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—— Abstract

The Sum Of Squares hierarchy is one of the most powerful tools we know of for solving combinat-
orial optimization problems. However, its performance is only partially understood. Improving
our understanding of the sum of squares hierarchy is a major open problem in computational
complexity theory.

A key component of analyzing the sum of squares hierarchy is understanding the behavior of
certain matrices whose entries are random but not independent. For these matrices, there is a

random input graph and each entry of the matrix is a low degree function of the edges of this
input graph. Moreoever, these matrices are generally invariant (as a function of the input graph)
when we permute the vertices of the input graph. In this paper, we bound the norms of all such
matrices up to a polylogarithmic factor.
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1 Introduction

1.1 Background and Motivation

The sum of squares hierarchy, independently developed by Shor, Nesterov, Parrillo, and
Lasserre [26, 22, 23, 19], is a powerful tool for solving combinatorial optimization problems.
The first level of the sum of squares hierarchy corresponds to semidefinite programming
on the input variables, which is extremely useful on its own, and each subsequent level of
the sum of squares hierarchy gives a larger but more accurate semidefinite program for the
problem.

However, the performance of the sum of squares hierarchy is only partially understood.
It is known that the sum of squares hierarchy is strictly more powerful than the Lovasz-
Schrijver Hierarchy and the Sherali-Adams hierarchy. It is also known that the sum of
squares hierarchy captures the best known algorithms for many problems. For example,
the sum of squares hierarchy captures the Goemans-Williamson algorithm for max-cut [11]
and the Goemans-Linial relaxation for sparsest cut (which was shown to give an O(y/logn)
approximation by Arora, Rao, and Vazirani [3]). Also, as shown by Barak, Raghavendra,
and Steurer [5] and by Guruswami and Sinop[14], the sum of squares hierarchy captures the
sub-exponential algorithm for unique games found by Barak et. al. [2]. That said, for all we
know, the sum of squares hierrarchy may do even better than these algorithms on max-cut,
sparsest cut, and/or unique games; determining the exact performance of the sum of squares
hierrarchy on max-cut, sparsest cut, and unique games is a major open problem.
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On the lower bound side, it is known that the sum of squares hierarchy cannot solve
NP-hard problems. Such lower bounds generally follow from the result of Grigoriev [12, 13],
which was independently rediscovered by Schoenebeck [25], that the sum of squares hierarchy
cannot distinguish between a random 3-XOR instance and a random 3-XOR instance with
a planted solution. This problem can be reduced to 3-SAT and other NP-hard problems,
which implies sum of squares lower bounds for these problems. However, until recently,
few lower bounds were known for the sum of squares hierarchy for problems which are not
NP-hard. For more information about the sum of squares hierarchy, see the survey of Barak
and Steurer [6].

Recently, there have been several papers proving lower bounds for the performance of
the Sum Of Squares Hierarchy on the planted clique problem [20, 15, 7, 24]. In the planted
clique problem, introduced by Jerrum [16] and Kucera [18], we are given a graph which was
created by first choosing a random graph and then randomly planting a clique of size k by
choosing k vertices and making them all adjacent to each other. The goal of the problem is
to recover the planted clique. Although with high probability the size of the largest clique in
a random graph is only around 21gn, the current best polynomial time algorithm, a spectral
algorithm due to Alon et. al. [1], can only solve the planted clique problem for k = ©(y/n).
In fact, we have strong reason to believe that doing better than ©(y/n) in polynomial time is
hard. It has been shown [16, 8, 9] that several classes of algorithms, including Monte-Carlo
Markov chains, the Lovasz-Schrijver Hierarchy, and statistical algorithms, cannot do better
than ©(y/n) in polynomial time.

The papers [20, 15, 7, 24] show partial lower bounds on the sum of squares hierarchy for
the planted clique problem, proving that the second level of the sum of squares hierarchy
cannot solve planted clique if &k is much smaller than \/n and that the rth level of the sum
of squares hierarchy cannot solve planted clique if £ is much smaller than n 1. While
these papers use many different techniques, a crucial part of all of them is probabilistically
bounding the norms of certain matrices. In these matrices, the entries are not completely
independent of each other, but are low degree in the edges of the input graph and are highly
symmetric, so we call them uniform low degree graph matrices.

Here, inspired by these papers [20, 15, 7, 24], we investigate the norms of uniform low
degree graph matrices. While special cases of these matrices have been analyzed, here
we generalize this analysis, proving bounds on the norms of all uniform low degree graph
matrices.

Concurrently with this work, a nearly tight lower bound was proved for the sum of squares
hierarchy on the planted clique problem [4], showing that the sum of squares hierarchy cannot
solve the planted clique problem in polynomial time if k is much smaller than /n. Coming
full circle, it turns out that this general analysis of uniform low degree graph matrices is a
key component of proving the full lower bound. We have good reason to believe that this
analysis of uniform low degree graph matrices will be useful in analyzing the sum of squares
hierarchy on other problems and it may also be of independent interest.

Finally, we note that this work can be viewed as progress towards matrix concentration
inequalities. In random matrix theory, finding concentration inequalities for the norms of
matrix-valued functions is a longstanding open problem. This work gives bounds for the case
when the matrix function is highly symmetric and has a random graph as input.

