
Non Trivial Computations in Anonymous Dynamic
Networks∗

Giuseppe Di Luna1 and Roberto Baldoni2

1 Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio
Ruberti, Università degli Studi di Roma La Sapienza, Via Ariosto, 25, I-00185
Rome, Italy
diluna@dis.uniroma1.it

1 Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio
Ruberti, Università degli Studi di Roma La Sapienza, Via Ariosto, 25, I-00185
Rome, Italy
baldoni@dis.uniroma1.it

Abstract
In this paper we consider a static set of anonymous processes, i.e., they do not have distinguished
IDs, that communicate with neighbors using a local broadcast primitive. The communication
graph changes at each computational round with the restriction of being always connected, i.e.,
the network topology guarantees 1-interval connectivity. In such setting non trivial computations,
i.e., answering to a predicate like “there exists at least one process with initial input a?”, are
impossible. In a recent work, it has been conjectured that the impossibility holds even if a
distinguished leader process is available within the computation. In this paper we prove that the
conjecture is false. We show this result by implementing a deterministic leader-based terminating
counting algorithm. In order to build our counting algorithm we first develop a counting technique
that is time optimal on a family of dynamic graphs where each process has a fixed distance h
from the leader and such distance does not change along rounds. Using this technique we build
an algorithm that counts in anonymous 1-interval connected networks.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Distributed System, Anonymous Networks, Dynamic Networks

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.33

1 Introduction

Highly dynamic distributed systems are attracting a lot of interest from the relevant research
community [13, 7]. These models are well suited to study the new challenges introduced
by distributed systems where there is an immanent dynamicity given by the presence of
mobile devices, unstable communication links and environmental constraints. A critical
element in such future distributed systems is the anonymity of the devices; the uniqueness of
a process ID is not guaranteed due to operational limit (e.g., in highly dynamic networks
maintaining unique IDs may be infeasible due to mobility and failure among processes [22])
or to maintaining user’s privacy (e.g., where users may not wish to disclose information
about their behavior [11]).

In this paper we consider a static set of anonymous process |V |, this set of processes is
connected by a dynamic communication graph that is governed by a fictional omniscient

∗ This work has been partially supported by the TENACE project (MIUR-PRIN 20103P34XC).

© Giuseppe Di Luna and Roberto Baldoni;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 Non Trivial Computations in Anonymous Dynamic Networks

entity the adversary who has the power to change at each round the graph. The adversary
is able to read the local memory of each process in order to deploy the worst possible
communication graph to challenge the computation. The only restriction imposed to the
adversary is that the graph has to be connected at each round. This corresponds to the
1-interval connectivity model proposed in [12].

We focus on the problem of counting the number of processes in the system which is one
of the fundamental problems of distributed computing [12, 17, 10, 21, 2]. The system model
employed in this paper also assumes each process communicates with its neighbors using a
local broadcast primitive. Under this model, it has been proved that the presence of a leader
process is necessary in order to compute non trivial tasks [19]. In the case of leader absence,
the adversary could indeed perpetually generate an anonymous ring graph of unknown size,
and it is well known that in such graph non-trivial computation are impossible [1, 25]. Let
us remark that a leader is actually present in many realistic settings, such as a base station
in a mobile network, a gateway in a sensors network etc. Additionally, the computability
in the model where all processes are anonymous but a leader has been widely investigated
in the static network case and in population protocols [24, 26, 8, 4]. Furthermore, having a
leader can be sometimes simpler than ensuring an unique ID for each process. From a formal
point of view, it has been proved when processes communicate using broadcast, assuming
the existence of a leader is strictly weaker than assuming unique IDs [19].

Anonymity and the adversarial dynamic graph make the system model very challenging
for performing non-trivial computation. More specifically, it has been conjectured in [19, 18]
that, in such model, the presence of a leader is not sufficient to compute, non trivial tasks
such as counting. The main result of this paper is to show that the conjecture is false, and
that a distinguished leader process is necessary and sufficient to do deterministic non trivial
computations on anonymous 1-interval connected dynamic networks with broadcast. This is
shown by introducing a deterministic terminating counting algorithm, namely EXT.

The paper introduces one by one the main sub-algorithms forming EXT, namely OPT,
VCD and InstanceCount. As second result presented in this paper, we show that OPT is a
time optimal counting algorithm for graphs in G(PD)2, a specific subset of interval connected
dynamic graphs where each process has a fixed distance h from the leader with h ≤ 2 and
such distance is fixed across rounds. We showed in [14] that counting on G(PD)2 is function
of the network size even if there is unlimited bandwidth and a constant dynamic diameter
w.r.t. |V |. Thus OPT shows that the bound introduced in [14] for counting in G(PD)2 is
tight.

Outline

Section 4 presents an optimal algorithm for graphs belonging to G(PD)2. Section 5 illustrates
the basic structure of the counting algorithm, EXT, for 1-interval connected networks. EXT
has two main components: VCD and InstanceCount which are introduced in Section 6 and
Section 7 respectively. Finally, we prove that the conjecture presented in [19, 18] is false in
Section 8. Due to lack of space, some of the proofs can be found in the full version of the
paper1.

1 https://midlab.diag.uniroma1.it/publications.php

https://midlab.diag.uniroma1.it/publications.php

G. Di Luna and R. Baldoni 33:3

2 Related Work

The question concerning what can be computed on top of static anonymous networks, has
been pioneered by Angluin in [1] and it has been the further investigated in many papers
[25, 26, 6, 5]. In a static anonymous network with broadcast, the presence of a leader is
enough to have a terminating counting algorithm as shown in [18].

Considering dynamic non anonymous networks, counting has been studied under several
dynamicity models. In [3], dynamicity corresponds to processes churn where processes leave
and join the system. In [17, 23] dynamicity is governed by a random adversary to model
peer-to-peer networks. Finally considering the dynamicity model employed in this paper
(worst-case adversary), in [12], a counting algorithm for 1-interval connectivity has been
proposed. Other results related to counting can be found in [22] where a model similar
to 1-interval connected is considered. In the context of possibly disconnected adversarial
network, counting has been studied in [20]. The approaches followed by the latter works are
not suitable in the model proposed by this paper, they use the asymmetry introduced by IDs.

