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Abstract
Much of the recent work on phase transitions in discrete structures has been inspired by ingenious
but non-rigorous approaches from physics. The physics predictions typically come in the form of
distributional fixed point problems that mimic Belief Propagation, a message passing algorithm.
In this paper we show how the Belief Propagation calculation can be turned into a rigorous proof
of such a prediction, namely the existence and location of a condensation phase transition in the
regular k-SAT model.
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1 Introduction

1.1 Background and motivation
Over the past three decades the study of random constraint satisfaction problems has been
driven by ideas from statistical mechanics [3, 24, 25]. The physics ideas have since had a
substantial impact on algorithms, coding theory and combinatorics [12, 15, 18, 19, 20, 21, 30].
The striking feature of the physics work is that it is based on one generic but non-rigorous
technique called the cavity method that can be applied almost mechanically [23]. Its
centerpiece is the Belief Propagation message-passing algorithm. By contrast, rigorous
studies have largely been case-by-case.

This state of affairs begs the question of whether the Belief Propagation calculations
can be put on a rigorous basis directly. This is precisely the thrust of the present paper.
We show how the physics calculations can be turned into a proof in a highly non-trivial
and somewhat representative case. We expect that this approach generalises to many
other alike problems. Specifically, we determine the precise condensation phase transition
in the random regular k-SAT model. The existence of such a phase transition in a wide
variety of models is one of the key predictions of the cavity method [22] and its impact on
algorithmic as well as information-theoretic question can hardly be overstated [29, 32]. For
example, the condensation phenomenon has a bearing on the performance of message-passing
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22:2 The Condensation Phase Transition in the Regular k-SAT Model

algorithm such as Belief Propagation guided decimation [29] as well as on statistical inference
problems [5]. Moreover, the regular k-SAT problem shares many of the key properties of
the better-known model where clauses are simple chosen uniformly and independently; in
particular, a condensation phase transition is expected to occur in that model as well [22].
The proof builds upon on our abstract results [6] on the “regularity method” for discrete
probability measures and the connection to spatial mixing properties.1

1.2 The regular k-SAT model
Consider variables x1, . . . , xn that may take the values ‘true’ or ‘false’, represented by +1
and −1. If Φ = Φ1 ∧ · · · ∧ Φm is a k-CNF formula, then we define a function EΦ : {±1}n →
{0, 1, . . . ,m} on the set of truth assignments by letting EΦ(σ) be the number of violated
clauses. In physics jargon, EΦ is called the Hamiltonian. Further, we define the Gibbs
measure at “inverse temperature” β ≥ 0 by letting

σ ∈ {±1}n 7→ exp(−βEΦ(σ))/ZΦ(β) where ZΦ(β) =
∑

σ∈{±1}n

exp(−βEΦ(σ)) (1)

is called the partition function. Thus, the Gibbs measure is a probability measure on the
cube {±1}n.

As β gets larger the mass of the Gibbs measure shifts to assignments that violated fewer
clauses. Ultimately, if we let β →∞, then the Gibbs measure concentrates on the maximally
satisfying assignments. Hence, by tuning β we can “scan” the landscape that the function
EΦ defines on the cube {±1}n. Among other things, grasping this landscape is key in order
to study the performance of local search algorithms such as Simulated Annealing or the
Metropolis process, which attempt to descend from a random starting point to a global
minimum. For instance, if EΦ is riddled with local minima, local search algorithms are bound
to get trapped, while they might be efficient on a nice “convex” landscape [1, 9, 25].