1.2 Preliminaries

In this paper, we use the following standard linear algrebra definitions.
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» Definition 1.

1. Given a matrix M, let M (i, j) be the element in the ith row and jth column of M. We
use M (4, 7) rather than M;; because we will often want to give our matrices subscripts
and superscripts.

2. Given a matrix M, we take ||M|| to be the induced norm of M, i.e. ||M|| = max ||[Mwv||.

v||=1
Throughout this paper, we will be bounding the norms of matrices whose entHrilels depend
on a random graph G ~ G(n, %) To avoid writing G repeatedly, we make this dependence
implicit rather than writing it explicitly.
To bound the norms of our matrices, we will use the moment method. In particular, we
use the following fact.

» Lemma 2. For any real matriz M, for all k > 1, X/tr(MMT)*) > ||M]|.

For completeness, we give a short proof of this fact in Appendix A.
Finally, we recall Konig’s Theorem and Menger’s Theorem as they will play a crucial role
in our analysis.

» Definition 3. Given a graph G, a vertex cover of G is a set of vertices V C V(G) such
that all edges of G are incident with at least one vertex in V.

» Theorem 4 (Konig's Theorem). If G is a bipartite graph with partite sets U and V' then
the minimal size of a vertex cover of G is equal to the maximal size of a matching between U
and V.

» Definition 5. If G is a graph and U,V C V(G), we define a vertex separator S of U and
V to be a set of vertices such that all paths from U to V intersect S.

» Theorem 6 (Menger's Theorem). If G is a graph and U,V C V(G) then the minimal size
of a vertex separator of U and V is equal to the mazximal number of vertex disjoint paths

between U and V.

1.3 Definitions for Uniform Low Degree Graph Matrices

We now rigorously define what uniform low degree graph matrices are. For the remainder of
the paper, we assume that V(G) = [1,n] so that the vertices of G have a natural ordering.

» Definition 7. Given an input graph G and a possible edge e, we define the edge variable
e = (i,7) to be 1if (i,j) € E(G) and —1 otherwise. Given a set of edges E, we define

XE = HeeE €.
» Remark. We can think of the xyg as Fourier characters on the input graph.

» Definition 8. We say that a matrix R is a graph matrix if its entries are all functions
of the edge variables of some input graph G. We say that R has degree d if the maximum
degree among all of these functions is d.

Uniformity says that the matrix is the same (as a function of the input graph G) when we
permute the vertices of G. More precisely, we have the following definitions.

» Definition 9. Given a permutation o of V(G),
1. If e = (u,v) is a possible edge of G then define o(e) = (o(u),o(v)).
2. Given a set E of possible edges of G, define o(E) = {c(e) : e € E}.
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(a) H. (b) The subgraph of G that xm,4,B,c is
calculated from.

Figure 1

» Definition 10. We say that a graph matrix R is uniform if the following conditions hold:

1. R has rows and columns indexed by subsets A and B of V(G).

2. Letting c4 g be the coefficient of xg in R(A, B), whenever A,A’,B,B’" C V(G),
|A’| = |A], |B’| = |B|, and o is a permutation of V(G) which maps the ith element
of A to the ith element of A’ and maps the jth element of B to the jth element of B’,
CA’ B',0(E) — CA,B,E-

In this paper, we focus on the following type of uniform graph matrix.

» Definition 11. Let H be a graph with two distinguished subsets of vertices U =
{u1,ug,...uy} and V.= {v1,ve,...v,}. Let W = {ws,...,w,} be the remaining vertices
of H. Given A = {as,...,a;}, B={b1,...,b,}, and C = {e¢1,...,c,} such that a; = b; if
and only if u; = v;, C is disjoint from AU B, and A and B are in increasing order but C
may be in any order (though still with no duplicates), define xm,4,B,c = Xr(E(fr)) Where 7
is the mapping from V(H) to V(G) such that Vi € [1,z], m(u;) = a;, Vj € [1,y],7(v;) = b;,
Vk € [1, 2], m(wg) = ¢ and we take 7(E(H)) = {(7(u),7(v)) : (u,v) € E(H)}

We define the matrix Ry to be the (Z) X (Z) matrix with entries Ry (A, B) = >~ X#,4,B,C
whenever a; = b; if and only if u; = v; and we take Ry (A, B) = 0 otherwise.

» Example 12. The following is an example of x g 4,5,c for a particular H, A, B, and C. If
H is the graph shown below in Figure la, A = {5,11}, B = {7,9,12}, and C = {8,2}, then
XH,4,B,c is calculated from the subgraph of G displayed in Figure 1b. In particular, xm,4,B,c
is the product of the edge variables of the seven possible edges of G that are displayed in
Figure 1b.

» Remark. If H is a bipartite graph with partite sets U and V then Ry (A,B) = 0 if
AN B # ( and whenever AN B =10, Ry (A, B) is +1. Moreover, R(A, B) only depends on
the edges between A and B in G.

» Example 13. If H consists of a single edge from wu; to v; then Ry is a +1 symmetric
random matrix with zeros on the diagonal.