Counting in anonymous dynamic networks: In [10], the authors propose a gossip-based
protocol to compute aggregation function. The network graph considered by [10] is governed
by a fair random adversary, moreover the proposed approach converges to the actual count
without having a terminating condition. A similar model and strategy is also used by [9].
The first work investigating the problem of terminating counting in an anonymous network
with worst-case adversary and a leader node is [18]. They show that when a process is
able to send a different messages to each neighbors, the presence of a leader is enough to
have a terminating naming algorithm. For the broadcast case, under the assumption of
a fixed known upper bound on the maximum process degree, they provided an algorithm
that computes an upper bound on the network size. Building on this result, [15] proposes
an exact counting algorithm under the same assumption. Finally, [16] provides a counting
algorithm for 1-interval connected networks considering each process is equipped with a local
degree detector, i.e. an oracle able to predict the degree of the process before exchanging
messages. Other works [12, 21] have investigated leader-less randomized approaches to obtain
approximated counting algorithms. We are interested in study how anonymity impacts the
computational power of 1-interval connected networks with broadcast, for this reason we
assume that processes do not have access to a source of randomness, e.g. they cannot break
symmetry by using coin tosses.

3 Model of the computation

We consider a synchronous distributed system composed by a finite static set of processes V .
Processes in V are anonymous, they initially have no identifiers and execute a deterministic
round-based computation. Processes communicate through a communication network which
is dynamic. We assume at each round r the network is stable and represented by a graph
Gr = (V,E(r)) where E(r) ⊆ V × V is the set of bidirectional links at round r connecting
processes in V .

I Definition 1. A dynamic graph G = {G0, G1, . . . , Gr, . . .} is an infinite sequence of graphs
one at each round r of the computation.

A dynamic graph is 1-interval connected, if, and only if, G ∈ G(1-IC), if ∀Gr ∈ G we
have that Gr is connected. The neighborhood of a process v at round r is denoted by

OPODIS 2015

33:4 Non Trivial Computations in Anonymous Dynamic Networks

N(v, r) = {v′ : (v′, v) ∈ E(r)}. We say that v has degree d at round r iff |N(v, r)| = d.
Given a round r we denote with pv,v′ a path on Gr between v and v′. Moreover we denote
as Pr(v′, v), the set of all paths between v, v′ on graph Gr. The distance dr(v′, v) is the
minimum length among the lengths of the paths in Pr(v′, v), the length of the path is defined
as the number of edges. We consider the computation proceed by exchanging messages
through synchronous rounds.

Every round is divided in two phases: (i) send where processes send the messages for the
current round, (ii) receive where processes elaborates received messages and prepare those
that will be sent in the next round. Processes can communicate with its neighbors through
an anonymous broadcast primitive. Such primitive ensures that a message m sent by process
vi at the beginning of a certain round r will be delivered to all its neighbors during round
r. A process v floods message m by broadcasting it for each round. If process receives a
flooded message m then it starts the flooding of m. The flood of m terminates when it has
been received by all processes. We say that a network has dynamic diameter D if for any v
and any round r the flood of a message that starts at round r from process v terminates
by at most round r +D. Intuitively the dynamic diameter is the maximum time needed to
disseminate messages to all processes in the network.

Leader-based computation and worst case adversary: We assume the selection of a topo-
logy graph at round r is done by an omniscient adversary that may choose at each step the
worst configuration to challenge a counting algorithm. Due to the impossibility result shown
in [18], we assume any counting algorithm that works over a dynamic graph has a leader
process vl starting with a different unique state w.r.t. all the other processes.

I Definition 2. Given a dynamic network G with |V | processes, a distributed algorithm A
solves the counting on G if it exists a round r at which the leader outputs |V | and terminates.

Persistent distance dynamic graphs: Let us characterize dynamic graphs according to the
distances among a process v and the leader vl.

I Definition 3. (Persistent Distance over G) Consider a dynamic graph G. The distance
between v and vl over G, denoted D(v, vl) = d, is defined as follow: D(v, vl) = d iff
∀r, dr(v, vl) = d.

Let us now introduce a set of dynamic graphs based on the distance between the leader
and the processes of a graph.

I Definition 4 (Persistent Distance set). A graph G belongs to Persistent Distance set,
denoted G(PD) , iff ∀v ∈ G, ∃d ∈ N+ such that D(v, vl) = d

Graphs in G(PD)2

Among the dynamic graphs belonging to G(PD) we can further consider the set of graphs,
denoted G(PD)h, whose processes have maximum distance h from the leader with 1 < h ≤ |V |.
Thus, given a graph in G(PD)h we can partition its processes in h sets, {V0, V1, . . . , Vh},
according to their distance from the leader. In Figure 1 there is an example of G(PD)2 graph.
The depicted dynamic graph has dynamic diameter D = 4, if process v0 starts a flood at
round 0 this flood will reach process v3 at round 3. The task of the leader process vl is to
count processes in V2. Let us notice that if a process knows |N(v, r) ∩ V1| before the receive
phase of round r then counting in G(PD)2 needs O(1) rounds, the algorithm is trivial each

G. Di Luna and R. Baldoni 33:5

vl vl

v0 v3 v0 v3

Round 0 Round 1 Round 2

v0 v3

V1

V2

V0vl

Figure 1 An example of a graph belonging to G(PD)2 along three rounds.

process in V2 sends a message 1
|N(v,r)∩V1| to processes in V1. A process in V1 collects these

messages and send their sum to the leader. Also if IDs are present counting requires O(1)
rounds, in 2 rounds the leader collects the IDs of all processes. It is interesting to notice that
if |N(v, r)| is known only when a process receives messages from its neighbors then the time
for counting become Ω(log |V |) rounds, see Th.2 of [14].

4 An asymptotically optimal algorithm for G(PD)2

OPT initially starts a get_distance phase. At the end of this phase each process is aware of
its distance from the leader. In G(PD)2 this phase takes one round and it works as follow:
Each process knows if it is the leader or not. This information is broadcast by each process
(including the leader) to its neighbors at the beginning of round 0. Thus, at the end of round
0, each process knows if it belongs either to V1 or to V2.

Non-leader process behavior

Starting from round 1, a process broadcasts its distance from the leader (i.e., 1 or 2) and
each process v in V2 builds its degree history v.H(r) with r ≥ 0 where v.H(r) is an ordered
list containing the number of neighbors of v belonging to V1 at rounds [0, . . . , r − 1]. Thus
v.H(r) = [⊥, |N(v, 1) ∩ V1|, . . . , |N(v, r − 1) ∩ V1|].

