 8)

Theorem 5 gives an explicit function when δ ∗α is arbitrarily small. How small does it need to
be is a subject of this section. In Figure 3, we fix δ = 100 and vary α for δ∗α = 1, 0.1,and 0.01,
respectively. This shows that the explicit function in Theorem 5 is identical to numerical
solution when α ∗ δ is small. Typical value is α ∗ δ < 1. Note that phase transition
εp = (α−1 + δ)(ln((2−

√
3)(n− 1))) is shown in circle. The bottom figures are the zoomed-in

version of corresponding top ones.
If α ∗ δ is large, the hvc size is typically big during t < 3δ. We obtain the upper and lower

bound close forms using a technique called method of steps in delay differential equation.
We evaluate the result accordingly.

By Theorem 8, we have exact solution for t ≤ 2δ and approximate closed form for
t ∈ [2δ, 3δ]. We simulate in various configurations. The result is shown in Figure 4. According
to these experiments, Theorem 8 gives us an exact bound during t ∈ [δ, 2δ] and reasonable
upper and lower bound during t ∈ [2δ, 3δ]. Note that when α is small, the approximation
converges to exact as shown in Figure 4 (mid and right).

6.3 Unconstrained vs. ε-constrained Time (Validation of Theorem 13)
We evaluate relationship between y(t) (from the unconstrained time model) and yε(t) (from
ε-constrained time model). Theorem 13 implies that yε(t) = y(t) for t ≥ ε. Specifically, in
Figure 5, we simulate the programs for 100 processes with α = 0.25 and δ = 10. The result
show that yx(t) is almost same as y(t) when t ≤ x. And, yx(t) is almost same as y(x) when
t > x for x = 30, 60. This conforms to the prediction in Theorem 13.

In addition, we plot the distribution of sizes of hvc of all processes at each time. In
Figure 5 (right), we plot box distribution which is based on normal distribution. The middle
point represents average value at time t. The thick area represents area within a standard

S. Yingchareonthawornchai, S. Kulkarni, and M. Demirbas 34:13

epsilon
0 50 100 150 200 250 300

y

0

0.2

0.4

0.6

0.8

1

1.2
n=100,delta=100,alpha=0.5

Numerical Solution
Lower Bound
Upper Bound

epsilon
0 50 100 150 200 250 300

y

0

0.1

0.2

0.3

0.4

0.5

0.6
n=100,delta=100

Numerical Solution
Lower Bound
Upper Bound

epsilon
0 500 1000 1500 2000 2500 3000

y

0

0.1

0.2

0.3

0.4

0.5

0.6
n=100,delta=1000

Numerical Solution
Lower Bound
Upper Bound

Figure 4 Numerical solution vs. closed form for t ≤ 3δ. Note we use α = 0.1, 0.05 and 0.025 for
middle figure. For right figure, we use α = 0.01, 0.005, and 0.0025, respectively.

t
30 60 90 120 150

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
n=100, delta = 10, alpha =0.25

epsilon=30

epsilon=60

epsilon=120

30 60 90 120 150

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Distribution of hvc over time for all processes

t

epsilon =30

Outliners

2 SD

1 SD

Mean

Figure 5 Validation of Theorem 13. (Left) We plot three graphs of n = 100, δ = 10, and α = 0.25.
Each graph uses different value of ε. Note that after t = ε, the function is stabilized. (Right) We
plot actual distribution in terms of box plot for each time t.

deviation. The thin area represents twice standard deviation. The above dots are outliners.
During before phase transition, we can expect a distribution around y(ε).

From these results, we find that the relation predicated in Theorem 13 is valid.

7 Practical considerations for HVC sizes and the phase transition

Our analytical derivations and simulation experiments point to a phase transition on HVC
size. Here we use typical values for δ and α from datacenter environments, and determine
the phase transition threshold. We show that ε achieved using NTP is much less than this
phase transition threshold, so for practical distributed systems and modern deployments, the
HVC sizes will remain very small and significantly less than n.