» Remark. All uniform graph matrices can be expressed as a linear combination of matrices
of the form Ry . Thus, to upper bound the norms of all uniform low degree graph matrices,
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it is sufficient to upper bound norms of the matrices Ry for small H. To lower bound the
norms of all uniform low degree graph matrices, a priori it is insufficient to lower bound the
norms of the matrices Ry for small H, as if we take a linear combination of different Ry it
is possible that there is almost perfect cancellation between them. That said, it turns out
that the probility of such a cancellation is negligible, so the norms of all uniform low degree
graph matrices can be understood in terms of the norms of their component Ry. For details
on how this can be shown, see Section 6.

1.4 Paper Outline and Results
Our main result is the following theorem.

» Theorem 14. Let H be a graph with distinguished sets of vertices U and V' such that U
and V are disjoint and all vertices in H(V)\ (UUV) have degree at least one. Lett = |V (H)]|,
let z=|V(H)\ (UUV)|, and let q be the size of the minimal separator between U and V. If
q > 1 then for all € € (0,1),

|Rx| > 2(t") (e(t+z) (ln(an/e) + 1)>q+zntzq] <e.

¥ 2(q +2)

In Section 2, we introduce our main techniques by applying them to the simple and
well-studied case of a symmetric £1 random matrix. We then give a brief technical overview
of the proof for the general case in Section 3. In Section 4 we prove the result for all bipartite
graphs H with partite sets U and V. In Section 5 we generalize our techniques and prove the

full result. The case where U and V have non-trivial intersection is considered in Appendix B.

Finally, in Section 6 we show that this theorem is tight up to a polylog(n) factor.

1.5 Comparison with Previous Work

This paper can be compared to the recent body of work [20, 15, 7, 24] showing planted
clique lower bounds and to previous work in random matrix theory. In the planted clique
lower bounds, ||Rg|| is bounded for several special cases of H, but only the ones that are
needed for the sum of squares lower bounds. In this paper, we use many of the same ideas
(constraint graphs, looking at cycles, vertex partitioning), but we consider bounding ||Rg||
as a mathematical problem independent of its applications to the sum of squares hierarchy,
obtaining bounds for all possible H and greatly generalizing the previous work.

In terms of random matrix theory, our results are much less precise than classical results
such as Wigner’s semicircle law [27] and Girko’s circular law [10]. While these results give
an exact distribution for the eigenvalues of symmetric random matrices and asymmetric
random matrices respectively, we only give a norm bound and this norm bound is off by
polylogarithmic factor. That said, the matrices we are considering are much more complicated
as the entries are no longer independent and may behave in complex ways on the input graph
G. To the best of our knowledge, uniform low degree graph matrices have not previously been
studied in random matrix theory. Indeed, as noted in the introduction, obtaining general
norm bounds when we have a matrix valued function of random inputs rather than a matrix
with independent entries is a longstanding open problem in random matrix theory.

2  Warm-up: Bounding the Norm of a +£1 Random Matrix

As a warmup, we consider the case of a +1 symmetric random matrix. This type of matrix
and its norm have already been studied extensively, in particular Wigner’s semicircle law

40:5
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[27] says that with high probability, the norm of an n x n symmetric random +1 matrix is
2y/n(1 + 0(1)). While our upper bound will not be as strong, it will illustrate the general
ideas involved.

» Definition 15. Given a random graph G ~ G(n, %) with vertices 1,--- ,n, let R be the
matrix with the following entries:

0
R(i,5) =41
-1

—_~ o~

=J

i,j) € E(G)

» Remark. As noted in the introduction, R = Ry where H consists of a single edge from wu,
to vy.

Note that R is closely related to the adjacency matrix of G; in fact, it is the additive
inverse of the Seidel adjacency matrix. Further note that for all 1 < ¢,5 < n, E[R(i,5)] =0,
as any edge (i,7) has probability % of being included in G. We now show the following
probabilistic bound on the norm of R. Note that this bound has an extra factor of In(n),
but this is fine for our purposes as in this paper we are only aiming to get the correct norm
bounds to within a factor of polylog(n).

» Theorem 16. For all e € (0,1),
P [||R]] > ev/n(In(n/e) + 2)] <e.
Proof. In order to find a probabilistic bound for ||R||, we bound E [ EY tr((RRT)’“)]. Notice

that

2k
w(RE) —u) =S ([R)

i1,12,...,92k €[1,n] ~J=

where io;11 =41 and [1,n] = {1,2,...,n}. Therefore,

2k
E[tr((RRT)k)]:E[tr(R%)]:E[ > (HR(Z}J]‘H))]

i1,42,...,92k €[1,n]

>, E { 12:1 R(ij, ij+1)}

11,92,...,92k €[1,n]
by linearity of expectation. Now, note that because E[R(Z, j)] = 0, the vast majority of the
2k
terms E[ IT R(i, ij+1):| are 0; in fact, the only time the expected value is non-zero is when
j=1

each consecutive pair of ¢’s is distinct and when each R(%,j) term appears an even number
of times, in which case the expected value will be 1. Therefore, we can calculate the number