Starting from round r > 0, each v ∈ V2 broadcasts v.H(r). These histories are collected
by each process v′ ∈ V1 and sent to the leader at the beginning of round r + 1.

Leader behavior

Starting from the beginning of round r ≥ 2 the leader receives degree histories from each
process in V1. The leader merges histories in a multiset denoted vl.M(r). Let us remark that
vl.M(r) may contain the same history multiple times.

Data structure: The leader uses vl.M(r) to build a tree data structure T whose aim is to
obtain |V2|. For each distinct history [A] ∈ vl.M(r) the leader creates a node t ∈ T with label
[A] and two variables < m[A], n[A] >. m[A] denotes the number of histories [A] in vl.M(r)
and n[A] is the number of processes in V2 that have sent [A]. Following the information flow,
at round 2, vl.M(2) will be formed by a single history [⊥] with multiplicity m[⊥]. The leader
creates the root of T with label [⊥], value m[⊥], and n[⊥] =? (where ? means unknown value).
It is important to remark that m values are directly computed from vl.M(r) while n values
are set by the leader at a round r′ ≥ r through a counting rule that will be explained later.

OPODIS 2015

33:6 Non Trivial Computations in Anonymous Dynamic Networks

The leader final target is to compute n[⊥] which corresponds to the number of processes
in V2.
At round r+2 if the leader receives a history h = [⊥, x0, . . . , xr−2, xr−1] and n[⊥,x0,...,xr−2] =?,
then it creates a node in t ∈ T with label h and value mh, this node is a child of the node
with label [⊥, x0, . . . , xr−2]. Otherwise the leader ignores h. It is straightforward to see that
the following equations hold:{

m[⊥,x0,...,xr−2,xr−1] =
∑|V1|

i=1 i · n[⊥,x0,...,xr−2,xr−1,i]

n[⊥,x0,...,xr−2,xr−1] =
∑|V1|

i=1 n[⊥,x0,...,xr−2,xr−1,i]
(1)

where i·n[⊥,x0,...,xr−2,xr−1,i] means that the leader received i copies of history [⊥, x0, . . . , xr−2,

xr−1], one for each process in V2 that at round r + 1 had history [⊥, x0, . . . , xr−2, xr−1, i].

Counting Rule: When in T there is a non-leaf node with label [⊥, x0, . . . , xr−2, xr−1, xr]
such that the leader knows the number of processes (i.e., n[A]), for each of its children
but one (i.e., n[⊥,x0,...,xr−1,xr,j] =?). Then the leader computes n[⊥,x0,...,xr−1,xr,j] using
m[⊥,x0,...,xr−2,xr−1,xr] =

∑|V1|
i=1 i · n[⊥,x0,...,xr−2,xr−1,xr,i].

When the leader knows the values n for each of the children of a non leaf-node t, it sums
the children values and sets the nt (see the second equation of Eq. 1).

Due to the fact that the number of processes is finite, eventually there will be a non-leaf
node in T with only one child (a leaf). Thanks to the counting rule, the n variables of the
child and of the father will be set. This will start a recursive procedure that will eventually
set n[⊥] terminating the counting.

In Figure 2 is depicted an example run of the algorithm. In the full version the detailed
pseudocode for T is provided.

Correctness proof

I Lemma 5. Let us consider the algorithm OPT. Eventually vl sets a value for n[⊥] and
this value is |V2|.

Proof. We first prove that eventually we reach a round in which the counting rule can be
applied for any leaf of T . Let us consider the subtree of T rooted in the node with label [A],
if there is only one child then the counting rule can be applied and n[A] can be computed.
Thus let us suppose that [A] has at least two children with labels [A, x], [A, x′] with x 6= x′.
We have that n[A,x] ≥ 1 and n[A,x′] ≥ 1 because there must be at least one sending process
for each degree-history. Considering that n[A] =

∑k
j=1 n[A,j], it follows that n[A,x] ≤ n[A]− 1.

Iterating this reasoning we have that when the height of the subtree rooted in [A] is greater
than n[A] − 1, then each leaf has no sibling: when there is a single process sending a certain
degree history H, in the next round there will be only one degree history with H as suffix.
As a consequence, after at most n[A] rounds, we may apply the counting rule for any leaf of
the subtree rooted in [A].

Now we prove by induction that: for each node v ∈ T if nv 6=?, then nv is equal to the
number of processes in V2 that had degree history equal to v at a given round.

Base case, leaf without siblings: Let v1 : [x0, . . . , xr+1] be a leaf without siblings and
v0 : [x0, . . . , xr] its father. vl sets, according to the counting rule, nv0 = nv1 = mv0

xr+1
. From

Eq 1 we have nv0 = nv1 which is equal to the number of processes in V2 that had degree
history [x0, . . . , xr].

G. Di Luna and R. Baldoni 33:7

round 0 round 1 round 2

Dynamic Graph

Data Structure Tree T

[?,1,1]

m[?] = 17, n? =?[?]

[?,1] [?,1] [?,1] [?,2] [?,2] [?,3] [?,3][?] [?] [?] [?] [?] [?] [?] [?,1,2] [?,1,2] [?,2,3] [?,2,3] [?,3,2] [?,3,1]

round 3

[?,1,1]

m[?] = 17, n? =?[?]

[?,1] [?,2] [?,3]
m[?,1] = 5 m[?,2] = 5 m[?,3] = 3

n[?,1] =? n[?,2] =? n[?,3] =?

[?,1,2]

[?,2,3]

[?,2]
n[?,2] = 2

n[?,2] =
m[?,2]

3
= 2

m[?,2] = 6

[?,3,2] [?,3,1]m[?,1,1] = 2
n[?,1,1] =?

m[?,1,2] = 3
n[?,1,2] =?

m[?,3,2] = 3

n[?,3,2] =?

m[?,3,1] = 3

n[?,3,1] =?

[?,1,1,2] [?,1,2,1] [?,1,2,2] [?,2,3,2] [?,2,3,1] [?,3,2,3] [?,3,1,3]

round 4

m[?] = 17, n? =?[?]

[?,1] [?,2] [?,3]
m[?,1] = 5 m[?,3] = 3

n[?,1] =? n[?,2] =? n[?,3] =?
m[?,2] = 6

m[?] = 17, n? =?[?]

