Non Trivial Computations in Anonymous Dynamic Networks*

Giuseppe Di Luna ${ }^{1}$ and Roberto Baldoni ${ }^{2}$

1 Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti, Università degli Studi di Roma La Sapienza, Via Ariosto, 25, I-00185 Rome, Italy diluna@dis.uniroma1.it
1 Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti, Università degli Studi di Roma La Sapienza, Via Ariosto, 25, I-00185 Rome, Italy
baldoni@dis.uniroma1.it

Abstract

In this paper we consider a static set of anonymous processes, i.e., they do not have distinguished IDs, that communicate with neighbors using a local broadcast primitive. The communication graph changes at each computational round with the restriction of being always connected, i.e., the network topology guarantees 1-interval connectivity. In such setting non trivial computations, i.e., answering to a predicate like "there exists at least one process with initial input a?", are impossible. In a recent work, it has been conjectured that the impossibility holds even if a distinguished leader process is available within the computation. In this paper we prove that the conjecture is false. We show this result by implementing a deterministic leader-based terminating counting algorithm. In order to build our counting algorithm we first develop a counting technique that is time optimal on a family of dynamic graphs where each process has a fixed distance h from the leader and such distance does not change along rounds. Using this technique we build an algorithm that counts in anonymous 1-interval connected networks.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Distributed System, Anonymous Networks, Dynamic Networks

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.33

1 Introduction

Highly dynamic distributed systems are attracting a lot of interest from the relevant research community [13, 7]. These models are well suited to study the new challenges introduced by distributed systems where there is an immanent dynamicity given by the presence of mobile devices, unstable communication links and environmental constraints. A critical element in such future distributed systems is the anonymity of the devices; the uniqueness of a process ID is not guaranteed due to operational limit (e.g., in highly dynamic networks maintaining unique IDs may be infeasible due to mobility and failure among processes [22]) or to maintaining user's privacy (e.g., where users may not wish to disclose information about their behavior [11]).

In this paper we consider a static set of anonymous process $|V|$, this set of processes is connected by a dynamic communication graph that is governed by a fictional omniscient

[^0]entity the adversary who has the power to change at each round the graph. The adversary is able to read the local memory of each process in order to deploy the worst possible communication graph to challenge the computation. The only restriction imposed to the adversary is that the graph has to be connected at each round. This corresponds to the 1-interval connectivity model proposed in [12].

We focus on the problem of counting the number of processes in the system which is one of the fundamental problems of distributed computing [12, 17, 10, 21, 2]. The system model employed in this paper also assumes each process communicates with its neighbors using a local broadcast primitive. Under this model, it has been proved that the presence of a leader process is necessary in order to compute non trivial tasks [19]. In the case of leader absence, the adversary could indeed perpetually generate an anonymous ring graph of unknown size, and it is well known that in such graph non-trivial computation are impossible [1, 25]. Let us remark that a leader is actually present in many realistic settings, such as a base station in a mobile network, a gateway in a sensors network etc. Additionally, the computability in the model where all processes are anonymous but a leader has been widely investigated in the static network case and in population protocols [24, 26, 8, 4]. Furthermore, having a leader can be sometimes simpler than ensuring an unique ID for each process. From a formal point of view, it has been proved when processes communicate using broadcast, assuming the existence of a leader is strictly weaker than assuming unique IDs [19].

Anonymity and the adversarial dynamic graph make the system model very challenging for performing non-trivial computation. More specifically, it has been conjectured in [19, 18] that, in such model, the presence of a leader is not sufficient to compute, non trivial tasks such as counting. The main result of this paper is to show that the conjecture is false, and that a distinguished leader process is necessary and sufficient to do deterministic non trivial computations on anonymous 1 -interval connected dynamic networks with broadcast. This is shown by introducing a deterministic terminating counting algorithm, namely EXT.

The paper introduces one by one the main sub-algorithms forming EXT, namely OPT, VCD and InstanceCount. As second result presented in this paper, we show that OPT is a time optimal counting algorithm for graphs in $\mathcal{G}(\mathrm{PD})_{2}$, a specific subset of interval connected dynamic graphs where each process has a fixed distance h from the leader with $h \leq 2$ and such distance is fixed across rounds. We showed in [14] that counting on $\mathcal{G}(\mathrm{PD})_{2}$ is function of the network size even if there is unlimited bandwidth and a constant dynamic diameter w.r.t. $|V|$. Thus OPT shows that the bound introduced in [14] for counting in $\mathcal{G}(\mathrm{PD})_{2}$ is tight.

Outline

Section 4 presents an optimal algorithm for graphs belonging to $\mathcal{G}(\mathrm{PD})_{2}$. Section 5 illustrates the basic structure of the counting algorithm, EXT, for 1-interval connected networks. EXT has two main components: VCD and InstanceCount which are introduced in Section 6 and Section 7 respectively. Finally, we prove that the conjecture presented in [19, 18] is false in Section 8. Due to lack of space, some of the proofs can be found in the full version of the paper ${ }^{1}$.

[^1]
2 Related Work

The question concerning what can be computed on top of static anonymous networks, has been pioneered by Angluin in [1] and it has been the further investigated in many papers $[25,26,6,5]$. In a static anonymous network with broadcast, the presence of a leader is enough to have a terminating counting algorithm as shown in [18].

Considering dynamic non anonymous networks, counting has been studied under several dynamicity models. In [3], dynamicity corresponds to processes churn where processes leave and join the system. In $[17,23]$ dynamicity is governed by a random adversary to model peer-to-peer networks. Finally considering the dynamicity model employed in this paper (worst-case adversary), in [12], a counting algorithm for 1-interval connectivity has been proposed. Other results related to counting can be found in [22] where a model similar to 1 -interval connected is considered. In the context of possibly disconnected adversarial network, counting has been studied in [20]. The approaches followed by the latter works are not suitable in the model proposed by this paper, they use the asymmetry introduced by IDs.