2k
of choices for 41,12,...,i9; that yield a non-zero value for E[ 11 R(ij,ij+1)] and use that
j=1

2k

number to bound E[tr((RRT)*)]. We can think of the sum E[ [] R(i;,i;41)] graphically as
j=1

a sum over length 2k cycles in the vertex set [1,n] where some vertices in the cycle may be

equal to each other. We use what we call a constraint graph to represent each such cycle
(similar graphs appeared in [20] and [15]). In this case, the constraint graph consists of 2k
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R(ig,i7) R(is3,i4)

R(is,1¢) R(iy,15)

Figure 2 An example of a constraint graph where k = 4, i1 = i3, i2 = i¢, and i4 = is.

vertices, each labeled from i; to ig;; vertex 4; is connected to vertex ;41 for all 1 < j <2k
to represent the term R(ij,i;4+1), and a bold constraint edge is drawn between i, and i,
whenever i,. = is to signify that they are equal.

In the case where j of 2k variables are equal, we only draw j — 1 constraint edges to
represent that equality, rather than (%) This is because each constraint edge essentially
represents a restriction; the extra constraint edges do not add to these restrictions, so they

are not included.

» Proposition 17. In order for E| H R(ij,ij4+1)] to have a non-zero value, there must be

at least k — 1 constraint edges in the respectwe constraint graph; in addition, this bound is
sharp.

Proof. We prove the first statement by induction on k. When k& = 1, the statement is
2k

vacuously true; E[ [T R(i;,i;41)] = E[R(i1,42)?], which has a non-zero value regardless of
j=1

constraint edges.
Now, assume that the statement is true for k¥ = r, and consider £ = r + 1. Assume

2%k
E[ IT R(ij,1;41)] # 0, and consider the constraint graph. If each vertex is adjacent to at
=1

j=
least one constraint edge, then because each constraint edge is incident to two vertices, there
are at least L;Q = r + 1 constraint edges, and we are done. Therefore, we only need to

consider the case where there exists a vertex that is not adjacent to any constraint edges.

Call this vertex i;. Then, note that the statement i;_; = i;,1 must be true; if it was not,
then the values R(ij_1,%;) and R(i;,?;+1) have no corresponding equal terms, which means

40:7
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2k
]E[ H R(ij,ij+1)] = 0. But if ij—l = ’ij+1, then R(ij_l,ij) = R(ij,ij+1), meaning that we
j=1

no longer need to consider the vertex ¢; and its adjacent edges. Therefore, we can treat the
vertices 7;_; and 4,11 as the same vertex, as they are equal, meaning that we have essentially
reduced the constraint graph to one on 2r vertices. Then, by our induction hypothesis, this
constraint graph requires at least 7 — 1 constraint edges to create a nonzero expected value,
which means that our total constraint graph requires at least r constraint edges, completing
the proof.

In order to prove the sharpness of the bound, simply consider the case where i; = io42—;
for all 2 < j < k. Then, R(i;,4141) = R(42k+1-1, t2r4+2—1) for all 1 <1 < k, which creates a
non-zero expected value. |

2k
We now use Proposition 17 to bound the maximum number of times that E[ ] R(i;,i;11)]
j=1
can take a non-zero value, and use that information to bound E[tr(R?*)].

» Proposition 18. Given a constraint graph on b vertices such that at least ¢ constraint
edges are required to create a non-zero expectation value, where each verter has n possible
values, let N represent the number of choices for the b vertices such that the expectation
value of the product is non-zero. Then, N < (i)nb_c(b —c)¢ < b¥nb—e,

Proof. Treat the set of vertices as an ordered set S = {d;,da,...,dp}.

Because there must be at least ¢ constraint edges, there must be at least ¢ elements of S
that are duplicates of other elements, so we can choose a set I C S, of ¢ indices such that
for all j € I, there exists m ¢ I such that d; = d,,,. There are (2) choices for I. We can
then choose the elements {d; | j ¢ I}. Each element has at most n possible values so there
are at most n®~¢ choices for these elements. Finally, we choose the elements {d; | j € I}.
To determine each d; it is enough to specify the m ¢ I such that d; = d,,. Each such
d; has b — ¢ choices, so there are at most (b — ¢)¢ choices for these elements. Therefore,
N < (")nb=c(b—c)°.

Now, note that (g) < b°, as (b) = (b_bc!)!c! < (bf!c)! <b° As (b—c)¢ < b°, this completes

C

the proof. <

» Corollary 19. Let N represent the number of choices for the variables (i1,12, ... i) such

2k
that E[ H R(ij,ij+1)] 7é 0. Then, N < (2k)2k_2nk+1.
j=1

Proof. Apply Proposition 18. Note that b = 2k and ¢ = k — 1 by Proposition 17. This
implies the desired result. |