[?,1] [?,2] [?,3]
m[?,1] = 5 m[?,2] = 5 m[?,3] = 3

n[?,1] =? n[?,2] =? n[?,3] =?

[?,1,2]

[?,2,3]

[?,2]
n[?,2] = 2

n[?,2] =
m[?,2]

3
= 2

m[?,2] = 6

[?,3,2] [?,3,1]m[?,1,1] = 2
n[?,1,1] =?

m[?,1,2] = 3
n[?,1,2] =?

m[?,3,2] = 3

n[?,3,2] =?

m[?,3,1] = 3

n[?,3,1] =?[?,1,1]
[?,1,1]

[?,1,1,2]

n[?,1,1] =
m[?,1,1]

2
= 1

n[?,1,1] = 1

n[?,1,2] = 2

n[?,1,2] =
m[?,1] � n[?,1,1]

2
= 2

n[?,1] = 3

n[?,3] =
m[?] � n[?,1] � 2n[?,2]

3
= 2

m[?] = 13 m[?] = 13

m[?] = 13
m[?] = 13

n[?,3] = 2

n[?] = 7

Figure 2 A run of OPT algorithm.

Inductive case: Let us consider v0 : [x0, . . . , xr] and the set of its children Cv0 with |Cv0 | > 1.
Let introduce a set Xv0 formed by the children for which n is known and set, formally:
Xv0 : {x ∈ Cv0 |nx 6=?}. If ∃!v1 : [x0, . . . , xr+1] ∈ Cv0 \ Xv0 , the leader sets (according to

the counting rule) nv1 =
mv0−

∑
∀[x0,...,xk]∈Xv0

(xk·n[x0,...,xk])

xr+1
. By inductive hypothesis we have

∀x ∈ Xv1 , nx is equal to the number of processes in V2 with degree history equal to x. Due
to Eq. 1, we have both nv1 and nv0 will be set to the correct value.

From the previous arguments we have that after at most |V2| rounds all the leaves of [⊥]
have no siblings, thus the counting rule will be applied recursively until the value n[⊥] is set
to |V2|. J

I Theorem 6. Let G be a dynamic graph of size |V | belonging to G(PD)2. A run of OPT
on G terminates in at most dlog2|V |e+ 3 rounds.

Proof. Let consider the algorithm OPT. The latter counts processes in V2, since the number
of processes in V1 is immediately known by vl at round 0, thus let us suppose that we
are in the worst case i.e., |V2| = O(|V |). Let us consider the tree T , given a node [A] the
maximum height of the subtree rooted in [A] is a function hmax(n[A]). We have that hmax

is non decreasing, hmax(n[A] − 1) ≤ hmax(n[A]): let us consider the worst scheduling that
the adversary uses with n[A] − 1 processes in order to obtain the maximum height. It easy

OPODIS 2015

33:8 Non Trivial Computations in Anonymous Dynamic Networks

to show that the same scheduling can be created with n[A] processes, the adversary will
simply force two processes to follow the behavior of a single process in the old schedule. Let
us restrict to the case when [A] has only two children: [A, x], [A, x′], for the counting rule
hmax(n[A]) = min(hmax(n[A,x]), hmax(n[A,x′])))+1. Considering the second equation of Eq. 1,
hmax(n[A]) can be rewritten as follows: hmax(n[A]) = 1 +min(hmax(n[A]

2 − δ), hmax(n[A]
2 +

δ)) ≤ 1 + min(hmax(n[A]
2), hmax(n[A]

2)) with δ ∈ [0, n[A]
2]. Thus, the optimal height can be

reached by having n[A,x] = n[A,x′] = n[A]
2 . Let us notice that when [A] has more than two

children, the maximum height of the subtree rooted in [A] cannot be greater than the one
obtained when [A] has two children. Iterating this reasoning, in the worst case T is a balanced
tree with degree at most 2 for each non leaf node and with exactly |V | leaves. The height of
this tree is dlog2(|V |)e. Each level of T corresponds to one round of OPT, this completes the
proof. J

A Ω(log |V |) bound on G(PD)2 has been shown in [14]. Therefore we have that OPT is
asymptotically optimal.

5 High level view of G(1-IC) counting algorithm

[19] and [18] conjectured: It is impossible to compute (even with a leader) the predicate
Na ≥ 1, that is “exists an a in the input”, in general anonymous unknown dynamic networks
with broadcast. In order to show that the conjecture is false we present a terminating counting
algorithm, namely EXT, on G(1-IC); this obviously implies the possibility to answer to any
existence predicate confuting the conjecture.

Let us introduce the underlying structure we use to build EXT. The first conceptual
step is to extend OTP to obtain a counting algorithm on G(PD)h. We denote this extended
algorithm OPT_h. As a second step, we consider networks in G(1-IC). In such networks,
at each round, processes can change their distance from the leader in [1, V − 1]. When a
process changes distance we say that the process “moved”.

5.1 Counting in G(PD)h: OPT_h Algorithm
As OPT, OPT_h begins with a get_distance phase over G(PD)h where each process v obtains
its distance from the leader, v.distance. This is done by using a simple flood and convergecast
algorithm. After this phase the counting begin.

Each non leader process v keeps a degree history, where each element is the number of
processes in N(v, r) whose distance from vl is v.distance− 1. Moreover v updates a multiset
v.M(r) that contains messages received by neighbors at distance v.distance+ 1. The degree
history and the multiset are broadcast at each round.

From an high level point of view the algorithm of vl works as follow: the leader first
computes the number of processes in V1. Then by using messages sent by process in V1, let
MS1 be this multiset2, it executes OPT to count the processes in V2. By counting processes
in V2 it also obtains the multiset MS2 of messages sent by these processes. At this point,
the leader simulates, using MS2, an execution of OPT counting processes in V3. Iterating
this procedure till processes at distance h we obtain the final count.

2 Due to anonymity multiple messages from different processes may be undistinguishable.

G. Di Luna and R. Baldoni 33:9

...

...

...

...

Dynamic Graph: G:{G0, G1, G2, . . .}
8G0

1, G
0
2, G

0
3, . . . ✓ G EXT executes

EXT

...

InstanceCount G0
2

InstanceCount G0
k

executes: executes:
InstanceCount G0

1
executes:

...
VCD to count

nodes in Vj

VCD to count
nodes in V1

...

