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Abstract
The Sum Of Squares hierarchy is one of the most powerful tools we know of for solving combinat-
orial optimization problems. However, its performance is only partially understood. Improving
our understanding of the sum of squares hierarchy is a major open problem in computational
complexity theory.

A key component of analyzing the sum of squares hierarchy is understanding the behavior of
certain matrices whose entries are random but not independent. For these matrices, there is a
random input graph and each entry of the matrix is a low degree function of the edges of this
input graph. Moreoever, these matrices are generally invariant (as a function of the input graph)
when we permute the vertices of the input graph. In this paper, we bound the norms of all such
matrices up to a polylogarithmic factor.
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1 Introduction

1.1 Background and Motivation
The sum of squares hierarchy, independently developed by Shor, Nesterov, Parrillo, and
Lasserre [26, 22, 23, 19], is a powerful tool for solving combinatorial optimization problems.
The first level of the sum of squares hierarchy corresponds to semidefinite programming
on the input variables, which is extremely useful on its own, and each subsequent level of
the sum of squares hierarchy gives a larger but more accurate semidefinite program for the
problem.

However, the performance of the sum of squares hierarchy is only partially understood.
It is known that the sum of squares hierarchy is strictly more powerful than the Lovasz-
Schrijver Hierarchy and the Sherali-Adams hierarchy. It is also known that the sum of
squares hierarchy captures the best known algorithms for many problems. For example,
the sum of squares hierarchy captures the Goemans-Williamson algorithm for max-cut [11]
and the Goemans-Linial relaxation for sparsest cut (which was shown to give an O(

√
logn)

approximation by Arora, Rao, and Vazirani [3]). Also, as shown by Barak, Raghavendra,
and Steurer [5] and by Guruswami and Sinop[14], the sum of squares hierarchy captures the
sub-exponential algorithm for unique games found by Barak et. al. [2]. That said, for all we
know, the sum of squares hierrarchy may do even better than these algorithms on max-cut,
sparsest cut, and/or unique games; determining the exact performance of the sum of squares
hierrarchy on max-cut, sparsest cut, and unique games is a major open problem.
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40:2 Bounds on the Norms of Uniform Low Degree Graph Matrices

On the lower bound side, it is known that the sum of squares hierarchy cannot solve
NP-hard problems. Such lower bounds generally follow from the result of Grigoriev [12, 13],
which was independently rediscovered by Schoenebeck [25], that the sum of squares hierarchy
cannot distinguish between a random 3-XOR instance and a random 3-XOR instance with
a planted solution. This problem can be reduced to 3-SAT and other NP-hard problems,
which implies sum of squares lower bounds for these problems. However, until recently,
few lower bounds were known for the sum of squares hierarchy for problems which are not
NP-hard. For more information about the sum of squares hierarchy, see the survey of Barak
and Steurer [6].

Recently, there have been several papers proving lower bounds for the performance of
the Sum Of Squares Hierarchy on the planted clique problem [20, 15, 7, 24]. In the planted
clique problem, introduced by Jerrum [16] and Kucera [18], we are given a graph which was
created by first choosing a random graph and then randomly planting a clique of size k by
choosing k vertices and making them all adjacent to each other. The goal of the problem is
to recover the planted clique. Although with high probability the size of the largest clique in
a random graph is only around 2 lgn, the current best polynomial time algorithm, a spectral
algorithm due to Alon et. al. [1], can only solve the planted clique problem for k = Θ(

√
n).

In fact, we have strong reason to believe that doing better than Θ(
√
n) in polynomial time is

hard. It has been shown [16, 8, 9] that several classes of algorithms, including Monte-Carlo
Markov chains, the Lovasz-Schrijver Hierarchy, and statistical algorithms, cannot do better
than Θ(

√
n) in polynomial time.

The papers [20, 15, 7, 24] show partial lower bounds on the sum of squares hierarchy for
the planted clique problem, proving that the second level of the sum of squares hierarchy
cannot solve planted clique if k is much smaller than

√
n and that the rth level of the sum

of squares hierarchy cannot solve planted clique if k is much smaller than n
1
r+1 . While

these papers use many different techniques, a crucial part of all of them is probabilistically
bounding the norms of certain matrices. In these matrices, the entries are not completely
independent of each other, but are low degree in the edges of the input graph and are highly
symmetric, so we call them uniform low degree graph matrices.

Here, inspired by these papers [20, 15, 7, 24], we investigate the norms of uniform low
degree graph matrices. While special cases of these matrices have been analyzed, here
we generalize this analysis, proving bounds on the norms of all uniform low degree graph
matrices.

Concurrently with this work, a nearly tight lower bound was proved for the sum of squares
hierarchy on the planted clique problem [4], showing that the sum of squares hierarchy cannot
solve the planted clique problem in polynomial time if k is much smaller than

√
n. Coming

full circle, it turns out that this general analysis of uniform low degree graph matrices is a
key component of proving the full lower bound. We have good reason to believe that this
analysis of uniform low degree graph matrices will be useful in analyzing the sum of squares
hierarchy on other problems and it may also be of independent interest.

Finally, we note that this work can be viewed as progress towards matrix concentration
inequalities. In random matrix theory, finding concentration inequalities for the norms of
matrix-valued functions is a longstanding open problem. This work gives bounds for the case
when the matrix function is highly symmetric and has a random graph as input.

1.2 Preliminaries

In this paper, we use the following standard linear algrebra definitions.
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I Definition 1.
1. Given a matrix M , let M(i, j) be the element in the ith row and jth column of M . We

use M(i, j) rather than Mij because we will often want to give our matrices subscripts
and superscripts.

2. Given a matrix M , we take ||M || to be the induced norm of M , i.e. ||M || = max
||v||=1

||Mv||.

Throughout this paper, we will be bounding the norms of matrices whose entries depend
on a random graph G ∼ G(n, 1

2 ). To avoid writing G repeatedly, we make this dependence
implicit rather than writing it explicitly.

To bound the norms of our matrices, we will use the moment method. In particular, we
use the following fact.

I Lemma 2. For any real matrix M , for all k ≥ 1, 2k
√

tr((MMT )k) ≥ ||M ||.

For completeness, we give a short proof of this fact in Appendix A.
Finally, we recall König’s Theorem and Menger’s Theorem as they will play a crucial role

in our analysis.

I Definition 3. Given a graph G, a vertex cover of G is a set of vertices V ⊆ V (G) such
that all edges of G are incident with at least one vertex in V .

I Theorem 4 (König’s Theorem). If G is a bipartite graph with partite sets U and V then
the minimal size of a vertex cover of G is equal to the maximal size of a matching between U
and V .

I Definition 5. If G is a graph and U, V ⊆ V (G), we define a vertex separator S of U and
V to be a set of vertices such that all paths from U to V intersect S.

I Theorem 6 (Menger’s Theorem). If G is a graph and U, V ⊆ V (G) then the minimal size
of a vertex separator of U and V is equal to the maximal number of vertex disjoint paths
between U and V .

1.3 Definitions for Uniform Low Degree Graph Matrices
We now rigorously define what uniform low degree graph matrices are. For the remainder of
the paper, we assume that V (G) = [1, n] so that the vertices of G have a natural ordering.

I Definition 7. Given an input graph G and a possible edge e, we define the edge variable
e = (i, j) to be 1 if (i, j) ∈ E(G) and −1 otherwise. Given a set of edges E, we define
χE =

∏
e∈E e.

I Remark. We can think of the χE as Fourier characters on the input graph.

I Definition 8. We say that a matrix R is a graph matrix if its entries are all functions
of the edge variables of some input graph G. We say that R has degree d if the maximum
degree among all of these functions is d.

Uniformity says that the matrix is the same (as a function of the input graph G) when we
permute the vertices of G. More precisely, we have the following definitions.

I Definition 9. Given a permutation σ of V (G),
1. If e = (u, v) is a possible edge of G then define σ(e) = (σ(u), σ(v)).
2. Given a set E of possible edges of G, define σ(E) = {σ(e) : e ∈ E}.

APPROX/RANDOM’16
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(b) The subgraph of G that χH,A,B,C is
calculated from.

Figure 1

I Definition 10. We say that a graph matrix R is uniform if the following conditions hold:
1. R has rows and columns indexed by subsets A and B of V (G).
2. Letting cA,B,E be the coefficient of χE in R(A,B), whenever A,A′, B,B′ ⊆ V (G),
|A′| = |A|, |B′| = |B|, and σ is a permutation of V (G) which maps the ith element
of A to the ith element of A′ and maps the jth element of B to the jth element of B′,
cA′,B′,σ(E) = cA,B,E .

In this paper, we focus on the following type of uniform graph matrix.