» Corollary 20. E[tr(R?¥)] < (2k)2k—2pk+1,

2%k
Proof. Recall E[tr(R?*)] = > E[]] R(ij.ij11)]. By Corollary 19, the number
i1yigyeion€ln]  j=1
2k
of choices for (iy,is,...,i2;) that yield a non-zero value for E[ [] R(i;,i;41)] is at most
j=1
2k
(2k)?5 =21 in addition, E[ [T R(ij,i;41)] <1 for all choices of (i1, i, . .., iz). These two
j=1

observations complete the proof. <
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Now, note that for any matrix R, tr(R2¥) must take on a nonnegative value. By Markov’s
E[tr(R?*
inequality, for all € € (0,1) and all k¥ > 1, P[tr(R?*) > Eftr(R7)]
€

Using Corollary 20, P[tr(R2¥) > (2k)2k=2n*+1/e] < e. Since ||R|| < #/tr((RRT)F) =
2/tr(R?k) for all k > 1, this implies that for all € € (0,1) and all k > 1,

P {||R|| > ak/(zk)zmnkﬂ/e] <e.

Choosing k = [In(n/e)/2], we have that

J<e

In(n/e)

22kt fe < R (@k)2nkH fe = 2hy/n(n/o)F = 2kyne " H < ey/n(in(n/e) +2).

Thus, P[||R|| > ev/n(ln(n/e) + 2)] < ¢, as needed. <

In the following sections, we generalize these techniques for matrices whose entries depend
on the random graph in more complex ways.

3 Technical Overview of the General Norm Bounds

For the general bounds on ||Ry||, we use similar ideas. The following is almost correct, but
there is a technical issue that needs to be dealt with which we discuss afterwards. We express
Eltr(RgRy")*)] as a sum of many different terms, each of which can be represented with
a constraint graph. We upper bound the number of terms which have nonzero expectation
by showing a lower bound on the number of constraint edges needed. We then use this to
probabilistically bound ||Rg||.

In the case where H is bipartite, each vertex of H has k copies in the constraint graph so
the total number of vertices is kt where ¢t = V(H). The number of constraint edges that are
needed to make a term have non-zero expectation is g(k — 1) where ¢ is the size of a minimal
vertex cover of H. One way we can achieve this is as follows. We take a minimal vertex cover
S of H and set all copies of a vertex in S to be equal to each other. Since each vertex in H
is copied k times, this requires g(k — 1) constraint edge. It turns out that this is tight. Using
this bound, there are at most O(n**~9%+=1)) nonzero terms in E[tr((RgRyu")*)] (where the
constant hides a function of k). Taking this to the power ﬁ for an appropriately chosen k,
we obtain that with high probability, ||Rg|| is at most O(nFquolylog(n)). The general case
is more complicated but similar ideas apply. It turns out that the key object is a minmal
separator S of U and V in H.

However, there is a technical issue in the analysis. In order to obtain the lower bounds on
the number of constraint edges needed, we need to assume that the constraint edges behave
nicely, namely that we don’t have constraint edges between copies of two different vertices in
H. This makes part of the constraint graph decompose into disjoint cycles, allowing us to
use Proposition 17 (without this restriction, we could have constraint edges between different

cycles, which invalidates the analysis). To handle this, we use a vertex partitioning argument.

In particular, given a partition Vi,...,V; of [1,n] we consider the part of Ry where for all
i, vertex 7 is in V;. This gives us a matrix R’ where when we look at E[tr((R'R’ T)k)], the
constraint edges behave nicely and we can obtain a probabilistic bound on ||R’||. We then
bound ||Rg|| using the bound on ||R’||.

40:9
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4 Bounding the Norms of Uniform Locally Random Matrices

In this section, we generalize the techniques used in Section 2 to prove Theorem 14 whenever
H is a bipartite graph with partite sets U and V. We call these matrices locally random
because the value of the entry in row A and column B only depends on the behavior of the
input graph G on the vertices A U B.

» Theorem 21. If H is a bipartite graph with t vertices and minimal vertex cover of size q
then

1. ||Ryl| < ni

2. Ifg>1, for all e € (0,1),

P {||RH|| > 2t! <et (IH(S;;/G) + 1))qn"zq} <e

» Remark. As we will show in Section 6, this bound is tight up to a factor of polylog(n).

Proof. For the first statement, recall that for any matrix M, ||M]|| < ||M||F,, where
| M|y = \/>2;; M(i,5)? is the Frobenius norm of M. To see this, note that if u and v are

unit vectors then

u Mo =" uM(i g)o; < D w2 |3 M(ig)2= |3 M(i, )2
i,J ,J i,J ]

by the Cauchy-Schwarz inequality. Since every entry of Ry has magnitude at most 1, the
result follows.

For the second statement, as described in the technical overview, we first bound the
norms of closely related matrices where we restrict which vertices H can map into. We will
then use this bound to bound ||Ryl|.

» Definition 22. Given a partition Vi,...,V; of the vertices of V(G), we define Ry v, ... v,
be the (") X (Z) matrix such that

x

Ru(A,B) =xuap ANB=10,
Ruwi,..vi.(A B) = Vi€ [1,z],a; € Vi, Vj € [1,y],b; € Vg

0 otherwise

» Lemma 23. Let R' = Ry v,,..v,. Forallee (0,1),

P {|R’| > <et (m(;bz/e) +1>)qntzq] <e.

