
Explicit List-Decodable Codes with Optimal Rate
for Computationally Bounded Channels
Ronen Shaltiel∗1 and Jad Silbak†2

1 Department of Computer Science, University of Haifa, Israel
ronen@cs.haifa.ac.il

2 Department of Computer Science, University of Haifa, Israel
jadsilbak@gmail.com

Abstract
A stochastic code is a pair of encoding and decoding procedures (Enc,Dec) where Enc : {0, 1}k×
{0, 1}d → {0, 1}n. The code is (p, L)-list-decodable against a class C of “channel functions”
C : {0, 1}n → {0, 1}n if for every message m ∈ {0, 1}k and every channel C ∈ C that induces at
most pn errors, applying Dec on the “received word” C(Enc(m,S)) produces a list of at most
L messages that contain m with high probability over the choice of uniform S ← {0, 1}d. Note
that both the channel C and the decoding algorithm Dec do not receive the random variable S,
when attempting to decode. The rate of a code is R = k/n, and a code is explicit if Enc,Dec
run in time poly(n).

Guruswami and Smith (J. ACM, to appear), showed that for every constants 0 < p < 1
2 and

c > 1 there are Monte-Carlo explicit constructions of stochastic codes with rate R ≥ 1−H(p)− ε
that are (p, L = poly(1/ε))-list decodable for size nc channels. Monte-Carlo, means that the
encoding and decoding need to share a public uniformly chosen poly(nc) bit string Y , and the
constructed stochastic code is (p, L)-list decodable with high probability over the choice of Y .

Guruswami and Smith pose an open problem to give fully explicit (that is not Monte-Carlo)
explicit codes with the same parameters, under hardness assumptions. In this paper we resolve
this open problem, using a minimal assumption: the existence of poly-time computable pseu-
dorandom generators for small circuits, which follows from standard complexity assumptions by
Impagliazzo and Wigderson (STOC 97).

Guruswami and Smith also asked to give a fully explicit unconditional constructions with the
same parameters against O(logn)-space online channels. (These are channels that have space
O(logn) and are allowed to read the input codeword in one pass). We resolve this open problem.

Finally, we consider a tighter notion of explicitness, in which the running time of encoding
and list-decoding algorithms does not increase, when increasing the complexity of the channel.
We give explicit constructions (with rate approaching 1−H(p) for every p ≤ p0 for some p0 > 0)
for channels that are circuits of size 2nΩ(1/d) and depth d. Here, the running time of encoding
and decoding is a fixed polynomial (that does not depend on d).

Our approach builds on the machinery developed by Guruswami and Smith, replacing some
probabilistic arguments with explicit constructions. We also present a simplified and general
approach that makes the reductions in the proof more efficient, so that we can handle weak
classes of channels.

1998 ACM Subject Classification F.1.3. Complexity Measures and Classes

Keywords and phrases Error Correcting Codes, List Decoding, Pseudorandomness

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.45

∗ Research supported by ERC grant 279559, BSF grant 2010120, and ISF grant 864/11.
† Research supported by ERC grant 279559.

© Ronen Shaltiel and Jad Silbak;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 45; pp. 45:1–45:38

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.45
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2 Explicit List-Decodable Codes for Computationally Bounded Channels

1 Introduction

List decodable codes

List decodable codes are extensively studied in Coding Theory and Theory of Computer
Science, and have many applications. In the paragraph below we define list-decodable codes,
using a functional view, which is more convenient for this paper.

A code is defined by a pair (Enc,Dec)) of encoding and decoding procedures. We say
that Enc : {0, 1}k → {0, 1}n, is (p, L)-list decodable, if there exits a function Dec which
given y ∈ {0, 1}n, Dec(y) produces a list of size L containing all elements m ∈ {0, 1}k such
that δ(y,Enc(m)) ≤ p, (here δ(x, y) is the relative hamming distance of x and y). Unique
decoding is the special case where L = 1, and a code is explicit if both encoding and decoding
can be performed in time polynomial in n. The rate of a code is R = k

n . (A more detailed
formal definition is given in Section 3.2).

Towards explicit capacity-achieving, binary list decodable codes

It is known that for 0 < p < 1
2 , binary (p, L)-list decodable codes must have rate R ≤ 1−H(p)

for nontrivial size lists, and a longstanding open problem in coding theory is to give an
explicit construction of binary codes matching list-decoding capacity. That is, show that for
every constants 0 < p < 1

2 , and ε > 0, and for every sufficiently large n, there are explicit
binary list decodable codes with rate R = 1−H(p)− ε, that are (p, L)-list decodable, for a
constant L that depends on ε. The probabilistic method shows that there exist nonexplicit
codes with these parameters. (In fact, the probabilistic method achieves list size L which is
poly(1/ε), and this is a benchmark that can be compared to.) Today, despite substantial
effort, no explicit constructions are known, even if we insist only on explicit encoding, and
do not require list-decoding to be explicit.

Restricted channels

Explicit uniquely decodable, binary codes achieving rate approaching 1−H(p), are known
for restricted classes of channels. There is a large body of work in Shannon’s framework, on
channels which are not adversarial and inflict “random errors”. The most famous example is
a binary symmetric channel, that flips each symbol independently with probability p, and
there are explicit, uniquely decodable, binary codes with rate approaching 1−H(p) for such
channels.

Computationally bounded channels

Lipton [11] considered intermediate classes of adversarial channels according to the compu-
tational complexity of the channel. More specifically, we can think of a channel as a function
C : {0, 1}n → {0, 1}n and consider families channels that:

Induce at most pn errors. That is, for every z ∈ {0, 1}n, EC(z) := z⊕C(z) has hamming
weight at most pn.
Are computationally bounded. That is, we only consider C that belong to some complexity
class C.

Natural examples of complexity classes are polynomial size circuits and logarithmic space
branching programs. Note that these two classes are nonuniform, and it is more natural to
use nonuniform classes, as such classes trivially contain channels C where EC is constant
(meaning that there is a fixed error vector e such that C(z) = z ⊕ e). Such channels are

R. Shaltiel and J. Silbak 45:3

called “additive channels” and as they are the simplest form of adversarial behavior, it makes
sense that we allow them in any class of computationally bounded channels.

Another advantage of using nonuniform classes of channels, is that it is sufficient to
consider deterministic channels, in order to obtain security against randomized channels.
This is because by averaging, if there is a computationally bounded randomized channel that
is able to prevent decoding on some message m, then we can fix its random coins and obtain
a deterministic channel (which is hardwired with a good choice of random coins).

1.1 Stochastic codes
Unfortunately, the notion of computationally bounded channels is not interesting in the
standard setup of error correcting codes: It is easy to show that if a code Enc : {0, 1}k →
{0, 1}n is list-decodable against additive channels, then it is list-decodable against unbounded
channels.1

Several setup assumptions were introduced in order to circumvent this problem. In this
paper, we are interested in a setup of “stochastic codes” studied by Guruswami and Smith
[5]. We remark that other setups have been considered and we mention these in Section 1.4.

Let C be a class of channels that induce at most pn errors. A stochastic code against C
consists of a pair of algorithm (Enc,Dec) such that:

The encoding algorithm Enc(m,S) receives a message m ∈ {0, 1}Rn and a uniform string
S (that is not known to the channel or decoding algorithm) and outputs an n bit string
that is the codeword.
A channel C ∈ C, that does not receive the string S, corrupts the codeword, generating
C(Enc(m,S)).
The decoding algorithm gets the “corrupted codeword” C(Enc(m,S)), but does not
receive the string S.
For every messagem, and for every channel C ∈ C, the decoding done by Dec(C(Enc(m,S)))
needs to successfully recover the original message m with probability 1−ν over the choice
of S. (ν > 0 is an error parameter).
Here, "success" means to output m (in case of unique decoding) or output a list of size L
that contains m (in case of list decoding).

A formal definition follows:

I Definition 1 (Stochastic Codes). Let k, n, q be parameters and let Enc : {0, 1}k×{0, 1}d →
{0, 1}n be a function. Let C be a class of functions from n bits to n bits. We say that Enc is
an encoding function for a stochastic code that is:

decodable with success probability 1 − ν against channels in C, if there exists a
function Dec : {0, 1}n → {0, 1}k such that for every m ∈ {0, 1}k and every C ∈ C,
PrS←Ud [Dec(C(Enc(m,S))) = m] ≥ 1 − ν. We typically, parameterize C with two
parameters: the complexity of functions in the class, and the number errors that they
induce.
L-list-decodable with success probability 1− ν against channels in C if the function
Dec above is allowed to output a list of size at most L that contains m.

1 Specifically, if a code is not (combinatorially) list-decodable, then there exist a received word y that
has too many codewords that are close to it. Let c be one of these codewords, and let e = c⊕ y and
consider the additive channel Ce(z) = z ⊕ e. This channel “breaks” the code as C(c) = c⊕ e = y, and y
is a received word on which decoding cannot succeed.

APPROX/RANDOM’16

45:4 Explicit List-Decodable Codes for Computationally Bounded Channels

A code is explicit if its encoding and decoding functions are computable in time polynomial
in their input and output. The rate of the code is the ratio of the message length and output
length of Enc.

Guruswami and Smith [6] gave explicit constructions of stochastic codes with rate
approaching 1−H(p) (for 0 < p < 1

2) that are uniquely decodable against additive channels.
They also showed that for p > 1/4 there are computationally weak channel families, against
which, stochastic codes with rate approaching 1−H(p) and unique decoding do not exist.
(All the complexity classes considered in this paper can simulate these weak channels.)

A Monte-Carlo construction of stochastic codes for poly-size circuits

Guruswami and Smith [6] showed that for every constant c, there is a Monte-Carlo expli-
cit construction of list decodable stochastic codes against channels of size nc, with rate
approaching 1−H(p). By Monte-Carlo, we mean that:

The encoding and decoding algorithms receive an additional input y of length poly(nc).
With high probability over the choice of y, the encoding and decoding algorithms (that
are hardwired with y) form the required stochastic code.2

1.2 Our results
Guruswami and Smith stated the following open problem: give fully explicit (that is not
Monte-Carlo) constructions of stochastic codes against poly-size circuits, under complexity
theoretic assumptions.

Necessity of complexity theoretic assumptions

As we explain later, complexity theoretic assumptions are not necessary in order to give
Monte-Carlo constructions of stochastic codes. They are necessary to give fully explicit
constructions (which are not Monte-Carlo) in the following sense: Given a stochastic code
against circuits of size nc, we can consider the “optimal channel” that given a codeword
z ∈ {0, 1}n, tries all possible error vectors e ∈ {0, 1}n of relative hamming weight p, and
finds the first one on which decoding fails, if such a vector exist. This channel succeeds iff
the code isn’t secure against unbounded channels. If the code isn’t secure against unbounded
channels (but secure against size nc channels) then this attack cannot be carried out in
size nc. This means that there is a problem computable in E = DTIME(2O(n)) that for
every sufficiently large n, cannot be solved by size nc circuits.3 We remark that this type
of assumptions (namely, that there is a problem in E that requires large circuits) is exactly
the type of assumption that implies and is implied by, existence of explicit pseudorandom
generators in the Nisan-Wigderson setting [15, 8].

1.2.1 Explicit stochastic codes for poly-size circuits
Our first result resolves the open problem posed by Guruswami and Smith, and we construct
explicit stochastic codes against poly-size circuit channels, under an assumption that is only
slightly stronger than what is implied by the existence of such codes.

2 We mention that the approach of Guruswami and Smith dictates that the length of y is larger than nc
(and in general larger than the log of the number of allowed channels). This means that a channel is
not “sufficiently complex” to receive y as input.

3 In fact, for this argument, we don’t need the stochastic code to be explicit. Encoding is allowed to be
arbitrary, and decoding is allowed to run in time 2O(n).

R. Shaltiel and J. Silbak 45:5

I Theorem 2 (Explicit stochastic codes for poly-size channels). If there exists a constant
β > 0 and a problem in E = DTIME(2O(n)) such that for every sufficiently large n, solving
E on inputs of length n, requires circuits of size 2β·n, then for every constants 0 < p < 1

2 ,
ε > 0, c > 1, and for every sufficiently large n, there are explicit stochastic codes with rate
1−H(p)− ε that are L-list decodable for size nc circuits that induce at most pn-errors, where
L = poly(1/ε) is a constant.

Theorem 2 is stated in more detailed form in Theorem 32. The assumption used in the
Theorem is a standard complexity assumption, and was used by Impagliazzo and Wigderson
[8] to show that BPP=P.

1.2.2 Unconditional explicit stochastic codes for space O(logn) online
channels

Guruswami and Smith also considered “space s online channels”. These are channels
C : {0, 1}n → {0, 1}n implemented by space s (or equivalently width 2s) oblivious read-once
branching programs (ROBPs). Below is a standard definition of ROBPs tailored for functions
that output many bits.

Read Once Branching Programs

We will only be interested in space s ≥ logn. A space s ROBP C : {0, 1}n → {0, 1}n is
defined using a layered graph with n+ 1 layers, where the first layer has a single node v0,
and remaining layers have 2s nodes. Each node v in the first n layers has two outgoing edges
(labeled with zero and one) connected to nodes in the next layer, and each node v is also
labeled by an “output bit” b(v). On input x ∈ {0, 1}n, the computation of C is defined by
following the unique path from v0 to the last layer, defined by taking the edge marked with
xi at step i. The output C(x) is the concatenation of the n output bits, collected at nodes
along the path. It is standard that for s ≥ Ω(logn) ROBPs with space O(s) capture the
nonuniform version of space O(s) computation, that reads its n bit input x in fixed order.
We remark that all the results in this paper also hold if we allow channels to have s bits of
“lookahead”, allowing them to also read the bits i+ 1, . . . , i+ s before outputting the i’th bit.

Guruswami and Smith stated the following open problem: give unconditional fully explicit
(that is not Monte-Carlo) constructions of stochastic codes against space O(logn) online
channels.4 Our second result resolves this open problem.

I Theorem 3 (Explicit stochastic codes for space O(logn) online channels). For every constants
0 < p < 1

2 , ε > 0, c > 1, and for every sufficiently large n, there are explicit stochastic codes
with rate 1−H(p)− ε that are L-list decodable for space c logn online channels that induce
at most pn-errors, where L = poly(1/ε) is a constant.

Theorem 3 is stated in more detailed form in Theorem 33.

4 A preliminary version of [6] contained an unconditional Monte-Carlo construction of stochastic code
against space O(logn) online channels, and a conditional Monte-Carlo construction for size nc circuits
(relying on the existence of “Nisan-Wigderson style”, pseudorandom generators for size nc circuits).
However, Monte-Carlo constructions can easily obtain “Nisan-Wigderson style” pseudorandom generators,
as a random function with polynomial size description is w.h.p. such a generator. Consequently, no
hardness assumption is needed for Monte-Carlo constructions against polynomial size circuits, which
are secure also against O(logn) space online channels.