It turns out that the key quantity upon which the study of the Hamiltonian hinges is
the partition function. Therefore, we aim to calculate ZΦ(β) on a random k-CNF formula
Φ. There are several natural probability distributions on k-SAT formulas. The one that we
study here is perhaps the simplest non-trivial example, namely the regular k-SAT model [28].
It comes with two integer parameters k ≥ 3 and d > 1, which is even. For n such that 2k
divides dn we let Φ = Φd,k(n) signify a uniformly random k-SAT formula with m = dn/(2k)
clauses of length k over x1, . . . , xn such that each variable xi occurs precisely d/2 times as a
positive literal xi and precisely d/2 times as a negative literal ¬xi.2 For k exceeding a certain
constant k0 there is an explicitly known critical degree dk−SAT, the satisfiability threshold,
where satisfying assignments cease to exist in a typical Φ [12]3. While the exact formula is
cumbersome, asymptotically we have

dk−SAT/k = 2k ln 2− k ln 2/2− (1 + ln 2)/2 + ok(1), (2)

where ok(1) hides a term that tends to 0 in the limit of large k. Since ZΦ(β) scales
exponentially with n, we consider

φd,k : β ∈ (0,∞) 7→ lim
n→∞

1
n
E[lnZΦ(β)] (3)

1 The present paper builds upon the arXiv version of [6] because the version that appeared in the
proceedings of RANDOM 2015 contained a critical error.

2 The regular k-SAT model shares many of the properties of the better known model where m clauses are
chosen uniformly and independently but avoids the intricacies that result from degree fluctuations.

3 We have lim inf P [Φ is satisfiable] > 0 if d < dk−SAT and limP [Φ is satisfiable] = 0 if d > dk−SAT.



V. Bapst and A. Coja-Oghlan 22:3

with the log inside the expectation and the expectation is over Φ. The existence of the
limit follows from the interpolation method [10]. Moreover, Azuma’s inequality implies that
lnZΦ(β) concentrates about E[lnZΦ(β)] for any d, k, β.

We call β0 ∈ (0,∞) smooth if there exists ε > 0 such that the function

β ∈ (β0 − ε, β0 + ε) 7→ φd,k(β)

admits an expansion as an absolutely convergent power series around β0. Otherwise a phase
transition occurs at β0.4 Thus, with d fixed we aim to investigate the effect of tuning β.

Results. According to the “cavity method” for certain values of d close to the satisfiability
threshold dk−SAT there occurs a so-called condensation phase transition at a certain critical
βcond(d, k) > 0 [22]. The main result of this paper proves this conjecture for k exceeding a
certain constant k0. Let us postpone the precise definition of βcond(d, k) for just a moment.

I Theorem 1. There exists k0 ≥ 3 such that for all k ≥ k0, d ≤ dk−SAT there is βcond(d, k) ∈
(0,∞] such that all β ∈ (0, βcond(d, k)) are smooth. If βcond(d, k) <∞, then there occurs a
phase transition at βcond(d, k).

We will see momentarily that βcond(d, k) <∞ for d exceeding a specific critical degree
dcond(k) < dk−SAT. Theorem 1 is the first rigorous result to identify the precise critical
“inverse temperature” in a random constraint satisfaction problem, apart perhaps from the
far simpler case of the stochastic block model [26].

Let us take a look at βcond(d, k). As most predictions based on the cavity method,
βcond(d, k) results from a distributional fixed point problem, i.e., a fixed point problem on
the space of probability measures on the open unit interval (0, 1). This fixed point problem
derives mechanically from the physicists’ “1RSB cavity equations” [23]. Specifically, writing
P(0, 1) for the set of probability measures on the unit interval, we define two maps

Fk,d,β : P(0, 1)→ P(0, 1), F̂k,d,β : P(0, 1)→ P(0, 1)

as follows. Given π ∈ P(0, 1) let η = (η1, . . . , ηk−1) ∈ (0, 1)k−1 be a random k − 1-tuple
drawn from the distribution (ẑ(η)/Ẑ(π)) d

⊗k−1
j=1 π(ηj), where

ẑ(η) = 2− (1− exp(−β))
∏
j<k

ηj and Ẑ(π) =
∫
ẑ(η)d

⊗
j<k

π(ηj). (4)

Then F̂k,d,β(π) is the distribution of (1 − (1 − exp(−β))
∏k−1
i=1 ηi)/ẑ(η). Similarly, given