I Definition 11. Let H be a graph with two distinguished subsets of vertices U =
{u1, u2, . . . ux} and V = {v1, v2, . . . vy}. Let W = {w1, . . . , wz} be the remaining vertices
of H. Given A = {a1, . . . , ax}, B = {b1, . . . , by}, and C = {c1, . . . , cz} such that ai = bj if
and only if ui = vj , C is disjoint from A ∪ B, and A and B are in increasing order but C
may be in any order (though still with no duplicates), define χH,A,B,C = χπ(E(H)) where π
is the mapping from V (H) to V (G) such that ∀i ∈ [1, x], π(ui) = ai, ∀j ∈ [1, y], π(vj) = bj ,
∀k ∈ [1, z], π(wk) = ck and we take π(E(H)) = {(π(u), π(v)) : (u, v) ∈ E(H)}

We define the matrix RH to be the
(
n
x

)
×
(
n
y

)
matrix with entries RH(A,B) =

∑
C χH,A,B,C

whenever ai = bj if and only if ui = vj and we take RH(A,B) = 0 otherwise.

I Example 12. The following is an example of χH,A,B,C for a particular H, A, B, and C. If
H is the graph shown below in Figure 1a, A = {5, 11}, B = {7, 9, 12}, and C = {8, 2}, then
χH,A,B,C is calculated from the subgraph of G displayed in Figure 1b. In particular, χH,A,B,C
is the product of the edge variables of the seven possible edges of G that are displayed in
Figure 1b.

I Remark. If H is a bipartite graph with partite sets U and V then RH(A,B) = 0 if
A ∩B 6= ∅ and whenever A ∩B = ∅, RH(A,B) is ±1. Moreover, R(A,B) only depends on
the edges between A and B in G.

I Example 13. If H consists of a single edge from u1 to v1 then RH is a ±1 symmetric
random matrix with zeros on the diagonal.

I Remark. All uniform graph matrices can be expressed as a linear combination of matrices
of the form RH . Thus, to upper bound the norms of all uniform low degree graph matrices,
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it is sufficient to upper bound norms of the matrices RH for small H. To lower bound the
norms of all uniform low degree graph matrices, a priori it is insufficient to lower bound the
norms of the matrices RH for small H, as if we take a linear combination of different RH it
is possible that there is almost perfect cancellation between them. That said, it turns out
that the probility of such a cancellation is negligible, so the norms of all uniform low degree
graph matrices can be understood in terms of the norms of their component RH . For details
on how this can be shown, see Section 6.

1.4 Paper Outline and Results
Our main result is the following theorem.

I Theorem 14. Let H be a graph with distinguished sets of vertices U and V such that U
and V are disjoint and all vertices in H(V )\(U ∪V ) have degree at least one. Let t = |V (H)|,
let z = |V (H) \ (U ∪ V )|, and let q be the size of the minimal separator between U and V . If
q ≥ 1 then for all ε ∈ (0, 1),

P

[
||RH || ≥ 2(tt)

(
e(t+ z)

(
ln(8nq/ε)
2(q + z) + 1

))q+z
n
t−q

2

]
≤ ε .

In Section 2, we introduce our main techniques by applying them to the simple and
well-studied case of a symmetric ±1 random matrix. We then give a brief technical overview
of the proof for the general case in Section 3. In Section 4 we prove the result for all bipartite
graphs H with partite sets U and V . In Section 5 we generalize our techniques and prove the
full result. The case where U and V have non-trivial intersection is considered in Appendix B.
Finally, in Section 6 we show that this theorem is tight up to a polylog(n) factor.

1.5 Comparison with Previous Work
This paper can be compared to the recent body of work [20, 15, 7, 24] showing planted
clique lower bounds and to previous work in random matrix theory. In the planted clique
lower bounds, ||RH || is bounded for several special cases of H, but only the ones that are
needed for the sum of squares lower bounds. In this paper, we use many of the same ideas
(constraint graphs, looking at cycles, vertex partitioning), but we consider bounding ||RH ||
as a mathematical problem independent of its applications to the sum of squares hierarchy,
obtaining bounds for all possible H and greatly generalizing the previous work.

In terms of random matrix theory, our results are much less precise than classical results
such as Wigner’s semicircle law [27] and Girko’s circular law [10]. While these results give
an exact distribution for the eigenvalues of symmetric random matrices and asymmetric
random matrices respectively, we only give a norm bound and this norm bound is off by
polylogarithmic factor. That said, the matrices we are considering are much more complicated
as the entries are no longer independent and may behave in complex ways on the input graph
G. To the best of our knowledge, uniform low degree graph matrices have not previously been
studied in random matrix theory. Indeed, as noted in the introduction, obtaining general
norm bounds when we have a matrix valued function of random inputs rather than a matrix
with independent entries is a longstanding open problem in random matrix theory.

2 Warm-up: Bounding the Norm of a ±1 Random Matrix

As a warmup, we consider the case of a ±1 symmetric random matrix. This type of matrix
and its norm have already been studied extensively, in particular Wigner’s semicircle law

APPROX/RANDOM’16
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[27] says that with high probability, the norm of an n× n symmetric random ±1 matrix is
2
√
n(1± o(1)). While our upper bound will not be as strong, it will illustrate the general

ideas involved.

I Definition 15. Given a random graph G ∼ G(n, 1
2 ) with vertices 1, · · · , n, let R be the

matrix with the following entries:

R(i, j) =


0 i = j

1 (i, j) ∈ E(G)
−1 (i, j) /∈ E(G).

I Remark. As noted in the introduction, R = RH where H consists of a single edge from u1
to v1.

Note that R is closely related to the adjacency matrix of G; in fact, it is the additive
inverse of the Seidel adjacency matrix. Further note that for all 1 ≤ i, j ≤ n, E[R(i, j)] = 0,
as any edge (i, j) has probability 1

2 of being included in G. We now show the following
probabilistic bound on the norm of R. Note that this bound has an extra factor of ln(n),
but this is fine for our purposes as in this paper we are only aiming to get the correct norm
bounds to within a factor of polylog(n).

I Theorem 16. For all ε ∈ (0, 1),

P
[
||R|| ≥ e

√
n(ln(n/ε) + 2)

]
≤ ε .

Proof. In order to find a probabilistic bound for ||R||, we bound E
[

2k
√

tr((RRT )k)
]
. Notice

that

tr((RRT )k) = tr(R2k) =
∑

i1,i2,...,i2k∈[1,n]

( 2k∏
j=1

R(ij , ij+1)
)

where i2k+1 = i1 and [1, n] = {1, 2, . . . , n}. Therefore,

E[tr((RRT )k)] = E[tr(R2k)] = E

[ ∑
i1,i2,...,i2k∈[1,n]

( 2k∏
j=1

R(ij , ij+1)
)]

=
∑

i1,i2,...,i2k∈[1,n]

E
[ 2k∏
j=1

R(ij , ij+1)
]

by linearity of expectation. Now, note that because E[R(i, j)] = 0, the vast majority of the

terms E
[ 2k∏
j=1

R(ij , ij+1)
]
are 0; in fact, the only time the expected value is non-zero is when

each consecutive pair of i’s is distinct and when each R(i, j) term appears an even number
of times, in which case the expected value will be 1. Therefore, we can calculate the number

of choices for i1, i2, . . . , i2k that yield a non-zero value for E
[ 2k∏
j=1

R(ij , ij+1)
]
and use that

number to bound E[tr((RRT )k)]. We can think of the sum E
[ 2k∏
j=1

R(ij , ij+1)
]
graphically as

a sum over length 2k cycles in the vertex set [1, n] where some vertices in the cycle may be
equal to each other. We use what we call a constraint graph to represent each such cycle
(similar graphs appeared in [20] and [15]). In this case, the constraint graph consists of 2k
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Figure 2 An example of a constraint graph where k = 4, i1 = i3, i2 = i6, and i4 = i8.

vertices, each labeled from i1 to i2k; vertex ij is connected to vertex ij+1 for all 1 ≤ j ≤ 2k
to represent the term R(ij , ij+1), and a bold constraint edge is drawn between ir and is
whenever ir = is to signify that they are equal.

In the case where j of 2k variables are equal, we only draw j − 1 constraint edges to
represent that equality, rather than

(
j
2
)
. This is because each constraint edge essentially

represents a restriction; the extra constraint edges do not add to these restrictions, so they
are not included.

I Proposition 17. In order for E
[ 2k∏
j=1

R(ij , ij+1)
]
to have a non-zero value, there must be

at least k − 1 constraint edges in the respective constraint graph; in addition, this bound is
sharp.

Proof. We prove the first statement by induction on k. When k = 1, the statement is

vacuously true; E
[ 2k∏
j=1

R(ij , ij+1)
]

= E[R(i1, i2)2], which has a non-zero value regardless of

constraint edges.
Now, assume that the statement is true for k = r, and consider k = r + 1. Assume

E
[ 2k∏
j=1

R(ij , ij+1)
]
6= 0, and consider the constraint graph. If each vertex is adjacent to at

least one constraint edge, then because each constraint edge is incident to two vertices, there
are at least 2r+2

2 = r + 1 constraint edges, and we are done. Therefore, we only need to
consider the case where there exists a vertex that is not adjacent to any constraint edges.
Call this vertex ij . Then, note that the statement ij−1 = ij+1 must be true; if it was not,
then the values R(ij−1, ij) and R(ij , ij+1) have no corresponding equal terms, which means

APPROX/RANDOM’16
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E
[ 2k∏
j=1

R(ij , ij+1)
]

= 0. But if ij−1 = ij+1, then R(ij−1, ij) = R(ij , ij+1), meaning that we

no longer need to consider the vertex ij and its adjacent edges. Therefore, we can treat the
vertices ij−1 and ij+1 as the same vertex, as they are equal, meaning that we have essentially
reduced the constraint graph to one on 2r vertices. Then, by our induction hypothesis, this
constraint graph requires at least r − 1 constraint edges to create a nonzero expected value,
which means that our total constraint graph requires at least r constraint edges, completing
the proof.