VCD to count
nodes in V1

VCD to count
nodes in V1

VCD to count
nodes in Vj

VCD to count
nodes in Vj

OPT⇤ OPT⇤OPT⇤

OPT⇤OPT⇤ OPT⇤

Figure 3 Counting algorithm EXT and the relationship among its subalgorithms. Algorithms
VCD and OPT∗ are explained in Section 6; InstanceCount in Section 7. Finally, EXT is presented in
Section 8.

Let us remark that OPT_h is an asymptotically time optimal algorithm for graphs in
G(PD)h. A more detailed explanation of OPT_h, with pseudo-code and formal proofs can
be found in the full version.

5.2 Using G(PD)h to count in G(1-IC)

Let us introduce the notion of temporal subgraph G′ of G:

I Definition 7. (Temporal Subgraph) Given a dynamic graph G, a dynamic graph G′ is a
temporal subgraph of G (G′ ⊆ G) if and only if G′ : [Gi1 , Gi2 , . . .] is an ordered subsequence
of G : [G0, G1, G2, . . .].

We can show that in each G ∈ G(1-IC) there exists a temporal subgraph G′ that belongs
to G(PD)h:

I Lemma 8. Let us consider a dynamic graph G : [G0, G1, G2, . . .] ∈ G(1-IC). There exists
h ∈ N+ and ∃G′ ⊆ G such that G′ is infinite and G′ ∈ G(PD)h.

Now, let us define a counting algorithm InstanceCount. Such algorithm works on G ∈ G(1-
IC) and it has two properties: (P1) it terminates giving the correct count on instance
G′ ∈ G(PD)h; (P2) it does not give an incorrect count on G′ 6∈ G(PD)h. Thus, if G′ 6∈ G(PD)h

it can terminate giving either a correct count of the network or a special invalid value, i.e.
INVCNT. The strategy of EXT is to run a different instance of InstanceCount on each temporal
subgraph of G. Due to properties (P1) and (P2), EXT terminates correctly when an instance
of InstanceCount outputs a valid count value. For the property (P1) and for Lemma 8,
one instance of InstanceCount outputs a valid count value. Consequently, EXT is a correct
terminating counting algorithm.

InstanceCount counts as if the network is in G(PD)h. Therefore, the leader first counts
processes in V1, then processes in V2 and so on. This is done until vl counts processes of a
set Vh such that no set Vh+1 exists. The tricky part is to detect if the counting algorithm is
operating on a network in G(PD)h. In the affirmative, the count done with such strategy
will be correct. The procedure that counts each set Vj is a special algorithm, namely VCD.
VCD allows to detect if the count obtained for Vj is correct, returning the count value, or if
it is not possible to count Vj because some process moved during the counting, returning
NOCOUNT. The VCD algorithm is explained in the next Section.

OPODIS 2015

33:10 Non Trivial Computations in Anonymous Dynamic Networks

VM
2VM
2

VM
2VM
2

VM
2VM
2 VM

2VM
2

Unknown Size Unknown Size

v4v4

v4v4

v4v4v4v4

round rround r round r + 1round r + 1

round rround r round r + 1round r + 1

Vf
2Vf
2 Vf

2Vf
2

G(1-IC)G(1-IC) G(1-IC)G(1-IC)

G(PD)2G(PD)2 G(PD)2G(PD)2

Figure 4 In general G(1-IC) a subset V M
2 of processes in V2 may move changing the distance

from the leader and invalidating the correct count of processes in V2. Network size is unknown
therefore messages from process v4 need an unknown number of rounds to reach the leader. We
are interested in an algorithm that detects this using information from processes in V2 \ V M

2 . This
is equivalent to solve the problem on a networks in G(PD)2 where the subset V M

2 stops sending
messages after a certain round. In the example process v4 halts at round r + 1.

6 Valid Count Detection Algorithm (VCD)

Let us considering a network where processes in V1 do not change distance from the leader
along rounds. Remaining processes, including a proper subset V M

2 of processes in V2 at
round 0, may change distance along rounds. We wish to build an algorithm that solves this
problem: if no processes in V M

2 move during the counting, then the algorithm outputs the
correct count of processes at distance 2 at round 0. Otherwise, the algorithm outputs either
the correct count or a special invalid value. Unfortunately, in case processes change their
distance from the leader, OPT might fail outputting a wrong count.

One strategy to build such algorithm could be to first use OPT then, after OPT termination,
to start a waiting phase in order to receive messages from processes that could have moved.
Sadly, this simple OPT-based strategy does not work. If vl outputs the final count at round
r, the message from a process that moved could arrive at round r + 1, invaliding the count.
Thus, vl should wait for some time before outputting the count but this time cannot be
bounded as the size of the network is unknown. From this point of view, if a process changes
distance across rounds in a network of unknown size it is like if this process halts and it does
not send anymore messages. We denote this problem as Valid Count Detection.

Valid Count Detection Problem (VCDP)

Let us consider a graph in G(PD)2 where processes in V2 may halt at some point. We say
that vi halts at round r if it has send messages for any round r′′ < r, and it does not send
messages for any r′ ≥ r. We assume that processes halt from round r ≥ 1; that is they
send at least one message before their departure. Now we introduce the VCDP problem on
G(PD)2:

G. Di Luna and R. Baldoni 33:11

I Problem 9 (VCDP). Given two run R,RNC such that: in the run R no process halts; in
the run RNC there are processes that halt. An algorithm solves the Valid Count Detection
Problem if at some round r it outputs a value and terminates. The output could be either a
special value NOCOUNT or a number C = |V2|. On run R the output value has to be C. On
run RNC it could be either C or NOCOUNT.

The VCD Algorithm to solve VCDP

When identifiers are present a simple broadcast algorithm solves VCDP in G(PD)2. In our
model we solve it by using an extension OPT, denoted as OPT∗. When processes halt OPT∗
has a peculiar “overestimation” property (see Lemma 11).