π̂ ∈ P(0, 1) draw η̂ = (η̂1, . . . , η̂d−1) from (z(η̂)/Z(π̂))d
⊗k−1

j=1 π̂(η̂j), where

z(η̂) =
∏
j<d/2

η̂j
∏
j≥d/2

(1− η̂j) +
∏
j<d/2

(1− η̂j)
∏
j≥d/2

η̂j , Z(π̂) =
∫
z(η̂)d

⊗
j<k

π̂(η̂j). (5)

Then Fk,d,β(π̂) is the distribution of (
∏
j<d/2 η̂j

∏
j≥d/2(1 − η̂j))/z(η̂). Further, call a

distribution π ∈ P(0, 1) skewed if

π[(exp(−k0.9β), 1− exp(−k0.9β))] < 2−0.9k.

4 This is the usual physics definition of a “phase transition”. The motivation is that the non-analyticity of
φd,k indicates a qualitative change. For illustration, observe that the fraction of vertices in the largest
component of the Erdős-Rényi random graph is non-analytic at average degree one.

APPROX/RANDOM’16



22:4 The Condensation Phase Transition in the Regular k-SAT Model

I Proposition 2. Let d−(k) = dk−SAT − k5 and β−(k, d) = k ln 2 − 10 ln k. The map
Gk,d,β = Fk,d,β ◦ F̂k,d,β has a unique skewed fixed point π?k,d,β, provided that k ≥ k0, d ∈
[d−(k), dk−SAT] and β > β−(k, d).

To extract βcond(d, k), let ν1, . . . , νk, ν̂1, . . . , ν̂d be independent random variables such
that the νi have distribution π?k,d,β and the ν̂i have distribution F̂k,d,β(π?k,d,β). Setting

z1 =
∏
j≤d/2

ν̂j
∏
j>d/2

(1− ν̂j) +
∏
j≤d/2

(1− ν̂j)
∏
j>d/2

ν̂j , z2 = 1− (1− exp(−β))
∏
j≤k

νj

and z3 = ν1ν̂1 + (1− ν1)(1− ν̂1), we let

F(k, d, β) = lnE [z1] + d

k
lnE [z2]− d lnE[z3], (6)

B(k, d, β) = E [z1 ln z1]
E [z1] + d

k

E [z2 ln z2]
E [z2] − dE[z3 ln z3]

E[z3] . (7)

Finally, with the usual convention that inf ∅ =∞ we let

βcond(k, d) =
{
∞ if d < d−(k),
inf{β > β−(k, d) : F(k, d, β) < B(k, d, β)} if d ∈ [d−(k), dk−SAT].

We proceed to highlight a few consequences of Theorem 1 and its proof. The following
result shows that βcond(d, k) < ∞, i.e., that a condensation phase transition occurs, for
degrees d strictly below the satisfiability threshold.

I Corollary 3. If k ≥ k0, then dcond(k) = min{d > 0 : βcond(d, k) <∞} < dk−SAT − Ω(k).

Furthermore, the following corollary shows that the so-called “replica symmetric solution”
predicted by the cavity method yields the correct value of φd,k(β) for β < βcond(d, k).

I Corollary 4. If k ≥ k0, d ≤ dk−SAT and β < βcond(d, k), then φd,k(β) = F(k, d, β).

Corollary 4 opens the door to studying the “shape” of the Hamiltonian EΦ for β <

βcond(d, k), a necessary step towards studying, e.g., the performance of local search algorithms.
Specifically, Corollary 4 enables us to bring the “planting trick” from [1] to bear so that we
can analyse typical properties of samples from the Gibbs measure.

Finally, complementing Corollary 4, the following result shows that F(k, d, β) overshoots
φd,k(β) for β > βcond(d, k).

I Corollary 5. If k ≥ k0, d ≤ dk−SAT and β > βcond(d, k), then there is βcond(d, k) < β′ < β

such that φd,k(β′) < F(k, d, β′).