Proof. As before, we probabilistically bound ||R’|| by bounding E[ */tr((R'R'T)¥)]. Define
(") to be the set of all subsets of [1,n] of size i. Now note that

k
> (H R/(Agj 1, Baj) R (Baj, A2j+1))]

A17A37---7A2k71€([ ‘]) J=1

@
BQ7B47~»-»BQk€([n])

Y

= > E

A17A3,...,A2k71€([71])

x

Eftr(R'RT)")] = E

J

k
R'(Asj_1, Baj) R (Baj, Agji1)
=1
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@
()

@
()

@

(a) H. (b) An example of the constraint graph for the given example
of H, where k = 2.

Figure 3

k
by linearity of expectation. Denote [] R'(A2j—1, ng)R’T(ng,Ang) as P(Aq,...,Ba).
=1

Similarly to the previous case, becatjlse E[R'(A, B)] = 0, the vast majority of the terms
E[P(A4,...,Ba)] are 0; the only time the expected value can be non-zero is when each
consecutive pair of A’s and B’s is disjoint and every edge of G involved in the product
appears an even number of times. In this case, the expected value will be 1. So, we can

bound the number of choices for Ay, Bs,..., Asr_1, Bog that yield a non-zero value for
E[P(Ay,..., Ba)] and use that number to bound E[tr((R'R'T)¥)]. In order to represent
E[P(A1,...,Bak)], we use another constraint graph.

This constraint graph is similar to the constraint graph in Proposition 17. In this
constraint graph, there are k(x + y) vertices sorted into 2k sets. These vertices are labeled
Al = {al;l, A2:15 -y aw;l}, B2 = {bl;g, b2;27 ey by;g},Ag, = {al;g, A2:3,. .- 7aw;3}7 ey ng =
{b1;2k, b2:2k - - ., bys2k }. Two vertices ap,q and b,.; are adjacent in the constraint graph if and
only if |¢ — s| =1 and u, and v, are adjacent in H, where a,.1 = ap.2x+1-

Now, in order to bound the number of choices for Ay, Bs,..., Asx_1, Bog that yield a
non-zero expectation value, we can introduce the constraint edges again. However, note that
due to the definition of R’, constraint edges can only exist between vertices of the constraint
graph that are created by the same vertex of H, as it is impossible for two vertices that are
not created by the same vertex of H to be equal, as they correspond to different disjoint sets
V; and the value of each variable must be in its respective set.

» Lemma 24. In order for E[P(A;,...,Ba)] to have a non-zero value, there must be at
least q(k — 1) constraint edges in the respective constraint graph, where q is the size of a
minimal vertex cover of H; in addition, this bound is sharp.

Proof. In order to prove this lemma, we first show that the given bound is an upper bound
then show that it is sharp by Koénig’s Theorem [17].

First, note that in order for E[P(A4,..., Bax)] to have a non-zero value, every edge in
the constraint graph must have an equal counterpart by virtue of the constraint edges; this
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ensures that any edge that appears in the product appears an even number of times, creating
a non-zero expected value.

It is easy to see that at most g(k — 1) constraint edges are required; namely, if V is a
minimal vertex cover of H, then if z; € V, set a;;1 = a;3 = -+ = ason—1, and if y; € V,
set bjo = bj.4 = -+ = bj;or. Bach such set of equalities corresponds to k — 1 constraint
edges, meaning that there are g(k — 1) constraint edges total. In addition, every edge in the
constraint graph will have an equal counterpart by this method. If (z;,y;) € H, at least one
of z; and y; is in V' by definition; without loss of generality y; € V. Then, this implies that for
the edges in the constraint graph of the form (a;.1,b;.2), (0.2, ai:3), (@i;3,05:4), - - -5 (bj:2k, @is1),
each edge (@;:2m—1,bj2m—2) has the equal counterpart (a;2m—1,b;2m) for 1 < m <k, as
bj.om—2 = bj 2m. Thus, this set of constraint edges is sufficient to create a non-zero expected
value.

Now, we must show at least q(k — 1) constraint edges are required. Because H is a
bipartite graph, we can apply Konig’s Theorem, which states that there exists a matching
of size ¢ in H. Consider the g disjoint cycles of length 2k in the constraint graph that are
created by the ¢ edges in the matching of H. Because R’ is defined so that constraint edges
can only exist between vertices a,., and a,.q or between b, and b, as two vertices not of
this form do not belong to the same set V;, any constraint edge created can affect at most
1 of the g cycles, due to the fact that all the cycles are disjoint and thus are impossible to
link with a constraint edge. Therefore, each cycle requires at least k — 1 constraint edges by
Proposition 17, implying that the ¢ cycles require at least g(k — 1) constraint edges total,
completing the proof. <

» Corollary 25. Let N represent the number of choices for the sets A1, Ba, ..., Asg_1, Bog
such that B[P(Ay, ..., Bay)] # 0. Then, N < (tk)>*k=Dan(t=k+a yhere t = |V(H)| =z +y.