APPROX/RANDOM’16

45:6 Explicit List-Decodable Codes for Computationally Bounded Channels

Efficiency of encoding/decoding versus channel complexity

The approach of Guruswami and Smith [6] (that we also use) dictates that security can only
be proven for channel families that are not sufficiently strong to run the decoding algorithm.5
Consequently, in the Monte-Carlo construction and our Theorem 2, the running time of
encoding and decoding is a polynomial in n that is larger than the circuit size nc. It is
an intriguing open problem whether stochastic codes with rate approaching 1−H(p), that
can be encoded and decoded in fixed polynomial time (say n3) against any polynomial size
channel, can be constructed (under cryptographic assumptions). We do not know whether
this is possible.

We can however expect to obtain fixed polynomial time (that does not depend on the
constant c) for encoding and decoding in our Theorem 3. Unfortunately, this is not the case,
and the encoding and decoding algorithm that we obtain in Theorem 3 run in time polynomial
in nc (and in particular larger than nc) when working against space c logn channels. We do
not know how to avoid this dependence.

1.2.3 Stochastic codes for AC0 channels, with fixed poly-time
encoding/decoding

We are able to obtain fixed polynomial time algorithms for encoding and decoding for a
family of channels implemented by superpolynomial size and constant depth circuits. For
technical reasons, we achieve this only for p ≤ p0 for some p0 > 0. The result is stated below.

I Theorem 4 (Explicit stochastic codes for AC0 channels). There exist constants p0 > 0 and
a > 0 such that for every constants 0 < p ≤ p0, ε > 0, d, and for every sufficiently large n,
there are explicit stochastic codes with rate 1 −H(p) − ε that are L-list decodable for size
2n

1
ad circuits of depth d that induce at most pn-errors, where L = poly(1/ε) is a constant.

(Here, encoding and decoding run in fixed polynomial time that does not depend on d, and
only the choice of which n is sufficiently large, depends on d.)

The constant p0 comes from a specific construction of AG-codes, and it seems that p0
can be pushed to be any constant strictly smaller than 1/12. Theorem 4 is stated in more
detailed form in Theorem 34.

1.3 Perspective
Explicit codes against computationally bounded channels give the “best of both worlds”:
They can recover from errors induced by adversarial channels, while having information
theoretic optimal rate approaching 1−H(p).

As pointed out by Guruswami and Smith, essentially all randomized channels studied
in the Shannon framework of error correcting codes, are computationally simple (and it
seems that all of them can be implemented by constant depth circuits or online logspace).
This means that the computational perspective leads to a unified construction of explicit
codes that are good for all “Shannon style” randomized channels simultaneously, while also
being able to recover against many adversarial channels (and in particular against additive
channels).

5 The approach of Guruswami and Smith (that we also use) relies on the fact that channels cannot
distinguish between encodings of two messages. Therefore, if decoders aren’t stronger than channels,
they cannot hope to decode, even if there are no errors.

R. Shaltiel and J. Silbak 45:7

We believe that the distinction we make above (namely, whether encoding/decoding
efficiency is allowed to increase with the complexity of the channel) is important so that the
added benefit of codes for computationally bounded channels doesn’t come with a price tag
of being less efficient. Specifically, our construction for AC0 channels uses “regular” coding
theoretic ingredients and does not have to “pay extra” for being able to handle channels that
are superpolynomial size circuits of constant depth.

An intriguing open problem is whether unique decoding is possible for computationally
bounded channels with rate approaching 1−H(p). Guruswami and Smith [6] showed that
this is impossible for p > 1/4 (and their argument works for all classes of channels discussed
in this paper). It is not known whether unique decoding is possible for p < 1/4 for the
channel classes that we consider.

1.4 Some related work

The notion of computationally bounded channels was initially studied in cryptographic setups.
We mention some of these works below.

Shared private randomness

We start with the notion of codes with “shared private randomness”. While this setup was
considered before the notion of stochastic codes, in this paper, it is natural view it as a
version of stochastic codes in which the decoding algorithm does receive the S.

This corresponds to a standard symmetric cryptography setup in which honest parties
(the encoder and decoder) share a uniform private key S, and the bad party (the channel)
does not get the key.

Lipton [11] and following work (see [19] for more details) gave explicit constructions of
uniquely decodable codes against computationally bounded channels, with rate approaching
1−H(p), under cryptographic assumptions.

Note that the setup of stochastic codes is lighter. The encoder and decoder do not need
to share a private random key. Moreover, a fresh key can be chosen on the spot every time
the encoder encodes a message.

We also point out that the Monte-Carlo construction of Guruswami and Smith, also
requires less setup. While the encoder and decoder do need to share a random string, this
string does not need to be private. It can be chosen once and revealed to the channel.

Private Codes

A related notion of “private codes” was studied by Langberg [10]. Here channels are
unbounded, codes are existential (and not explicit), and the focus is on minimizing the length
of the shared key. Langberg provides asymptotically matching upper and lower bounds
of Θ(logn + log(1/ν)), on the amount of randomness that needs to be shared for unique
decoding in this setup.

Public key setup

Micali et al. [12] considered computationally bounded channels, and a cryptographic, public
key setup. Their focus is to use this setup to convert a given (standard) explicit list-decodable
code into an explicit uniquely decodable codes (in this specific public key setup).

APPROX/RANDOM’16

45:8 Explicit List-Decodable Codes for Computationally Bounded Channels

2 Overview of the technique

In this section we give a high level overview of the construction. Our construction heavily
relies on previous work in the area (mainly on that of Guruswami and Smith [6]). In this
high level overview we attempt to highlight our technical contribution, while also giving a
high level overview of the many ideas from previous work that are used in the construction.
Therefore, we start with a high level description of earlier work, and build up to the work of
Guruswami and Smith. Along the way, in Section 2.2 we explain the modifications that allow
us to handle weak classes of channels. Finally, in Section 2.4, we present a self contained
problem (that of constructing inner stochastic codes). Constructing such explicit codes is
the main source of our improvement over Guruswami and Smith, and we give a high level
overview of our approach.

The reader can skip this high level overview and go directly to the technical section.

2.1 Codes for the setup of shared private randomness
We start by explaining how to construct codes with rate approaching 1−H(p) in the case
that the setup allows shared private randomness. Recall that this can be thought of as a
stochastic code in which the decoding algorithm receives the random string chosen by the
encoding. We present the ideas that are used to construct codes against bounded channels in
this setup, in two steps. We first explain how to handle additive channels, and then explain
how this method can be extended to handle bounded channels that are not additive. The
ideas from both these reductions are key components in the construction of Guruswami and
Smith.

Reducing additive channels to binary symmetric channels

We start by constructing codes with shared private randomness against additive channels.
The encoder and decoder will share a description Sπ of a uniformly selected permutation
π : [n]→ [n]. The encoding will be defined by

Enc(m,Sπ) = π(EncBSC(m)),

meaning that Enc encodes m by a code for binary symmetric channels, and then uses the
permutation π to rearrange the n indices of the encoding, placing the i’th bit, in the π(i)’th
position. Note that for any additive channel Ce(z) = z ⊕ e that induces pn errors, the effect
of the channel on Enc(m,Sπ) can be essentially viewed as applying a binary symmetric
channel on EncBSC(m), meaning that the decoder is able to uniquely decode against additive
channels, with a code that has rate approaching R = 1 − H(p) (which can be achieved
explicitly for binary symmetric channels).

Smith [19] showed that an (almost) t-wise independent permutation can be coupled with
specific constructions of codes for binary symmetric channels, and used instead of a truly
random permutation. This reduces the length of the shared key and allows keys shorter
than n.

Reducing computationally bounded channels to additive channels

It is possible to use cryptography (or more generally pseudorandomness) to handle computa-
tionally bounded channels: Assume that in addition to the seed Sπ, the encoder and decoder

R. Shaltiel and J. Silbak 45:9

also share a seed SPRG for a pseudorandom generator PRG that fools computationally
bounded channels and outputs n bits, and define:

Enc′(m, (Sπ, SPRG)) = Enc(m,Sπ)⊕ PRG(SPRG) = π(EncBSC(m))⊕ PRG(SPRG).

This means that the rate of Enc′ is inherited from Enc and can approach 1−H(p). A useful
property is that for every fixed sπ, the random variable Enc(m, (sπ, SPRG)) is pseudorandom
for the channel. This can be used to show that a computationally bounded channel cannot
prevent correct decoding.

We now explain this argument. The decoding algorithm Dec′(y, (sπ, sPRG)) will simply
compute y′ = y ⊕ PRG(sPRG) and apply the previous decoding algorithm Dec on y′ and sπ.
We show that for every computationally bounded channel C that induces at most pn errors,
the decoding succeeds with probability at least 1− (ν + εPRG), where εPRG is the error of
the generator PRG.

We consider the function A(m, sπ, e) that checks if DecBSC(Enc(m, sπ)⊕ e) successfully
recovers m. In the previous section we’ve seen that for every message m, and error vector
e of relative hamming weight at most p, Pr[A(m,Sπ, e)] ≥ 1 − ν. Consequently, for every
channel C that induces pn errors,

Pr[A(m,Sπ, EC(Un)) = 1] ≥ 1− ν

(this follows as Un is independent of Sπ, and recall that EC(z) = z⊕C(z)). If decoding does
not work, and there exist a message m such that:

Pr[A(m,Sπ, EC(Enc′(m, (Sπ, SPRG)))) = 1] < 1− (ν + εPRG).

By averaging over Sπ, this gives that there exists a fixed value sπ such that:

Pr[A(m, sπ, EC(Un)) = 1]− Pr[A(m, sπ, EC(Enc′(m, (sπ, SPRG)))) = 1] > εPRG,

meaning that f(z) = A(m, sπ, EC(z)) distinguishes Enc(m, (sπ, SPRG)) from Un with prob-
ability εPRG, which is a contradiction if PRG is εPRG-pseudorandom against f (which is
essentially the composition of the channel and DecBSC). As DecBSC runs in polynomial
time, it follows that a PRG against poly-size circuits suffices to handle poly-size channels.

2.2 A more efficient reduction for online logspace and AC0

A drawback of the approach described above is that while the decoding algorithm DecBSC
runs in polynomial time, existing constructions rely on decoding an “outer code” (typically,
Reed-Solomon) which cannot be done by small constant depth circuits or small space ROBPs.
In this paper we are interested in channels that run in online logspace or AC0. We would
like to use PRGs that fool these classes (and explicit constructions are unconditional) rather
than PRGs for poly-size circuits (which are inherently conditional as they imply circuit lower
bounds).

For this purpose we replace the code (EncBSC ,DecBSC) (for binary symmetric channels)
by a code (Encbalanced,Decbalanced) that is list decodable from balanced errors. We now define
this notion. A string e ∈ {0, 1}n is (b′, p, γ)-balanced if when viewed as e ∈ ({0, 1}b′)n/b′ , at
most a γ fraction of blocks of e, have relative hamming weight larger than p. It is not hard
to construct explicit codes which are list-decodable (with constant size lists) against error
vectors that are (b′, p, γ)-balanced and have rate approaching 1−H(p) for small constant γ.
We give such a construction in Section 3.2.1.

APPROX/RANDOM’16

45:10 Explicit List-Decodable Codes for Computationally Bounded Channels

If we take an error vector of Hamming weight p and permute it using a random (or t-wise
independent) permutation, then with high probability it will indeed be (b′, p+α, γ)-balanced
for sufficiently large b′, and small constant α, γ > 0. This means that codes against balanced
errors in particular work against binary symmetric channels.

The advantage of this notion is that the function A of the previous section can be made
more efficient. Rather than having to decode EncBSC , it is sufficient to check if the error
vector e is (b′, p + α, γ)-balanced, which can be performed by models that can count (or
even only approximately count) such as small ROBPs, or AC0. This leads to more efficient
reductions that enable us to use PRGs for weaker classes.6

2.3 Stochastic codes for bounded channels

We start by presenting the approach of Guruswami and Smith [6] to take codes for shared
private randomness (as presented in the previous section) and convert them into stochastic
codes.

Let (Enc′,Dec′) be the code for shared private randomness (presented in the previous
section). We will reserve N for the block length of the stochastic code that we want to
construct, and use Ndata as the block length of Enc′. We have that the rate of Enc′ can
approach 1−H(p) and so it is sufficient that the rate of the code (Enc,Dec) that we construct,
approaches that of Enc′.

We will set N = Ndata + Nctrl where Nctrl = ε ·N (for a small constant ε) so that the
rate indeed approaches 1−H(p). Loosely speaking, when a given a message m and “control
information” S (which will include (Sπ, SPRG) as well as additional randomness) we will
set cdata = Enc′(m, (Sπ, SPRG)) ∈ {0, 1}Ndata and cctrl ∈ {0, 1}Nctrl will be an encoding of S
(that we specify later). We will then merge these two strings into a string c = (cdata, cctrl) of
length N .

The high level intuition, is that the encoder encodes the control information S and embeds
it in the encoding of m, hoping that the decoder can find it, decode it to get S, and then use
the decoding algorithm Dec′ (which requires S) to decode the data part.

However, there are two seemingly contradicting requirements: On the one hand, the
decoder needs to find the “control information” in order to recover S. On the other, if it
is easy to identify which part of the encoding encodes the “control information”, then the
channel can focus its errors on it, wiping it out completely.

Stochastic codes for additive channels

The first step taken by Guruswami and Smith is to ensure that an additive channel cannot
wipe out the control information. For this purpose they divide the N output bits into n = N/b

blocks of length b (where b is a parameter to be chosen later). The encoder will use additional
randomness Ssamp to choose a random set I = {i1, . . . , ε · n} of distinct indices in [n]. The
string Ssamp will be part of the “control information” S (making S = (Ssamp, Sπ, SPRG))
and in order to make its length less than n, the sampling is made by a randomness efficient
averaging sampler (see Section 3.3 for details). We will pretend that the set I is completely
random in this high level presentation.

6 Some additional effort is needed to make this idea go through for online channels, as after the permutation,
input bits “arrive” in a way that doesn’t respect the partitioning into blocks. A preliminary version of
[6] contained an alternative, and more complex approach in order to deal with online channels.

R. Shaltiel and J. Silbak 45:11

The set I will define which blocks are “control blocks”, and the final embedding of
cdata, cctrl into an N bit string, is done by placing cctrl in the control blocks, and cdata in the
remaining blocks (which are suitably called data blocks). The sampling of I guarantees that
for every fixed error vector e of relative hamming weight at most p, at least an ε/2 fraction
of the control blocks, are not hit with significantly more than pb errors. This will suffice for
the decoding algorithm.

The decoder (that does not know I) will go over all n blocks, treating each one of them
as a potential control block. Even if no errors are inflicted, only ε · n of the n blocks are
indeed control blocks. We want the decoder to be able to “list-decode” and output a small
list of candidates s for the “control information”.

This can be done as follows: When preparing cctrl, the control information S will be
encoded by a concatenated code, where the outer code is list-decodable (or more generally
list-recoverable) and has block length ε · n, and the inner code has symbols of b bits, and is
decodable from slightly more than pb errors. This way, if at least ε/2 fraction of the control
blocks suffer not much more than pb errors (and are therefore decoded correctly by the
inner code) then the list decoding algorithm of the outer code produces a list of candidates
that includes the correct control information s. Decoding can now proceed, and for each
such candidate s, it can apply Dec′ on the data part (defined by ssamp) using the control
information (sπ, sPRG). This indeed suffices for list decoding against additive channels.