2 Techniques and related work

Admittedly, the definition of βcond(k, d) is not exactly simple. For instance, even though the
fixed point distribution from Proposition 2 stems from a discrete problem, it is a continuous
distribution on (0, 1). Yet the analytic formula (6) is conceptually far simpler than the
combinatorial definition of φd,k. Indeed, we are going to see in Section 3 that the fixed point
problem can be understood in terms of a branching process, i.e., a random infinite tree.

The proof of Theorem 1 builds upon an abstract result from [6] that, roughly speaking,
breaks the study of the partition function down into two tasks. First, to prove that the Gibbs
measure induced by a random formula Φ̂ chosen from a reweighted probability distribution,
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the “planted model”, enjoys the non-reconstruction property, a spatial mixing property.
Second, to analyse Belief Propagation on Φ̂. The technical contribution of the present work
is to tackle these two problems in a fairly generic way. In fact, we expect that the proof
strategy extends to other problems. A concrete example that springs to mind is the Potts
antiferromagnet on a random graph, which is intimately related to the information-theoretic
threshold in the “stochastic block model” with multiple classes [5]. While conceptually the
proof strategy allows us to turn the Belief Propagation calculation into a rigorous theorem in a
fairly direct way, the technical challenge of actually analysing the relevant Belief Propagation
fixed point in a completely rigorous manner remains.

The overall proof strategy bears some resemblance to the work of Mossel, Neeman and
Sly [26] on the “stochastic block model”, but the details are quite different. Roughly speaking,
the stochastic block model can be viewed as a planted version of the minimum bisection
problem and the problem is to recover the labels that were used to generate the graph. The
proof from [26] that this is not possible up to a certain point relies on non-reconstruction
as well. Moreover, the contiguity estabished in [26] can be viewed as a condensation result,
albeit with the much simpler interactions of the stochastic block model. In particular, the
“condensation threshold” is merely given by a quadratic equation rather than a distributional
fixed point equation.

The predictions of the “cavity method” typically come as distributional fixed points but
there are only few proofs that establish such predictions rigorously. The one most closely
related to the present work is [7] on condensation in random graph coloring. It determines the
critical average degree d for which condensation starts to occur with respect to the number of
proper k-colorings of the Erdös-Rényi random graph. This corresponds to taking β →∞ in
(3). This simplifies the problem substantially because in the limit “frozen variables” emerge
that are fixed deterministically to one specific value. Other previous results on condensation
gave only approximate answers [8, 13, 14].

Interestingly, determining the satisfiability threshold on Φ is conceptually easier than
identifying the condensation threshold [12]. This is because the local structure of the regular
random formula is essentially deterministic, namely a tree comprising of clauses and variables
in which every variable appears d/2 times positively and d/2 times negatively. In effect, the
satisfiability threshold is given by a fixed point problem on the unit interval, rather than on
the space of probability measures on the unit interval. Similar simplifications occur in other
regular models [17, 16]. By contrast, we will see in Section 3 that the condensation phase
transition hinges on the reweighted distribution Φ̂ with a genuinely random local structure.

Recent work on the k-SAT threshold in uniformly random formulas [12, 11] and in
particular the breakthrough paper by Ding, Sly and Sun [18], also harnessed the Belief/Survey
Propagation calculations and [18] verified the prediction in terms of the corresponding
distributional fixed point problem.5 In the uniformly random model a substantial technical
complication is posed by variables of exceptionally high degree. While [12, 11, 18] apply the
second moment method to a random variable whose construction is guided by Belief/Survey
Propagation, here we employ Belief Propagation in the direct way enabled by [6].

Talagrand [31] and, by means of a different argument, Panchenko [27] studied the k-
SAT model on uniformly random formulas in the “high-temperature” (i.e., small β) case.
Specifically, with d the average degree of a variable, [27, 31] require that min{4β, 1}(k−1)d < 1.
This range of parameters is well below the conjectured condensation phase transition [22].

5 Survey Propagation can be viewed as a Belief Propagation applied to a modified constraint satisfaction
problem [23].

APPROX/RANDOM’16



22:6 The Condensation Phase Transition in the Regular k-SAT Model

3 Proof outline

We assume that k ≥ k0 for a large enough constant k0 and that d < dk−SAT.