Proof. Apply Proposition 18. In this situation, b = kt and ¢ = g(k — 1). This implies the
desired result. |

» Corollary 26. E [tr((R'R'T)*)] < (tk)2k-Daplt-ak+a,

k
HR/(A2j717sz)R/T(BQJ'7A2j+1) :
j=1

Proof. Recall E[tr((R'RT)¥)] = > E
Al,Ag,...Agk—1€([;])
B,Ba,... Bk (7))

Then, by Proposition 25, the number of choices for Ai, Bs,... Ask_1, Bog that yield a

k
non-zero value for E H R/(Agj_1,Bo;) R (Baj, Azjy1) | is at most (thk)2(k—Daplt-ak+a; iy
j=1
addition,
k
E H R'(Ag;_1, Baj) R (Byj, Agjr1)| < 1. These two observations complete the proof. <
j=1

Now, note that for any graph G on n vertices, tr((R'R'T)*) must take on a nonnegative
value. Then, by Markov’s inequality and Corollary 26, for all € € (0, 1),

o Eftr((R'RT)Y)]

P |tr((R'R'T)F)

nce ||R'|| < X/tr((R'R'T)*), this implies that for all £ > 1 and all € € (0,1),

} <P [tr((R/R'T)k) > (tk)2(k’1)qn(t’q)k+q/e} <e
€

Si

—

B|IR| > %/ <tk>2<k—1>w—q>k+q/e} <P[I[R > (thyn' (n1/e) /] < c.



D. Medarametla and A. Potechin

Setting k = [i In(n?/e)] we have that (tk)qnt_Tq(nq/e)l/Qk < (t (% + 1))q n'z e
Therefore, P[||R'|| > ( ( n(l/e) 4 1)) nz'] < ¢, as needed. <

We can now use our bounds for ||R’|| to bound ||R|| through the following lemma.

» Lemma 27. Let M be a matriz and B,p be positive numbers such that:

1. M = %ZVMW,‘G My, ... v, for some matrices {My, ... v,} where N is the number of
possible Vi, --- | V.

2. For each choice of Vi, ,Vy, for all z € [5, N], P(||My;,... v,|| > Bz) < s

then P(||M|| > B) < p.

» Remark. Unlike in [15], we use all possible partitions so we have that N = ¢"

Proof. The result follows from the following proposition.

» Proposition 28. For all j € [0,1g N|, the probability that there are more than 221% matrices
My, ... v, such that ||My, ... v,|| > 2771 B is at most 55+.
Proof. We prove this by contradiction. If the probability that there are more than QQJJVH
matrices My, ... v, such that |[My, .. v,|| > 277! B is greater than 55+ then the probability
that ||[My,,... v,|| > 277! B must be greater than 5. Pluggmg in x = 2771, this gives a
contradiction. <
Using this proposition, with probablhty at least 1 — Eng n 57T, for all integers j such that
0 < j <lgN, there are at most 5% matrices My, ...y, such that ||[My, .. v,|| > 297'B.
When this occurs, for all integers j such that 0 < j < [lg/N] — 1, there are at most
3z matrices My, ... v,, such that 2971B < |[My, ... v, || < 27 B. Moreover, there are no
matrices such that ||My, ... v;|| > 28 N=1B. This implies that with probability at least
ZUgn sk, [|M]| < 2 ZUgNJ 222JJ§2 < B, as needed. Since 1 — ZUgn 5T > 1 —p,
the result follows. <

» Proposition 29. Set M = Ry and My, . v, =t'Ruv,...v,. Foralle€ (0,1), take p =€
and let B = 2t¢ (6 (% + 1)) n'z". Then, conditions (1) and (2) of Lemma 27 holds
true for these values of M, My, . v,, B, and p.

Proof. We must show both (1) and (2).
Note that M = > vi....v. My, v, because given a non-zero term Ry (A, B), R'(A, B)
has probability ti, of equaling Ry (A, B) among all possible V3, Vs, ..., V4. Thus, part (1) of
the Lemma holds.
Now, we must show (2); that P[t!||R'|| > Bx] <

€ = g5 to Lemma 23, we have that

In(6423n9 /€) R €
P | > — 171 < )
1z (e (HE 1)) 0 < o

1 t In( 64z nq/ ) 9 t—q
We need to show that for all x € [5,N], Bx >t ( ( +1)) nz . Note

< &5 for all z € [§, N]. Plugging in

2?

q

that if x = % then Bz = t! (et (M + 1)) n~z so it is sufficient to show that
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P q
In(6423n9/€)
=

~ is a decreasing function for x > % Taking the derivative of this function

yields

In(64z°n? /¢) q
(miotertia 1) 5

2q
2 In(64z3n4/€) -1
2 (et )

This is negative for x > % if n > e. If n < e then it only makes sense to have ¢ < 1 and
we again have that this is negative for x > % This completes the proof. |

Now that we know our particular values of M, My, .. v,, B, and p satisfy the conditions of
Lemma 27, we apply the aforementioned lemma, obtaining that

P {|RH|| > 2t! (et (m(i;q/e) + 1)>qn"zq} <e.

as needed. |

5 Bounding the Norms of Uniform Low Degree Graph Matrices

In this section, we generalize our techniques further to prove our main result, Theorem 14,
which we restate here.