In order to prove the sharpness of the bound, simply consider the case where ij = i2k+2−j
for all 2 ≤ j ≤ k. Then, R(il, il+1) = R(i2k+1−l, i2k+2−l) for all 1 ≤ l ≤ k, which creates a
non-zero expected value. J

We now use Proposition 17 to bound the maximum number of times that E
[ 2k∏
j=1

R(ij , ij+1)
]

can take a non-zero value, and use that information to bound E[tr(R2k)].

I Proposition 18. Given a constraint graph on b vertices such that at least c constraint
edges are required to create a non-zero expectation value, where each vertex has n possible
values, let N represent the number of choices for the b vertices such that the expectation
value of the product is non-zero. Then, N ≤

(
b
c

)
nb−c(b− c)c ≤ b2cnb−c.

Proof. Treat the set of vertices as an ordered set S = {d1, d2, . . . , db}.
Because there must be at least c constraint edges, there must be at least c elements of S

that are duplicates of other elements, so we can choose a set I ⊆ Sb of c indices such that
for all j ∈ I, there exists m /∈ I such that dj = dm. There are

(
b
c

)
choices for I. We can

then choose the elements {dj | j /∈ I}. Each element has at most n possible values so there
are at most nb−c choices for these elements. Finally, we choose the elements {dj | j ∈ I}.
To determine each dj it is enough to specify the m /∈ I such that dj = dm. Each such
dj has b − c choices, so there are at most (b − c)c choices for these elements. Therefore,
N ≤

(
b
c

)
nb−c(b− c)c.

Now, note that
(
b
c

)
≤ bc, as

(
b
c

)
= b!

(b−c)!c! ≤
b!

(b−c)! ≤ b
c. As (b− c)c ≤ bc, this completes

the proof. J

I Corollary 19. Let N represent the number of choices for the variables (i1, i2, . . . , i2k) such

that E
[ 2k∏
j=1

R(ij , ij+1)
]
6= 0. Then, N ≤ (2k)2k−2nk+1.

Proof. Apply Proposition 18. Note that b = 2k and c = k − 1 by Proposition 17. This
implies the desired result. J

I Corollary 20. E[tr(R2k)] ≤ (2k)2k−2nk+1.

Proof. Recall E[tr(R2k)] =
∑

i1,i2,...,i2k∈[1,n]

E
[ 2k∏
j=1

R(ij , ij+1)
]
. By Corollary 19, the number

of choices for (i1, i2, . . . , i2k) that yield a non-zero value for E
[ 2k∏
j=1

R(ij , ij+1)
]
is at most

(2k)2k−2nk+1; in addition, E
[ 2k∏
j=1

R(ij , ij+1)
]
≤ 1 for all choices of (i1, i2, . . . , i2k). These two

observations complete the proof. J
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Now, note that for any matrix R, tr(R2k) must take on a nonnegative value. By Markov’s

inequality, for all ε ∈ (0, 1) and all k ≥ 1, P[tr(R2k) ≥ E[tr(R2k)]
ε

] ≤ ε

Using Corollary 20, P[tr(R2k) ≥ (2k)2k−2nk+1/ε] ≤ ε. Since ||R|| ≤ 2k
√

tr((RRT )k) =
2k
√

tr(R2k) for all k ≥ 1, this implies that for all ε ∈ (0, 1) and all k ≥ 1,

P
[
||R|| ≥ 2k

√
(2k)2k−2nk+1/ε

]
≤ ε .

Choosing k = dln(n/ε)/2e, we have that

2k
√

(2k)2k−2nk+1/ε ≤ 2k
√

(2k)2knk+1/ε = 2k
√
n(n/ε) 1

2k = 2k
√
ne

ln(n/ε)
2k ≤ e

√
n(ln(n/ε)+2) .

Thus, P[||R|| ≥ e
√
n(ln(n/ε) + 2)] ≤ ε, as needed. J

In the following sections, we generalize these techniques for matrices whose entries depend
on the random graph in more complex ways.

3 Technical Overview of the General Norm Bounds

For the general bounds on ||RH ||, we use similar ideas. The following is almost correct, but
there is a technical issue that needs to be dealt with which we discuss afterwards. We express
E[tr((RHRHT )k)] as a sum of many different terms, each of which can be represented with
a constraint graph. We upper bound the number of terms which have nonzero expectation
by showing a lower bound on the number of constraint edges needed. We then use this to
probabilistically bound ||RH ||.

In the case where H is bipartite, each vertex of H has k copies in the constraint graph so
the total number of vertices is kt where t = V (H). The number of constraint edges that are
needed to make a term have non-zero expectation is q(k− 1) where q is the size of a minimal
vertex cover of H. One way we can achieve this is as follows. We take a minimal vertex cover
S of H and set all copies of a vertex in S to be equal to each other. Since each vertex in H
is copied k times, this requires q(k− 1) constraint edge. It turns out that this is tight. Using
this bound, there are at most O(ntk−q(k−1)) nonzero terms in E[tr((RHRHT )k)] (where the
constant hides a function of k). Taking this to the power 1

2k for an appropriately chosen k,
we obtain that with high probability, ||RH || is at most O(n

t−q
2 polylog(n)). The general case

is more complicated but similar ideas apply. It turns out that the key object is a minmal
separator S of U and V in H.

However, there is a technical issue in the analysis. In order to obtain the lower bounds on
the number of constraint edges needed, we need to assume that the constraint edges behave
nicely, namely that we don’t have constraint edges between copies of two different vertices in
H. This makes part of the constraint graph decompose into disjoint cycles, allowing us to
use Proposition 17 (without this restriction, we could have constraint edges between different
cycles, which invalidates the analysis). To handle this, we use a vertex partitioning argument.
In particular, given a partition V1, . . . , Vt of [1, n] we consider the part of RH where for all
i, vertex i is in Vi. This gives us a matrix R′ where when we look at E[tr((R′R′T )k)], the
constraint edges behave nicely and we can obtain a probabilistic bound on ||R′||. We then
bound ||RH || using the bound on ||R′||.

APPROX/RANDOM’16
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4 Bounding the Norms of Uniform Locally Random Matrices

In this section, we generalize the techniques used in Section 2 to prove Theorem 14 whenever
H is a bipartite graph with partite sets U and V . We call these matrices locally random
because the value of the entry in row A and column B only depends on the behavior of the
input graph G on the vertices A ∪B.

I Theorem 21. If H is a bipartite graph with t vertices and minimal vertex cover of size q
then
1. ||RH || ≤ n

t
2

2. If q ≥ 1, for all ε ∈ (0, 1),

P
[
||RH || > 2tt

(
et

(
ln(8nq/ε)

2q + 1
))q

n
t−q

2

]
< ε

I Remark. As we will show in Section 6, this bound is tight up to a factor of polylog(n).

Proof. For the first statement, recall that for any matrix M , ||M || ≤ ||M ||Fr, where
||M ||Fr =

√∑
i,jM(i, j)2 is the Frobenius norm of M . To see this, note that if u and v are

unit vectors then

uTMv =
∑
i,j

uiM(i, j)vj ≤
√∑

i,j

ui2vj2
√∑

i,j

M(i, j)2 =
√∑

i,j

M(i, j)2

by the Cauchy-Schwarz inequality. Since every entry of RH has magnitude at most 1, the
result follows.

For the second statement, as described in the technical overview, we first bound the
norms of closely related matrices where we restrict which vertices H can map into. We will
then use this bound to bound ||RH ||.

I Definition 22. Given a partition V1, . . . , Vt of the vertices of V (G), we define RH,V1,...,Vt

be the
(
n
x

)
×
(
n
y

)
matrix such that

RH,V1,...,Vt(A,B) =


RH(A,B) = χH,A,B A ∩B = ∅,

∀i ∈ [1, x], ai ∈ Vi, ∀j ∈ [1, y], bj ∈ Vx+j

0 otherwise

I Lemma 23. Let R′ = RH,V1,...,Vt . For all ε ∈ (0, 1),

P
[
||R′|| ≥

(
et

(
ln(nq/ε)

2q + 1
))q

n
t−q

2

]
≤ ε .

Proof. As before, we probabilistically bound ||R′|| by bounding E[ 2k
√

tr((R′R′T )k)]. Define([n]
i

)
to be the set of all subsets of [1, n] of size i. Now note that

E[tr((R′R′T )k)] = E

[ ∑
A1,A3,...,A2k−1∈([n]

x )
B2,B4,...,B2k∈([n]

y )

( k∏
j=1

R′(A2j−1, B2j)R′T (B2j , A2j+1)

)]

=
∑

A1,A3,...,A2k−1∈([n]
x )

B2,B4,...,B2k∈([n]
y )

E

[
k∏
j=1

R′(A2j−1, B2j)R′T (B2j , A2j+1)
]
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(b) An example of the constraint graph for the given example
of H, where k = 2.