Extending the approach to computationally bounded channels

There is an obvious concern if we use this strategy against channels that are not additive:
The channel C may inspect the different n blocks, and try to identify which of them are
control blocks. It is crucial that the channel will not be able to distinguish a control block
from a data block. This means that we want the inner code that produces the b-bit control
blocks to have three properties:

It should be able to decode from roughly pb errors.
The channel should not be able to distinguish control blocks from data blocks.
Control blocks shouldn’t reveal information about S to the channel.

Here, it is useful that the data part is xored with PRG(SPRG) and is therefore pseudorandom.
This means that we can obtain these three properties if we use a stochastic code (instead of
a standard code) and require that the output is pseudorandom. Note that here the notion
of stochastic codes is not used to “improve decoding properties” (we can do with standard
codes). Instead, it is used to perform encoding in a way that does not reveal information
about the message. This notion of stochastic codes is defined in the next section.

2.4 Pseudorandom stochastic inner codes
Guruswami and Smith considered the following version of stochastic codes. Let Enc :
{0, 1}k × {0, 1}d → {0, 1}b be a function.
1. We say that Enc is ε-pseudorandom for a class of functions C if for every m ∈ {0, 1}k

and for every C ∈ C, the distribution Enc(m,Ud) is ε-pseudorandom for C, meaning that:
|Pr[C(Enc(m,Ud)) = 1]− Pr[C(Ub) = 1]| ≤ ε.

2. We say that Enc is L-list decodable with radius p if there exists a function Dec such that
for every y ∈ {0, 1}b, Dec(y) produces a list of at most L pairs (m, r) ∈ {0, 1}k × {0, 1}d
that contains all pairs (m, r) ∈ {0, 1}k × {0, 1}d such that δ(y,Enc(m, r)) ≤ p.

Such codes can be plugged in as “inner control codes” in the scheme described in the previous
section, and the two properties above suffice for the correctness of the construction (if

APPROX/RANDOM’16

45:12 Explicit List-Decodable Codes for Computationally Bounded Channels

pseudorandomness is guaranteed against a class sufficiently stronger than the channel, as
explained in Section 2.2).

Consequently, the task of explicitly constructing stochastic codes against bounded channels
reduces to explicitly constructing such stochastic codes with constant size lists. Here, we
benefit from the fact that these codes are used as inner codes. The block length b of the
inner stochastic code can be much smaller than the block length N of the final code. Note
however that pseudorandomness needs to hold with respect to channels (and even more
complex functions) that have complexity measured as a function of N (which in turn gives a
lower bound on b).

We first concentrate on the case where channels are circuits of size N c (which is the
case considered by Guruswami and Smith). This allows setting k, d, b = O(logN) which in
turn means that: we need pseudorandomness against circuits of size N c = 2Ω(b), and we are
allowed to perform encoding and list-decoding in time 2O(b).

However, even with these choices, it seems hard to construct such stochastic codes (no
matter what complexity assumption we use). Guruswami and Smith [6] were not able
to give such explicit constructions. Instead, they settle for a Monte-Carlo construction
using the probabilistic method: They describe a probability space over functions Enc :
{0, 1}k × {0, 1}d → {0, 1}b for k, d, b = O(logN) in which a code with the two properties
above is chosen with high probability. The description of Enc in this probability space is of
length polynomial in N c, and so this indeed gives a Monte-Carlo construction.7

2.5 New constructions of pseudorandom weak inner codes
We observe that we can relax the second property in the definition of stochastic inner codes,
and still be able to use them in the framework described in the earlier sections. Specifically,
let Enc : {0, 1}k × {0, 1}d → {0, 1}b be a function, we use the following modification of
condition (2) above:

2’. We say that Enc is L-weakly list decodable with radius p if there exists a function
Dec such that for every y ∈ {0, 1}b, Dec(y) produces a list of at most L messages
m ∈ {0, 1}k that contains all messages m ∈ {0, 1}k for which there exists r ∈ {0, 1}d such
that δ(y,Enc(m, r)) ≤ p.

The key difference between “weakly list decodable” and the notion used by Guruswami
and Smith (which we will call “strongly list-decodable”) is that this definition allows a
message m to be encoded to the same value under many different seeds r, whereas the
previous definition did not. It turns out that constructing codes with properties 1 and 2′ is
significantly simpler than constructing codes with the original properties. Specifically, for
the case of inputs and outputs that are of length O(logN), we give a general transformation
that for every 0 < p < 1

2 takes:
a pseudorandom generator G : {0, 1}a′·logN → {0, 1}q logN that is pseudorandom for C,

and converts it into,
a stochastic code Enc : {0, 1}a logN × {0, 1}a′ logN → {0, 1}q logN that is pseudorandom
for C, and is L-weakly list decodable with radius p. Here, a, a′, q are constants and q is
sufficiently larger than a, a′ (the exact dependence is q ≥ a+a′

1−H(p)−1/(L+1)). Furthermore,
encoding and list-decoding can be done in time poly(Nq) times the running time of G.

7 Note that the obvious approach to checking whether a candidate Enc is pseudorandom against circuits
of size Nc requires going over all such circuits which is not feasible in polynomial time.

R. Shaltiel and J. Silbak 45:13

This transformation works by setting Enc(m, r) = E(m)⊕G(r) where E : {0, 1}a logn →
{0, 1}q logn is a random code. The argument is similar to proofs that random codes are list
decodable, and explicitness is achieved by derandomizing the probabilistic argument using
(L+ 1)-wise independence, and using brute force decoding. (Here it is crucial that we are
allowed to encode and decode in exponential time in the input and output length).8

We can use these transformation to obtain stochastic codes that are weakly list-decodable
from radius 0 < p < 1

2 and are:
pseudorandom against size N c circuits, using the pseudorandom generators of Impagliazzo
and Wigderson [8] which rely on the assumption that there exists a constant β > 0 and a
problem in E = DTIME(2O(n)) that cannot be solved by circuits of size 2β·n for every
sufficiently large n. This gives Theorem 2.
pseudorandom against space O(logn) ROBPs, using the pseudorandom generators of
Nisan and Zuckerman [16]. This (together with the improvements explained in Section
2.2 and some additional effort that goes into making the reduction implementable by
small space ROBPs, explained in Section 6.2) gives Theorem 3.

2.6 Inner stochastic codes for AC0

Our goal is to construct a stochastic code Enc : {0, 1}k×{0, 1}d → {0, 1}n that is weakly-list
decodable from radius p > 0, and ε-pseudorandom against large circuits of constant depth d.
We want these codes to have fixed poly(n) time encoding and decoding. This is because in
the final construction, we will choose the block length n to be N0.1 (where N is the block
length of the final code). This choice will enable fooling circuits of superpolynomial size.

We will use an explicit binary linear code EncAG : {0, 1}d+k → {0, 1}n with constant
rate R that decodes pn errors. There are constructions of explicit codes with rate R > 0 and
p > 0, that have the additional property that the relative distance of the dual code is at least
p. Such constructions can be obtained by using the Algebraic Geometric codes of Garcia and
Stichtenoth [3] (that are over constant size alphabets that can be chosen to be a power of
two) and viewing them as binary codes (which preserves rate, and decreases relative distance
and relative dual distance by a constant factor). A description of these codes appears in a
paper by Shpilka [18] (in an appendix attributed to Guruswami), and we elaborate on this
result in Section 4.3.

Let G be the (d+ k)× n generator matrix of such codes, and let G(t) denote the d× n
matrix obtained by the first d rows of G, and G(b) denote the bottom k × n rows of G.
For simplicity let us set k = d, so that both are linear in n. In the construction of Garcia
and Stichtenoth, it can be arranged that G(t) is a generator matrix for a code with similar
properties, and in particular the code generated by G(t) has relative dual distance p > 0 (we
may need to slightly decrease p for this to hold). We define:

Enc(x, r) = EncAG(r ◦ x) = (r ◦ x) ·G = r ·G(t) + x ·G(b)

We note that the dual code to the code defined by G(t) has relative distance p. This means
that (the transposed of) G(t) is the parity check matrix of a code with relative distance
p, which in turn implies that every pn columns of G(t) are linearly independent. This

8 It is this argument that makes the running time of encoding/decoding of our constructions for circuits
and online channels, grow with the size of the family of channels. Specifically, encoding and decoding of
the inner stochastic code are done by “brute force” and in particular, require running the PRG on all
seeds. The number of seeds of a PRG is typically larger than the number of potential distinguishers in
the fooled class, and this means that we lose in efficiency, when we try to handle more complex channels.

APPROX/RANDOM’16

45:14 Explicit List-Decodable Codes for Computationally Bounded Channels

gives that the distribution r · G(t) for r ← Ud is pn-wise independent, and implies that
for every x ∈ {0, 1}k, Enc(x, Ud) is pn-wise independent. By Braverman’s theorem [2] (see
also later improvements by [21]) “polylog-wise independence fools AC0”, and in particular
pn-independent distributions are pseudorandom for circuits of size 2nΩ(1/d) and depth d.

The code EncAG is uniquely decodable from pn errors. This immediately gives that Enc
it is (strongly) list-decodable with radius p.

Organization of the paper

In Section 3 we give definitions of objects used in out constructions, and the constructions
from earlier work that we rely on. In Section 3.2.1 we show how to construct codes against
balanced errors. In Section 4 we give precise define several variants of stochastic codes,
and give constructions of inner stochastic codes that will be used in the main result. In
Section 5 we present the construction of stochastic codes, and restate the theorems from the
introduction in a more precise way. In Section 6 we prove the correctness of the construction
(and explain how to handle weak classes of channels).

3 Ingredients used in the construction

In this section we give formal definitions of the notions and ingredients used in the construction.
We also cite previous results from coding theory and pseudorandomness that are used in the
construction.

3.1 Pseudorandom generators
I Definition 5 (Pseudorandom generators). A distribution X on n bits is ε-pseudorandom
for a class C of functions from n bit to one bit if for every C ∈ C, |Pr[C(X) = 1]−Pr[C(Un)] =
1| ≤ ε. A function G : {0, 1}d → {0, 1}n is an ε-PRG for C if G(Ud) is ε-pseudorandom for C.

In the sections below, we list the constructions of pseudorandom generators, that we use
in this paper. We consider several choices of classes C.

3.1.1 Poly-size circuits
I Definition 6 (E is hard for exponential size circuits). We say that E is hard for exponential
size circuits if there exists β > 0 and a language L ∈ E = DTIME(2O(n)) such that for every
sufficiently large n, circuits of size 2β·n fail to compute the characteristic function of L in
inputs of length n.

I Theorem 7 ([8]). If E is hard for exponential size circuits then for every constant c >
1, there exists a constant b > 1 such that for every sufficiently large n, there is a G :
{0, 1}b·logn → {0, 1}n that is a 1

nc -PRG for circuits of size nc. Furthermore, G is computable
in time poly(nc) (where this polynomial depends on the constant β hidden in the assumption).

3.1.2 Oblivious read once branching program
I Theorem 8 ([14, 7]). There exist a constant a > 1 such that for every sufficiently large n,
there is a G : {0, 1}a·logn·(s+log(1/ε)) → {0, 1}n that is ε-pseudorandom for ROBPs of space s.
Furthermore, G is computable in time poly(n).

We also need PRGs with error that is exponentially small in the seed length. In this setup,
we only require arbitrary linear stretch.

R. Shaltiel and J. Silbak 45:15

I Theorem 9 ([16]). For every b > 1, there exists a constant a > 1 such that for every
sufficiently large n, there is a G : {0, 1}a·s → {0, 1}a·b·s that is a 1

2−s -PRG for ROBPs of
space s. Furthermore, G is computable in time poly(s).9

3.1.3 Constant depth circuits

I Theorem 10 ([13, 15, 22, 21]). There exists a constant a > 1 such that for every constant
d, and for every sufficiently large n, there is a G : {0, 1}(log(s/ε))a·d → {0, 1}n that is an
ε-PRG for circuits of size s and depth d. Furthermore, G is computable in time poly(n).

We will also use Braverman’s result that polylog-wise independence fools AC0.

I Theorem 11 ([2, 21]). There exists a constant a > 1 such that for every sufficiently large
n, every (log(s/ε))a·d-wise independent distribution on n bits is ε-pseudorandom for circuits
of size s and depth d.

3.2 Error-Correcting Codes

We give a nonstandard definition of error-correcting codes below. For our purposes it is more
natural to define codes in terms of a pair (Enc,Dec) of encoding and decoding algorithms.
Different variants are obtained by considering different tasks (decoding, list-decoding, list-
recovering) of the decoding algorithms and different types of error vectors.10

I Definition 12 (Codes). Let k, n, q be parameters and let Enc : {0, 1}k → ({0, 1}log q)n be
a function. We say that Enc is an encoding function for a code that is:

decodable from errors in E (where E ⊆ ({0, 1}log q)n) if there exists a function Dec :
({0, 1}log q)n → {0, 1}k such that for every m ∈ {0, 1}k and every e ∈ E, Dec(Enc(m)⊕
e) = m. The standard choice of E is the set of all vectors with Hamming weight t, and
such codes are said to be decodable from t errors.
L-list-decodable from errors in E if the function Dec above is allowed to output a list
of size at most L that contains m.
(α, `, L)-list-recoverable if there exists a function Dec which given a list T ⊆ {0, 1}log q

of size at most `, outputs a list of size at most L containing all m ∈ {0, 1}k such that
Pri←[n][Enc(m)i ∈ T] ≥ α.11

(α, `, L)-list-recoverable from a collection if there exists a function Dec which given
n lists T1, . . . , Tn ⊆ {0, 1}log q of size at most `, outputs a list of size at most L containing
all m ∈ {0, 1}k such that Pri←[n][Enc(m)i ∈ Ti] ≥ α.

A code is explicit if its encoding and decoding functions are computable in time polynomial
in their input and output. The rate of the code is the ratio of the message length and output
length of Enc, where both lengths are measured in bits.

9 We remark that the construction of [16] can achieve superlinear stretch at the cost of increasing the
error. In our application, it is crucial to achieve error that is exponentially small in the seed length, and
this is why we state the theorem in this form.

10Within this section we use the standard choice of letters of error-correcting codes. However, in later
sections many of these letters are reserved to denote other things, and we have to use nonconventional
choices.

11This is a less standard notion of list-recoverability, and the more standard notion referred to as
“list-recoverable” is what we call “list-recoverability from a collection” in the next item.

APPROX/RANDOM’16

45:16 Explicit List-Decodable Codes for Computationally Bounded Channels

3.2.1 Codes for balanced errors

We will make use of codes for balanced error vectors (as explained in Section 2).

I Definition 13 (balanced errors). A string e ∈ {0, 1}n is (b, p, γ)-balanced if when viewing
it as e ∈ ({0, 1}b)n/b at most a γ-fraction of the n/b blocks have hamming weight larger than
p · b.

It is not hard to construct codes for balanced errors with rate approaching 1 − H(p),
using code concatenation. The proof of Theorem 14 appears in Section 7.

I Theorem 14 (codes against balanced errors). For every constants 0 < p < 1/2, ε > 0, and
γ ≥ ε there are constants b and L = poly(1/ε) such that for every sufficiently large n, there
is a code (Enc,Dec) with rate 1−H(p)− ε that is L-list decodable against (b, p, ε)-balanced
strings of length n. Moreover the code is explicit (encoding and list-decoding can be performed
in time poly(n)).