Counting in anonymous dynamic networks: In [10], the authors propose a gossip-based protocol to compute aggregation function. The network graph considered by [10] is governed by a fair random adversary, moreover the proposed approach converges to the actual count without having a terminating condition. A similar model and strategy is also used by [9]. The first work investigating the problem of terminating counting in an anonymous network with worst-case adversary and a leader node is [18]. They show that when a process is able to send a different messages to each neighbors, the presence of a leader is enough to have a terminating naming algorithm. For the broadcast case, under the assumption of a fixed known upper bound on the maximum process degree, they provided an algorithm that computes an upper bound on the network size. Building on this result, [15] proposes an exact counting algorithm under the same assumption. Finally, [16] provides a counting algorithm for 1-interval connected networks considering each process is equipped with a local degree detector, i.e. an oracle able to predict the degree of the process before exchanging messages. Other works $[12,21]$ have investigated leader-less randomized approaches to obtain approximated counting algorithms. We are interested in study how anonymity impacts the computational power of 1-interval connected networks with broadcast, for this reason we assume that processes do not have access to a source of randomness, e.g. they cannot break symmetry by using coin tosses.

3 Model of the computation

We consider a synchronous distributed system composed by a finite static set of processes V. Processes in V are anonymous, they initially have no identifiers and execute a deterministic round-based computation. Processes communicate through a communication network which is dynamic. We assume at each round r the network is stable and represented by a graph $G_{r}=(V, E(r))$ where $E(r) \subseteq V \times V$ is the set of bidirectional links at round r connecting processes in V.

- Definition 1. A dynamic graph $G=\left\{G_{0}, G_{1}, \ldots, G_{r}, \ldots\right\}$ is an infinite sequence of graphs one at each round r of the computation.

A dynamic graph is 1-interval connected, if, and only if, $G \in \mathcal{G}\left(1\right.$-IC), if $\forall G_{r} \in G$ we have that G_{r} is connected. The neighborhood of a process v at round r is denoted by
$N(v, r)=\left\{v^{\prime}:\left(v^{\prime}, v\right) \in E(r)\right\}$. We say that v has degree d at round r iff $|N(v, r)|=d$. Given a round r we denote with $p_{v, v^{\prime}}$ a path on G_{r} between v and v^{\prime}. Moreover we denote as $P_{r}\left(v^{\prime}, v\right)$, the set of all paths between v, v^{\prime} on graph G_{r}. The distance $d_{r}\left(v^{\prime}, v\right)$ is the minimum length among the lengths of the paths in $P_{r}\left(v^{\prime}, v\right)$, the length of the path is defined as the number of edges. We consider the computation proceed by exchanging messages through synchronous rounds.

Every round is divided in two phases: (i) send where processes send the messages for the current round, (ii) receive where processes elaborates received messages and prepare those that will be sent in the next round. Processes can communicate with its neighbors through an anonymous broadcast primitive. Such primitive ensures that a message m sent by process v_{i} at the beginning of a certain round r will be delivered to all its neighbors during round r. A process v floods message m by broadcasting it for each round. If process receives a flooded message m then it starts the flooding of m. The flood of m terminates when it has been received by all processes. We say that a network has dynamic diameter D if for any v and any round r the flood of a message that starts at round r from process v terminates by at most round $r+D$. Intuitively the dynamic diameter is the maximum time needed to disseminate messages to all processes in the network.

Leader-based computation and worst case adversary: We assume the selection of a topology graph at round r is done by an omniscient adversary that may choose at each step the worst configuration to challenge a counting algorithm. Due to the impossibility result shown in [18], we assume any counting algorithm that works over a dynamic graph has a leader process v_{l} starting with a different unique state w.r.t. all the other processes.

- Definition 2. Given a dynamic network G with $|V|$ processes, a distributed algorithm \mathcal{A} solves the counting on G if it exists a round r at which the leader outputs $|V|$ and terminates.

Persistent distance dynamic graphs: Let us characterize dynamic graphs according to the distances among a process v and the leader v_{l}.

- Definition 3. (Persistent Distance over G) Consider a dynamic graph G. The distance between v and v_{l} over G, denoted $D\left(v, v_{l}\right)=d$, is defined as follow: $D\left(v, v_{l}\right)=d$ iff $\forall r, d_{r}\left(v, v_{l}\right)=d$.

Let us now introduce a set of dynamic graphs based on the distance between the leader and the processes of a graph.

- Definition 4 (Persistent Distance set). A graph G belongs to Persistent Distance set, denoted $\mathcal{G}(\mathrm{PD})$, iff $\forall v \in G, \exists d \in \mathbb{N}^{+}$such that $D\left(v, v_{l}\right)=d$

Graphs in $\mathcal{G}(\mathrm{PD})_{2}$

Among the dynamic graphs belonging to $\mathcal{G}(\mathrm{PD})$ we can further consider the set of graphs, denoted $\mathcal{G}(\mathrm{PD})_{h}$, whose processes have maximum distance h from the leader with $1<h \leq|V|$. Thus, given a graph in $\mathcal{G}(\mathrm{PD})_{h}$ we can partition its processes in h sets, $\left\{V_{0}, V_{1}, \ldots, V_{h}\right\}$, according to their distance from the leader. In Figure 1 there is an example of $\mathcal{G}(\mathrm{PD})_{2}$ graph. The depicted dynamic graph has dynamic diameter $D=4$, if process v_{0} starts a flood at round 0 this flood will reach process v_{3} at round 3. The task of the leader process v_{l} is to count processes in V_{2}. Let us notice that if a process knows $\left|N(v, r) \cap V_{1}\right|$ before the receive phase of round r then counting in $\mathcal{G}(\mathrm{PD})_{2}$ needs $O(1)$ rounds, the algorithm is trivial each

Figure 1 An example of a graph belonging to $\mathcal{G}(\mathrm{PD})_{2}$ along three rounds.
process in V_{2} sends a message $\frac{1}{\left|N(v, r) \cap V_{1}\right|}$ to processes in V_{1}. A process in V_{1} collects these messages and send their sum to the leader. Also if IDs are present counting requires $O(1)$ rounds, in 2 rounds the leader collects the IDs of all processes. It is interesting to notice that if $|N(v, r)|$ is known only when a process receives messages from its neighbors then the time for counting become $\Omega(\log |V|)$ rounds, see Th. 2 of [14].

4 An asymptotically optimal algorithm for $\mathcal{G}(\mathrm{PD})_{2}$

OPT initially starts a get_distance phase. At the end of this phase each process is aware of its distance from the leader. In $\mathcal{G}(\mathrm{PD})_{2}$ this phase takes one round and it works as follow: Each process knows if it is the leader or not. This information is broadcast by each process (including the leader) to its neighbors at the beginning of round 0 . Thus, at the end of round 0 , each process knows if it belongs either to V_{1} or to V_{2}.