Figure 3

by linearity of expectation. Denote
k∏
j=1

R′(A2j−1, B2j)R′T (B2j , A2j+1) as P (A1, . . . , B2k).

Similarly to the previous case, because E[R′(A,B)] = 0, the vast majority of the terms
E[P (A1, . . . , B2k)] are 0; the only time the expected value can be non-zero is when each
consecutive pair of A’s and B’s is disjoint and every edge of G involved in the product
appears an even number of times. In this case, the expected value will be 1. So, we can
bound the number of choices for A1, B2, . . . , A2k−1, B2k that yield a non-zero value for
E[P (A1, . . . , B2k)] and use that number to bound E[tr((R′R′T )k)]. In order to represent
E[P (A1, . . . , B2k)], we use another constraint graph.

This constraint graph is similar to the constraint graph in Proposition 17. In this
constraint graph, there are k(x+ y) vertices sorted into 2k sets. These vertices are labeled
A1 = {a1;1, a2;1, . . . , ax;1}, B2 = {b1;2, b2;2, . . . , by;2}, A3 = {a1;3, a2;3, . . . , ax;3}, . . . , B2k =
{b1;2k, b2;2k . . . , by;2k}. Two vertices ap;q and br;s are adjacent in the constraint graph if and
only if |q − s| = 1 and up and vr are adjacent in H, where ap;1 = ap;2k+1.

Now, in order to bound the number of choices for A1, B2, . . . , A2k−1, B2k that yield a
non-zero expectation value, we can introduce the constraint edges again. However, note that
due to the definition of R′, constraint edges can only exist between vertices of the constraint
graph that are created by the same vertex of H, as it is impossible for two vertices that are
not created by the same vertex of H to be equal, as they correspond to different disjoint sets
Vi and the value of each variable must be in its respective set.

I Lemma 24. In order for E [P (A1, . . . , B2k)] to have a non-zero value, there must be at
least q(k − 1) constraint edges in the respective constraint graph, where q is the size of a
minimal vertex cover of H; in addition, this bound is sharp.

Proof. In order to prove this lemma, we first show that the given bound is an upper bound
then show that it is sharp by König’s Theorem [17].

First, note that in order for E[P (A1, . . . , B2k)] to have a non-zero value, every edge in
the constraint graph must have an equal counterpart by virtue of the constraint edges; this

APPROX/RANDOM’16
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ensures that any edge that appears in the product appears an even number of times, creating
a non-zero expected value.

It is easy to see that at most q(k − 1) constraint edges are required; namely, if V is a
minimal vertex cover of H, then if xi ∈ V , set ai;1 = ai;3 = · · · = ai;2k−1, and if yj ∈ V ,
set bj;2 = bj;4 = · · · = bj;2k. Each such set of equalities corresponds to k − 1 constraint
edges, meaning that there are q(k − 1) constraint edges total. In addition, every edge in the
constraint graph will have an equal counterpart by this method. If (xi, yj) ∈ H, at least one
of xi and yj is in V by definition; without loss of generality yj ∈ V . Then, this implies that for
the edges in the constraint graph of the form (ai;1, bj;2), (bj;2, ai;3), (ai;3, bj;4), . . . , (bj;2k, ai;1),
each edge (ai;2m−1, bj,2m−2) has the equal counterpart (ai;2m−1, bj,2m) for 1 ≤ m ≤ k, as
bj,2m−2 = bj,2m. Thus, this set of constraint edges is sufficient to create a non-zero expected
value.

Now, we must show at least q(k − 1) constraint edges are required. Because H is a
bipartite graph, we can apply König’s Theorem, which states that there exists a matching
of size q in H. Consider the q disjoint cycles of length 2k in the constraint graph that are
created by the q edges in the matching of H. Because R′ is defined so that constraint edges
can only exist between vertices ap;q and ap;q′ or between br;s and br;s′ , as two vertices not of
this form do not belong to the same set Vi, any constraint edge created can affect at most
1 of the q cycles, due to the fact that all the cycles are disjoint and thus are impossible to
link with a constraint edge. Therefore, each cycle requires at least k − 1 constraint edges by
Proposition 17, implying that the q cycles require at least q(k − 1) constraint edges total,
completing the proof. J

I Corollary 25. Let N represent the number of choices for the sets A1, B2, . . . , A2k−1, B2k
such that E[P (A1, . . . , B2k)] 6= 0. Then, N ≤ (tk)2(k−1)qn(t−q)k+q where t = |V (H)| = x+ y.

Proof. Apply Proposition 18. In this situation, b = kt and c = q(k − 1). This implies the
desired result. J

I Corollary 26. E
[
tr((R′R′T )k)

]
≤ (tk)2(k−1)qn(t−q)k+q.

Proof. Recall E[tr((R′R′T )k)] =
∑

A1,A3,...A2k−1∈([n]
x )

B2,B4,...B2k∈([n]
y )

E

[
k∏
j=1

R′(A2j−1, B2j)R′T (B2j , A2j+1)
]
.

Then, by Proposition 25, the number of choices for A1, B2, . . . A2k−1, B2k that yield a

non-zero value for E
[

k∏
j=1

R′(A2j−1, B2j)R′T (B2j , A2j+1)
]
is at most (tk)2(k−1)qn(t−q)k+q; in

addition,

E

[
k∏
j=1

R′(A2j−1, B2j)R′T (B2j , A2j+1)
]
≤ 1. These two observations complete the proof. J

Now, note that for any graph G on n vertices, tr((R′R′T )k) must take on a nonnegative
value. Then, by Markov’s inequality and Corollary 26, for all ε ∈ (0, 1),

P
[
tr((R′R′T )k) ≥ E[tr((R′R′T )k)]

ε

]
≤ P

[
tr((R′R′T )k) ≥ (tk)2(k−1)qn(t−q)k+q/ε

]
≤ ε.

Since ||R′|| ≤ 2k
√

tr((R′R′T )k), this implies that for all k ≥ 1 and all ε ∈ (0, 1),

P
[
||R′|| ≥ 2k

√
(tk)2(k−1)qn(t−q)k+q/ε

]
≤ P

[
||R′|| ≥ (tk)qn

t−q
2 (nq/ε)1/2k

]
≤ ε .
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Setting k = d 1
2q ln(nq/ε)e we have that (tk)qn

t−q
2 (nq/ε)1/2k ≤

(
t
(

ln(nq/ε)
2q + 1

))q
n
t−q

2 eq

Therefore, P[||R′|| ≥
(
et
(

ln(nq/ε)
2q + 1

))q
n
t−q

2 ] ≤ ε, as needed. J

We can now use our bounds for ||R′|| to bound ||R|| through the following lemma.

I Lemma 27. Let M be a matrix and B, p be positive numbers such that:
1. M = 1

N

∑
V1,··· ,VtMV1,··· ,Vt for some matrices {MV1,··· ,Vt} where N is the number of

possible V1, · · · , Vt.
2. For each choice of V1, · · · , Vt, for all x ∈ [ 1

2 , N ], P(||MV1,··· ,Vt || > Bx) ≤ p
64x3 .

then P(||M || ≥ B) < p.

I Remark. Unlike in [15], we use all possible partitions so we have that N = tn

Proof. The result follows from the following proposition.

I Proposition 28. For all j ∈ [0, lgN ], the probability that there are more than N
22j+2 matrices

MV1,··· ,Vt such that ||MV1,··· ,Vt || > 2j−1B is at most p
2j+1 .

Proof. We prove this by contradiction. If the probability that there are more than N
22j+2

matrices MV1,··· ,Vt such that ||MV1,··· ,Vt || > 2j−1B is greater than p
2j+1 then the probability

that ||MV1,··· ,Vt || > 2j−1B must be greater than p
23j+3 . Plugging in x = 2j−1, this gives a

contradiction. J

Using this proposition, with probability at least 1−
∑blgnc
j=0

p
2j+1 , for all integers j such that

0 ≤ j ≤ lgN , there are at most N
22j+2 matrices MV1,··· ,Vt such that ||MV1,··· ,Vt || > 2j−1B.

When this occurs, for all integers j such that 0 ≤ j ≤ blgNc − 1, there are at most
N

22j+2 matrices MV1,··· ,Vm such that 2j−1B < ||MV1,··· ,Vm || ≤ 2jB. Moreover, there are no
matrices such that ||MV1,··· ,Vt || > 2blgNc−1B. This implies that with probability at least
1−

∑blgnc
j=0

p
2j+1 , ||M || ≤ B

2 +
∑blgNc
j=0

2jB
22j+2 < B, as needed. Since 1−

∑blgnc
j=0

p
2j+1 > 1− p,

the result follows. J

I Proposition 29. Set M = RH and MV1,...,Vt = ttRH,V1,...,Vt . For all ε ∈ (0, 1), take p = ε

and let B = 2tt
(
et
(

ln(8nq/ε)
2q + 1

))q
n
t−q

2 . Then, conditions (1) and (2) of Lemma 27 holds
true for these values of M , MV1,...,Vt , B, and p.