3.1 Two moments do not suffice
The default approach to studying φd,k(β) would be the venerable “second moment method” [3].
Cast on a logarithmic scale, if

lim sup
n→∞

1
n

lnE[ZΦ(β)2] ≤ lim
n→∞

2
n

lnE[ZΦ(β)], then (8)

φd,k(β) = lim
n→∞

1
n

lnE[ZΦ(β)]. (9)

Thus, if (8) holds, then we can “swap the log and the expecation”. Unsurprisingly, calculating
lnE[ZΦ(β)] is fairly easy (see (11) below).

From a bird’s eye view, both the physics intuition and the second moment are all about
the geometry of the Gibbs measure of Φ at a given β ∈ (0,∞). Indeed, according to the
physics picture the condensation point βcond(k) should be the supremum of all β > 0 such
that w.h.p. for two random assignments σ1,σ2 ∈ {±1}n chosen from the Gibbs measure we
have |σ1 · σ2| = on(n), i.e., σ1,σ2 are about orthogonal [22]. This is a necessary condition
for the success of the second moment method as well [2, 4], which may instil hopes that (8)
might hold for β right up to βcond(d, k). In fact, (8) holds if either d or β is relatively small.

I Lemma 6. For d ≤ dk−SAT and β > 0 let q ∈ (0, 1) be the unique solution to the equation

1− (1− exp(−β))qk = 2(1− q). (10)

Then
1
n

lnE [Zβ(Φ)] ∼ ln 2 + d

k
ln
(
1− (1− exp(−β))qk

)
+ d

2 ln(4q(1− q)). (11)

Furthermore, if either d ≤ d−(k) or β ≤ β−(k, d) then (8) is true.

However, for d close to dk−SAT and β near βcond(d, k) the second moment method fails.
Formally, if d is such that βcond(d, k) <∞, then there exists β′ < βcond(d, k) such that (8) is
violated for all β ∈ (β′, βcond(d, k)).

3.2 Quenching the average
To understand what goes awry we turn the second moment into a first moment with respect
to reweighted distribution. Specifically, the planted model is the random pair (Φ̂, σ̂) chosen
from the distribution

P
[
(Φ̂, σ̂) = (Φ̂, σ̂)

]
=

exp(−βEΦ̂(σ̂))
(dn)! · E[ZΦ(β)] . (12)

Thus, the probability of that (Φ̂, σ̂) comes up is proportional to exp(−βEΦ̂(σ̂)). Further, the
probability that a specific formula Φ̂ comes up equals P[Φ̂ = Φ̂] = Zβ(Φ̂)/((dn)! · E[Zβ(Φ)]),
proportional to the partition function. In effect,

E[ZΦ(β)2] = E[ZΦ(β)] · E[ZΦ̂(β)]. (13)

Hence, in light of (11) computing the second moment is equivalent to calculating E[ZΦ̂(β)].
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In fact, the second moment calculation from the proof of Lemma 6 reveals that E[ZΦ̂(β)] is
dominated by two distinct contributions. First, assignments that are more or less orthogonal
to σ̂ yield a term of order E[ZΦ(β)]. The second contribution is from σ close to σ̂; say,
σ · σ̂ ≥ n(1− 2−k/10). Geometrically, this reflects the fact that the “planted assignment” σ̂
sits in a “valley” of the Hamiltonian EΦ̂ w.h.p. The valleys are officially called clusters and
we let

ZΦ̂,σ̂(β) =
∑

σ∈{±1}n

1{σ · σ̂ > n(1− 2−k/10)} exp(−βEΦ̂(σ)). (14)

be the Gibbs-weighted cluster size. Hence, (13) shows that the second moment method
functions iff E[ZΦ̂,σ̂(β)] ≤ E[ZΦ(β)].