Non-leader process behavior

Starting from round 1, a process broadcasts its distance from the leader (i.e., 1 or 2) and each process v in V_{2} builds its degree history $v . H(r)$ with $r \geq 0$ where $v . H(r)$ is an ordered list containing the number of neighbors of v belonging to V_{1} at rounds $[0, \ldots, r-1]$. Thus $v . H(r)=\left[\perp,\left|N(v, 1) \cap V_{1}\right|, \ldots,\left|N(v, r-1) \cap V_{1}\right|\right]$.

Starting from round $r>0$, each $v \in V_{2}$ broadcasts $v . H(r)$. These histories are collected by each process $v^{\prime} \in V_{1}$ and sent to the leader at the beginning of round $r+1$.

Leader behavior

Starting from the beginning of round $r \geq 2$ the leader receives degree histories from each process in V_{1}. The leader merges histories in a multiset denoted $v_{l} \cdot M(r)$. Let us remark that $v_{l} \cdot M(r)$ may contain the same history multiple times.

Data structure: The leader uses $v_{l} \cdot M(r)$ to build a tree data structure T whose aim is to obtain $\left|V_{2}\right|$. For each distinct history $[A] \in v_{l} \cdot M(r)$ the leader creates a node $t \in T$ with label $[A]$ and two variables $<m_{[A]}, n_{[A]}>. m_{[A]}$ denotes the number of histories $[A]$ in $v_{l} . M(r)$ and $n_{[A]}$ is the number of processes in V_{2} that have sent $[A]$. Following the information flow, at round $2, v_{l} \cdot M(2)$ will be formed by a single history $[\perp]$ with multiplicity $m_{[\perp]}$. The leader creates the root of T with label $[\perp]$, value $m_{[\perp]}$, and $n_{[\perp]}=$? (where? means unknown value). It is important to remark that m values are directly computed from $v_{l} \cdot M(r)$ while n values are set by the leader at a round $r^{\prime} \geq r$ through a counting rule that will be explained later.

The leader final target is to compute $n_{[\perp]}$ which corresponds to the number of processes in V_{2}.
At round $r+2$ if the leader receives a history $h=\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}\right]$ and $n_{\left[\perp, x_{0}, \ldots, x_{r-2}\right]}=$?, then it creates a node in $t \in T$ with label h and value m_{h}, this node is a child of the node with label $\left[\perp, x_{0}, \ldots, x_{r-2}\right]$. Otherwise the leader ignores h. It is straightforward to see that the following equations hold:

$$
\left\{\begin{array}{l}
m_{\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}\right]}=\sum_{i=1}^{\left|V_{1}\right|} i \cdot n_{\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}, i\right]} \tag{1}\\
n_{\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}\right]}=\sum_{i=1}^{\left|V_{1}\right|} n_{\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}, i\right]}
\end{array}\right.
$$

where $i \cdot n_{\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}, i\right]}$ means that the leader received i copies of history $\left[\perp, x_{0}, \ldots, x_{r-2}\right.$, x_{r-1}], one for each process in V_{2} that at round $r+1$ had history $\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}, i\right]$.

Counting Rule: When in T there is a non-leaf node with label $\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}, x_{r}\right]$ such that the leader knows the number of processes (i.e., $n_{[A]}$), for each of its children but one (i.e., $n_{\left[\perp, x_{0}, \ldots, x_{r-1}, x_{r}, j\right]}=$?). Then the leader computes $n_{\left[\perp, x_{0}, \ldots, x_{r-1}, x_{r}, j\right]}$ using $m_{\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}, x_{r}\right]}=\sum_{i=1}^{\left|V_{r}\right|} i \cdot n_{\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}, x_{r}, i\right]}$.

When the leader knows the values n for each of the children of a non leaf-node t, it sums the children values and sets the n_{t} (see the second equation of Eq. 1).

Due to the fact that the number of processes is finite, eventually there will be a non-leaf node in T with only one child (a leaf). Thanks to the counting rule, the n variables of the child and of the father will be set. This will start a recursive procedure that will eventually set $n_{[\perp]}$ terminating the counting.

In Figure 2 is depicted an example run of the algorithm. In the full version the detailed pseudocode for T is provided.

Correctness proof

- Lemma 5. Let us consider the algorithm OPT. Eventually v_{l} sets a value for $n_{[\perp]}$ and this value is $\left|V_{2}\right|$.

Proof. We first prove that eventually we reach a round in which the counting rule can be applied for any leaf of T. Let us consider the subtree of T rooted in the node with label $[A]$, if there is only one child then the counting rule can be applied and $n_{[A]}$ can be computed. Thus let us suppose that $[A]$ has at least two children with labels $[A, x],\left[A, x^{\prime}\right]$ with $x \neq x^{\prime}$. We have that $n_{[A, x]} \geq 1$ and $n_{\left[A, x^{\prime}\right]} \geq 1$ because there must be at least one sending process for each degree-history. Considering that $n_{[A]}=\sum_{j=1}^{k} n_{[A, j]}$, it follows that $n_{[A, x]} \leq n_{[A]}-1$. Iterating this reasoning we have that when the height of the subtree rooted in $[A]$ is greater than $n_{[A]}-1$, then each leaf has no sibling: when there is a single process sending a certain degree history H, in the next round there will be only one degree history with H as suffix. As a consequence, after at most $n_{[A]}$ rounds, we may apply the counting rule for any leaf of the subtree rooted in $[A]$.

Now we prove by induction that: for each node $v \in T$ if $n_{v} \neq$?, then n_{v} is equal to the number of processes in V_{2} that had degree history equal to v at a given round.

Base case, leaf without siblings: Let $v_{1}:\left[x_{0}, \ldots, x_{r+1}\right]$ be a leaf without siblings and $v_{0}:\left[x_{0}, \ldots, x_{r}\right]$ its father. v_{l} sets, according to the counting rule, $n_{v_{0}}=n_{v_{1}}=\frac{m_{v_{0}}}{x_{r+1}}$. From Eq 1 we have $n_{v_{0}}=n_{v_{1}}$ which is equal to the number of processes in V_{2} that had degree history $\left[x_{0}, \ldots, x_{r}\right]$.

Figure 2 A run of OPT algorithm.