Algorithm OPT∗

The algorithm OPT∗ differs from OPT in:
Its output is considered not valid if we have one of the following: (i) the value n computed
for some node of the tree is not in N+; (ii) if some of the Equations 1 are violated, i.e.
m[⊥,x0,...,xr−2,xr−1] ≷

∑|V1|
i=1 i · n[⊥,x0,...,xr−2,xr−1,i]; (iii) if at round r + 2 there exists a

node in T with label [⊥, x0, . . . , xr−2, xr−1, xr] and at round r+ 3 does not exists a node
with label [⊥, x0, . . . , xr−2, xr−1, xr, ∗].
Its counting rule is a restricted version of the OPT counting rule. Specifically: when in T
there is a non-leaf node with label [⊥, x0, . . . , xr−2, xr−1, xr] such that it has only one
child [⊥, x0, . . . , xr−1, xr, j] the leader computes n[⊥,x0,...,xr−1,xr,j] using:

m[⊥,x0,...,xr−2,xr−1,xr] = j · n[⊥,x0,...,xr−2,xr−1,xr,j] .

When the leader knows the values n for each of the children of a non leaf-node t, it sums
the children values and sets the nt (see the second equation of Eq. 1).

Algorithm OPT∗ has the following properties:

I Lemma 10. Let R be a run produced by OPT∗. R terminates in O(|V2|) rounds.

I Lemma 11. Let R be a run produced by OPT∗ that starts at round 0 and |V f
2 | be the

number of non-halted processes in V2 at the end of the execution of OPT∗. If at some round
r > 0 processes in V2 halt, then if the output C of OPT∗ is valid we have C > |V f

2 |.

Informally the previous Lemma says that, if there are halted processes, the output of
OPT∗ is always an overestimate on the number of non-halted processes. The following lemma
states that if no process halts then the output is the number of processes.

I Lemma 12. Let R be a run produced by OPT∗ that starts at round 0. If no process in V2
halts during the run, then the output of OPT∗ is valid and it is the correct count of processes
in V2.

Algorithm VCD

The algorithm executes sequentially k runs of OPT∗ starting from round 0, for some k > |V2|.
The leader compares the output of these runs: if they are all equal and valid, then VCD
outputs the count obtained by the first run of OPT∗. Otherwise VCD outputs NOCOUNT.
The value k is computed by counting the edges connecting processes in V1 with processes

OPODIS 2015

33:12 Non Trivial Computations in Anonymous Dynamic Networks

1: M(−1) = []
2: H(−1) = [⊥]
3: distance = −1
4:
5: procedure sending_phase
6: send(Message :< distance, M(r), H(r) >)
7:
8: procedure rcv_phase(MultiSet MS)
9: if distance == −1 ∧ ∃m ∈MS |m.distance 6= −1 ∧m.distance == r then
10: distance=m.distance+1
11: if r == distance then
12: for all m ∈MS |m.distance == −1 do
13: m.distance=distance+1
14: if distance 6= −1 then
15: if r > distance ∧ ∃m ∈MS |m.distance 6∈ {distance− 1, distance, distance + 1} then
16: M(r + 1) = M(r).append(INVCNT)
17: H(r + 1) = H(r).append(count_distance_neighbors(MS, distance− 1))
18: M(r + 1) = M(r).append(get_messages_from_distance(MS, distance + 1))

Figure 5 InstanceCount for G(1−IC): pseudocode for Non-Leader process.

belonging to V2 at round 0. This can be done trivially by vl using messages from nodes in
V1. Each node in V1 has to simply count neighbors in V2, the sum of these partial count is
equal to k − 1.

I Theorem 13. Algorithm VCD solves the VCDP problem.

7 InstanceCount

This algorithm assumes that the communication graph belongs to G(PD)h then if Instance-
Count notices that some process changed the distance from the leader along rounds, it invalids
the count.

Non-leader process behavior (Figure 5)

Each non leader process v has three variables: v.distance indicating its distance from
the leader and two lists v.M and v.H. v assigns a value to v.distance as follows: if, at
round r, v has v.distance = −1 and it is neighbor of a process with distance = r 6=
−1, v sets its distance to r + 1 (Line 9). Initially, the leader is the only process with
distance = 0. As in OPT, v updates its degree history v.H(r) by counting the number
of processes in N(v, r) whose distance is equal to v.distance − 1. Moreover v updates a
multiset v.M(r) that contains messages received by neighbors at distance v.distance+ 1; if
v has not received any of these messages, it adds ⊥ to the multiset. In the sending phase, v
broadcasts < v.distance, v.M(r), v.H(r) > to its neighbors. This is done by using functions
count_distance_neighbors and get_messages_from_distance.

A process that has distance = r adds the messages from processes with distance = −1
to M list, let us recall that these processes with distance = −1 will set distance = r + 1 at
round r. Finally at Line 16 a process adds an INVCNT message toM if it detects that at least
one its neighbor changed its distance from the leader which implies that the communication
graph is not in G(PD)h (see condition at Line 15). In the following when we refer to the set
Vh, we consider processes setting their distance from the leader to h.

G. Di Luna and R. Baldoni 33:13

Leader process behavior (Figure 6)

The leader vl first computes the number of processes in V1, this is simply done by counting
the messages received from these processes. After that, vl executes VCD to count processes
in V2. This is done (i) by receiving the multi-set of messages MS from processes in V1
(these processes are immediate neighbors of vl) and (ii) by calling at Line 16 the function
buildLastSet. This function takes the multi set MS and starts an instance of VCD to
construct the multi-set MSlast of messages sent by processes in V2. We define as VCD(MS, r)
the local leader side simulation of a run of VCD that starts at round r using the content of
messages in MS. The function returns one out of three possible values: (i) ⊥ if the messages
in MS are not enough to terminate the execution of VCD; (ii) NOCOUNT if VCD detects an
halt ; (iii) A multi-set MSlast of messages sent by processes belonging to V2 at round r.

This multi-set leads to the actual count of processes in V2 (see Line 21). This procedure
is iterated: each time the leader obtains the multi-set MS sent by processes in Vh−1, vl calls
buildLastSet to reconstruct the most recent multi-set sent by processes in Vh.

The leader returns INVCNT if either (i) there is a INVCNT message in some MS (see
Lines 26) or (ii) if one of the instances of VCD terminates returning NOCOUNT. If an halt
is detected then a process v ∈ Vj at some round had a distance from vl different than j.
Additionally, at Line 8 the leader checks if processes in V1, from which it receives messages,
are stable; if this set changes the current instance is considered INVCNT.

The leader outputs the count when it counts a set Vh such that no process in Vh has a
neighbor in Vh+1, see Line 13.

Correctness Proof

I Lemma 14. Let R be a run of InstanceCount on a dynamic graph G ∈ G(PD)h. We have
that vl will never output INVCNT in R.