But for d close to dk−SAT and β > βcond(d, k) we have E[ZΦ̂,σ̂(β)] ≥ exp(Ω(n))E[ZΦ(β)].
In other words, the expected cluster size blows up. At a second glance, this is unsurprising.
For the cluster size scales exponentially with n and is therefore prone to large deviations effects.
To suppress these we ought to work with E[lnZΦ̂,σ̂(β)] instead of E[ZΦ̂,σ̂(β)]. A similar issue
(that the expected cluster size explodes) occurred in earlier work on condensation [7, 8, 13, 14].
Indeed, borrowing the idea of a truncated second moment method from these papers, we can
reduce the computation of φd,k(β) to the problem of determining E[lnZΦ̂,σ̂(β)] .

I Lemma 7. Equation (9) holds iff

lim sup
n→∞

n−1E[lnZΦ̂,σ̂(β)] ≤ lim
n→∞

n−1 lnE[ZΦ(β)]. (15)

Hence, we are left to calculate E[lnZΦ̂,σ̂(β)], the “quenched average” in physics jargon.
As we saw the log and the expectation do not commute. In such cases, computing the
quenched average is notoriously difficult, certainly well beyond the reach of elementary
methods. Tackling this problem is the main achievement of this paper; recall the expressions
from (6)–(7).

I Proposition 8. Assume that d ∈ [d−(k), dk−SAT] and β > β−(k, d). Then

lim
n→∞

1
n
E[lnZΦ̂,σ̂(β)] = B(k, d, β), while lim

n→∞

1
n

lnE[ZΦ(β)] = F(k, d, β).

We observe that Theorem 1 is immediate from Lemma 6, Lemma 7 and Proposition 8.

3.3 Non-reconstruction
To calculate the quenched average we are going to have to understand the typical internal
structure of the cluster in the planted model. According to the physicists “1-step replica
symmetry breaking picture”, the restriction of the Gibbs measure to the cluster should enjoy
a spatial mixing property called non-reconstruction. In particular, the truth values assigned
to variables that are “far apart” are predicted to be asymptotically independent.

If non-reconstruction holds, then a general result from [6] reduces the computation of the
quenched average to determining the marginals of the restricted Gibbs distribution, which
we are going to calculate via Belief Propagation.

Formally, by the restriction of the Gibbs measure to the cluster we mean the probability
distribution on {±1}n defined by

σ ∈ {±1}n 7→ 1{σ · σ̂ > n(1− 2−k/10)} exp(−βEΦ̂(σ))/ZΦ̂,σ̂(β). (16)

APPROX/RANDOM’16



22:8 The Condensation Phase Transition in the Regular k-SAT Model

For a random variable X(σ) we denote the average with respect to (16) by

〈X(σ)〉′ = 〈X(σ)〉′Φ̂,σ̂,β = 1
ZΦ̂,σ̂(β)

∑
σ∈{±1}n

1{σ · σ̂ > n(1− 2−k/10)} exp(−βEΦ̂(σ)).

Further, to define a metric we set up a bipartite graph whose vertices are the clauses and
variable of Φ̂. Each clause is adjacent to all the variables that it contains. Then the distance
between two variables or clauses is, of course, the length of a shortest path in the graph.

We can now state the non-reconstruction condition. For a variable x, an integer ` ≥ 0
and τ ∈ {±1}n let ∇(Φ̂, x, `, τ) be the set of all χ ∈ {±1}n such that χ(y) = τ(y) for all y
at distance at least 2` from x in Φ̂. Then〈

σ(x)|∇(Φ̂, x, `, τ)
〉′

is the average of the truth value of x once we condition on the event that the truth values of
all variables at distance at least 2` from x are given by the “boundary condition” τ . Thus,
we inspect the distribution of the truth value of x given the faraway variables.

The non-reconstruction condition requires that for most variables x, 〈σ(x)|∇(Φ̂, x, `, τ )〉′
is close to 〈σ(x)〉′ in expectation with respect to a boundary condition τ that is itself chosen
randomly from (16). Formally, (Φ̂, σ̂) has the non-reconstruction property w.h.p. if for any
ε > 0 there is ` > 0 such that

lim
n→∞

P

[
1
n

n∑
i=1

〈∣∣∣∣〈σ(xi)〉′ −
〈
σ(xi)|∇(Φ̂, xi, `, τ )

〉′∣∣∣∣〉′ < ε

]
= 1. (17)

I Proposition 9. Assume that d ∈ [d−(k), dk−SAT] and β > β−(k, d). Then (Φ̂, σ̂) has the
non-reconstruction property w.h.p.