For convenience, we calculate phase transition ε∗ in terms of seconds rather than unit time
(clock tick) as follows. Let r be resolution of the time protocol, e.g., NTP has a theoretical
resolution of 2−32 seconds (233 picoseconds) [15]. The unit of r is seconds per clock tick.
Define f as messages frequency in terms of number of messages per second. Also, let d be
minimum messages delay in terms of seconds. It is easy to see that α = fr and δ = d

r . We
assume that α is small. This is true when the time protocol has sufficient resolution.

2 Technically, number of messages are equivalent to number of clock ticks that trigger the sending events.
Hence, the message rate α means proportion of such clock ticks over all clock ticks in the long run.

OPODIS 2015

34:14 Analysis of Bounds on Hybrid Vector Clocks

If α ∗ δ << 1, or equivalently f ∗ d << 1, we can apply these values into our phase
transition formula in Theorem 6 to obtain εp = (f−1+d)

r ln((2 −
√

3)(n − 1)). Note that
εp has unit of clock ticks. We can convert to seconds by multiplying by r. Therefore,
ε∗ = (f−1 + d) ln((2−

√
3)(n− 1)). In other words, ε∗ is proportional to f−1 + d , for fixed

value of n.
For example, consider the following configuration. A small value for d is 1 millisecond.

To determine a value for α, communication frequency, we will consider chatty nodes that
send 100 messages a second to other nodes in a distributed system of n nodes. Most practical
applications in fact use orders of magnitude lower α, since reducing message communication
rates can improve efficiency of distributed systems. Techniques for reducing α include
aggregation and batching of messages before sending a message.

Since α ∗ δ << 1, we can use Theorem 6 to calculate the phase transition threshold
ε∗. When we substitue above values for d and f with n = 100 in the formula, we get
(100−1 + 10−3) ln((2−

√
3)(99)) = 0.036 seconds.

In this situation, it is possible to get ε less than 10ms using NTP synchronized clocks,
which is less than the phase transition for above configuration. Our simulation results show
that this corresponds to an average 1.1 hvc size for 100 nodes. That is each hvc clock
maintains only few entries most of the time, yet when it is needed hvc expands on demand
to allow more entries to capture causality both ways in the ε uncertainty slices. Therefore,
we can see that for various deployments of practical distributed applications, our HVC
component will avoid the phase transition and achieve very small hvc sizes. Moreover, using
less chatty nodes, hence a smaller α communication frequency, would also lead to larger ε∗.

Finally, εp = (1
α + δ)(ln((2 −

√
3)(n − 1))) also tells us that the HVC sizes scale very

well with respect to n, the number of nodes in the network. As we can see from the above
equation increase in n will increase εp, and will delay the critical phase transition of HVC
sizes. In the traditional VC, the size of the VC increase directly with n. In HVC, surprisingly,
the increase of n, benefits in delaying the phase transition and reducing the size of HVC.
The intuition behind this is that, the critical phase transition occurs when a process not only
gets entries added to its clock from direct interaction but also from indirect transfer with
another processes’ HVC entries. This indirect hearing and addition makes the HVC entries
blow up. For larger n, the probability of such indirect addition reduces slightly, and hence
larger n, delays the phase transition to large HVC sizes.

7.1 Extensions to the model

Unicast is the predominant communication pattern in cloud computing systems. Sending a
message to many recipients is often implemented in terms of multiple unicast messages. Our
modeling however failed to capture the incast problem that occurs back when several nodes
send message back to the same node. Due to large fan-in/fan-outs in some cloud computing,
and especially web services systems, incast problem may occur. When many nodes may be
sending back to the same node at the same time, this may grow the number of HVC entries
at the recipient beyond what the model predicts.

In addition, our model uses a single worst case ε to denote clock synchronization uncer-
tainty in the system. However, in a large scale distributed system, there will some nodes that
are more tightly synchronized with real time, versus some nodes that are poorly synchronized
with real time. It is possible to go finer grain tracking of ε and record and use per-node ε.
We leave this as future work to explore.