Proof. We must show both (1) and (2).
Note that M = 1

N

∑
V1,...,Vt

MV1,...,Vt because given a non-zero term RH(A,B), R′(A,B)
has probability 1

tt of equaling RH(A,B) among all possible V1, V2, . . . , Vt. Thus, part (1) of
the Lemma holds.

Now, we must show (2); that P[tt||R′|| > Bx] ≤ p
64x3 for all x ∈ [ 1

2 , N ]. Plugging in
ε′ = ε

64x3 to Lemma 23, we have that

P
[
||R′|| ≥

(
et

(
ln(64x3nq/ε)

2q + 1
))q

n
t−q

2

]
≤ ε

64x3 .

We need to show that for all x ∈ [ 1
2 , N ], Bx ≥ tt

(
et
(

ln(64x3nq/ε)
2q + 1

))q
n
t−q

2 . Note

that if x = 1
2 then Bx = tt

(
et
(

ln(64x3nq/ε)
2q + 1

))q
n
t−q

2 so it is sufficient to show that
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(
ln(64x3nq/ε)

2q +1
)q

x is a decreasing function for x ≥ 1
2 . Taking the derivative of this function

yields(
ln(64x3nq/ε)

2q + 1
)q

x2

 3
2
(

ln(64x3nq/ε)
2q + 1

) − 1


This is negative for x ≥ 1

2 if n ≥ e. If n ≤ e then it only makes sense to have q ≤ 1 and
we again have that this is negative for x ≥ 1

2 . This completes the proof. J

Now that we know our particular values of M , MV1,...,Vt , B, and p satisfy the conditions of
Lemma 27, we apply the aforementioned lemma, obtaining that

P
[
||RH || > 2tt

(
et

(
ln(8nq/ε)

2q + 1
))q

n
t−q

2

]
< ε .

as needed. J

5 Bounding the Norms of Uniform Low Degree Graph Matrices

In this section, we generalize our techniques further to prove our main result, Theorem 14,
which we restate here.

I Theorem 30. Let H be a graph with distinguished sets of vertices U and V such that U
and V are disjoint and all vertices in H(V )\(U ∪V ) have degree at least one. Let t = |V (H)|,
let z = |V (H) \ (U ∪ V )|, and let q be the size of the minimal separator between U and
V .
1. If q + z ≥ 1 then for all ε ∈ (0, 1),

P

[
||RH || ≥ 2(tt)

(
e(t+ z)

(
ln(8nq/ε)
2(q + z) + 1

))q+z
n
t−q

2

]
≤ ε .

2. If q = z = 0 then ||RH || ≤ n
t
2 .

Proof. For the second statement, note that if q = z = 0 then every entry of RH has magnitude
at most 1, so we can again use the fact that ||RH || ≤ ||RH ||Fr =

√∑
A,B RH(A,B)2. For

the first statment, similar to before, we first bound the norm of a closely related matrix
where we restrict which entries the vertices of H can map into.

I Definition 31. Let W = w1, . . . , wz be the vertices of H outside of U and V . Given a
partition V1, . . . , Vt of V (G), define RH,V1,...,Vt to be the

(
n
x

)
×
(
n
y

)
matrix with entries

RH,V1,...,Vt(A,B) =


∑
C:∀k,ck∈Vx+y+k

χH,A,B,C A ∩B = ∅,
∀i ∈ [1, x], ai ∈ Vi,∀j ∈ [1, y], bj ∈ Vx+j

0 otherwise

where the sum is over all C = {c1, . . . , cz} where the c1, . . . , cz are disjoint but not necessarily
in order.

Let R′ = RH,V1,...,Vt . In order to find a probabilistic bound for ||R′||, we bound
E[ 2k
√

tr((R′R′T )k)].
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I Lemma 32. P
[
||R′|| ≥

(
e(t+ z)

(
ln(nq/ε)
2(q+z) + 1

))q+z
n
t−q

2

]
≤ ε.

Proof.

I Definition 33. Define Sn,z to be the set of all ordered tuples of z distinct elements of
[1, n].

I Definition 34. For all A ∈
([n]
x

)
, B ∈

([n]
y

)
, C ∈ Sn,z, define

Q(A,C,B) =


χH,A,B,C A ∩B = ∅,

∀i ∈ [1, x], ai ∈ Vi,∀j ∈ [1, y], bj ∈ Vx+j ,∀k ∈ [1, z], ck ∈ Vx+y+k

0 otherwise

Now note that

E[tr((R′R′T )k)] =
∑

A1,A5,...,A4k−3∈([n]
x )

B3,B7,...,B4k−1∈([n]
y )

E

[
k∏
j=1

R′(A4j−3, B4j−1)R′T (B4j−1, A4j+1)
]

=
∑

A1,A5,...,A4k−3∈([n]
x )

B3,B7,...,B4k−1∈([n]
y )

C2,C4,...C4k∈Sn,z

E

[
k∏
j=1

Q(A4j−3, C4j−2, B4j−1)QT (B4j−1, C4j , A4j+1)
]

by linearity of expectation, where A4k+1 = A1.

Denote
k∏
j=1

Q(A4j−3, C4j−2, B4j−1)QT (B4j−1, C4j , A4j+1) as P (A1, C2, . . . , B4k−1, C4k).

Similar to before, because E[Q(A,C,B)] = 0 for randomly chosen A, B, and C, the vast
majority of the terms E[P (A1, C2, . . . , B4k−1, C4k)] are 0; in fact, the only time the expected
value can be non-zero is when each consecutive pair of sets of variables is disjoint and
every edge of G involved in the product appears an even number of times, in which case
the expected value is at most 1. Again, we can upper bound the number of choices for
A1, C2, . . . , B4k−1, C4k that yield a non-zero value for E[P (A1, C2, . . . , B4k−1, C4k)] and use
that number to bound E[tr((M ′M ′T )k)]. In order to represent E[P (A1, C2, . . . , B4k−1, C4k)],
we use another constraint graph. This constraint graph is similar to the earlier one; however,
it is slightly more complicated, as there is an extra set of vertices involved.

In this constraint graph, there are k(x+2z+y) vertices sorted into 4k sets. These vertices
are labeled A1 = {a1;1, a2;1, . . . , ax;1}, C2 = {c1;2, c2;2, . . . , cz;2}, B3 = {b1;3, b2;3, . . . , by;3},
C4 = {c1;4, c2;4, . . . , cz;4}, A5 = {a1;5, a2;5, . . . , ax;5}, . . . , C4k = {c1;4k, c2;4k . . . , cz;4k}. Note
that, in particular, the sets describing the sets of vertices are labeled A1, C2, B3, C4,. . ., and
repeat this pattern exactly k times. Two vertices ap;q and br;s are adjacent if and only if
|q − s| = 2 and up and vr are adjacent in H, where ap;1 = ap;4k+1. Similarly, ap;q and ct;o
are adjacent if and only if |q − o| = 1 and up and wt are adjacent in H, and br;s and ct;o are
adjacent if and only if |s− o| = 1 and vr and wt are adjacent in H. Finally, ct;o and ct′;o′
are adjacent if and only if o = o′ and wt and wt′ are adjacent in H.

Now, in order to bound E[tr((R′R′T )k)], we must calculate the minimum number of
constraint edges required in our constraint graph to bring about a non-zero expectation
value, as that will help bound the number of choices for A1, C2, B3, C4, A5, . . . , B4k−1, C4k
that yield a non-zero expectation value for the product E[P (A1, C2, . . . , B4k−1, C4k)].

APPROX/RANDOM’16
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(b) An example of the constraint graph for the given example
of H, where k = 2.

Figure 4

I Lemma 35. In order for E[P (A1, C2, . . . , B4k−1, C4k)] to have a non-zero value, there
must be at least q(k − 1) + zk constraint edges in the respective constraint graph, where q is
the maximal number of vertex-independent paths from X to Y in H. In addition, this bound
is sharp.

Proof. Choose q vertex-independent paths from U to V . Let li be the length of the ith such
path.

Note that any path of length li in H from U to V corresponds to a cycle of size 2kli in
our constraint graph; this cycle requires kli − 1 constraint edges by Proposition 17. Since
the cycles are disjoint and by the definition of R′ we cannot have constraint edges between
them, the total number of constraint edges required by just the q vertex-independent paths

is
q∑
i=1

(kli − 1) = k(
q∑
i=1

li)− q.

Consider the vertices in W which are not in the q paths. Of the z vertices in W , because
each pair of paths is disjoint and a path of length li corresponds to exactly li − 1 vertices

in C, exactly
q∑
i=1

(li − 1) = (
q∑
i=1

li) − q vertices of C are included in paths, so there are

z − ((
q∑
i=1

li)− q) vertices of W not included in the paths. Each of these vertices is incident

with an edge in H, and that edge is repeated 2k times in the constraint graph; therefore, as
each edge of G that appears in the constraint graph must appear an even number of times in
the constraint graph, any particular vertex of positive degree can, in all of its appearances in
the constraint graph, only take on at most k values. However, the particular vertex appears
2k times in the constraint graph, once in each set of vertices of the form Ci, so it must have
at least k constraint edges between those 2k appearances. Therefore, there are required to

be a minimum of (z − ((
q∑
i=1

li)− q))k + (k(
q∑
i=1

li)− q) = q(k − 1) + zk constraint edges in

the constraint graph.
In order to prove the sharpness, we utilize Menger’s Theorem [21]. First, note that the

existence of q vertex-independent paths from U to V implies that there exists q vertex-
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independent paths from U to V , with first vertex in U , last vertex in V , and all internal
vertices in W . This statement is true because given these q vertex-independent paths, if any
of them have internal vertices in U or V , we can simply shorten these paths until they have
only first and last vertices in U and V .