3.2.2 List recoverable codes

We will make use of the following list recoverable code.

I Theorem 15 (List-recoverable codes, [20, 5]). There is a constant β > 0 such that for every
constants α > 0 and L > 1, and every sufficiently large n, there is a code (Enc,Dec) that is
(α, β · α · L · n,L)-list recoverable, has rate R ≥ β·α

L , and alphabet size q = n2.

This follows as Sudan [20] (see also Guruswami and Sudan [5]) showed that Reed-Solomon
codes are list-recoverable from a collection. Given a code Enc that is list-recoverable from a
collection, Enc′(x)i = (Enc(x), i) gives a code that is list recoverable, while increasing the
alphabet size. This is why we have the alphabet size of q = n2 (and not q = n) for a Reed
Solomon code. This idea is also implicitly used by Guruswami and Smith [6].

3.3 Averaging Samplers

The reader is referred to Goldreich’s survey [4] on averaging samplers.

I Definition 16 (Averaging Samplers). A function Samp : {0, 1}n → ({0, 1}m)t is an (ε, δ)-
Sampler if for every f : {0, 1}m → [0, 1],

Pr
(z1,...,zt)←Samp(Un)

[|1
t

∑
i∈[t]

f(zi)−
1

2m
∑

x∈{0,1}m
f(x)| > ε] ≤ δ .

A sampler has distinct samples if for every x ∈ {0, 1}n, the elements in Samp(x) are
distinct.

The next theorem follows from the “expander sampler”. This particular form can be
found (for example) in [23].

I Theorem 17. For every sufficiently large m and every ε ≥ δ > 0 there is a (ε, δ)-sampler,
Samp : {0, 1}O(m+log(1/δ)·poly(1/ε)) → ({0, 1}m)t for any t ≥ poly(1/ε)·log(1/δ). Furthermore,
Samp is computable in time poly(m, 1/ε, log(1/δ)).

R. Shaltiel and J. Silbak 45:17

3.4 Almost t-wise permutations
We also need the following notion of almost t-wise permutations.

I Definition 18 (Almost t-wise independent permutations). A function π : {0, 1}d × [n]→ [n]
is an (ε, t)-wise independent permutation if:

For every s ∈ {0, 1}d, the function πs(x) = π(s, x) is a permutation over [n].
For every x1, . . . , xt ∈ [n], the random variable R = (R1, . . . , Rt) defined by Ri = π(s, xi) :
s← Ud, is ε-close to t uniform samples without repetition from [n].

I Theorem 19 ([9]). For every t and every sufficiently large n, there exists an (ε, t)-wise
independent permutation with d = O(t · logn+ log(1/ε)). Furthermore, π is computable in
polynomial time.

4 Inner Stochastic codes

As explained in Sections 2.4 and 2.5, the construction will rely on an “inner stochastic code”.
We now give a formal definition of the properties required from these codes. This definition
formalizes the looser description given in Section 2.

I Definition 20. Let k, n, q be parameters and let Enc : {0, 1}k × {0, 1}d → {0, 1}n be a
function. We say that Enc is an encoding function for a stochastic code that is:
L-weakly list-decodable with radius p if there exists a function Dec such that for
every y ∈ {0, 1}n, Dec(y) produces a list of at most L messages that contains all messages
m ∈ {0, 1}k for which there exists r ∈ {0, 1}d such that δ(y,Enc(m, r)) ≤ p.
We replace “weakly” with “strongly” if Dec is required to produce a list of at most L
pairs (m, r) that contains all pairs (m, r) ∈ {0, 1}k×{0, 1}d such that δ(y,Enc(m, r)) ≤ p.
ε-pseudorandom for a class C′ of functions from n bits to one bit, if for every message
m ∈ {0, 1}k, C(m,Ud) is ε-pseudorandom for C′.

If we do not mention whether the code is weakly or strongly list-decodable, then we
mean “weakly”. In the remainder of this section we give explicit constructions of “inner
stochastic codes” for the various channel classes that we consider. We start with a general
transformation that transforms a PRG into an inner stochastic code.

4.1 PRGs give inner stochastic codes
We give a general transformation that given a PRG with:

A seed length that is logarithmic in the complexity of the channel.
Sufficiently large linear stretch as a function of p.

Produces a stochastic code that:
Inherits the logarithmic seed length and pseudorandomness properties of the PRG.
Is able to encode a string of length logarithmic in the complexity of the channel.
Is L-weakly list decodable from radius p where L is a constant.
Has encoding and decoding running in time polynomial in the complexity of the channel,
and the running time of the PRG.

This transformation is formally stated in the next theorem. We need the following
definition that formally defines the action (which we call “xored-restriction”) of restricting
functions to a subset of the input, and negating some of the remaining input bits. The
complexity classes that we consider in this paper (AC0, P/poly, logspace ROBPs) are all

APPROX/RANDOM’16

45:18 Explicit List-Decodable Codes for Computationally Bounded Channels

closed under xored restriction. (This is also the case for any natural nonuniform complexity
class).

I Definition 21 (xored restriction). We say that a function C ′ over n′ bits is an xored-
restriction of a function C over n bits if there exist strings y ∈ {0, 1}n′ , a ∈ {0, 1}n−n′ and a
set S ⊆ [n] of size n′ such that for every input x′, C ′(x′) = C(x), where x is an n bit string
obtained by “filling” the indices in S with x′ ⊕ y, and the indices outside of S with a.

I Theorem 22 (inner stochastic code from PRG). Let C, C′ be classes of functions, and
a > 0, b > 0, L ≥ 1 and 0 ≤ p < 1

2 be constants such that (1 − 1
L+1) > H(p), and

assume that n is sufficiently large. Let G : {0, 1}b·logn → {0, 1}q·logn be an ε-PRG for
class C′ such that q ≥ a+b

1−H(p)− 1
L+1

. There is a stochastic code (EncSC ,DecSC) where
EncSC : {0, 1}a·logn × {0, 1}b·logn → {0, 1}q·logn that is:

L-weakly list decodable from radius p.
If every xored restriction of C is in C′ then EncSC is ε-pseudorandom for C.
The algorithms EncSC ,DecSC are computable in time poly(nq·L) given oracle access to
G. (In particular, the code is explicit if G runs in time poly(n)).

Proof. The code will be a combination of two functions, E : {0, 1}a·logn → {0, 1}q·logn and
G : {0, 1}b·logn → {0, 1}q·logn, and we will have: EncSC(x, r) = E(x)⊕G(r).

We will use a probabilistic construction (similar to that used to show existence of capacity
achieving, binary list decodable codes) which we later derandomize using (L + 1)-wise
independence.

I Claim 23. Let E : {0, 1}a·logn → {0, 1}q·logn be chosen at random, so that the random
variables (E(x))x∈{0,1}a·logn are (L+ 1)-wise independent. Then, with positive probability,
EncSC(x, r) = E(x)⊕G(r) is L-weakly list decodable from radius p.

Proof of claim. Given y ∈ {0, 1}q logn, we use B(y, p) to denote the ball of radius p ·(q · logn)
centered at y ∈ {0, 1}q logn. For every x ∈ {0, 1}a logn and y ∈ {0, 1}q logn we define a random
variable indicator

Zx,y =
{

1 if ∃r ∈ {0, 1}b·logn such that, EncSC(x, r) ∈ B(y, p)
0 otherwise

We have that:

Pr[Zx,y = 1] ≤ 2b logn · 2H(p)·q·logn

2q logn

≤ 2logn·(b+q(H(p)−1))

Given a tuple x1, . . . , xL+1 ∈ {0, 1}a logn and y ∈ {0, 1}q logn, let Bx1,...,xL+1,y be the “bad
event” that the L+ 1 points x1, . . . , xL+1 all have seeds of G that make them land in the
ball of y, namely:

Bx1,...,xL+1,y =
{
∀i ∈ [L+ 1],∃r ∈ {0, 1}b logn such that E(xi)⊕G(r) ∈ B(y, p)

}
.

The random variables E(x1), . . . , E(xL+1) are independent, and therefore,

Pr[Bx1,...,xL+1,y] =
L+1∏
i=1

Pr[Zx,y = 1] ≤ 2(logn)·(b+q(H(p)−1))(L+1) .

Note that EncSC(x, r) = E(x) ⊕ G(r) is L-weakly list decodable from radius p, if and
only if E does not belong to Bx1,...,xL+1,y for all choices of x1, . . . , xL+1 ∈ {0, 1}a·logn and

R. Shaltiel and J. Silbak 45:19

y ∈ {0, 1}q·logn. Therefore, by a union bound, the probability that we don’t obtain an
L-weakly list decodable code from radius p, is at most:

∑
x1,...,xL+1,y

Pr[Bx1,...,xL+1,y] ≤ 2q logn ·
(

2a logn

L+ 1

)
· 2(logn)·(b+q(H(p)−1))(L+1)

< 2(logn)·(q+a(L+1)+(b+q(H(p)−1))(L+1))

Thus, if q ≥ a+b
1− 1

L+1−H(p) , then the probability is less than one, and there exists an L-weakly
list decodable code from radius p.12 J

Given oracle access to a candidate function E : {0, 1}a·logn → {0, 1}q·logn and to G :
{0, 1}b logn → {0, 1}log q we can check whether E induces a code with the required properties
in time poly(nq).

It is standard that there are constructions of 2a logn = na random variables that are
(L+ 1)-wise, and each variable is uniform over {0, 1}q logn, that can be sampled using only
(L+ 1) · q logn random bits. Therefore, in time poly(nL·q) we can go over all candidate E’s,
and find one which induces an L-weakly list decodable from radius p.

Once we find a good function E we are guaranteed that EncSC is ε-pseudorandom for C.

I Claim 24. For every E : {0, 1}a·logn → {0, 1}q·logn, the function EncSC(x, r) = E(x)⊕G(r)
is ε-pseudorandom for C.

Proof. Otherwise, there exists x′ ∈ {0, 1}a logn and a function C ∈ C that distinguishes
EncSC(x′, Ub logn) = E(x′) ⊕ G(Ub logn) from uniform. This means that there is an xored
restriction C ′ of C that distinguishes G(Ub logn) from uniform, and this is a contradiction. J

Finally, it remains to justify the claim about the decoding procedure. Given a string
y ∈ {0, 1}q logn, the decoding algorithm will use brute force to go over all (x, r) ∈ {0, 1}a·logn×
{0, 1}b·logn, and check for each whether δ(Enc(x, r), y) ≤ p. By the L-weakly list decodable
property, there will be at most L distinct values of x. The decoding complexity is O(2a logn ·
2b logn) = poly(na+b) with oracle access to G. J

4.2 Inner Stochastic codes for circuits and ROBPs
By plugging in the pseudorandom generators from Theorems 7 and Theorem 9 in Theorem 22.
We immediately obtain the following stochastic codes (that will be used in the construction).

I Theorem 25 (inner stochastic code for poly-size circuits). If E is hard for exponential
size circuits then for every constant 0 ≤ p < 1

2 , c > 1 and a > 0 there exist constants
L, b, q such that for every sufficiently large n, there is a stochastic code (Enc,Dec) where
Enc : {0, 1}a·logn × {0, 1}b·logn → {0, 1}q·logn is:

L-weakly list decodable from radius p.
1
nc -pseudorandom for size nc circuits.

Furthermore, the code is explicit. Specifically, Enc,Dec are computable in time poly(nc), where
the polynomial depends on p, a and the constant β > 0 hidden in the hardness assumption.

12We remark that it is also possible to extend proofs that random linear codes achieve list decoding
capacity to show that we can obtain a linear code E that yields a good code EncSC .

APPROX/RANDOM’16

45:20 Explicit List-Decodable Codes for Computationally Bounded Channels

I Theorem 26 (inner stochastic code for online channels). For every constant 0 ≤ p < 1
2 ,

c > 1 and a > 0 there exist constants L, b, q such that for every sufficiently large n, there is
a stochastic code (Enc,Dec) where Enc : {0, 1}a·logn × {0, 1}b·logn → {0, 1}q·logn is:

L-weakly list decodable from radius p.
1
nc -pseudorandom for space c logn ROBPs.

Furthermore, the code is explicit. Specifically, Enc,Dec are computable in time poly(nc) where
the polynomial depends on p, a.

4.3 Inner stochastic codes for AC0 channels
In this section we give a construction of inner stochastic codes for circuits of constant depth.
This construction has the advantage that the encoding and decoding of the inner stochastic
code run in fixed polynomial time, and do not depend on the size or depth of the circuit
family.

I Theorem 27 (inner stochastic code for AC0). There exist constants p > 0, R > 0 and
a > 1 such that for every sufficiently large n, there is a stochastic code (Enc,Dec) where
Enc : {0, 1}Rn × {0, 1}Rn → {0, 1}n that is:

1-strongly list decodable from radius p.
2−n

1
ad -pseudorandom for circuits of size 2n

1
ad and depth d.

Furthermore, the code is explicit. Specifically, Enc,Dec are computable in time poly(n), for
a fixed universal polynomial (only the choice of what n is sufficiently large depends on the
constants).

Proof. The theorem will follow from the following claim.

I Claim 28. There exist constants p > 0, R > 0 such that for every sufficiently large n,
there is a 2Rn× n matrix G(n) such that:

G(n) is a generator matrix for a binary linear [n, 2Rn]-code that is decodable from pn

errors.
Let G(n)

t be the Rn × n matrix obtained by taking the first Rn rows of G(n). G(n)
t is a

generator matrix for a binary linear [n,Rn]-code such that its dual code has distance
larger than pn.
The code (Enc,Dec) that is defined by G(n) is explicit (and in particular G(n) can be
constructed in time poly(n)).

Proof of claim. It is sufficient to prove the lemma for codes with alphabet size 2s for some
constant s (rather than for binary codes). This is because, such codes can be viewed as
binary codes (in a natural way) and this viewpoint preserves rate, and decreases relative
distances (or the fraction of errors that can be decoded) by a constant factor of 1/s. We
therefore focus on proving the claim for codes with alphabet size that is constant and a
power of two.

There are codes (based on algebraic geometric codes) over constant size alphabet where
the size can be a power of two, that have: constant rate, can be explicitly encoded and
decoded from a constant fraction of errors, and furthermore have a positive relative dual
distance. Such codes follow from the work of Garcia and Stichtenoth [3] and a self contained
summary is presented in [18] (the summary is in an appendix written by Guruswami).
Theorem 24 in the appendix contains a precise statement on the existence of such codes.

An inspection of the proof reveals that this argument can also be used to obtain two
explicit linear codes Ct ⊆ C with the properties above. More specifically, by varying the

R. Shaltiel and J. Silbak 45:21

parameters in the proof, there exist constants R > 0 and p > 0 such that for sufficiently
large n, Ct has constant rate R > 0, C has rate 2R > 0 and both codes have the properties
listed above, namely: Ct (resp. C) can be efficiently decoded from p · n errors (for some
p > 0) and both codes have dual distance p · n. Loosely speaking, this follows as one can
perform the argument once to obtain one code Ct, and then increase the dimension, to give
a code C such that Ct ⊆ C with the same properties.