Inductive case: Let us consider $v_{0}:\left[x_{0}, \ldots, x_{r}\right]$ and the set of its children $C_{v_{0}}$ with $\left|C_{v_{0}}\right|>1$. Let introduce a set $X_{v_{0}}$ formed by the children for which n is known and set, formally: $X_{v_{0}}:\left\{x \in C_{v_{0}} \mid n_{x} \neq ?\right\}$. If $\exists!v_{1}:\left[x_{0}, \ldots, x_{r+1}\right] \in C_{v_{0}} \backslash X_{v_{0}}$, the leader sets (according to the counting rule) $n_{v_{1}}=\frac{m_{v_{0}}-\sum_{\forall\left[x_{0}, \ldots, x_{k}\right] \in X_{v_{0}}}\left(x_{k} \cdot n_{\left[x_{0}, \ldots, x_{k}\right]}\right)}{x_{r+1}}$. By inductive hypothesis we have $\forall x \in X_{v_{1}}, n_{x}$ is equal to the number of processes in V_{2} with degree history equal to x. Due to Eq. 1, we have both $n_{v_{1}}$ and $n_{v_{0}}$ will be set to the correct value.

From the previous arguments we have that after at most $\left|V_{2}\right|$ rounds all the leaves of $[\perp]$ have no siblings, thus the counting rule will be applied recursively until the value $n_{[\perp]}$ is set to $\left|V_{2}\right|$.

- Theorem 6. Let G be a dynamic graph of size $|V|$ belonging to $\mathcal{G}(P D)_{2}$. A run of OPT on G terminates in at most $\left\lceil\log _{2}|V|\right\rceil+3$ rounds.

Proof. Let consider the algorithm OPT. The latter counts processes in V_{2}, since the number of processes in V_{1} is immediately known by v_{l} at round 0 , thus let us suppose that we are in the worst case i.e., $\left|V_{2}\right|=\mathcal{O}(|V|)$. Let us consider the tree T, given a node $[A]$ the maximum height of the subtree rooted in $[A]$ is a function $h_{\max }\left(n_{[A]}\right)$. We have that $h_{\max }$ is non decreasing, $h_{\max }\left(n_{[A]}-1\right) \leq h_{\max }\left(n_{[A]}\right)$: let us consider the worst scheduling that the adversary uses with $n_{[A]}-1$ processes in order to obtain the maximum height. It easy
to show that the same scheduling can be created with $n_{[A]}$ processes, the adversary will simply force two processes to follow the behavior of a single process in the old schedule. Let us restrict to the case when $[A]$ has only two children: $[A, x],\left[A, x^{\prime}\right]$, for the counting rule $\left.h_{\max }\left(n_{[A]}\right)=\min \left(h_{\max }\left(n_{[A, x]}\right), h_{\max }\left(n_{\left[A, x^{\prime}\right]}\right)\right)\right)+1$. Considering the second equation of Eq. 1, $h_{\max }\left(n_{[A]}\right)$ can be rewritten as follows: $h_{\max }\left(n_{[A]}\right)=1+\min \left(h_{\max }\left(\frac{n_{[A]}}{2}-\delta\right), h_{\max }\left(\frac{n_{[A]}}{2}+\right.\right.$ $\delta)) \leq 1+\min \left(h_{\max }\left(\frac{n_{[A]}}{2}\right), h_{\max }\left(\frac{n_{[A]}}{2}\right)\right)$ with $\delta \in\left[0, \frac{n_{[A]}}{2}\right]$. Thus, the optimal height can be reached by having $n_{[A, x]}=n_{\left[A, x^{\prime}\right]}=\frac{n_{[A]}}{2}$. Let us notice that when $[A]$ has more than two children, the maximum height of the subtree rooted in $[A]$ cannot be greater than the one obtained when $[A]$ has two children. Iterating this reasoning, in the worst case T is a balanced tree with degree at most 2 for each non leaf node and with exactly $|V|$ leaves. The height of this tree is $\left\lceil\log _{2}(|V|)\right\rceil$. Each level of T corresponds to one round of OPT, this completes the proof.

A $\Omega(\log |V|)$ bound on $\mathcal{G}(\mathrm{PD})_{2}$ has been shown in [14]. Therefore we have that OPT is asymptotically optimal.

5 High level view of $\mathcal{G}(1-I C)$ counting algorithm

[19] and [18] conjectured: It is impossible to compute (even with a leader) the predicate $N a \geq 1$, that is "exists an a in the input", in general anonymous unknown dynamic networks with broadcast. In order to show that the conjecture is false we present a terminating counting algorithm, namely EXT, on \mathcal{G} (1-IC); this obviously implies the possibility to answer to any existence predicate confuting the conjecture.

Let us introduce the underlying structure we use to build EXT. The first conceptual step is to extend OTP to obtain a counting algorithm on $\mathcal{G}(\mathrm{PD})_{h}$. We denote this extended algorithm OPT_h. As a second step, we consider networks in $\mathcal{G}(1-\mathrm{IC})$. In such networks, at each round, processes can change their distance from the leader in $[1, V-1]$. When a process changes distance we say that the process "moved".

5.1 Counting in $\mathcal{G}(\mathrm{PD})_{h}$: OPT_h Algorithm

As OPT, OPT_h begins with a get_distance phase over $\mathcal{G}(\mathrm{PD})_{h}$ where each process v obtains its distance from the leader, v.distance. This is done by using a simple flood and convergecast algorithm. After this phase the counting begin.

Each non leader process v keeps a degree history, where each element is the number of processes in $N(v, r)$ whose distance from v_{l} is v.distance -1 . Moreover v updates a multiset $v . M(r)$ that contains messages received by neighbors at distance v.distance +1 . The degree history and the multiset are broadcast at each round.

From an high level point of view the algorithm of v_{l} works as follow: the leader first computes the number of processes in V_{1}. Then by using messages sent by process in V_{1}, let $M S_{1}$ be this multiset ${ }^{2}$, it executes OPT to count the processes in V_{2}. By counting processes in V_{2} it also obtains the multiset $M S_{2}$ of messages sent by these processes. At this point, the leader simulates, using $M S_{2}$, an execution of OPT counting processes in V_{3}. Iterating this procedure till processes at distance h we obtain the final count.

[^2]

Figure 3 Counting algorithm EXT and the relationship among its subalgorithms. Algorithms VCD and OPT* are explained in Section 6; InstanceCount in Section 7. Finally, EXT is presented in Section 8.

Let us remark that OPT_h is an asymptotically time optimal algorithm for graphs in $\mathcal{G}(\mathrm{PD})_{h}$. A more detailed explanation of OPT_h, with pseudo-code and formal proofs can be found in the full version.