S. Yingchareonthawornchai, S. Kulkarni, and M. Demirbas 34:15

8 Related work

Logical clock (LC) [12] was proposed in 1978 by Lamport as a way of timestamping and
ordering events in an asynchronous distributed system. In 1988, the vector clock (VC) [10, 13]
was proposed to maintain a vectorized version of LC. VC maintains a vector at each node
which tracks the knowledge this node has about the logical clocks of other nodes. While LC
finds one consistent snapshot (that with same LC values at all nodes involved), VC finds all
possible consistent snapshots, which is useful for debugging applications. Unfortunately, the
space requirement of VC is on the order of nodes in the system, and is prohibitive, and it
stays prohibitive with optimizations [9, 18, 14] that reduce the size of VC. Resettable vector
clocks (RVC) generalizes the notion of VC, and provides a bounded-space and fault-tolerant
implementation of VC applications. To this end, RVC identifies an interface contract under
which the RVC implementation can be substituted for VC in the client applications, without
affecting the client’s correctness. The number of entries in RVC is still n, the number of
nodes in the system.

A version vector (VV) [16] is a version of VC that is customized for summarizing the set
of updates applied to a replica in a replicated database system. While VC is employed for
establishing a partial order among a set of events occurring in the nodes, VV is employed
for establishing a partial order among the replicas in the distributed system. VV generally
uses less number of entries (typical replica sizes are 3 or 5) and offers more opportunities for
bounding the size of each entry [1]. As another approach to reducing VV sizes, a unilateral
VV pruning algorithm is introduced using loosely synchronized clocks [17]. That algorithm
assumes synchronous networking: it demands that each event be delivered to all live nodes
and processed by them within a fixed period [17].

The clocks discussed above have been adopted by many cloud computing systems. Dy-
namo [19] adopts version vectors for causality tracking of updates to the replicas. Orbe [7] uses
dependency matrix along with physical clocks to obtain causal consistency. In the worst case,
both these solutions require large timestamps. Cassandra uses physical time and LWW-rule
for updating replicas. Spanner [5] employs TrueTime (TT) to order distributed transactions
at global scale, and facilitate read snapshots across the distributed database. TT relies on a
well engineered tight clock synchronization available at all nodes thanks to GPS clocks and
atomic clocks made available at each cluster. In order to ensure e hb f ⇒ tt.e < tt.f and
provide consistent snapshots, Spanner requires waiting-out uncertainty intervals of TT at the
transaction commit time which restricts throughput on writes. In contrast, HVC and HLC
does not require waiting out the clock uncertainty, since they are able to record causality
relations within this uncertainty interval using the VC and LC update rules.

A recent work [2] surveys the use of clocks in cloud computing and investigates how the
logical and physical clock concepts are applied in the context of developing distributed data
store systems for the cloud and review the choice of clocks in relation to consistency/per-
formance tradeoffs.

An alternate approach for ordering events is to establish explicit relation between events.
This approach is exemplified in the Kronos system [8], where each event of interest is registered
with the Kronos service, and the application explicitly identifies events that are of interest
from causality perspective. This allows one to capture causality that is application-dependent
at the increased cost of searching the event dependency relation graph.

OPODIS 2015

34:16 Analysis of Bounds on Hybrid Vector Clocks

9 Conclusion

We presented an analytical model to compute the size of HVC. This analytical model had
four parameters: ε (window of uncertainty), δ (minimum message delay), α (message rate)
and n (size of the network). We presented a differential equation whose solution provides the
estimated size of HVC. We also identified closed form solutions for some special cases. We
used simulation results to validate the analytical model. In particular, we showed that the
results predicated by the analytical model are identical to the simulation results. Moreover,
the upper and lower bounds computed by the closed form solutions are also very close to the
simulation results. Hence, they can be used to predict the size of HVC in the given system
setting. We also showed that many deployments of practical distributed applications will
avoid the phase transition easily and achieve very small HVC sizes, significantly less than n,
the number of nodes in the system.

References

1 J. Almeida, P. Almeida S. Paulo, and C. Baquero. Bounded version vectors. Distributed
Computing: 18th International Conference, DISC 2004, pages 102–116, 2004.