The matrix Gt will be the generator matrix of Ct and it can be easily extended to a
generator matrix G of C. J

We now observe that the claim implies the theorem. The stochastic code Enc : {0, 1}Rn×
{0, 1}Rn → {0, 1}n is defined as follows: Given x, r ∈ {0, 1}Rn, let y be the concatenation
y = r ◦ x and Enc(x, r) = y ·G.

This code is 1-strongly list decodable from radius p by the decoding properties of the
code generated by G. More precisely, given z ∈ {0, 1}n, we can decode to a unique message
y ∈ {0, 1}2Rn that has hamming distance at most pn from z, and this message y = (x, r) can
be found efficiently.

We now show the pseudorandomness of Enc. Let Gb denote the bottom Rn rows of G
(and recall that Gt denotes the top Rn rows of G). For every x, r ∈ {0, 1}Rn,

Enc(x, r) = (r ◦ x) ·G = r ·Gt + x ·Gb.

The generator matrix Gt generates a code with dual distance at least pn. This means that
transposed matrix is the parity matrix of the dual code. The fact that the dual code has
distance larger than pn, implies that every pn rows of Gt are linearly independent. This gives
that the distribution r ·Gt for r ← URn is pn-wise independent, and implies that for every
x ∈ {0, 1}Rn, Enc(x, URn) is pn-wise independent. Braverman [2] (and later improvements by
Tal [21]) (See Theorem 11) showed that t-wise independent distributions are ε-pseudorandom
for circuits of size s and depth d, if t ≥ (log s

ε)
c·d for some constant c. This gives that there

exists a constant a > 1 such that Enc(x, URn) is 2−n
1
ad -pseudorandom for circuits of size

2n
1
ad and depth d, as required. J

5 The construction of stochastic codes

In this section we give the construction of the stochastic code. Our construction imitates
that of Guruswami and Smith [6] (with the modifications explained in Section 2). We start
with introducing some notation.

Partitioning codewords into control blocks and data blocks

The construction will think of codewords c ∈ {0, 1}N as being composed of n = nctrl + ndata
blocks of length b = N/n. Given a subset I ⊆ [n] of nctrl distinct indices, we can decompose
c into its data part cdata ∈ {0, 1}Ndata=ndata·b and its control part cctrl ∈ {0, 1}Nctrl=nctrl·b.
Similarly, given strings cdata and cctrl we can prepare the codeword c (which we denote by
(cdata, cctrl)I by the reverse operation. This is stated formally in the definition below.

I Definition 29. Let I = {i1, . . . , inctrl} ⊆ [n] be a subset of indices of size nctrl.
Given strings cdata ∈ {0, 1}Ndata and cctrl ∈ {0, 1}Nctrl we define an N bit string c denoted
by (cdata, cctrl)I as follows: We think of cdata, cctrl, c as being composed of blocks of length
b (that is cdata ∈ ({0, 1}b)ndata , cctrl ∈ ({0, 1}b)nctrl and c ∈ ({0, 1}b)n). We enumerate

the indices in [n] \ I by j1, . . . , jndata and set c` =
{

(cctrl)k if ` = ik for some k;
(cdata)k if ` = jk for some k

APPROX/RANDOM’16

45:22 Explicit List-Decodable Codes for Computationally Bounded Channels

Parameters:
N – The length (in bits) of the codeword. (Throughout we assume that N is sufficiently
large). Other parameters are either constants or chosen as a function of N .
p – The fraction of errors we need to recover from. This is a constant.
C′ – A class of functions (typically slightly stronger than the class of channels we allow).
0 < ε < 1

2 − p – We want rate R = 1−H(p)− ε, meaning that messages have length RN . ε
is a constant.
b – We will divide the N output bits to n = N/b blocks of length b, where 2 logN ≤ b ≤ N1/10

is a function of N that will be chosen later on. This implies n ≥ N0.9.
ν ≥ 2−

√
N – A bound on the failure probability of decoding (can be chosen as a function of

N).
Internal parameters:

Blocks will be of two kinds: “control” and “data”. We set nctrl = ε ·n and ndata = n−nctrl so
that n = nctrl + ndata. Let Nctrl = b · nctrl and Ndata = b · ndata. So that N = Nctrl +Ndata.
Let α > 0 be a sufficiently small constant that will be chosen later.
Let `ctrl = N0.8 and `′ctrl = `ctrl/3.

Ingredients that depend on the choice of channel class: We assume that we are given:
A stochastic code EncSC : {0, 1}2 lognctrl × {0, 1}`

′
SC → {0, 1}b that is εSC-pseudorandom

for C′ (for εSC = ν
10·nctrl

) and is LSC-weakly list decodable from radius p+ ε. We require
that LSC is a constant, and `′SC ≤ N .
An εPRG-PRG PRG : {0, 1}`

′
ctrl → {0, 1}Ndata for C′, for εPRG = 1

10 · ν.
Other Ingredients:

A code Encbalanced : {0, 1}RN → {0, 1}Ndata with an algorithm Decbalanced that performs
Lbalanced-list decoding from (b′, p+α, α)-balanced errors. By Theorem 14 we have an explicit
construction with rate R′ ≥ 1 −H(p + α) − α where b′ and Lbalanced are large constants
(chosen as a function of the constants α and p). By choosing a sufficiently small α > 0 we
indeed have R′ ≥ RN/Ndata = R/(1− ε).
A code EncLR : {0, 1}`ctrl → ({0, 1}2 lognctrl)nctrl that is (ε

2

100 , LSC · n,LLR)-list recoverable.
Note that LSC · n = LSC

ε
· nctrl. By Theorem 15 we can obtain such a code with constant

rate R′ > 0 for some constant LLR (these two constants depend on ε). The rate we allow
for EncLR above is `ctrl

2 lognctrl·nctrl
≤ N0.8

ε·n = o(1) ≤ R′.
A (2−N

0.6
, N0.6)-wise permutation π : {0, 1}`

′
ctrl × [Ndata] → [Ndata]. By Theorem 19 we

have an explicit construction with seed length N0.7 ≤ `′ctrl.
An (2−N

0.6
,min(α

100 ,
ε2

100))-sampler with distinct samples Samp : {0, 1}`
′
ctrl → [n]nctrl .

By Theorem 17 we have an explicit construction with seed length O(N0.7) ≤ `′ctrl and
N0.7 ≤ ε · n = nctrl samples.

Figure 1 Parameters and ingredients for stochastic code.

Given a string c ∈ {0, 1}N (which we think of as c ∈ ({0, 1}b)n) we define strings cIdata, cIctrl
by cctrl = c|I and cdata = c|[n]\I , (namely the strings restricted to the indices in I, [n] \ I,
respectively).

We omit the superscript I when it is clear from the context.

Permuting strings

Our construction will also use permutations to permute strings as follows:

I Definition 30. Given a string v ∈ {0, 1}N and a permutation π : [N] → [N]. Let π(v)
denote the string v′ ∈ {0, 1}N with v′i = vπ(i).

R. Shaltiel and J. Silbak 45:23

Input:
A message m ∈ {0, 1}RN .
A “random part” r for the stochastic encoding that consists of a string s = (ssamp, sπ, sPRG)
where ssamp, sπ, sPRG ∈ {0, 1}`

′
ctrl so that s ∈ {0, 1}`ctrl , and r1, . . . , rnctrl ∈ {0, 1}

`′SC .
Operation:

Determine control blocks: Apply Samp(ssamp) to generate I = {i1, . . . , inctrl} ⊆ [n]. These
blocks will be called “control blocks”, and the remaining ndata blocks will be called “data
blocks”.

Prepare data part: We prepare a string cdata of length Ndata as follows:
Encode m by x = Encbalanced(m).
Generate an Ndata bit string y by reordering the Ndata bits of the encoding using
the (inverse of) the permutation πsπ (·) = π(sπ, ·). More precisely, y = π−1

sπ (x) =
π−1
sπ (Encbalanced(m)).

Mask y using PRG. That is, cdata = y⊕PRG(sPRG) = π−1
sπ (Encbalanced(m))⊕PRG(sPRG).

Prepare control part: We prepare a string cctrl of length Nctrl (which we view as nctrl blocks
of length b) as follows:

Encode s by z = EncLR(s). This is a string composed of nctrl blocks of length 2 lognctrl.
Use EncSC as an “inner code” to encode blocks of z using the randomness r1, . . . , rnctrl .
That is, (cctrl)j = EncSC(zj , rj) = EncSC(EncLR(s)j , rj).

Merge data and control parts: We prepare the final output codeword c ∈ {0, 1}N by merging
cdata and cctrl. That is, c = (cdata, cctrl)I .

Figure 2 Encoding algorithm for stochastic code.

Description of the construction

Our construction is described in detail in the three figures below. The choice of parameters
and ingredients is described in Figure 1. The encoding algorithm is described in Figure 2,
and the list-decoding algorithm is described in Figure 3. We state a general theorem that
summarizes the correctness of the construction and will be used to prove Theorems 2, 3, 4.

Correctness of the construction

Let C be a class of channels C : {0, 1}N → {0, 1}N that induce at most pN errors. We now
show that if the ingredients PRG,EncSC are pseudorandom for a class C′ that is sufficiently
stronger than C, then the decoding algorithm of Figure 3 succeeds with high probability.
This is stated precisely, in the next theorem, which uses the notion of “xored restrictions”
defined in Definition 21. (We remind the reader that nonuniform complexity classes as the
ones we consider in this paper, are closed under xored restrictions).

I Theorem 31 (Correctness of construction). For every constants 0 ≤ p < 1
2 and 0 < ε < 1

2−p
there exists a constants L = LLR·Lbalanced such that for every sufficiently large N the following
holds:

Let C be a class of functions C : {0, 1}N → {0, 1}N that induce at most pN errors. For
a channel C ∈ C, let EC(z) = z ⊕ C(z) denote the error vector (of Hamming weight at
most pN) induced by the channel.
Let C′ be the class of all functions that output one bits, and are xored restrictions of
functions of the form f(z) = A(EC(z))) where A is either,

a size N c0 , depth d0 circuit, for some universal constants c0, d0.

APPROX/RANDOM’16

45:24 Explicit List-Decodable Codes for Computationally Bounded Channels

Input: A “received word” c′ ∈ {0, 1}RN .
Operation:

Determine few candidates for control information:
Decode inner code SC: For every i ∈ [n] apply the list decoding algorithm of SC to

generate a size LSC list, Listi = DecSC(c′i) (here c′i is the i’th block of c′). Let ListSC =
∪i∈[n]Listi.

Decode outer code LR: Apply the list recovering algorithm of LR to generate a size LLR
list, Listctrl = DecLR(ListSC).

Use each control candidate s to decode data: For each s = (ssamp, sπ, sPRG) ∈ Listctrl (re-
call that there are LLR of them) we produce a list Lists of Lbalanced candidate messages.
Our final output list will be the union of these lists.
Determine control blocks: Apply Samp(ssamp) to generate I = {i1, . . . , inctrl}. Compute
c′data = (c′)Idata.

Unmask PRG: Compute y′data = c′data ⊕ PRG(sPRG).
Reverse permutation: Let x′ be theNdata bit string obtained by “undoing” the permutation.

More precisely, let πsπ (·) = π(sπ, ·), and let x′ = πsπ (y′data) = πsπ (c′data ⊕ PRG(sPRG)).
Decode data: Compute Lists = Decbalanced(x′).
Merge lists: The final output is List =

⋃
s∈Listctrl

Lists.

Figure 3 List-decoding algorithm for stochastic code.

a space η0 · log 1/ν · logN ROBP, for some universal constant η0 > 0 (which gives
space O(logN) if ν is inverse polynomial in N).

If the parameters and ingredients are chosen as in Figure 1, then the stochastic code (Enc,Dec)
specified in Figures 2, 3, satisfies:

It has rate R ≥ 1−H(p)− ε.
It is L-list decodable with success probability 1− ν for channels in C, where L = poly(1/ε)
is a constant.
There exist a universal polynomial P (·) such that:

The function Enc can be computed in DTIMEPRG,EncSC (P (N)) (and is therefore
explicit if PRG,EncSC are explicit).
The function Dec can be computed in DTIMEPRG,DecSC (P (N)) (and is therefore
explicit if PRG,DecSC are explicit).

5.1 Choosing ingredients and parameters for specific channel families

We now put everything together and choose pseudorandom generators and inner stochastic
codes for poly-size circuits, online logspace, and AC0.

5.1.1 Poly-size circuit channels

Here we use the pseudorandom generator of Impagliazzo and Wigderson [8] (that requires
the assumption that E is hard for exponential size circuits). This PRG has logarithmic seed
length, and can be used as PRG, as well as the pseudorandom generator that is transformed
into an inner stochastic code EncSC (as done in Theorem 25). The precise statement and
parameter choices appear below:

R. Shaltiel and J. Silbak 45:25

I Theorem 32 (explicit codes for poly-size channels). Assume that E is hard for exponential
size circuits. For every constants 0 ≤ p < 1

2 , ε > 0, and c > 1 and for every sufficiently large
N :

Let ν = N−c.
Let C be the class of all circuits C : {0, 1}N → {0, 1}N of size N c that induce at most
pN -errors.
Let C′ be the class of all size N2c circuits that output one bit (this includes circuits for
all input lengths up to N). Here, we assume w.l.o.g. that c is sufficiently large so that in
time N2c we can compose size N c computations with fixed polynomial size computations.
Let (EncSC ,DecSC) and the block length b be determined by Theorem 25. Specifically, let
b = q·logN for a sufficiently large constant q, guaranteed by Theorem 25 so that we get that
EncSC : {0, 1}2 lognctrl≤2 logN × {0, 1}`′SC=O(logN) → {0, 1}b is LSC-weakly list decodable
from radius p+ α for a sufficiently large constant LSC (chosen as a function of p), and
furthermore, EncSC is N−(c+1)-pseudorandom for C′. (Note that N−(c+1) ≤ ν/10 · nctrl
as required).
Let PRG : {0, 1}O(logN) → {0, 1}Ndata be an N−(c+1)-PRG for C′ from Theorem 7, and
note that the seed length is smaller than `′ctrl, and N−(c+1) ≤ ν/10 as required.

These choices satisfy the requirements of Figure 1, 2, 3, the stochastic code (Enc,Dec) specified
in the figures has rate 1−H(p)− ε, and is L = O(1)-list decodable with success probability
1 − N−c against channels in C. Furthermore, Enc,Dec are computable in time poly(N c)
where the polynomial depends on p, and on the constant β > 0 hidden in the assumption.