5.2 Using $\mathcal{G}(\mathrm{PD})_{h}$ to count in $\mathcal{G}(1$-IC)

Let us introduce the notion of temporal subgraph G^{\prime} of G :

- Definition 7. (Temporal Subgraph) Given a dynamic graph G, a dynamic graph G^{\prime} is a temporal subgraph of $G\left(G^{\prime} \subseteq G\right)$ if and only if $G^{\prime}:\left[G_{i_{1}}, G_{i_{2}}, \ldots\right]$ is an ordered subsequence of $G:\left[G_{0}, G_{1}, G_{2}, \ldots\right]$.

We can show that in each $G \in \mathcal{G}(1-\mathrm{IC})$ there exists a temporal subgraph G^{\prime} that belongs to $\mathcal{G}(\mathrm{PD})_{h}$:

- Lemma 8. Let us consider a dynamic graph $G:\left[G_{0}, G_{1}, G_{2}, \ldots\right] \in \mathcal{G}(1-I C)$. There exists $h \in \mathbb{N}^{+}$and $\exists G^{\prime} \subseteq G$ such that G^{\prime} is infinite and $G^{\prime} \in \mathcal{G}(P D)_{h}$.

Now, let us define a counting algorithm InstanceCount. Such algorithm works on $G \in \mathcal{G}(1-$ IC) and it has two properties: (P1) it terminates giving the correct count on instance $G^{\prime} \in \mathcal{G}(\mathrm{PD})_{h} ;(\mathrm{P} 2)$ it does not give an incorrect count on $G^{\prime} \notin \mathcal{G}(\mathrm{PD})_{h}$. Thus, if $G^{\prime} \notin \mathcal{G}(\mathrm{PD})_{h}$ it can terminate giving either a correct count of the network or a special invalid value, i.e. INVCNT. The strategy of EXT is to run a different instance of InstanceCount on each temporal subgraph of G. Due to properties (P1) and (P2), EXT terminates correctly when an instance of InstanceCount outputs a valid count value. For the property (P 1) and for Lemma 8, one instance of InstanceCount outputs a valid count value. Consequently, EXT is a correct terminating counting algorithm.

InstanceCount counts as if the network is in $\mathcal{G}(\mathrm{PD})_{h}$. Therefore, the leader first counts processes in V_{1}, then processes in V_{2} and so on. This is done until v_{l} counts processes of a set V_{h} such that no set V_{h+1} exists. The tricky part is to detect if the counting algorithm is operating on a network in $\mathcal{G}(\mathrm{PD})_{h}$. In the affirmative, the count done with such strategy will be correct. The procedure that counts each set V_{j} is a special algorithm, namely VCD. VCD allows to detect if the count obtained for V_{j} is correct, returning the count value, or if it is not possible to count V_{j} because some process moved during the counting, returning NOCOUNT. The VCD algorithm is explained in the next Section.

Figure 4 In general $\mathcal{G}(1-\mathrm{IC})$ a subset V_{2}^{M} of processes in V_{2} may move changing the distance from the leader and invalidating the correct count of processes in V_{2}. Network size is unknown therefore messages from process v_{4} need an unknown number of rounds to reach the leader. We are interested in an algorithm that detects this using information from processes in $V_{2} \backslash V_{2}^{M}$. This is equivalent to solve the problem on a networks in $\mathcal{G}(\mathrm{PD})_{2}$ where the subset V_{2}^{M} stops sending messages after a certain round. In the example process v_{4} halts at round $r+1$.

6 Valid Count Detection Algorithm (VCD)

Let us considering a network where processes in V_{1} do not change distance from the leader along rounds. Remaining processes, including a proper subset V_{2}^{M} of processes in V_{2} at round 0 , may change distance along rounds. We wish to build an algorithm that solves this problem: if no processes in V_{2}^{M} move during the counting, then the algorithm outputs the correct count of processes at distance 2 at round 0 . Otherwise, the algorithm outputs either the correct count or a special invalid value. Unfortunately, in case processes change their distance from the leader, OPT might fail outputting a wrong count.

One strategy to build such algorithm could be to first use OPT then, after OPT termination, to start a waiting phase in order to receive messages from processes that could have moved. Sadly, this simple OPT-based strategy does not work. If v_{l} outputs the final count at round r, the message from a process that moved could arrive at round $r+1$, invaliding the count. Thus, v_{l} should wait for some time before outputting the count but this time cannot be bounded as the size of the network is unknown. From this point of view, if a process changes distance across rounds in a network of unknown size it is like if this process halts and it does not send anymore messages. We denote this problem as Valid Count Detection.

Valid Count Detection Problem (VCDP)

Let us consider a graph in $\mathcal{G}(\mathrm{PD})_{2}$ where processes in V_{2} may halt at some point. We say that v_{i} halts at round r if it has send messages for any round $r^{\prime \prime}<r$, and it does not send messages for any $r^{\prime} \geq r$. We assume that processes halt from round $r \geq 1$; that is they send at least one message before their departure. Now we introduce the VCDP problem on $\mathcal{G}(\mathrm{PD})_{2}$:

- Problem 9 (VCDP). Given two run $R, R_{N C}$ such that: in the run R no process halts; in the run $R_{N C}$ there are processes that halt. An algorithm solves the Valid Count Detection Problem if at some round r it outputs a value and terminates. The output could be either a special value NOCOUNT or a number $C=\left|V_{2}\right|$. On run R the output value has to be C. On run $R_{N C}$ it could be either C or NOCOUNT.

The VCD Algorithm to solve VCDP

When identifiers are present a simple broadcast algorithm solves VCDP in $\mathcal{G}(\mathrm{PD})_{2}$. In our model we solve it by using an extension OPT, denoted as OPT*. When processes halt OPT* has a peculiar "overestimation" property (see Lemma 11).