I Lemma 15. Let R be a run of InstanceCount on a dynamic graph G ∈ G(1-IC). If Vh 6= ∅
in R, either (1) the leader obtains the count Vh or (2) the leader outputs INVCNT.

I Lemma 16. Let R be a run of InstanceCount on a dynamic graph G ∈ G(1-IC). If vl

outputs a value distinct from INVCNT in R, then that value is |V |.

I Lemma 17. Let R be a run of InstanceCount on a dynamic graph G ∈ G(PD)h. We have
that vl terminate and it outputs |V | in R.

8 EXT Counting Algorithm

EXT executes an instance of InstanceCount for each temporal subgraph of G. Let us define
as PG as the set of such subgraphs of G. We want that processes execute for each G′ ∈ PG a
different instance IG′ of InstanceCount and that such instances do not interfere with each
other. Let us remark that the system is synchronous and the current round number r is
known by all processes. Therefore each IG′ is uniquely identified by a binary string that has
value 1 in position j if Grj ∈ G′ and 0 otherwise. The uniqueness guarantees that instances
can run in parallel. At each new round r the number of instances is doubled, half of the new
instances will consider the messages exchanged within round r and the remaining ones will
not consider these messages. As example at the end round 0 we have two instances I1, I0. In
instance I1 the counting is started and processes have received the message exchanged in G0.
In instance I0 the counting has not been started, the messages exchanged in round 0 are
ignored. At round 1 we have four instances I11, I10, I01, I00: I11 is an instance of counting

OPODIS 2015

33:14 Non Trivial Computations in Anonymous Dynamic Networks

1: distance_count[] = ⊥
2: distance = 0
3: procedure sending_phase
4: send(< distance,⊥,⊥ >)
5:
6: procedure rcv_phase(MultiSet MS :< distance, M, H >)
7: i = 1
8: if (distance_count[i] 6= ⊥ ∧ distance_count[i] 6= |MS|) ∨ (∃m ∈MS|m.distance > 1) then
9: output(INVCNT)
10: distance_count[i] = |MS|
11: i + +
12: while true do
13: if MS 6= ∅ ∧ (∀m ∈MS : m.M = [⊥, . . . ,⊥] ∧ size(m.M) > 1) then
14: count =

∑
∀j|distance_count[j]6=⊥

distance_count[j]
15: output(count)
16: MS =buildLastSet (MS)
17: if ∃INVCNT ∈MS then
18: output(INVCNT)
19: if MS = ⊥ then
20: break
21: distance_count[i] = |MS|
22: i + +
23:
24: function buildLastSet(MS)
25: MSlast = ⊥
26: if MS.containsSymbol(INVCNT) then
27: return {INVCNT}
28: for r =MinRound(MS); r <MaxRound(MS); r + + do
29: if VCD(MS, r) ==NOCOUNT then
30: return {INVCNT}
31: if VCD(MS, r) 6= ⊥ then
32: if MSlast 6= ⊥ ∧ |MSlast| 6= | VCD(MS, r)| then
33: return {INVCNT}
34: MSlast = VCD(MS, r)
35: else
36: break
37: return MSlast

Figure 6 InstanceCount for G(1−IC): pseudocode for Leader process.

in which messages exchanged in G0, G1 are considered; in I10 are considered only messages
exchanged in G1 and ignored messages exchanged in G0; in I01 are considered only messages
exchanged in G0 and ignored messages exchanged in G1; in I00 the counting has not been
started. The pseudocode to implement the this procedure is trivial, thus it is omitted.

I Theorem 18. Let R be a run of EXT on a dynamic graph G ∈ G(1-IC). Eventually, vl

terminates and it outputs the correct count in R.

From the previous Theorem and from the impossibility of non trivial computation without
a leader presented in [18, 19] we have:

I Theorem 19. Let us consider an anonymous unknown 1-interval connected networks
with broadcast. A distinguished leader process is necessary and sufficient to do non trivial
computations.

Besides counting and existence predicates other non-trivial problems are solvable using
simple variation of EXT. Let us assume that each process has an initial input value. If this
initial input is attached in the messages of EXT the leader can compute the exact multiset
of these values. Thanks to this multiset the leader may compute aggregation functions as
average,min,max.

G. Di Luna and R. Baldoni 33:15

Complexity Discussion

The EXT algorithm has an exponential complexity:. If we consider that distances of each
node from vl are in [1, |V |−1], then it is easy to see that the number of possible combinations
of distances over the set of nodes is upper bounded by |V ||V |, therefore by definition of G(PD)
we have maxj(|ij − ij+1|) ≤ |V ||V |. Now what we have to bound is the number of instances
of G′ needed by EXT to terminate, but this can be easily computed by considering when
counting terminate with InstanceCount on a graph G(PD). At each level we count in at most
O(|V |3) rounds, therefore it is easy to show by straightforward induction that the total cost
is O(|V |4). So EXT terminates in at most O(|V ||V |+4) rounds.

9 Conclusion

In this paper we have shown that, in anonymous interval connected network with broadcast,
a leader node is enough to do non trivial computations. This answers negatively to the
conjecture presented in [19, 18]. Moreover we have shown an optimal counting algorithm
for G(PD)2 networks, proving the tightness of the bound shown in [14]. However, our EXT
algorithm has an exponential complexity, both in memory and in the number of rounds. In
G(1-IC) networks with IDs, when there is unlimited bandwidth, counting requires O(|V |)
rounds. It is unknown if handling anonymity in G(1-IC) requires this exponential cost. A
future line of work could be the investigation of this gap.

References

1 D. Angluin. Local and global properties in networks of processors (extended abstract). In
STOC’80, pages 82–93. ACM, 1980. doi:10.1145/800141.804655.

2 R. Baldoni, S. Bonomi, A. Kermarrec, and M. Raynal. Implementing a register in a dynamic
distributed system. In IEEE International Conference on Distributed Computing Systems
(ICDCS’09), pages 639–647, 2009. doi:10.1109/ICDCS.2009.46.

3 M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani. The price of validity in dynamic
networks. J. Comput. Syst. Sci., 73(3):245–264, May 2007. URL: 10.1016/j.jcss.2006.
10.007, doi:10.1016/j.jcss.2006.10.007.