5.1.2 Online logspace channels
Here we use the pseudorandom generator of Nisan [14]. This PRG has seed length that is
poly-logarithmic, and can be used as PRG. However, it unsuitable to serve in the construction
of inner stochastic codes. This is because the dependence of the seed length on the error,
does not allow linear stretch with error that is exponentially small in the seed length. Instead,
we use the pseudorandom generator of Nisan and Zuckerman [16], that has these properties
and can be transformed into an inner stochastic code EncSC (as done in Theorem 26). The
precise statement and parameter choices appear below:

I Theorem 33 (explicit codes for online logspace channels). For every constants 0 ≤ p < 1
2 ,

ε > 0, c > 1 and for every sufficiently large N :
Let ν = N−c.
Let C be the class of all space c logN ROBPs C : {0, 1}N → {0, 1}N that induce at most
pN -errors.
Let C′ be the class of all space 2c logN ROBPs that output one bit (this includes ROBPs
for all input lengths up to N). Here we assume w.l.o.g. that c is sufficiently large so that
an ROBP of space 2c logN can compose space c logN online computation with c0 logN
online computation, for any fixed c0.
Let (EncSC ,DecSC) and the block length b be determined by Theorem 26. Specifically, let
b = q·logN for a sufficiently large constant q, guaranteed by Theorem 26 so that we get that
EncSC : {0, 1}2 lognctrl≤2 logN × {0, 1}`′SC=O(logN) → {0, 1}b is LSC-weakly list decodable
from radius p+ α for a sufficiently large constant LSC (chosen as a function of p), and
furthermore, EncSC is N−(c+1)-pseudorandom for C′. (Note that N−(c+1) ≤ ν/10 · nctrl
as required).
Let PRG : {0, 1}O(log2 N) → {0, 1}Ndata be an N−(c+1)-PRG for C′ from Theorem 8, and
note that the seed length is smaller than `′ctrl, and N−(c+1) ≤ ν/10 as required.

APPROX/RANDOM’16

45:26 Explicit List-Decodable Codes for Computationally Bounded Channels

These choices satisfy the requirements of Figure 1, 2, 3, the stochastic code (Enc,Dec) specified
in the figures has rate 1−H(p)− ε, and is L = O(1)-list decodable with success probability
1 − N−c against channels in C. Furthermore, Enc,Dec are computable in time poly(N c)
where the polynomial depends on p.

5.1.3 Constant depth channels
Here we use the pseudorandom generator of Nisan [13]. This PRG has seed length that
is subpolynomial for any fixed constant depth d, and can be used as PRG. We use the
construction of inner stochastic codes given in Theorem 27 for EncSC . This construction
only works for p < p0 for some p0 > 0 and this requirement is inherited by our final theorem.
The precise statement and parameter choices appear below:

I Theorem 34 (explicit codes for constant depth channels). There exists a constant p0 > 0,
d0 > 1 and a > 0 such that for every constants 0 ≤ p < p0, ε > 0, d > 1 and for every
sufficiently large N :

Let ν = 2−N
1
ad .

Let C be the class of circuits C : {0, 1}N → {0, 1}N of size 2N
1
ad and depth d that induce

at most pN -errors.

Let C′ be the class of all size 22N
1
ad′ and depth d′ = d+ d0 circuits that output one bit

(this includes circuits for all input lengths up to N).
Let b = N1/10 and let (EncSC ,DecSC) be determined from Theorem 27. Specifically, let
R > 0 be a constant guaranteed by Theorem 27 so that we get EncSC : {0, 1}Rb×{0, 1}Rb →
{0, 1}b is LSC-weakly list decodable from radius p + α for LSC = 1, and furthermore,
EncSC is 2−2N

1
ad -pseudorandom for C′.

Let PRG : {0, 1}(logN)O(d′)≤Rb → {0, 1}Ndata be an 2−2N
1
ad -PRG for C′ from Theorem 10,

and note that the seed length is smaller than `′ctrl.
These choices satisfy the requirements of Figure 1, 2, 3, the stochastic code (Enc,Dec) specified
in the figures has rate 1−H(p)− ε, and is L = O(1)-list decodable with success probability
1− 2−N

1
ad against channels in C. Furthermore, Enc,Dec are computable in time poly(N) for

a fixed universal polynomial.

6 Analyzing the construction

This section is devoted to proving Theorem 31.

The setup

Throughout the remainder of the section, we fix the following setup: Let 0 ≤ p < 1
2 and

0 < ε < 1
2 − p be constants. Let C, C′ be classes as required in Theorem 31. We use the

choices and requirements made in Figure 1. More specifically, as in Figure 1, we assume
that we are supplied with PRG and (EncSC ,DecSC) that satisfy the requirements made in
Figure 1. That is, that for some “required error” parameter ν ≥ 2−

√
N we have:

A stochastic code EncSC : {0, 1}2 lognctrl × {0, 1}`′SC → {0, 1}b that is εSC -pseudorandom
for C′ (for εSC = ν

10·nctrl
) and is LSC-weakly list decodable from radius p + ε, for a

constant LSC .
An εPRG-PRG PRG : {0, 1}`′ctrl → {0, 1}Ndata for C′, for εPRG = ν/10.

R. Shaltiel and J. Silbak 45:27

Our goal in this section is to show that for every sufficiently large N , the encoding and
decoding algorithms specified in Figures 2 and 3 satisfy the conclusion of Theorem 31. This
setup is assumed throughout this section.

6.1 Milestones for correct decoding
Following Guruswami and Smith [6] we will analyze the construction in two steps: We first
consider the case that the channel C is an additive channel, namely that C(z) = z ⊕ e for
some fixed error vector e, and later extend to general channels that can choose e as a function
of z.

We present the following abstraction of this method (which will be convenient for our
purposes as we use several different classes of channels). We will define “milestones” (as a
function of m, sπ, ssamp and e) and will require that:
1. If the milestones occur, then the decoding algorithm succeeds.
2. If Sπ, Ssamp are random and e is fixed (that is, if the channel is additive) then the

milestones occur with probability close to one.
3. Checking whether the milestones occur is computationally easy.
We will state a general theorem showing that if such milestones exist, then the correctness of
the decoding holds even against channels that are not additive, as long as the construction
is using pseudorandomness against a class C′ that can simulate the channel and milestones.
This is stated formally in the definition and theorem below (in which we allow milestones to
be probabilistic).

I Definition 35 (Milestones function). Let A : {0, 1}RN × {0, 1}`′ctrl × {0, 1}`′ctrl × {0, 1}N ×
{0, 1}N → {0, 1} be a function that receives as input: a message m ∈ {0, 1}RN , a sampler
seed ssamp ∈ {0, 1}`

′
ctrl , a permutation seed sπ ∈ {0, 1}`

′
ctrl , an error vector e ∈ {0, 1}N of

relative hamming weight at most p, and a “ random coins string” y ∈ {0, 1}N . We say that
A is a milestones function (with respect to the classes C, C′) if it has all the following
properties: (the probability space for the statements below is choosing the randomness of
the encoder S = (Ssamp, Sπ, SPRG), R = (R1, . . . , Rnctrl) and Y (the coins of A) uniformly
and independently.)
1. For every m ∈ {0, 1}RN , s ∈ {0, 1}`ctrl , r ∈ ({0, 1}`′SC)nctrl and e ∈ {0, 1}n of relative

hamming weight at most p, Pr[A(m, ssamp, sπ, e, Y) = 1] ≥ 1
2 ⇒ m ∈ Dec(Enc(m, s, r)⊕

e).
2. For every m ∈ {0, 1}RN and e ∈ {0, 1}n of relative hamming weight at most p,

Pr[A(m,Ssamp, Sπ, e, Y) = 1] ≥ 1− ν/10.
3. For every m, ssamp, sπ, y, C ∈ C, every xored-restriction of the function

D(z) = A(m, ssamp, sπ, EC(z), y) is in C′.

I Lemma 36 (Milestones Lemma). If there exist a milestones function with respect to C, C′
then

Pr[m ∈ Dec(C(Enc(m,S,R)))] ≥ 1− ν .

We defer the proof of the milestones lemma to Section 6.3. In the next section we explain
how the milestones lemma implies Theorem 31.

6.2 Milestones Lemma implies Theorem 31
In this section we show that Lemma 36 implies Theorem 31. Our task is to define a milestone
function that meets the three requirements in Definition 35. We start with the following
definition.

APPROX/RANDOM’16

45:28 Explicit List-Decodable Codes for Computationally Bounded Channels

I Definition 37. We say that a string e ∈ {0, 1}N is (λ, η)-good with respect to ssamp ∈
{0, 1}`′ctrl if for I = {i1, . . . , inctrl} = Samp(ssamp):

|
{
j : The Hamming weight of eij is at most λ · b

}
| ≥ η · nctrl.

We will use slightly different milestone functions for different complexity measures (as we
need the milestone function to be efficient for the corresponding complexity measure). It will
be convenient to start by defining two milestone functions (a strong one, and a weak one).
We will later show that more efficient milestone functions can be “sandwiched” between the
two milestone functions. This will mean that correctness of the more efficient milestone
functions will follow by analyzing the simpler versions.

I Definition 38. It will be convenient to denote the input to a milestone function by (x, y)
where x = (m, ssamp, sπ, e) and y is the “random coins”, we define the following functions
(which do not depend on y):
Control milestone: Let µ = ε2/4.

Aweakctrl (x, y) = 1 iff e is (p+ ε, µ10)-good for ssamp.
Astrong
ctrl (x, y) = 1 iff e is (p+ ε/4, (1− 1

10) · µ)-good for ssamp.
Note that for every (x, y), Astrong

ctrl (x, y) = 1⇒ Aweakctrl (x, y) = 1.
Data milestone: Let πsπ(·) = π(sπ, ·), edata = e

Samp(ssamp)
data , and eπ = πsπ (edata).

Aweakdata (x, y) = 1 iff eπ is (b′, p+ α, α)-balanced.
Astrong
data (x, y) = 1 iff eπ is (b′, p+ α/4, α/4)-balanced.

Note that for every (x, y), Astrong
data (x, y) = 1⇒ Aweakdata (x, y) = 1.

Combined milestones:
Aweak(x, y) = Aweakctrl (x, y) ∧Aweakdata (x, y).
Astrong(x, y) = Astrong

ctrl (x, y) ∧Astrong
data (x, y).

Note that for every (x, y), Astrong(x, y) = 1⇒ Aweak(x, y) = 1.

The next two lemmata give that any milestone function that is “sandwiched” between
Aweak and Astrong satisfy the first two properties of a milestone function.

I Lemma 39. The function Aweak satisfies the first property of a milestone function. (This
in particular implies that Astrong also satisfies the first property).

This follows as the function Aweak was defined precisely so that the decoding components,
in the decoding algorithm of Figure 3 are used with the correct guarantee. A full proof
appears in Section 6.4.

I Lemma 40. The function Astrong satisfies the second property of a milestone function.
(This in particular implies that Aweak also satisfies the second property).

This follows as the function Astrong was defined precisely so that the pseudorandom
components (the sampler and permutation) are “sufficiently random” to imply that Astrong

holds. For this, we only need to analyze the case where e is fixed and the Seeds (Ssamp, Sπ)
are chosen at random. A full proof appears in Section 6.5.

Milestones for poly-size circuits

Both functions Aweak, Astrong satisfy the first two properties, and are obviously computable
in polynomial time. This immediately gives that they satisfy the third and final property if
C′ is sufficiently stronger than C in the sense that it can run poly-time computations “on top

R. Shaltiel and J. Silbak 45:29

of” computations in C. This also immediately implies Theorem 31 for the case where A is
allowed to run in some fixed polynomial time.

We would like to give tighter reductions in which the milestone function is computable in
AC0 or by a small space ROBP. We now explain how to achieve such milestone functions.

Milestone function for constant depth circuits

We would like to implement the milestone function Aweak (or Astrong) by a poly-size constant
depth circuit. Note that the third property in Definition 35 considers the case that Ssamp, Sπ
are fixed to some values ssamp, sπ, and the only live input is e. This means that the choice
of permutation, and which blocks are control blocks is fixed (and can be hardwired as
nonuniform advice) to the circuit. Furthermore, in the data milestone the inputs can be
rearranged according to πsπ , at no cost. Meaning that the circuit can compute eπ from e at
no cost. Thus, computing the milestone function reduces to several counting tasks on the
number of ones in e and eπ.

It is known that the problem of counting the number of ones in an n bit input, cannot be
solved by poly-size depth circuits. However, Ajtai [1] showed that for every η > 0, there is a
polynomial size constant depth circuit that can produce a quantity that is the number of
ones, up to an error of ηn. (In fact, the results of Ajtai are much stronger, and in particular
allow subconstant η). This means that there is a circuit with constant depth and polynomial
size A′ssamp,sπ (e) such that for every m, y:

Astrong(m, ssamp, sπ, e, y) = 1⇒ A′ssamp,sπ (e) = 1⇒ Aweak(m, ssamp, sπ, e, y) = 1 .

This means that the milestone function Amiddle(x, y) = A′ssamp,sπ(e) satisfies the three
properties of a milestone function proving Theorem 31 for the case of constant depth circuits.

Milestones for read once branching programs

As in the case of constant depth circuits, we need to implement the milestone function by an
O(logn) space ROBP for fixed ssamp, sπ. Using the approach we used for constant depth
circuits, this may seem easy at first glance, as ROBPs with space O(logn) can count up
to nO(1) and this sufficed for the earlier implementation. Indeed, this reasoning applies to
the control milestone, and the functions Astrong

ctrl and Aweakctrl can be easily implemented by an
ROBP of space O(logn) (for fixed ssamp, sπ).

The functions Astrong
data and Aweakdata pose a problem. Unlike circuits, an ROBP is not allowed

to reorder the input by a fixed permutation πsπ prior to reading it. Thus, we cannot assume
that online access to e, gives online access to eπ.

We do have that sπ is fixed, and can be hardwired to the ROBP. This means that when
an ROBP reads the i’th bit of the input e, it can tell whether this bit belongs to a control
block or a data block, and in the latter case, it can tell to which of the Ndata/b

′ blocks of
length b′, does i belong to. (All these are operations that do not depend on e, and only
depend on the fixed ssamp, sπ). The issue is that the order in which the ROBP reads the data
bits is permuted, and does not respect their partitioning into blocks of length b′. This means
that the ROBP cannot keep a single counter and use it for all blocks, and must maintain `
different counters, if it wants to count the number of ones in ` different blocks. The naive
way to check if eπ is balanced, is to keep counters for all ` = Ndata/b

′ blocks, and as b′ is
constant, this takes space O(`) = O(Ndata/b

′) which is way too much.
The solution is to use randomization. The milestone function is allowed to toss random

coins (in the form of the input y). It will choose ` = O(logN) uniform indices from [Ndata/b],

APPROX/RANDOM’16

45:30 Explicit List-Decodable Codes for Computationally Bounded Channels

and will only keep count of the number of ones in these blocks. (This can indeed be done
in space O(logN)). The milestone function will count the fraction of sampled blocks which
have hamming weight larger than p+ α/4, and use this quantity ρ′ as an approximation for
the real quantity ρ (which is the fraction of blocks in eπ which have hamming weight larger
than p+ α/4). By a Chernoff bound, with probability 1− 2−Ω(α2·`) = 1−NO(1), we have
that |ρ− ρ′| ≤ α/100. Therefore, the ROBP can safely output one if ρ′ ≤ α/2, as this indeed
implies that

Astrong
data (x, ·) = 1⇒ Pr

Y
[Amiddledata (x, Y) = 1] ≥ 1− 2−Ω(α2`)

⇒ Pr
Y

[Amiddledata (x, Y) = 1] ≥ 1
2 ⇒ Aweakdata (x, ·) = 1.