Algorithm OPT*

The algorithm OPT* differs from OPT in:

- Its output is considered not valid if we have one of the following: (i) the value n computed for some node of the tree is not in \mathbb{N}^{+}; (ii) if some of the Equations 1 are violated, i.e. $m_{\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}\right]} \gtrless \sum_{i=1}^{\left|V_{1}\right|} i \cdot n_{\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}, i\right]}$; (iii) if at round $r+2$ there exists a node in T with label $\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}, x_{r}\right]$ and at round $r+3$ does not exists a node with label $\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}, x_{r}, *\right]$.
- Its counting rule is a restricted version of the OPT counting rule. Specifically: when in T there is a non-leaf node with label $\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}, x_{r}\right]$ such that it has only one child $\left[\perp, x_{0}, \ldots, x_{r-1}, x_{r}, j\right]$ the leader computes $n_{\left[\perp, x_{0}, \ldots, x_{r-1}, x_{r}, j\right]}$ using:

$$
m_{\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}, x_{r}\right]}=j \cdot n_{\left[\perp, x_{0}, \ldots, x_{r-2}, x_{r-1}, x_{r}, j\right]} .
$$

When the leader knows the values n for each of the children of a non leaf-node t, it sums the children values and sets the n_{t} (see the second equation of Eq. 1).

Algorithm OPT* has the following properties:

- Lemma 10. Let R be a run produced by OPT*. R terminates in $\mathcal{O}\left(\left|V_{2}\right|\right)$ rounds.
- Lemma 11. Let R be a run produced by $O P T^{*}$ that starts at round 0 and $\left|V_{2}^{f}\right|$ be the number of non-halted processes in V_{2} at the end of the execution of OPT*. If at some round $r>0$ processes in V_{2} halt, then if the output C of $O P T^{*}$ is valid we have $C>\left|V_{2}^{f}\right|$.

Informally the previous Lemma says that, if there are halted processes, the output of OPT^{*} is always an overestimate on the number of non-halted processes. The following lemma states that if no process halts then the output is the number of processes.

- Lemma 12. Let R be a run produced by $O P T^{*}$ that starts at round 0 . If no process in V_{2} halts during the run, then the output of $O P T^{*}$ is valid and it is the correct count of processes in V_{2}.

Algorithm VCD

The algorithm executes sequentially k runs of OPT* starting from round 0 , for some $k>\left|V_{2}\right|$. The leader compares the output of these runs: if they are all equal and valid, then VCD outputs the count obtained by the first run of OPT*. Otherwise VCD outputs NOCOUNT. The value k is computed by counting the edges connecting processes in V_{1} with processes

```
\(M(-1)=[]\)
\(H(-1)=[\perp]\)
distance \(=-1\)
procedure SENDING_PHASE
    send (Message \(:<\) distance \(, M(r), H(r)>)\)
procedure RCV_PHASE (MultiSet MS)
    if distance \(==-1 \wedge \exists m \in M S \mid\) m.distance \(\neq-1 \wedge m\).distance \(==r\) then
        distance \(=\mathrm{m}\). distance +1
    if \(r==\) distance then
        for all \(m \in M S \mid m\).distance \(==-1\) do
            m. distance \(=\) distance +1
    if distance \(\neq-1\) then
        if \(r>\) distance \(\wedge \exists m \in M S \mid\) m.distance \(\notin\{\) distance -1 , distance, distance +1\(\}\) then
            \(M(r+1)=M(r)\).append(INVCNT)
        \(H(r+1)=H(r)\).append \((\) count_distance__neighbors \((M S\), distance -1\())\)
        \(M(r+1)=M(r) . \operatorname{append}(\) get__messages_from__distance \((M S, \operatorname{distance}+1))\)
```

Figure 5 InstanceCount for $\mathcal{G}(1-\mathrm{IC})$: pseudocode for Non-Leader process.
belonging to V_{2} at round 0 . This can be done trivially by v_{l} using messages from nodes in V_{1}. Each node in V_{1} has to simply count neighbors in V_{2}, the sum of these partial count is equal to $k-1$.

- Theorem 13. Algorithm VCD solves the VCDP problem.

7 InstanceCount

This algorithm assumes that the communication graph belongs to $\mathcal{G}(\mathrm{PD})_{h}$ then if InstanceCount notices that some process changed the distance from the leader along rounds, it invalids the count.

Non-leader process behavior (Figure 5)

Each non leader process v has three variables: v.distance indicating its distance from
 round r, v has v.distance $=-1$ and it is neighbor of a process with distance $=r \neq$ $-1, v$ sets its distance to $r+1$ (Line 9$)$. Initially, the leader is the only process with distance $=0$. As in OPT, v updates its degree history $v . H(r)$ by counting the number of processes in $N(v, r)$ whose distance is equal to v distance -1 . Moreover v updates a multiset $v \cdot M(r)$ that contains messages received by neighbors at distance v.distance +1 ; if v has not received any of these messages, it adds \perp to the multiset. In the sending phase, v broadcasts $<v$.distance, $v \cdot M(r), v \cdot H(r)>$ to its neighbors. This is done by using functions count_distance_neighbors and get_messages_from_distance.

A process that has distance $=r$ adds the messages from processes with distance $=-1$ to M list, let us recall that these processes with distance $=-1$ will set distance $=r+1$ at round r. Finally at Line 16 a process adds an INVCNT message to M if it detects that at least one its neighbor changed its distance from the leader which implies that the communication graph is not in $\mathcal{G}(\mathrm{PD})_{h}$ (see condition at Line 15). In the following when we refer to the set V_{h}, we consider processes setting their distance from the leader to h.

Leader process behavior (Figure 6)

The leader v_{l} first computes the number of processes in V_{1}, this is simply done by counting the messages received from these processes. After that, v_{l} executes VCD to count processes in V_{2}. This is done (i) by receiving the multi-set of messages $M S$ from processes in V_{1} (these processes are immediate neighbors of v_{l}) and (ii) by calling at Line 16 the function buildLastSet. This function takes the multi set $M S$ and starts an instance of VCD to construct the multi-set $M S_{\text {last }}$ of messages sent by processes in V_{2}. We define as $\operatorname{VCD}(M S, r)$ the local leader side simulation of a run of VCD that starts at round r using the content of messages in $M S$. The function returns one out of three possible values: (i) \perp if the messages in $M S$ are not enough to terminate the execution of VCD; (ii) NOCOUNT if VCD detects an halt ; (iii) A multi-set $M S_{\text {last }}$ of messages sent by processes belonging to V_{2} at round r.

This multi-set leads to the actual count of processes in V_{2} (see Line 21). This procedure is iterated: each time the leader obtains the multi-set $M S$ sent by processes in V_{h-1}, v_{l} calls BUILDLASTSET to reconstruct the most recent multi-set sent by processes in V_{h}.