Now, Menger’s Theorem states that because there are a maximum of q vertex-indepedent
paths from U to V in H with all internal vertices in W , there is a set S ∈ V (H) with |S| = q

such that all paths from U to V pass through at least one vertex of S. Consider such a set
S. Using S, we will create q(k − 1) + zk constraint edges that yield a non-zero expectation
value for E[P (A1, C2, . . . , B4k−1, C4k)] as follows.

For all vertices ui ∈ X such that ui ∈ S, set ai;1 = ai;5 = · · · = ai;4k−3. Note that this
requires k − 1 constraint edges per vertex in S. Similarly, for all vertices vi ∈ Y such that
vi ∈ S, set bi;3 = bi;7 = · · · = bi;4k−1. In addition, for all vertices wi ∈ Z such that wi ∈ S,
set ci;2 = ci;4 = · · · = ci;4k. This requires 2k − 1 constraint edges per vertex in S.

Now, consider all vertices wi ∈ Z such that wi /∈ S. Note that if there existed a path
from wi to U that passed through no vertices in S, there cannot exist a path from wi to
V that passes through no vertices in S, as that would imply that there was a path from
U to V not passing through any vertices on S. So, if there exists a path from wi to U
passing through no vertices of S, set ci;4 = ci;6, ci;8 = ci;10, . . . , ci;4k = ci;2. Otherwise, set
ci;2 = ci;4, ci;6 = ci;8, . . . , ci;4k−2 = ci;4k. This requires k constraint edges per vertex.

Now given an edge in the constraint graph (ap;q, br;s) with |q−s| = 2, then either up or vr
is in S or else there would exist a path from U to V not in S; therefore, either (ap;q, br;q+2) =
(ap;q, br;q−2) or (ap;s−2, br;s) = (ap;s+2, br;s) by the constraint edges. Similarly, given (ap;q, ct;o)
with |p− o| = 1, either ct;q−1 = ct;q+1, which implies (ap;q, ct;q−1) = (ap;q, ct;q+1), or wt /∈ S
and up ∈ S, which implies (ap;2o−q−2, ct;2o−q−1) = (ap;2o−q+2, ct;2o−q+1). A similar argument
applies to edges of the form (ct;o, br;s). For edges of the form (ct;o, ct′;o), it can be shown
that either (ct;o, ct′,o) = (ct;o−2, ct′;o−2) or (ct;o, ct′,o) = (ct;o+2, ct′,o+2). Finally, note that
edges in the constraint graph of the form (ap1;q, ap2;q) and (br1;s, br2;s) are automatically
doubled and have no effect. Thus, this construction makes every edge appear with an even
multiplicity, as needed.

If S contains exactly j vertices in W , then the total number of constraint edges used in
this construction is (k − 1)(|S| − j) + (2k − 1)j + (k)(z − j) = q(k − 1) + zk, meaning that
the bound given is sharp. J

I Corollary 36. Let N represent the number of choices for A1, C2, . . . , B4k−1, B4k such
that
E[P (A1, C2, . . . , B4k−1, C4k)] 6= 0. Then, N ≤ ((t+ z)k)2k(z+q)−2qn(t−q)k+q.

Proof. Apply Proposition 18. In this situation, b = k(t + z) and c = q(k − 1) + zk. This
implies the desired result. J

I Corollary 37. E[tr((R′R′T )k)] ≤ ((t+ z)k)2k(z+q)−2qn(t−q)k+q.

Proof. Recall that

E[tr((R′R′T )k)] =
∑

A1,A5,...,A4k−3∈Sn,u
B3,B7,...,B4k−1∈Sn,v
C2,C4,...C4k∈S′n,w

E

[
k∏
j=1

Q(A4j−3, C4j−2, B4j−1)QT (B4j−1, C4j , A4j+1)
]
.

Then, by Proposition 36, there are at most ((t+ z)k)2k(z+q)−2qn(t−q)k+q choices for
A1, C2, . . . , B4k−1, C4k that yield a non-zero value for
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E

[
k∏
j=1

Q(A4j−3, C4j−2, B4j−1)QT (B4j−1, C4j , A4j+1)
]
; in addition,

E

[
k∏
j=1

Q(A4j−3, C4j−2, B4j−1)QT (B4j−1, C4j , A4j+1)
]
≤ 1. These two observations complete

the proof. J

Now for any graph G on n vertices, tr((R′R′T )k) must take on a nonnegative value. By
Markov’s inequality and Corollary 37, for all ε ∈ (0, 1)

P
[
tr((R′R′T )k)≥ E[tr((R′R′T )k)]

ε

]
≤P

[
tr((R′R′T )k)≥ ((t+ z)k)2k(z+q)−2qn(t−q)k+q/ε

]
≤ ε.

Since ||R′|| ≤ 2k
√

tr((R′R′T )k), this implies that for all k ≥ 1 and all ε ∈ (0, 1),

P
[
||R′||≥ 2k

√
((t+ z)k)2k(z+q)−2qn(t−q)k+q/ε

]
≤P

[
||R′||≥ ((t+ z)k)z+qn

t−q
2 (nq/ε)1/2k

]
≤ ε.

Setting k = d 1
2(q+z) ln(nq/ε)e we have that

((t+ z)k)qn
t−q

2 (nq/ε)1/2k ≤
(

(t+ z)
(

ln(nq/ε)
2(q + z) + 1

))q+z
n
t−q

2 eq+z .

Therefore, P[||R′|| ≥
(
e(t+ z)

(
ln(nq/ε)
2(q+z) + 1

))q+z
n
t−q

2 ] ≤ ε, as needed. J

Using Lemma 27 with p = ε and B = 2(tt)
(
e(t+ z)

(
ln(8nq/ε)

2(q+z) + 1
))q+z

n
t−q

2 and following
the same logic as in the proof of Theorem 21, we obtain that for all ε ∈ (0, 1),

P[||RH || ≥ 2(tt)
(
e(t+ z)

(
ln(8nq/ε)
2(q + z) + 1

))q+z
n
t−q

2 ] ≤ ε . J

6 Lower Bounds

In this section, we show that the bounds we have obtained on the norms of uniform low
degree graph matrices are tight up to a factor of polylog(n). This makes intuitive sense as
our bounds on E[tr((R′R′T )k)] were tight up to a polylog factor. Unfortunately, these lower
bounds on E[tr((R′R′T )k)] are insufficient for two reasons. First, they do not rule out the
possibility that ||R′|| is sometimes very small. Second, lower bounds on the norms of the
matrices R′ do not imply a lower bound on ||RH ||. We now show how these obstacles can be
overcome (though we only give a proof sketch as a full proof would be long and technical).

I Theorem 38. Let H be a graph with distinguished sets of vertices U and V where U and
V are disjoint and for all vertices w in V (H) \ (U ∪ V ), there is a path from w to either
U or V in H. Letting t = |V (H)| and letting q be the minimal size of a vertex separator
between U and V , with high probability ||RH || is Ω(n

t−q
2 ).

I Remark. If H has non-isolated vertices which are not connected to U or V , there is a
non-negligible chance that RH has considerably smaller norm than expected. To see this,
let H0 be the part of H which is connected to U and/or V and let H1 be the remainder of
H. We have that RH ≈ RH1RH0 where RH1 is a constant depending on the input graph G
which has some chance of being close to 0.
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Before giving a proof sketch for Theorem 38, we first consider the case when H is bipartite
with partite sets U and V , which can be analyzed directly.

I Theorem 39. Let H be a bipartite graph with partite sets U and V . Letting t = |V (H)|
and letting q be the minimal size of a vertex cover of H, ||RH || is Ω(n

t−q
2 ).

Proof. We show this by finding vectors u and v such that uTRHv is Θ(n
t−q

2 )||u|| · ||v||. The
idea is to take a minimal vertex cover S of U and V and fix the vertices that S maps to.
This essentially separates the dependence of RH(A,B) on A and B which means that we
can choose u to match the dependence on A and choose v to match the dependence on B.

I Definition 40.
1. Define EL ⊆ E(H) to be the edges in H between U \ S and S ∩ V .
2. Define EM ⊆ E(H) to be the edges in H between S ∩ U and S ∩ V
3. Define ER ⊆ E(H) to be the edges in H between S ∩ U and V \ S.
Now choose disjoint vertices AS ∪BS for the vertices of S to map into and define u and v as
follows.

I Definition 41. Given an A which is disjoint from BS , letting π be the map which maps U
into A and maps S ∩ V into BS , define uA to be χπ(EL) if π(S ∩ U) = AS and 0 otherwise.

Given a B which is disjoint from AS , letting π be the map which maps V into B and
maps S ∩ U into AS , define vB to be χπ(ER) if π(S ∩ V ) = BS and 0 otherwise.