2 M. Bravo, N. Diegues, J. Zeng, P. Romano, and L. Rodrigues. On the use of clocks to
enforce consistency in the cloud. IEEE Data Eng. Bull, 38(1):18–31, 2015.

3 B. Charron-Bost. Concerning the size of logical clocks in distributed systems. Inf. Process.
Lett., 39(1):11–16, 1991.

4 Cockroachdb: A scalable, transactional, geo-replicated data store.
http://cockroachdb.org/.

5 J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, JJ. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s globally-distributed database. Proceedings
of OSDI, 2012.

6 M. Demirbas and S. Kulkarni. Beyond truetime: Using augmentedtime for improving google
spanner. LADIS’13: 7th Workshop on Large-Scale Distributed Systems and Middleware,
2013.

7 J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe: Scalable causal consistency using
dependency matrices and physical clocks. In Proceedings of the 4th Annual Symposium on
Cloud Computing, SOCC’13, pages 11:1–11:14, New York, NY, USA, 2013. ACM. doi:
10.1145/2523616.2523628.

8 R. Escriva, A. Dubey, B. Wong, and E.G. Sirer. Kronos: The design and implementation
of an event ordering service. EuroSys, 2014.

9 M. Ahamad F. J. Torres-Rojas. Plausible clocks: Constant size logical clocks for distributed
systems. Proceedings of WDAG, pages 71–88, 1996.

10 J. Fidge. Timestamps in message-passing systems that preserve the partial ordering. Pro-
ceedings of the 11th Australian Computer Science Conference, 10(1):56–66, Feb 1988.

11 S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, and M. Leone. Logical physical clocks.
In Principles of Distributed Systems, pages 17–32. Springer, 2014.

12 L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communic-
ations of the ACM, 21(7):558–565, July 1978.

13 F. Mattern. Virtual time and global states of distributed systems. Parallel and Distributed
Algorithms, pages 215–226, 1989.

http://dx.doi.org/10.1145/2523616.2523628
http://dx.doi.org/10.1145/2523616.2523628

S. Yingchareonthawornchai, S. Kulkarni, and M. Demirbas 34:17

14 S. Meldal, S. Sankar, and J. Vera. Exploiting locality in maintaining potential causality.
In Proceedings of Principles of Distributed Computing (PODC), pages 231–239, 1991. doi:
10.1145/112600.112620.

15 D. Mills. A brief history of ntp time: Memoirs of an internet timekeeper. ACM SIGCOMM
Computer Communication Review, 33(2):9–21, 2003.

16 D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton, J. M. Chow,
D. Edwards, S. Kiser, and C. Kline. Detection of mutual inconsistency in distributed
systems. IEEE Transactions on Software Engineering, SE-9(3):240–247, May 1983. doi:
10.1109/TSE.1983.236733.

17 Y. Saito. Unilateral version vector pruning using loosely synchronized clocks. Technical
report, HP Labs, 2002.

18 M. Singhal and A. Kshemkalyani. An efficient implementation of vector clocks. Information
Processing Letters, 43:47–52, 1992.

19 W. Vogels. Eventually consistent. Communications of the ACM, 52(1):40–44, 2009.

OPODIS 2015

http://dx.doi.org/10.1145/112600.112620
http://dx.doi.org/10.1145/112600.112620
http://dx.doi.org/10.1109/TSE.1983.236733
http://dx.doi.org/10.1109/TSE.1983.236733

	Introduction
	System Model
	Unconstrained and Constrained Time Models

	Analytical Solutions
	Explicit Solutions for Special Cases
	Explicit Solution for Arbitrarily Small alpha and alpha*
	Phase Transition
	Explicit Solution for t<3*delta

	Reduction of epsilon-Constrained Time Model to Unconstrained Time Model
	Simulation Results
	Analytical vs. Simulation Results (Validation of Theorem 3)
	Explicit Form vs. Numerical Solutions (Validation of Theorem 5, 6 and 8)
	Unconstrained vs. epsilon-constrained Time (Validation of Theorem 13)

	Practical considerations for HVC sizes and the phase transition
	Extensions to the model

	Related work
	Conclusion