The leader returns INVCNT if either (i) there is a INVCNT message in some $M S$ (see Lines 26) or (ii) if one of the instances of VCD terminates returning NOCOUNT. If an halt is detected then a process $v \in V_{j}$ at some round had a distance from v_{l} different than j. Additionally, at Line 8 the leader checks if processes in V_{1}, from which it receives messages, are stable; if this set changes the current instance is considered INVCNT.

The leader outputs the count when it counts a set V_{h} such that no process in V_{h} has a neighbor in V_{h+1}, see Line 13.

Correctness Proof

- Lemma 14. Let R be a run of InstanceCount on a dynamic graph $G \in \mathcal{G}(P D)_{h}$. We have that v_{l} will never output INVCNT in R.
- Lemma 15. Let R be a run of InstanceCount on a dynamic graph $G \in \mathcal{G}(1-I C)$. If $V_{h} \neq \emptyset$ in R, either (1) the leader obtains the count V_{h} or (2) the leader outputs INVCNT.
- Lemma 16. Let R be a run of InstanceCount on a dynamic graph $G \in \mathcal{G}(1-I C)$. If v_{l} outputs a value distinct from INVCNT in R, then that value is $|V|$.
- Lemma 17. Let R be a run of InstanceCount on a dynamic graph $G \in \mathcal{G}(P D)_{h}$. We have that v_{l} terminate and it outputs $|V|$ in R.

8 EXT Counting Algorithm

EXT executes an instance of InstanceCount for each temporal subgraph of G. Let us define as \mathcal{P}_{G} as the set of such subgraphs of G. We want that processes execute for each $G^{\prime} \in \mathcal{P}_{G}$ a different instance $I_{G^{\prime}}$ of InstanceCount and that such instances do not interfere with each other. Let us remark that the system is synchronous and the current round number r is known by all processes. Therefore each $I_{G^{\prime}}$ is uniquely identified by a binary string that has value 1 in position j if $G_{r_{j}} \in G^{\prime}$ and 0 otherwise. The uniqueness guarantees that instances can run in parallel. At each new round r the number of instances is doubled, half of the new instances will consider the messages exchanged within round r and the remaining ones will not consider these messages. As example at the end round 0 we have two instances I_{1}, I_{0}. In instance I_{1} the counting is started and processes have received the message exchanged in G_{0}. In instance I_{0} the counting has not been started, the messages exchanged in round 0 are ignored. At round 1 we have four instances $I_{11}, I_{10}, I_{01}, I_{00}: I_{11}$ is an instance of counting

```
distance_count []\(=\perp\)
distance \(=0\)
procedure SENDING_PHASE
    send \((<\) distance \(, \perp, \perp>)\)
procedure RCV__PHASE(MultiSet \(M S:<\) distance, \(M, H>\) )
    \(i=1\)
    if \((\) distance_count \([i] \neq \perp \wedge\) distance__count \([i] \neq|M S|) \vee(\exists m \in M S \mid\) m.distance \(>1)\) then
        output(INVCNT)
    distance_count \([i]=|M S|\)
    \(i++\)
    while true do
            if \(M S \neq \emptyset \wedge(\forall m \in M S: m \cdot M=[\perp, \ldots, \perp] \wedge \operatorname{size}(m \cdot M)>1)\) then
                count \(=\sum_{\forall j \mid \text { distance_count }[j] \neq \perp}\) distance_count \([j]\)
                output(count)
            \(M S=\) BUILDLASTSET \((M S)\)
            if \(\exists\) INVCNT \(\in M S\) then
                output(INVCNT)
            if \(M S=\perp\) then
                break
            distance_count \([i]=|M S|\)
            \(i++\)
function BUILDLASTSET (MS)
    \(M S_{\text {last }}=\perp\)
    if MS.containsSymbol(INVCNT) then
            return \(\{\) INVCNT \(\}\)
    for \(r=\operatorname{MinRound}(M S) ; r<\operatorname{MaxRound}(M S) ; r++\) do
            if \(\operatorname{VCD}(M S, r)==\operatorname{NOCOUNT}\) then
                return \{INVCNT\}
            if \(\operatorname{VCD}(M S, r) \neq \perp\) then
                if \(M S_{\text {last }} \neq \perp \wedge\left|M S_{\text {last }}\right| \neq|\operatorname{VCD}(M S, r)|\) then
                    return \(\{\) INVCNT \(\}\)
                \(M S_{l a s t}=\operatorname{VCD}(M S, r)\)
            else
            break
    return \(M S_{l a s t}\)
```

Figure 6 InstanceCount for $\mathcal{G}(1-\mathrm{IC})$: pseudocode for Leader process.
in which messages exchanged in G_{0}, G_{1} are considered; in I_{10} are considered only messages exchanged in G_{1} and ignored messages exchanged in G_{0}; in I_{01} are considered only messages exchanged in G_{0} and ignored messages exchanged in G_{1}; in I_{00} the counting has not been started. The pseudocode to implement the this procedure is trivial, thus it is omitted.

- Theorem 18. Let R be a run of EXT on a dynamic graph $G \in \mathcal{G}(1-I C)$. Eventually, v_{l} terminates and it outputs the correct count in R.

From the previous Theorem and from the impossibility of non trivial computation without a leader presented in $[18,19]$ we have:

- Theorem 19. Let us consider an anonymous unknown 1-interval connected networks with broadcast. A distinguished leader process is necessary and sufficient to do non trivial computations.

Besides counting and existence predicates other non-trivial problems are solvable using simple variation of EXT. Let us assume that each process has an initial input value. If this initial input is attached in the messages of EXT the leader can compute the exact multiset of these values. Thanks to this multiset the leader may compute aggregation functions as average,min,max.

Complexity Discussion

The EXT algorithm has an exponential complexity:. If we consider that distances of each node from v_{l} are in $[1,|V|-1]$, then it is easy to see that the number of possible combinations of distances over the set of nodes is upper bounded by $|V|^{|V|}$, therefore by definition of $\mathcal{G}(\mathrm{PD})$ we have $\max _{j}\left(\left|i_{j}-i_{j+1}\right|\right) \leq|V|^{|V|}$. Now what we have to bound is the number of instances of G^{\prime} needed by EXT to terminate, but this can be easily computed by considering when counting terminate with InstanceCount on a graph $\mathcal{G}(\mathrm{PD})$. At each level we count in at most $\mathcal{O}\left(|V|^{3}\right)$ rounds, therefore it is easy to show by straightforward induction that the total cost is $\mathcal{O}\left(|V|^{4}\right)$. So EXT terminates in at most $\mathcal{O}\left(|V|^{|V|+4}\right)$ rounds.