This gives that by Lemma 39, Amiddle satisfies the first property of a milestone function. By
Lemma 40, Amiddle defined in this form, satisfies the second property of milestone functions,
where we suffer an additive loss of 2−Ω(α2`) relative to what we can get for Astrong, because
of the error induced by the Chernoff bound.

In Theorem 31, we are allowed to use space O(logN) for ν = 2−Ω(logN), and as α is a
constant, the Theorem follows.

6.3 Proof of Milestones Lemma
We prove the milestones lemma in two steps, described in the two sections below.

6.3.1 The hiding lemma
The following lemma states that for a function D that is slightly weaker than functions in C′,
an encoding of a message m is pseudorandom for D. (We will later consider the case where
D is a composition of a channel and milestone functions).

I Lemma 41 (Hiding Lemma). Let D be a function such that every xored-restriction of D
is in C′. For every message m ∈ {0, 1}RN , sampler seed ssamp ∈ {0, 1}`

′
ctrl and permutation

seed sπ ∈ {0, 1}`
′
ctrl , let V = Enc(m, sπ, ssamp, SPRG, R1, · · · , Rnctrl) be a random variable

(defined over the probability space where SPRG, R1, · · · , Rnctrl are chosen uniformly and
independently). It follows that V is ν

5 -pseudorandom for D, namely:

|Pr[D(V) = 1]− Pr[D(UN) = 1]| < ν

5 .

Proof. We assume for contradiction that there exists D such that:

|Pr[D(V) = 1]− Pr[D(UN) = 1]| > ν

5
and note that εPRG + nctrl · εSC = ν/5. The lemma follows from the following claim.

I Claim 42. One of the following holds:
There exists an xored-restriction C ′ of D such that,
|Pr[C ′(PRG(SPRG)) = 1]− Pr[C ′(UNdata) = 1]| > εPRG.
There exists z′ ∈ {0, 1}2 lognctrl and an xored restriction C ′ of D, such that
|Pr[C ′(EncSC(z′, U`′SC

)) = 1]− Pr[C ′(Ub) = 1]| > εSC .

Proof of claim. We partition V into V = (Vdata, Vctrl)Samp(ssamp) using definition 29. We
have that D distinguishes V = (Vdata, Vctrl) from UN = (Udata, Uctrl) with probability greater
than ν/5, we do a hybrid argument and consider the hybrid distribution H = (Vdata, Uctrl).
It follows that:

R. Shaltiel and J. Silbak 45:31

Either D distinguishes H from UN with probability εPRG,
or, D distinguishes H from V with probability nctrl · εSC .

In the first case, we have that Vdata and Uctrl are independent, and an averaging argument gives
that there exists a fixed value v′ctrl such that D distinguishes (Udata, v

′
ctrl) from (Vdata, v′ctrl)

with probability εPRG. This gives that there exists an xored restriction of D that distinguishes
Udata from Vdata with probability εPRG and the first item of the claim holds.

In the second case, we have that m and sπ are fixed and therefore the string y =
πsπ(Encbalanced(m)) used in the encoding algorithm is also fixed. The encoding algorithm
computes the data part by xoring y with PRG(SPRG) and therefore Vdata = PRG(SPRG)⊕
y. By an averaging argument, there exists a fixing s′PRG such that D distinguishes
((PRG(s′PRG) ⊕ y), Uctrl) from (((PRG(s′PRG) ⊕ y), Vctrl)|SPRG = s′PRG) with probabil-
ity nctrl · εSC . We have that there exists an xored restriction D′ of D which distinguishes
Uctrl from V ′ctrl = (Vctrl|SPRG = s′PRG).

Recall that the encoding procedure prepares the control part cctrl by preparing a string
z = EncLR(s) and then the j’th control block is obtained by EncSC(zj , rj).

Having fixed SPRG = s′PRG the only random variables that remain unfixed in V ′ctrl are
R1, . . . , Rnctrl . This means that there exists a fixed z such that (V ′ctrl)j = EncSC(zj , Rj)
and in particular, the nctrl blocks are independent. We have that D′ distinguishes V ′ctrl
from Uctrl with probability nctrl · εSC , and by a standard hybrid argument, there exists an
xored restriction C ′ of D′ which distinguishes (V ′ctrl)j = EncSC(zj , Rj) from uniform with
probability εSC and the second item follows. J

The lemma follows by the pseudorandomness properties of PRG and EncSC . J

6.3.2 Hiding lemma implies milestones lemma
We now show that the milestones lemma (Lemma 36) follows from the hiding lemma (Lemma
41). We are assuming that A is a milestone function with respect to C, C′ of Theorem 31.
We need to show that for every message m ∈ {0, 1}RN , and every C ∈ C,

Pr[m ∈ Dec(C(Enc(m,S,R)))] ≥ 1− ν

where S = (Ssamp, Sπ, SPRG), R = (R1, . . . , Rnctrl) and Y are chosen uniformly and inde-
pendently.

Fix some messagem ∈ {0, 1}RN and let Z = Enc(m,S,R) denote the random variable that
is the encoding of the message. We assume (for contradiction) that Pr[m ∈ Dec(C(Z))] < 1−ν.
By the first property of a milestones function and an averaging argument we have that:

I Claim 43. Pr[A(m,Ssamp, Sπ, EC(Z), Y) = 1] < 1− ν/2 .

Proof. Let B = {(s, r)|m /∈ Dec(C(Enc(m, s, r)))} be the set of pairs on which C causes a
decoding error. We have that Pr[(S,R) ∈ B] ≥ ν.

Note that for a fixed (s, r) the error vector e induced by the channel C is also fixed. We
consider the probability space where (S,R) = (s, r) are fixed and Y (the random coins of
the function A) is chosen uniformly. By the first property of a milestone function, we have
that for a fixed (s, r) ∈ B and a fixed error e, Pr[A(m, ssamp, sπ, e, Y) = 0] > 1

2 (as otherwise
decoding must succeed). Let A′ = A(m,Ssamp, Sπ, EC(Z), Y) be the random variable of the
output of function A in the probability space where S,R, Y are chosen uniformly.

Pr[A′ = 0] ≥ Pr[A′ = 0|(S,R) ∈ B] · Pr[(S,R) ∈ B] > ν/2

APPROX/RANDOM’16

45:32 Explicit List-Decodable Codes for Computationally Bounded Channels

It follows that

Pr[A(m,Ssamp, Sπ, EC(Z), Y) = 1] = Pr[A′ = 1] = 1− [A′ = 0] < 1− ν/2. J

We add an independent random variable ZU that is uniform over {0, 1}N to our probability
space (that now consists of independently chosen S,R, Y, ZU). By the second property of a
milestone function, we have that for every error vector e,

Pr[A(m,Ssamp, Sπ, e, Y) = 1] ≥ 1− ν/10.

As ZU is independent of (Ssamp, Sπ) this holds also for an error vector of the form EC(ZU).
Namely,

Pr[A(m,Ssamp, Sπ, EC(ZU), Y) = 1] ≥ 1− ν/10.

This means that:

Pr[A(m,Ssamp, Sπ, EC(ZU), Y) = 1]− Pr[A(m,Ssamp, Sπ, EC(Z), Y) = 1]
> (1− ν/10)− (1− ν/2) ≥ ν/4.

By averaging, there exist fixed values s′samp, s
′
π and y′ such that if we consider the event

W =
{
Ssamp = s′samp, Sπ = s′π, Y = y′

}
.

Pr[A(m, s′samp, s
′
π, EC(ZU), y′) = 1|W]− Pr[A(m, s′samp, s

′
π, EC(Z), y′) = 1|W] > ν/4.

We have that (Ssamp, Sπ, Y) is independent of ZU and also independent of (SPRG, R).
Therefore:

Pr[A(m, s′samp, s
′
π, EC(ZU), y′) = 1]−

Pr[A(m, s′samp, s
′
π, EC(Enc(m, sπ, ssamp, SPRG, R)), y′) = 1] > ν/4.

This setup (namely, where Ssamp, Sπ are fixed, and SPRG, R = (R1, . . . , Rnctrl) are uniform)
is exactly the probability space considered in the hiding lemma (Lemma 41). By the
third property of milestones functions, we have that every xored restriction of the function
D(z) = A(m, s′samp, s

′
π, EC(z), y′) is in C′. Therefore, the function D that we obtained gives

a contradiction to the hiding lemma.

6.4 Proof of Lemma 39
We will prove the lemma in two steps that correspond to the two steps of the decoding:
decoding control, and decoding data.

I Claim 44. For every m, s = (ssamp, sπ, sPRG), r, e and y, let c = Enc(m, s, r) and c′ = c⊕e.
If Aweakctrl (m, ssamp, sπ, e, y) = 1 then s ∈ Listctrl. Where Listctrl is the list obtained in the
decoding algorithm described in Figure 3.

Proof. Recall that Listctrl = DecLR(ListSC), ListSC = ∪i∈[n]Listi and Listi = DecSC(c′i)
(here c′i is the i’th block of c′). By Definition 35, Aweakctrl (x) = 1 iff e is (p + ε, µ10)-good
for ssamp. Let ei denote the error vector restricted to the i’th block. By the properties of
EncSC , if the hamming weight of ei is less than (p + ε) · b then ci ∈ Listi. We have that
e is (p + ε, µ10)-good for ssamp, and this means that for at least µ

10 · nctrl = ε2·nctrl
40 of the

nctrl control blocks i ∈ I = Samp(Ssamp), ci ∈ ListSC = ∪i∈[n]Listi. Thus, we indeed have
that Pri←[nctrl][EncLR(s)i ∈ ListSC] ≥ µ

10 >
ε2

100 for a set ListSC of size n · LSC . By the list
recoverability of EncLR we get that s ∈ Listctrl meaning that the control information was
successfully recovered as desired. J

R. Shaltiel and J. Silbak 45:33

I Claim 45. For every m, s = (ssamp, sπ, sPRG), r, e and y, let c = Enc(m, s, r) and c′ = c⊕e.
If Aweakdata (m, ssamp, sπ, e, y) = 1 and s ∈ Listctrl (meaning that s was recovered correctly by
the first step of decoding) then m ∈ Dec(c′).

Proof. We have that s ∈ Listctrl, meaning that s is one of the candidates considered in
the second step of the decoding. Let y′ be the string obtained from c′ after the decoding
uses ssamp to find the data blocks, sPRG to unmask the data, and sπ to permute it back
to it’s original state. The requirement that Aweakdata (m, ssamp, sπ, e, y) = 1 implies that eπ
is (b′, p + α, α)-balanced. Note that eπ is the error vector used on the balanced code. By
the guarantee on Decbalanced this gives that m ∈ Lists = Decbalanced(y′) , since the correct
control is in Listctrl then m ∈ Dec(c′) =

⋃
s∈Listctrl

Lists as desired. J

The lemma follows from the combination of both claims.

6.5 Proof of Lemma 40
A good intuition to keep in mind is that we are trying to bound the harm that can be caused
by an additive channel that uses fixed error vector e of hamming weight at most p.

We start by showing that with high probability, no more than an ε2/4 fraction of the
control blocks, suffer too many errors from the error vector e.

I Claim 46. For every m, e of hamming weight at most pn, y, and sπ,

Pr[Astrong
ctrl (m,Ssamp, sπ, e, y) = 1] ≥ 1− 2−N

0.6
.

Proof. For a given error vector e we define

Te =
{
i : The ith block has a weight at most (p+ ε

4) · b
}
.

For every e that has hamming weight at most pN , it holds that |Te| > ε
4 · n (otherwise we

would have more than pN errors). Define fe : [n]→ {0, 1} such that fe(i) = 1 iff i ∈ Te. By
the properties of the sampler Samp,

Pr
(z1,...,znctrl)←Samp(U`′ctrl

)
[| 1
nctrl
|{i : zi ∈ Te}| −

|Te|
n
| > ε2

100] ≤ 2−N
0.6
.

Thus, if we choose Ssamp uniformly and independently we get that with probability 1 −
2−N0.6 , the number of control blocks that are good (have error less than p+ ε

4) is at least
(ε4 −

ε2

100)nctrl > (9
10 · ε

2/4)nctrl = ((1− 1
10) · µ)nctrl. This means that the error vector e is

(p+ ε/4, (1− 1
10) · µ)-good with probability 1− 2−N0.6 and the claim holds. J

We now show that the fraction of errors induced by e to the data part cannot be
significantly larger than p.

I Claim 47. For every m, e of hamming weight at most pN , y, and sπ,

Pr
ssamp←U`′ctrl

[weight(eSamp(ssamp)
data) ≥ Ndata · (p+ α

100)] ≤ 2−N
0.6

(here, weight is hamming weight).

APPROX/RANDOM’16

45:34 Explicit List-Decodable Codes for Computationally Bounded Channels

Proof. For a given error vector e, we define fe : [n]→ [0, 1] such that fe(i) = wi, where wi
is the relative weight of ith block in e. By the definition of the sampler

Pr
(z1,...,znctrl)←Samp(U`′ctrl

)
[| 1
nctrl

∑
i∈[nctrl]

f(zi)− p| >
α

100] ≤ 2−N
0.6
.

Thus with probability 1− 2−N0.6 the number of errors induced to the control blocks is at
least Nctrl(p− α

100), which implies that the number of error induced to the data is less than
Ndata(p+ α

100), and the claim follows. J

We will now show that permuting the data part e, produces a balanced error vector with
high probability. Let ssamp be a sampler seed that is good with respect to the two previous
claims. A 1− 2 · 2−N0.6 fraction of sampler seeds, satisfy these properties. By Claim 47, we
can assume that the relative hamming weight of essamp

data is at most p+ α/100. We will denote
edata = e

ssamp
data in order to avoid clutter. The lemma will follow from the following claim.

I Claim 48. Pr[π(Sπ, edata) is (b′, p+ α/4, α/4)-balanced error] > 1− e−Ω(N0.55).

This is because, together the three claims above give that with probability 1− 2−N0.51 all
good events happen, and Astrong(x, y) = 1. In the remainder of this section we prove Claim
48.

Let N ′ = Ndata/b
′ be the number of b′ length blocks. We now define random variables

D1, . . . , DN ′ as follows.

Di =
{

1 The i’th block of π(Sπ, edata) has weight more than (p+ α
4) · b′

0 otherwise

Claim 48 can now be seen as a claim that the sum of the Di’s is small with high probability.
We will use a Chernoff style bound, due to Schmidt, Siegel and Srinivasan [17] in order to
bound the probability of deviation.

I Lemma 49. [17] Suppose X1, ..., X` are binary random variables, such that for every set of
distinct k indices i1, · · · , ik ∈ [`], Pr[Xi1 = . . . = Xik = 1] ≤ µk. If 0 < δ ≤ 1 and k ≤ δ·µ·`

2
then

Pr[
∑̀
j=1

Xj ≥ (1 + δ)µ · `] ≤ e−Ω(δk) .

We plan to use Lemma 49 on the random variables D1, . . . , DN ′ for this purpose, we need
to analyze the probability that tuples of Di’s all evaluate to one. In order to achieve this, we
will first show that:

I Claim 50. For every v < N5.5 and every distinct i1, . . . , iv ∈ [N ′], and additional i ∈ [N ′]

Pr[Di = 1|Di1 = . . . = Div = 1] ≤ α/10 .