Note that uARH(A,B)vB is only nonzero if the following conditions hold
1. A and B are disjoint
2. If π is the map that maps U into A and V into B then π(S∩U) = AS and π(S∩V ) = BS .
When these conditions hold, uARH(A,B)vB = χπ(EL)χπ(E(H))χπ(ER) = χπ(EM ) which will
always be the same asAS andBS are fixed. There are Θ(n|U |−|S∩U |)A such that uA 6= 0, there
are Θ(n|V |−|S∩V |) B such that vB 6= 0, and there are Θ(n|U |−|S∩U |n|V |−|S∩V |) = Θ(nt−q)
choices for A and B for which these conditions hold. This implies that ||u|| is Θ(n

|U|−|S∩U|
2 ),

||v|| is Θ(n
|V |−|S∩V |

2 ), and |uTRHv| is Θ(nt−q). Putting everything together, |uTRHv| is
Θ(n

t−q
2 )||u|| · ||v||, so ||RH || is Ω(n

t−q
2 ), as needed. J

In the general case, we could use similar ideas, choosing a minimal vertex seperator S of U
and V in H, fixing the vertices that S maps to, and then choosing u to match the dependence
on A and v to match the dependence on B. However, the analysis is tricky for two reasons.
First, it is non-trivial to bound ||u|| and ||v|| as the entries of u and v are the sums of many
terms. Second, uTRHv will have additional terms coming from different choices for the
vertices in S \ (U ∪V ) in the sums describing the entries of RH . To deal with these issues, we
use an argument involving ||RH ||Fr, the Frobenius norm of RH , which is somewhat cleaner
to analyze.

Proof Sketch of Theorem 38.

I Definition 42. Given two matrices M1 and M2 with the same dimensions, we define
〈M1,M2〉 =

∑
i,jM1(i, j)M2(i, j). Note that for any matrix M , 〈M,M〉 = ||M ||2Fr

Given a matrix M , we can bound ||M || as follows.

I Proposition 43. If M =
∑
i ciuiv

T
i for some vectors ui, vi and some positive coefficients

ci then ||M || ≥ ||M ||2Fr∑
i
ci||ui||·||vi||
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Proof. Note that

||M ||2Fr = 〈M,M〉 = 〈M,
∑
i

ciuiv
T
i 〉 =

∑
i

ciu
T
i Mvi ≤ ||M ||

∑
i

ci||ui|| · ||vi|| J

With this proposition in mind, we first describe how we can decompose RH . We then describe
how to bound ||RH ||2Fr and the norms of the vectors involved.

I Definition 44. Given a graph H where all vertices are connected to U or V and a minmal
separator S of U and V ,
1. Let L be the set of vertices which are connected to U once we remove S from H

2. Let R be set of vertices connected to V once we remove S from H.
3. Let HL be the graph with vertices L ∪ S and all edges in H which are incident with a

vertex in L.
4. Let HR be the graph with vertices R ∪ S and all edges in H which are between two

vertices in S or are incident with a vertex in R.
5. Let l = |L|, q = |S|, and r = |R|. Note that t = l + q + r.

I Proposition 45.

RH,V1,...,Vt =
∑

vl+1,...,vl+q :
∀i∈[l+1,l+q],vi∈Vi

RHL,V1,...,Vl,{vl+1},...,{vl+q}RHR,{vl+1},...,{vl+q},Vl+q+1,...,Vt

where we take V = ∅ for HL and we take U = ∅ for HR (so RHL,V1,...,Vl,{vl+1},...,{vl+q} and
RTHR,{vl+1},...,{vl+q},Vl+q+1,...,Vt

are in fact vectors)

Proof. This proposition follows directly from the definitions of the matrices involved. J

Writing RH = tt

tn

∑
V1,...,Vt

RH,V1,...,Vt , we have that RH =
∑
ci
uiv

T
i where each vector ui is

of the form RHL,V1,...,Vl,{vl+1},...,{vl+q} and each vector vi is of the form
RTHR,{vl+1},...,{vl+q},Vl+q+1,...,Vt

. Note that the sum of the coefficients of the vector products
in this sum is O(nq). We now probabilistically bound ||RH ||2Fr, ||ui||, and ||vi||.

I Lemma 46. Let H1 and H2 be two graphs such that both H1 and H2 have distinguished
sets of vertices U and V , U and V are disjoint, every vertex in H1 is connected to a vertex
in U or V , and every vertex in H2 is connected to a vertex in U or V . Let t1 = |V (H1)| and
let t2 = |V (H2)|.
1. If H1 = H2 = H (after permuting the vertices not in U ∪ V ) then letting t = t1 = t2,

E[〈RH , RH〉] is Θ(nt) and with high probability, 〈RH , RH〉 − E[〈RH , RH〉] is
O(nt− 1

2 polylog(n))
2. If H1 and H2 are different graphs then with high probability, 〈RH1 , RH2〉 is

O(n
t1+t2−1

2 polylog(n))

Proof. Consider the terms in 〈RH1 , RH2〉. Each such term is determined by mappings
π1 : V (H1) → G, π2 : V (H2) → G where π2(U) = π1(U), π2(V ) = π1(V ), and these
maps preserve the ordering of U and V . For a given term, let H ′ be the graph with
vertices π1(V (H1))∪π2(V (H2)) and edges π1(E(H1))∆π2(E(H2)) where ∆ is the symmetric
difference. If we group the terms with the same graph H ′ (up to a permutation of the
vertices) together, then we obtain sums of the following form.

I Definition 47. Given a graph H ′ with two distinguished subsets of vertices U and V ,
define fH′(G) =

∑
A,B RH′(A,B)

We have the following probabilistic bound on these sums.
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I Lemma 48. If x is the number of non-isolated vertices in H ′ and y is the number of
isolated vertices in H ′, with high probability fH′(G) is O(n x2 +ypolylog(n))

Proof Sketch. We show the result for a related function fH′,V1,...,Vm(G) where we restrict
where the vertices of H ′ map to. To rigorously show the result, we would then use Lemma 27
(which applies just as well to scalars).

I Definition 49. Letting t′ = |V (H ′)| and given disjoint sets of vertices V1, . . . , Vm, define
fH′,V1,...,Vt′ (G) =

∑
A,B RH′,V1,...,Vt′ (A,B)

I Lemma 50. If x be the number of non-isolated vertices in H ′ and y is the number of
isolated vertices in H;, with high probability fH′,V1,...,Vm(G) is O(n x2 +y)

Each term in fH′,V1,...,Vm(G) can be described by choosing a vertex vi from each Vi. To
prove this result, we start by considering each term individually, thinking of all the vertices
vi as being fixed. We then iteratively group these terms together by choosing one or two
vertices which are still fixed and summing over all possibilities for these vertices.

When we sum over the possibilities for some vertex vi, we randomly fix all of the edges
of G which are incident with a vertex in Vi and call vi free. By doing this, we always know
the magnitudes of all our sums (but not their signs!). At each point, we have the following
bound.

I Lemma 51. We can choose the order in which we make vertices free so that if we have
made x1 non-isolated vertices free and y1 isolated vertices free then with high probability our
sums are all O(n

x1
2 +y1polylog(n)). Moreover, at all times, for every non-isolated vertex vi,

there is an edge between vi and another fixed vertex vj in π(E(H)) (where π is the mapping
from V (H) to V (G)).

Proof. We prove this result by induction. The base case x1 = y1 = 0 is trivial. If there is
an isolated vertex which is fixed, there are at most n possibilities for this vertex, so this
grouping increases y1 by 1 and multiplies our bound by a factor of at most O(n). If there is
a non-isolated fixed vertex vi which can be made free while maintaining the invariant that
every fixed vertex has an edge to another fixed vertex in π(E(H)), sum over the possibilities
for this vertex. In this sum, we know the magnitude of each term, but the signs of each term
are random and completely independent from each other (as they depend on edge(s) between
the different possibilities for vi and other fixed vertices). This summation increases x1 by
1 and since the signs are independent, with high probability this summation increases our
bound by a factor of at most O(

√
nlog(n)). The remaining case is when π(E(H)) contains

a perfect matching between the fixed vertices and no other edges between fixed vertices.
In this case, choose one such edge (vi, vj) and sum up over the possibilities for vi and vj .
Again, we know the magnitudes of each term in this sum, but the signs of each term are
independent (as they depend on the different edges (vi, vj)). This summation increases x1
by 2 and since the signs are independent, with high probability this summation increases our
bound by a factor of at most O(nlog(n)). J

I Remark. The reason we needed to use fH′,V1,...,Vt′ (G) rather than fH′(G) in this argument
is that it allowed us to consistently choose which edges of G we fixed and which edges of G
were still undetermined at any given point. J

We now bound the terms in 〈RH1 , RH2〉 using Lemma 48. We consider all of the terms fH′
which appear in this sum. If π1(H1) = π2(H2) then H ′ consists of t1 isolated vertices and
we can see directly that fH′(G) is Θ(nt1).
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For a given fH′ such that π1(H1) 6= π2(H2), let r = |π1(V (H1)) ∩ π2(V (H2))|. Letting
x be the number of non-isolated vertices in H ′ and y be the number of isolated vertices in
H ′, we have that x + y = |V (H ′)| = t1 + t2 − |U | − |V | − r. Note that only the vertices
in π1(U) ∪ π1(V ) ∪ π1(V (H1)) ∩ π2(V (H2)) can be isolated in H ′ because all other vertices
are incident with an edge in π1(E(H1)) ∪ π2(E(H2)) which only appears once. This tells
us that y ≤ |U |+ |V |+ r. Applying Lemma 48, we have that fH′ is O(n x2 +ypolylog(n)) =
O(n

(x+y)+y
2 polylog(n)) which is O(n

t1+t2
2 polylog(n)).