4 Joffroy Beauquier, Janna Burman, Simon Clavière, and Devan Sohier. Space-optimal count-
ing in population protocols. In (to appear) DISC’15, 2015. URL: https://hal.inria.fr/
hal-01169634.

5 P. Boldi and S. Vigna. Computing anonymously with arbitrary knowledge. In PODC’99,
pages 181–188. ACM, 1999.

6 P. Boldi and S. Vigna. Fibrations of graphs. Discrete Mathematics, 243(1-3):21–66, 2002.
doi:10.1016/S0012-365X(00)00455-6.

7 A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and dy-
namic networks. CoRR, abs/1012.0009, 2010. URL: http://arxiv.org/abs/1012.0009.

8 P. Fraigniaud, A. Pelc, D. Peleg, and S. Pérennes. Assigning labels in an unknown
anonymous network with a leader. Distributed Computing, 14(3):163–183, 2001. doi:
10.1007/PL00008935.

9 M. Jelasity, A. Montresor, and Ö. Babaoglu. Gossip-based aggregation in large dynamic
networks. ACM Trans. Comput. Syst., 23(3):219–252, 2005.

10 D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information.
In FOCS’03, pages 482–491. IEEE, 2003. doi:10.1109/SFCS.2003.1238221.

OPODIS 2015

http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1109/ICDCS.2009.46
10.1016/j.jcss.2006.10.007
10.1016/j.jcss.2006.10.007
http://dx.doi.org/10.1016/j.jcss.2006.10.007
https://hal.inria.fr/hal-01169634
https://hal.inria.fr/hal-01169634
http://dx.doi.org/10.1016/S0012-365X(00)00455-6
http://arxiv.org/abs/1012.0009
http://dx.doi.org/10.1007/PL00008935
http://dx.doi.org/10.1007/PL00008935
http://dx.doi.org/10.1109/SFCS.2003.1238221

33:16 Non Trivial Computations in Anonymous Dynamic Networks

11 J. Kong, X. Hong, and M. Gerla. An identity-free and on-demand routing scheme against
anonymity threats in mobile ad hoc networks. IEEE Transactions on Mobile Computing,
6(8):888–902, 2007.

12 F. Kuhn, N. Lynch, and R. Oshman. Distributed computation in dynamic networks. In
STOC’10, pages 513–522. ACM, 2010. doi:10.1145/1806689.1806760.

13 F. Kuhn and R. Oshman. Dynamic networks: Models and algorithms. SIGACT News,
42(1):82–96, March 2011. doi:10.1145/1959045.1959064.

14 G. Di Luna and R. Baldoni. Brief announcement: Investigating the cost of anonymity
on dynamic networks. In PODC’15, pages 339–341. ACM, 2015. doi:10.1145/2767386.
2767442.

15 G. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Conscious and unconscious
counting on anonymous dynamic networks. In ICDCN’14, pages 257–271. Springer, 2014.

16 G. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Counting in anonymous
dynamic networks under worst case adversary. In ICDCS’14, pages 338–347. IEEE, 2014.

17 L. Massoulié, E. Le Merrer, A.-M. Kermarrec, and A. Ganesh. Peer counting and sampling
in overlay networks: Random walk methods. In PODC’06, pages 123–132. ACM, 2006.
doi:10.1145/1146381.1146402.

18 O. Michail, I. Chatzigiannakis, and P. Spirakis. Brief announcement: Naming and counting
in anonymous unknown dynamic networks. In DISC’12, pages 437–438. Springer, 2012.

19 O. Michail, I. Chatzigiannakis, and P. Spirakis. Naming and counting in anonymous
unknown dynamic networks. In SSS’13, pages 281–295. Springer, 2013. doi:10.1007/
978-3-319-03089-0_20.

20 O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Causality, influence, and computation
in possibly disconnected synchronous dynamic networks. In OPODIS’12, pages 269–283,
2012. doi:10.1007/978-3-642-35476-2_19.

21 D. Mosk-Aoyama and D. Shah. Computing separable functions via gossip. In PODC’ 06,
pages 113–122. ACM, 2006. doi:10.1145/1146381.1146401.

22 R. O’Dell and R. Wattenhofer. Information dissemination in highly dynamic graphs. In
DIALM-POMC’ 05, pages 104–110, 2005. doi:10.1145/1080810.1080828.

23 B. Ribeiro and D. Towsley. Estimating and sampling graphs with multidimensional random
walks. In IMC’10, pages 390–403, New York, NY, USA, 2010. ACM. doi:10.1145/1879141.
1879192.

24 N. Sakamoto. Comparison of initial conditions for distributed algorithms on anonymous
networks. In Proceedings of the eighteenth annual ACM symposium on Principles of dis-
tributed computing, PODC’99, pages 173–179. ACM, 1999. doi:10.1145/301308.301352.

25 M. Yamashita and T. Kameda. Computing on an anonymous network. In PODC’88, pages
117–130. ACM, 1988. doi:10.1145/62546.62568.

26 M. Yamashita and T. Kameda. Computing on anonymous networks: Part 1-characterizing
the solvable cases. IEEE Trans. on Parallel and Distributed Systems, 7(1):69–89, 1996.
doi:10.1109/71.481599.

http://dx.doi.org/10.1145/1806689.1806760
http://dx.doi.org/10.1145/1959045.1959064
http://dx.doi.org/10.1145/2767386.2767442
http://dx.doi.org/10.1145/2767386.2767442
http://dx.doi.org/10.1145/1146381.1146402
http://dx.doi.org/10.1007/978-3-319-03089-0_20
http://dx.doi.org/10.1007/978-3-319-03089-0_20
http://dx.doi.org/10.1007/978-3-642-35476-2_19
http://dx.doi.org/10.1145/1146381.1146401
http://dx.doi.org/10.1145/1080810.1080828
http://dx.doi.org/10.1145/1879141.1879192
http://dx.doi.org/10.1145/1879141.1879192
http://dx.doi.org/10.1145/301308.301352
http://dx.doi.org/10.1145/62546.62568
http://dx.doi.org/10.1109/71.481599

	Introduction
	Related Work
	Model of the computation
	An asymptotically optimal algorithm for G(PD)-2
	High level view of G(1-IC) counting algorithm
	Counting in G(1-IC): OPT_h Algorithm
	Using G(PD)-h to count in G(1-IC)

	Valid Count Detection Algorithm (VCD)
	InstanceCount
	EXT Counting Algorithm
	Conclusion