Together with [6, Theorems 4.4–4.5] Proposition 9 reduces the computation of the
quenched average to the problem of computing the marginals under the measure (16).
Specifically, limn→∞

1
nE[lnZΦ̂,σ̂(β)] is given by an expression called the Bethe free energy

that is a function of the vector (〈σ(xi)〉′)i=1,...,n of marginals only.6 The Bethe free energy
originally comes from the physicists cavity method [23, ch. 14].

3.4 A branching process
Hence, we are left to calculate the marginals of (16). Due to the correlation decay guaranteed
by the non-reconstruction property, the marginals are governed by the local structure of the
formula Φ̂. To facilitate the marginal computation, we are going to condition on the event
that the planted assignment σ̂ = 1 is the all-ones vector; this is without loss of generality
because under the planted model (12) σ̂ is uniformly distributed.

Of course, in Φ̂ each variable occurs d/2 times positively and d/2 times negatively. But
the distribution of the signs with which the variables occur in the clauses is non-trivial. We
are going to describe it via a branching process with four types: variable nodes of type ±1
and clause nodes of type ±1. Starting from a single variable node r, the process is defined as
follows; let q ∈ (0, 1) be the solution to (10).

6 Stirctly speaking, Proposition 9 and [6, Theorems 4.4 and 4.5] merely imply that the Bethe free energy is
an upper bound on lim 1

nE[ln ZΦ̂,σ̂(β)]. To obtain the matching lower bound it is necessary to consider
another version of the planted model, see the appendix for details.
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BR1: For the root r let br,↑ = 1 with probability 1− q and br,↑ = −1 with probability q.
BR2: Suppose that x is a variable node of type bx,↑ = ±1. Then x has d− 1 children, which

are clause nodes. Specifically, d2 − 1 children a are clause nodes of type ba,↑ = bx,↑, and
the remaining d/2 children are clause ndoes of type ba,↑ = −bx,↑.

BR3: Suppose that a is a clause node of type ba,↑ = 1. Then a has k − 1 children in total,
which are variable nodes. Specifically, Xa = Bin(k − 1, 1− q) children have type 1, and
the remaining k − 1−Xa children have type −1.

BR4: Finally, suppose that a is a clause node of type ba,↑ = −1. Then a has k − 1 children,
which are variable nodes and

with probability exp(−β)qk−1/(1− (1− exp(−β))qk−1) all children have type −1,
otherwise Ya = Bin≥1(k − 1, 1− q) children have type 1 and the others have type −1.

Let us write T∞ be the random infinite tree generated by this branching process (including
the type assignment b · ,↑). Moreover, let T∞ be the set of all possible outcomes.

We can think of T∞ as an infinite k-SAT formula in which all variables other than r
appear d/2 times positively and d/2 times negatively. Namely, for each clause node a we
define a Boolean clause whose variables are the parent variable node of a and the k − 1
children of a. The sign with which the parent x of a occurs in a is precisely ba,↑, the type
of a. Thus, a contains the literal x if ba,↑ = 1 and the literal ¬x otherwise. Similarly, each
child y of a occurs with sign by,↑.

The root of T∞ has degree d− 1 rather than d. This will be useful to set up the Belief
Propagation equations below, but to describe the local structure of Φ̂ we actually need a
tree in which the root has degree d. Thus, let T ′∞ be the infinite tree defined just as above
except that the root has d/2 children of type +1 and d/2 children of type −1. Further, let
T ′∞ be the set of all possible outcomes of this process.