To improve this bound and obtain our result, it is sufficient to show that if π1(H1) 6=
π2(H2), there must be some vertex in π1(U) ∪ π1(V ) ∪ π1(V (H1)) ∩ π2(V (H2)) which
is not isolated, as this reduces our upper bound on y by 1. To show this, first note
that if π1(V (H1)) = π2(V (H2)) yet π1(H1) 6= π2(H2) then H ′ must have an edge so
not all of the vertices of H ′ can be isolated. If π1(V (H1)) 6= π2(V (H2)) then either
π1(V (H1)) \ π2(V (H2)) is nonempty or π2(V (H2)) \ π1(V (H1)) is nonempty. Without loss
of generality, we may assume that π1(V (H1)) \ π2(V (H2)) is nonempty. Let vi be a vertex
in π1(V (H1)) \ π2(V (H2)). Since every vertex in H1 is connected to either U or V , if we
look at the edges π1(E(H1))∪ π2(E(H2)), there must be a path from vi to some vertex vj in
π1(U ∪ V ). There must be an edge in this path between a vertex in π1(V (H1)) \ π2(V (H2))
and a vertex in π1(U) ∪ π1(V ) ∪ π1(V (H1)) ∩ π2(V (H2)), let (vk, vl) be the first such edge.
vl ∈ π1(U) ∪ π1(V ) ∪ π1(V (H1)) ∩ π2(V (H2)) and cannot be isolated in H ′, so the result
follows. J

We now give a sketch for how to probabilistically bound the norms of the vectors ui and the
vectors vi and complete the proof. Recall that each vector ui is of the form RHL,V1,...,Vl+q

where the V for HL is empty and Vl+1, . . . , Vl+q have size 1. We now use similar reasoning
as we used to prove Lemma 46 except that there is only one possibility for the vertices
corresponding to Vl+1, . . . , Vl+q so we always keep these vertices fixed (and don’t sum over
their possibilities). Applying this reasoning, we obtain that for each i, with high probability,
||ui||2 is Θ(nl) so ||ui|| is Θ(n l

2 ). By symmetry, for each i, with high probability ||vi|| is Θ(n r
w ).

Putting everything together, with high probability ||RH ||2Fr is Θ(nt) and
∑
i ci||ui|| · ||vi|| is

O(n l+r2 +q) = O(n t+s2 ). ||RH || ≥ ||RH ||2Fr∑
i
ci||ui||·||vi||

, which is Ω(n
t−q

2 ), as needed. J

I Remark. While Theorem 38 was only stated for a single RH , the techniques used to prove
Theorem 38 apply just as well to a linear combination of such matrices. In particular, if we
have distinct graphs H1, . . . ,Hk which all satisfy the conditions of Theorem 38 then for any
coefficients c1, . . . , ck, with high probability, ||

∑k
i=1 ckRHk || is Θ(maxi{||ciRHi ||})

7 Conclusion and Further Studies

In this paper, we analyzed the norms of uniform low degree graph matrices, which appear
naturally when analyzing the sum of squares hierarchy. While special cases of these matrices
were analyzed in previous works on sum of squares lower bounds for the planted clique
problem [20], we generalized this analysis, proving an upper bound on the norms of all
such matrices which is tight up to a polylogarithmic factor. This general analysis is a key
component of the work [4] proving almost tight lower bounds for sum of squares on planted
clique and will very likely be useful for further analysis of the sum of squares hierarchy.

That said, there are several open problems raised by this work. First, to what extent
can these norm bounds be improved? It is very likely that with a more careful analysis,
the polylog factors can be reduced or removed and the dependence of ||RH || on the size of
the graph H can be improved. Can we go further and determine the distribution of these
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matrices’ eigenvalues? Second, what can we say about the non-uniform case? How much
structure do we need our matrices to have to obtain interesting norm bounds?
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A Justification of the moment method

In this appendix, we provide a proof that the moment method gives an upper bound on
the norm. To make the proof easier, we consider the case of positive semidefinite matrices
separately.

I Lemma 52.
1. For any positive semidefinite matrix A, for all k ≥ 1, k

√
tr(Ak) ≥ ||A||.

2. For any real matrix M , for all k ≥ 1, 2k
√

tr((MMT )k) ≥ ||M ||.

Proof. To show the first statement, we recall the following fact about positive semidefinite
matrices.

I Proposition 53. For any positive semidefinite matrix A, ||A|| = λmax(A) where λmax(A)
is the maximum eigenvalue of A.

Proof. Since A is positive semidefinite, there is an orthonomal basis v1, · · · , vn of eigenvectors
of A with eigenvalues λ1, · · · , λn. Without loss of generality, we may assume that λ1 ≥ λ2 ≥
· · · ≥ λn ≥ 0. Given a unit vector v, v =

∑n
i=1 civi where

∑n
i=1 c

2
i = 1. Av =

∑n
i=1 λicivi so

we have that

||Av||2 ≤
n∑
i=1

λ2
i c

2
i ≤

n∑
i=1

λ2
1c

2
i = λ2

1 .

This implies that ||A|| ≤ λ1. ||Av1|| = λ1 so ||A|| ≥ λ1 and thus ||A|| = λ1, as needed. J
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With this in mind, for any k ≥ 1, the eigenvalues of Ak are λk1 , · · · , λkn. Thus,

trace(Ak) =
n∑
i=1

λki ≥ λk1 ≥ ||A||k

and the first statement follows. The second statement follows immediately from the first
statement and the following proposition.

I Proposition 54. For any matrix M , ||MMT || = ||M ||2.

Proof. Note that for any matrix M , ||MT || = ||M || = max
||u||=1,||v||=1

uTMv. For any unit

vectors u and v,

uTMMT v = (MTu)T (MT v) = MTu ·MT v ≤ ||MTu|| · ||MT v|| ≤ ||MT ||2 = ||M ||2 .

Thus, ||MTM || ≤ ||M ||2. On the other hand, letting v be a unit vector which maximizes
||MT v||, giving ||MT v|| = ||MT || = ||M ||, we have that

vTMMT v = (MT v)T (MT v) = ||MT v||2 = ||MT ||2 = ||M ||2 .

Thus, ||MTM || ≥ ||M ||2 and the result follows. J
J

B Norm bounds with left/right intersections

In this appendix, we consider the case when U ∩ V is nonempty in H.

I Theorem 55. Let H be a graph with distinguished sets of vertices U and V such that
|U ∩ V | = r and all vertices in H(V ) \ (U ∪ V ) have degree at least one. Let t = |V (H)|, let
z = |V (H) \ (U ∪V )|, and let q be the size of the minimal separator between U and V (which
must include U ∩ V ). Let t′ = t− r and let q′ = q − r.
1. If q′ + z > 0 then for all ε ∈ (0, 1),

P[||RH || ≥ 2(t′)t
′

(
e(t′ + z)

(
ln(8nq′+r/ε)

2(q′ + z) + 1
))q′+z

n
t′−q′

2 ] ≤ ε .

2. If q′ = z = 0 then ||RH || ≤ n
t
2 .

Proof Sketch. The key idea is to reduce the case when to the case when U ∩ V = ∅. We
first choose the elements which U ∩ V map to. These will be the elements of A∩B and they
must occur in fixed positions within A and B. Thus, this choice partitions RH into blocks
which share no rows or columns. It is now sufficient to obtain a probabilistic bound for each
block and use a union bound.

For a particular block, we can now use the same proof we used to prove Theorem 14. Let
R′ be a matrix where we have restricted ourselves to a particular block and have partitioned
the vertices in [1, n]\ (A∩B) into V1, . . . , Vt′ , restricting where the vertices in V (H)\ (U ∩V )
can map to accordingly. Consider tr((R′R′T )k). Roughly speaking, we ignore the vertices in
A∩B (in fact we could replace n by n′ = n− r in the bound). Since the vertices in A∩B are
fixed, they appear in every copy of R′ and are already determined, so they do not contribute
to the number of terms with nonzero expectation.

For the other vertices, it is still true that if we have vertex-independent paths of lengths
l1, . . . , lq′ in H from U \ V to V \ U , in the constraint graph the path of length li becomes a
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cycle of length 2kli, requiring kli − 1 constraint edges. It is also still true that every vertex
in W which is not on one of these paths requires k constraint edges. Thus, we have the same
norm bound on each block as we did in Theorem 14. To take a union bound over all the
blocks, since there are at most nr blocks, we use this bound with ε replaced by ε

nr and the
result follows. J
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