» Theorem 30. Let H be a graph with distinguished sets of vertices U and V' such that U
and V are disjoint and all vertices in H(V)\ (UUV) have degree at least one. Let t = |V (H)|,
let z = |V(H)\ (UUV)|, and let q be the size of the minimal separator between U and
V.

1. If g+ 2 > 1 then for all € € (0, 1),

|Ry|| > 2(t") (e(t+z) (1“(8”4/6) + 1)>q+zn‘2q] <e.

P 2(g+ z)

2. If =2z =0 then ||Ry|| < n2.

Proof. For the second statement, note that if ¢ = z = 0 then every entry of Ry has magnitude
at most 1, so we can again use the fact that ||Ry|| < ||Ry||rr = \/ZA g Ru(A, B)2. For

the first statment, similar to before, we first bound the norm of a closely related matrix
where we restrict which entries the vertices of H can map into.

» Definition 31. Let W = wq,...,w, be the vertices of H outside of U and V. Given a
partition V1,...,V; of V(G), define Ry v;,.. v, to be the (Z) X (Z) matrix with entries

DO hen€Vayyn XHABC ANB=0,

Ruyv,,.. .vi(A B) = Vie [l,z],a; € Vi,Vj € [1,y],b; € Voy;
0 otherwise
where the sum is over all C' = {¢y, ..., c,} where the ¢y, ..., ¢, are disjoint but not necessarily
in order.

Let R = Ryyv,,.v,- In order to find a probabilistic bound for ||R’||, we bound

E[ %/w((RRT))].



D. Medarametla and A. Potechin

+z g
> Lemma 32. P [|R’| > (e(t—i—z) (lgg;ﬁ/;)) + 1))q n’g} <e.

Proof.

» Definition 33. Define S,, . to be the set of all ordered tuples of z distinct elements of
[1,n].

» Definition 34. For all A € (), B e ("), C € S, ., define

XH,A,BCc ANB=0,
Q(A,C,B) = Vi€ [1,2],a; € Vi,Vj € [1,y],b; € Vorj, Yk € [1, 2], ek € Viyyik

0 otherwise
Now note that
E[tr((R'R'T)*)) = > E

A ar s ()
B3>B7x'-~7B4k716([7;])

k
H R'(Asj—3, Baj-1) R (Baj_1, Asj1)
j=1

k

- 3 ]E[H Q(Asj—3,Caj—2, Baj1)Q" (Baj—1,Cuj, Agj 1)
("9

A1,Ap,.., Agp—3€ Jj=1
33737,4~~734k716(["])

Y

C3,C4,...Cy Esn,z

by linearity of expectation, where A4x4+1 = A;.

k

Denote HlQ(A4j—3,C4j—2,B4j—1)QT(B4j—1,C4j,A4j+1) as P(A1,Cs,...,Bag_1,Cu).
Similar to l;efore, because E[Q(A, C, B)] = 0 for randomly chosen A, B, and C, the vast
majority of the terms E[P(A1,Cy, ..., Bst—1,Car)] are 0; in fact, the only time the expected
value can be non-zero is when each consecutive pair of sets of variables is disjoint and
every edge of GG involved in the product appears an even number of times, in which case
the expected value is at most 1. Again, we can upper bound the number of choices for
A1,Cs, ..., Byy_1,Cy that yield a non-zero value for E[P(A4;,Cy, ..., Bsx—1,C4)] and use
that number to bound E[tr((M’'M'T)*)]. In order to represent E[P(A1,Cy, ..., Bar—1, Cax)],
we use another constraint graph. This constraint graph is similar to the earlier one; however,
it is slightly more complicated, as there is an extra set of vertices involved.

In this constraint graph, there are k(z+2z+y) vertices sorted into 4k sets. These vertices
are labeled A1 = {a1,;1,a2.1,...,az1},Ca = {c1.2,¢2:2,...,¢z2}, B3 = {b1.3,b2:3,...,by3},
04 = {61;4, C2:45 .- -, 62;4}, A5 = {a1;5, A2:5, -, a$;5}, ey C4k = {01;4;,3, Co:4k - - - 702;4k}- Note
that, in particular, the sets describing the sets of vertices are labeled Ay, Cs, B3, Cy,. .., and
repeat this pattern exactly k times. Two vertices ap., and b,.; are adjacent if and only if
l¢ — s| = 2 and w, and v, are adjacent in H, where a1 = ap.ak+1. Similarly, ap,, and ¢
are adjacent if and only if |¢ — o| = 1 and u, and w, are adjacent in H, and b,,; and ¢, are
adjacent if and only if |s —o| = 1 and v, and w, are adjacent in H. Finally, ¢;, and ¢y,
are adjacent if and only if 0 = ¢’ and w; and wy are adjacent in H.

Now, in order to bound E[tr((R'R'T)¥)], we must calculate the minimum number of
constraint edges required in our constraint graph to bring about a non-zero expectation
value, as that will help bound the number of choices for Ay, Co, B3, Cy, As, ..., Bax—1, Cak
that yield a non-zero expectation value for the product E[P(A1,Cs,. .., Bax—1,Cax)]-
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