9 Conclusion

In this paper we have shown that, in anonymous interval connected network with broadcast, a leader node is enough to do non trivial computations. This answers negatively to the conjecture presented in [19, 18]. Moreover we have shown an optimal counting algorithm for $\mathcal{G}(\mathrm{PD})_{2}$ networks, proving the tightness of the bound shown in [14]. However, our EXT algorithm has an exponential complexity, both in memory and in the number of rounds. In $\mathcal{G}(1-\mathrm{IC})$ networks with IDs, when there is unlimited bandwidth, counting requires $O(|V|)$ rounds. It is unknown if handling anonymity in $\mathcal{G}(1-\mathrm{IC})$ requires this exponential cost. A future line of work could be the investigation of this gap.

- References

1 D. Angluin. Local and global properties in networks of processors (extended abstract). In $S T O C^{\prime} 80$, pages 82-93. ACM, 1980. doi:10.1145/800141.804655.
2 R. Baldoni, S. Bonomi, A. Kermarrec, and M. Raynal. Implementing a register in a dynamic distributed system. In IEEE International Conference on Distributed Computing Systems (ICDCS'09), pages 639-647, 2009. doi:10.1109/ICDCS. 2009.46.
3 M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani. The price of validity in dynamic networks. J. Comput. Syst. Sci., 73(3):245-264, May 2007. URL: 10.1016/j.jcss. 2006. 10.007, doi:10.1016/j.jcss.2006.10.007.

4 Joffroy Beauquier, Janna Burman, Simon Clavière, and Devan Sohier. Space-optimal counting in population protocols. In (to appear) $D I S C^{\prime} 15,2015$. URL: https://hal.inria.fr/ hal-01169634.
5 P. Boldi and S. Vigna. Computing anonymously with arbitrary knowledge. In PODC'99, pages 181-188. ACM, 1999.
6 P. Boldi and S. Vigna. Fibrations of graphs. Discrete Mathematics, 243(1-3):21-66, 2002. doi:10.1016/S0012-365X (00) 00455-6.
7 A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and dynamic networks. CoRR, abs/1012.0009, 2010. URL: http://arxiv.org/abs/1012.0009.
8 P. Fraigniaud, A. Pelc, D. Peleg, and S. Pérennes. Assigning labels in an unknown anonymous network with a leader. Distributed Computing, $14(3): 163-183,2001$. doi: 10.1007/PL00008935.

9 M. Jelasity, A. Montresor, and Ö. Babaoglu. Gossip-based aggregation in large dynamic networks. ACM Trans. Comput. Syst., 23(3):219-252, 2005.
10 D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information. In FOCS'03, pages 482-491. IEEE, 2003. doi:10.1109/SFCS . 2003. 1238221.

11 J. Kong, X. Hong, and M. Gerla. An identity-free and on-demand routing scheme against anonymity threats in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 6(8):888-902, 2007.
12 F. Kuhn, N. Lynch, and R. Oshman. Distributed computation in dynamic networks. In STOC'10, pages 513-522. ACM, 2010. doi:10.1145/1806689.1806760.
13 F. Kuhn and R. Oshman. Dynamic networks: Models and algorithms. SIGACT News, 42(1):82-96, March 2011. doi:10.1145/1959045. 1959064.
14 G. Di Luna and R. Baldoni. Brief announcement: Investigating the cost of anonymity on dynamic networks. In $P O D C^{\prime} 15$, pages 339-341. ACM, 2015. doi:10.1145/2767386. 2767442.

15 G. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Conscious and unconscious counting on anonymous dynamic networks. In $I C D C N^{\prime} 14$, pages $257-271$. Springer, 2014.
16 G. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Counting in anonymous dynamic networks under worst case adversary. In ICDCS'14, pages 338-347. IEEE, 2014.
17 L. Massoulié, E. Le Merrer, A.-M. Kermarrec, and A. Ganesh. Peer counting and sampling in overlay networks: Random walk methods. In PODC'06, pages 123-132. ACM, 2006. doi:10.1145/1146381.1146402.
18 O. Michail, I. Chatzigiannakis, and P. Spirakis. Brief announcement: Naming and counting in anonymous unknown dynamic networks. In DISC'12, pages 437-438. Springer, 2012.
19 O. Michail, I. Chatzigiannakis, and P. Spirakis. Naming and counting in anonymous unknown dynamic networks. In SSS'13, pages 281-295. Springer, 2013. doi:10.1007/ 978-3-319-03089-0_20.
20 O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Causality, influence, and computation in possibly disconnected synchronous dynamic networks. In OPODIS'12, pages 269-283, 2012. doi:10.1007/978-3-642-35476-2_19.

21 D. Mosk-Aoyama and D. Shah. Computing separable functions via gossip. In PODC' 06 , pages 113-122. ACM, 2006. doi:10.1145/1146381.1146401.
22 R. O'Dell and R. Wattenhofer. Information dissemination in highly dynamic graphs. In DIALM-POMC' 05, pages 104-110, 2005. doi:10.1145/1080810. 1080828.
23 B. Ribeiro and D. Towsley. Estimating and sampling graphs with multidimensional random walks. In IMC'10, pages 390-403, New York, NY, USA, 2010. ACM. doi:10.1145/1879141. 1879192.

24 N. Sakamoto. Comparison of initial conditions for distributed algorithms on anonymous networks. In Proceedings of the eighteenth annual ACM symposium on Principles of distributed computing, PODC'99, pages 173-179. ACM, 1999. doi:10.1145/301308.301352.
25 M. Yamashita and T. Kameda. Computing on an anonymous network. In PODC'88, pages 117-130. ACM, 1988. doi:10.1145/62546.62568.
26 M. Yamashita and T. Kameda. Computing on anonymous networks: Part 1-characterizing the solvable cases. IEEE Trans. on Parallel and Distributed Systems, 7(1):69-89, 1996. doi:10.1109/71.481599.

[^0]: * This work has been partially supported by the TENACE project (MIUR-PRIN 20103P34XC).

 © Giuseppe Di Luna and Roberto Baldoni;
 licensed under Creative Commons License CC-BY

[^1]: ${ }^{1}$ https://midlab.diag.uniroma1.it/publications.php

[^2]: ${ }^{2}$ Due to anonymity multiple messages from different processes may be undistinguishable.