We observe that Claim 50 implies Claim 48 by Lemma 49. This is because Claim 50
implies that for v = N5.5, and every distinct i1, . . . , iv ∈ [N ′],

Pr[Di1 = . . . = Div = 1] ≤ (α/10)v.

We can now use Lemma 49 with k = N5.5, δ = 1 and µ = α/10 to get that:

Pr[
N ′∑
j=1

Dj ≥
α ·N ′

5] ≤ e−Ω(N5.5) .

R. Shaltiel and J. Silbak 45:35

In order to prove Claim 50 we prove the following claim, for which we introduce the
following notation: We use esπ to denote πsπ (edata). We use esπ [i] to denote the i’th block
of esπ (where blocks are of length b′). We use esπ [i, j] to denote the j’th bit in the i’th block
of esπ .

I Claim 51. Let v < N0.55, let i1, . . . , iv ∈ [N ′] be distinct blocks, let i ∈ [N ′] be an
additional block, and let j1, . . . , jk ∈ [b′]. Let a1, . . . , av ∈ {0, 1}b

′ be strings such that the
relative hamming weight of each ai is at least p+α/100. Let E = ∩m∈[v]

{
eSπ [im] = am

}
. It

follows that:

Pr[∩`∈[k]
{
eSπ [i, j`] = 1

}
|E] ≤ (p+ α/50)k .

Proof.

Pr[∩`∈[k]
{
eSπ [i, j`] = 1

}
|E] =

Pr[∩`∈[k]
{
eSπ [i, j`] = 1

}
∩ E]

Pr[E]

Let us first imagine that π is an (0, t)-wise independent permutation. In this case, the
denominator is some quantity β ≥ 1/Nv

data ≥ 1/NN0.55 ≥ 1/2N0.56 and the enumerator is at
most β · (p+ α/100)k. This is because conditioned on the v values, the fraction of ones that
is “still available” in edata has not increased, and is still at most p+ α/100. It follows that
the actual quantity is at most

β · (p+ α/100)k + 2−N0.6

β − 2−N0.6 = (p+ α/100)k + 2−N0.6
/β

1− 2−N0.6/β
≤ (p+ α/50)k

where the last inequality follows for sufficiently large N because p, α and k ≤ b′ are constants,
and for every two constants A < A′, A+o(1)

1−o(1) ≤ A
′. J

We now show that Claim 50 follows directly from Claim 51, using Lemma 49.

Proof. (of Claim 50) We use Lemma 49 on the random variables Y1, . . . , Yb′ defined by:

Yw =
{

1 eSπ [i, w] = 1
0 otherwise

By Claim 51 we have that for every 0 ≤ v < N5.5, and for every k-tuple of indices
j1, . . . , jk ∈ [b′] in the i’th block,

Pr[Yj1 = . . . = Yjk = 1|Di1 = . . . = Div = 1] ≤ (p+ α/50)k.

Applying Lemma 49, with δ = α/10, k = α2 · b′/2, µ = p + α/50, and noting that
(1 + δ) · µ ≤ p+ α/4 we have that:

Pr[
b′∑
j=1

Yj ≥ (p+ α/4) · b′|Di1 = . . . = Div = 1] ≤ e−Ω(α3·b′) ≤ α/10,

where the last inequality follows as we are allowed to choose b′ to be a sufficiently large
constant as a function of α, and the claim follows. J

APPROX/RANDOM’16

45:36 Explicit List-Decodable Codes for Computationally Bounded Channels

7 Proof of Theorem 14

In this section we prove Theorem 14. The high level idea is that concatenated codes easily
give codes for balanced errors. A similar argument also appears in [19], for the case of codes
against errors that are “t-wise independent”.

Codes with the property required in Theorem 14 can be constructed by concatenating:
An explicit outer code Cout : {0, 1}k → ({0, 1}nin)nout that is (1−γ, Lin, L)-list recoverable
from a collection, that has rate at least 1− ε/3, and in which nin, Lin, L are constants
and L = poly(1/ε) · Lin.
An inner code Cin : {0, 1}nin → {0, 1}b that is Lin-list-decodable from p · b errors and
has rate at least 1−H(p)− ε/3.

Note that this indeed gives a code with the desired properties: The inner code can be
list-decodable in constant time by brute force. Furthermore, for balanced error, list-decoding
succeeds on 1− γ of the nout blocks, giving that the list-recovering algorithm of the outer
code, is set up to output a list containing the original message.

For every constant ε > 0 if we choose sufficiently large constants nin, b and Lin = poly(1/ε)
then inner codes with the required property exist by a standard probabilistic argument, and
as Cin is of constant size, we can find such codes by brute force search.
The outer code can be constructed by concatenating:

An explicit code C1 : {0, 1}k → ({0, 1}logn1)n1 that is (1−γ2, L1, L2 = L)-list recoverable
from a collection, and has rate at least 1− ε/9. We need that L = poly(1/ε) · L1.
An inner code C2 : {0, 1}logn1 → ({0, 1}nin)n2 that is (1 − γ2, Lin, L1)-list recoverable
from a collection, and has rate at least 1− ε/9, and in which nin, Lin, L1 = poly(1/ε) are
constants.

This gives nout = n1 · n2, and the correctness follows as concatenation of list-recoverable
codes gives a list recoverable codes. Specifically: Given a collection of nout = n1 · n2 sets
(indexed by (i1, i2) ∈ [n1]× [n2]), T(i1,i2) ⊆ {0, 1}in of size Lin, we need to list recover a list
of size at most L, containing all m ∈ {0, 1}k such that

Pr
(i1,i2)←[n1]×[n2]

[EncCout(m)(i1,i2) ∈ T] ≥ 1− γ2.

By averaging, for every such m, we have that for a 1− γ fraction of i1 ∈ [n1],

Pr
i2←[n2]

[EncC2(EncC1(m)i1) ∈ T] ≥ 1− γ.

and so performing two steps of list-recovering indeed recovers the original message.
The outer code C1 can be taken to be a Reed-Solomon code, and by [20, 5], we get these
parameters if ε ≤ O(γ2) for L2 = poly(1/ε) · L1. We now turn our attention to the inner
code C2. We will use the probabilistic method to show the existence of a good code, and
such code can be later found by exhaustive search.

I Claim 52. There exists a constant c > 1, such that for every sufficiently small constants
ε > 0 and γ > 0 such that ε ≤ γc and every constant Lin, there exist constants L1 =
Lin · poly(1/ε) and nin ≥ logLin

γ , such that for every sufficiently large k2, there is a code
C2 : {0, 1}k2 → ({0, 1}nin)n2 that is (1− γ2, Lin, L1)-list recoverable from a collection and
has rate 1− ε/9.

Proof. We consider a uniformly chosen C2. For every subset S ⊆ {0, 1}k2 of size L1 + 1,
and every collection T of sets T1, . . . , T2 ⊆ {0, 1}nin of size Lin let BS,T be the event that
for every x ∈ S, for a 1− γ2 fraction of i ∈ [n2], EncC2(x)i ∈ Ti. Our goal is to do a union

R. Shaltiel and J. Silbak 45:37

bound over all of these events. We will choose nin to be sufficiently large so that Lin ≤ 2γnin .
Let Nin = 2nin and let α = Lin/Nin so that log(1/α) = (1 − γ) · nin. Note that for fixed
x and a collection T , we can use a Chernoff bound13, to show that the probability that a
1− γ2 fraction of i ∈ [n2], C2(x)i ∈ Ti, is at most

2−(1−γ2)·n2·log 1−γ2
e·α ≤ 2−(1−γ2)·n2·log 10

α

where the last inequality follows for sufficiently small γ. It follows that for every S, T :

Pr[BS,T] ≤ 2−(L+1)·(1−γ2)·n2·log 10
α .

The number of choices for S, T is bounded by:(
2k2

L1 + 1

)
·
(
Nin
Lin

)n2

≤ 2(L1+1)·k2 ·
(
e ·Nin
Lin

)n2·Lin
≤ 2(L1+1)·k2 · 2n2·Lin·log e

α .

Thus, we can do a union bound if:

k2 < (1− γ) · (1− γ2) · n2 · log 10
α

= (1− γ2) · (1− γ)2 · n2 · nin,

and also,

Lin · log e

α
< γ · (L+ 1) · (1− γ2) · log 10

α
.

The first inequality follows because we are allowed to choose k2 = (1− ε/9) · n2 · nin, and
ε is was chosen to be sufficiently smaller than γ. The second inequality follows as we are
allowed to choose L1 = Lin · poly(1/ε), and γ ≥ ε. J

The inner code C2 is over an alphabet of logarithmic size in kout, and can be found (and
decoded) by brute force search in time polynomial in kout.

Acknowledgement. We are grateful to Swastik Kopparty for pointing us to the Algebraic
Geometric codes of Garcia and Stichtenoth, and in particular for pointing us to their
description in [18].

References
1 Miklós Ajtai. Σ1

1-formulae on finite structures. Ann. Pure Appl. Logic, 24(1):1–48, 1983.
2 M. Braverman. Polylogarithmic independence fools ac0 circuits. J. ACM, 57(5), 2010.

doi:10.1145/1754399.1754401.
3 A. Garcia and H. Stichtenoth. On the asymptotic behavior of some towers of function fields

over finite fields. Journal of Number Theory, 61(2):248–273, 1996.
4 Oded Goldreich. A sample of samplers – a computational perspective on sampling (survey).

Electronic Colloquium on Computational Complexity (ECCC), 4(20), 1997.
5 V. Guruswami and M. Sudan. Improved decoding of reed-solomon and algebraic-geometry

codes. IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.
6 Venkatesan Guruswami and Adam D. Smith. Codes for computationally simple channels:

Explicit constructions with optimal rate. In 51th Annual IEEE Symposium on Foundations
of Computer Science, FOCS, pages 723–732, 2010. doi:10.1109/FOCS.2010.74.

13The Chernoff bound we use is that if X1, . . . , Xn are independent indicator random variables, and the
expectation of their sum X is µn, then for v > 10, Pr[X ≥ v · µ · n] ≤ 2−v·µ·n·ln(v/e).

APPROX/RANDOM’16

http://dx.doi.org/10.1145/1754399.1754401
http://dx.doi.org/10.1109/FOCS.2010.74

45:38 Explicit List-Decodable Codes for Computationally Bounded Channels

7 R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network algorithms.
In Proceedings of the ACM Symposium on Theory of Computing, pages 356–364, 1994.
doi:10.1145/195058.195190.

8 R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandom-
izing the XOR lemma. In STOC, pages 220–229, 1997.

9 E. Kaplan, M. Naor, and O. Reingold. Derandomized constructions of k-wise (al-
most) independent permutations. Algorithmica, 55(1):113–133, 2009. doi:10.1007/
s00453-008-9267-y.

10 Michael Langberg. Private codes or succinct random codes that are (almost) perfect. In
45th Symposium on Foundations of Computer Science (FOCS 2004), pages 325–334, 2004.
doi:10.1109/FOCS.2004.51.

11 Richard J. Lipton. A new approach to information theory. In 11th Annual Sym-
posium on Theoretical Aspects of Computer Science, pages 699–708, 1994. doi:10.1007/
3-540-57785-8_183.

12 Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal error correction
for computationally bounded noise. IEEE Trans. Information Theory, 56(11):5673–5680,
2010. doi:10.1109/TIT.2010.2070370.

13 N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70,
1991.

14 N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

15 N. Nisan and A. Wigderson. Hardness vs. randomness. JCSS: Journal of Computer and
System Sciences, 49, 1994.

16 N. Nisan and D. Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci., 52(1):43–
52, 1996.

17 Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds
for applications with limited independence. SIAM J. Discrete Math., 8(2):223–250, 1995.
doi:10.1137/S089548019223872X.

18 Amir Shpilka. Constructions of low-degree and error-correcting epsilon-biased generators.
Computational Complexity, 18(4):495–525, 2009. doi:10.1007/s00037-009-0281-5.

19 Adam D. Smith. Scrambling adversarial errors using few random bits, optimal information
reconciliation, and better private codes. In Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 395–404, 2007. URL: http://dl.
acm.org/citation.cfm?id=1283383.1283425.

20 M. Sudan. Decoding of Reed Solomon codes beyond the error-correction bound. Journal
of Complexity, 13, 1997.

21 Avishay Tal. Tight bounds on the fourier spectrum of ac0. Electronic Colloquium on Com-
putational Complexity (ECCC), 21:174, 2014. URL: http://eccc.hpi-web.de/report/
2014/174.

22 Luca Trevisan and Tongke Xue. A derandomized switching lemma and an improved deran-
domization of AC0. In Proceedings of the 28th Conference on Computational Complexity,
CCC, pages 242–247, 2013. doi:10.1109/CCC.2013.32.

23 Salil P. Vadhan. Constructing locally computable extractors and cryptosystems
in the bounded-storage model. J. Cryptology, 17(1):43–77, 2004. doi:10.1007/
s00145-003-0237-x.

http://dx.doi.org/10.1145/195058.195190
http://dx.doi.org/10.1007/s00453-008-9267-y
http://dx.doi.org/10.1007/s00453-008-9267-y
http://dx.doi.org/10.1109/FOCS.2004.51
http://dx.doi.org/10.1007/3-540-57785-8_183
http://dx.doi.org/10.1007/3-540-57785-8_183
http://dx.doi.org/10.1109/TIT.2010.2070370
http://dx.doi.org/10.1137/S089548019223872X
http://dx.doi.org/10.1007/s00037-009-0281-5
http://dl.acm.org/citation.cfm?id=1283383.1283425
http://dl.acm.org/citation.cfm?id=1283383.1283425
http://eccc.hpi-web.de/report/2014/174
http://eccc.hpi-web.de/report/2014/174
http://dx.doi.org/10.1109/CCC.2013.32
http://dx.doi.org/10.1007/s00145-003-0237-x
http://dx.doi.org/10.1007/s00145-003-0237-x

	Introduction
	Stochastic codes
	Our results
	Explicit stochastic codes for poly-size circuits
	Unconditional explicit stochastic codes for space O(log(n)) online channels
	Stochastic codes for AC0 channels, with fixed poly-time encoding/decoding

	Perspective
	Some related work

	Overview of the technique
	Codes for the setup of shared private randomness
	A more efficient reduction for online logspace and AC0
	Stochastic codes for bounded channels
	Pseudorandom stochastic inner codes
	New constructions of pseudorandom weak inner codes
	Inner stochastic codes for AC0

	Ingredients used in the construction
	Pseudorandom generators
	Poly-size circuits
	Oblivious read once branching program
	Constant depth circuits

	Error-Correcting Codes
	Codes for balanced errors
	List recoverable codes

	Averaging Samplers
	Almost t-wise permutations

	Inner Stochastic codes
	PRGs give inner stochastic codes
	Inner Stochastic codes for circuits and ROBPs
	Inner stochastic codes for AC0 channels

	The construction of stochastic codes
	Choosing ingredients and parameters for specific channel families
	Poly-size circuit channels
	Online logspace channels
	Constant depth channels

	Analyzing the construction
	Milestones for correct decoding
	Milestones Lemma implies Theorem 31
	Proof of Milestones Lemma
	The hiding lemma
	Hiding lemma implies milestones lemma

	Proof of Lemma 39
	Proof of Lemma 40

	Proof of Theorem 14