The tree T ′∞ captures the local structure of Φ̂. More precisely, for a formula Φ and a
variable x let ∆l

Φx be the sub-formula obtained from Φ by deleting all clauses and variables
at distance at least l from x. Additionally, for a specific formula ϕ let

ρΦ̂(ϕ) = 1
n

∣∣∣{x : ∆2`+1
Φ̂ x ∼= ϕ

}∣∣∣
be the fraction of variables x of Φ̂ whose depth-2` neighborhood is isomorphic to ϕ.

I Lemma 10. For all `, ϕ we have E
∣∣ρΦ̂(ϕ)− P

[
∆2`+1T ′∞

∼= ϕ
]∣∣ = O(n−1/2 lnn).

In light of Lemma 10 we can study the marginals of (16) by way of the random tree T ′∞.
Specifically, we are going construct a map T ′∞ → P({±1}) that yields a probability measure
on {±1} for each tree such that the marginal of a variable x is close to the conditional
expectation of this map given the depth-2` neighborhood ∆2`+1

Φ̂ x for large enough `. It will
emerge that this map is intimately related to the fixed point problem from Proposition 2. To
construct the map T ′∞ → P({±1}) we employ Belief Propagation; for a detailed introduction
to Belief Propagation and the physics intuition behind it see [23].

3.5 Belief Propagation
Fix some integer ` ≥ 1. Viewing the tree T ∈ T∞ as a k-SAT formula as above, we let V2`
be the set of all variable nodes at distance at most 2` from the root of T and let F2` be the
set of all clause nodes at distance at most 2` from the root. Further, let ∂V2` be the set
of all variable nodes of T at distance exactly 2` from the root. Belief Propagation starts
from a boundary condition ∂ν : ∂V2` → P({±1}), x 7→ ∂νx that assigns each x a probability

APPROX/RANDOM’16
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distribution on {±1}. The Belief Propagation messages induced by the boundary condition
∂ν on T are the (unique) families

(νT,∂νx,↑ )x∈V2`
, (ν̂T,∂νa,↑ )a∈F2`

of probability measures on {±1} determined by the following three conditions. For a node u
of T let ∂↓u be the set of children.
BP1: For all x ∈ ∂V2` we have νT,∂νx,↑ = ∂νx.
BP2: For all x ∈ V2` \ ∂V2` and s ∈ {−1, 1},

νT,∂νx,↑ (s) =
∏
a∈∂↓x

ν̂T,∂νa,↑ (s)∑
s′∈{−1,1}

∏
a∈∂↓x

ν̂T,∂νa,↑ (s′)
. (18)

BP3: For all a ∈ F2` and s ∈ {−1, 1},

ν̂T,∂νa,↑ (s) =
∑
sa∈{−1,1}∂a 1 {sx = s}ψa(sa)

∏
y∈∂↓a

νT,∂νy,↑ (sy)∑
sa∈{−1,1}∂a ψa(sa)

∏
y∈∂↓a

νT,∂νy,↑ (sy)
. (19)

Algorithmically, all messages can be calculated bottom-up from the boundary V2`. The
“result” of the Belief Propagation calculation on T given a certain boundary condition is the
message emanating from the root:

ν∂νT = νT,∂νr,↑ .

The fixed point distribution from Proposition 2 can be obtained organically by running
Belief Propagation on T∞. Indeed, define ∂ν(0) : ∂V2` → P({±1}) by ∂ν(0)

x (1) = 1 for all
x ∈ ∂V2` and let ν(2`)

T = νT,∂ν
(0)

r,↑ .

I Proposition 11. Assume that d−(k) < d ≤ dk−SAT and β > β−(k, d). The sequence
(ν(2`)
T∞

)`≥1 converges almost surely to a limit ν?T∞
. Moreover, π?k,d,β is the distribution of the

random variable ν?T∞
(−br,↑).

We define the Belief Propagation messages ν(2`)
T ′ for the trees T ′ ∈ T ′∞ in which the root

r has degree d exactly as we did above. Of course, the calculation of the messages ν(2`)
T ′ is

closely related to that of the messages ν(2`)
T for T ∈ T∞; after all, the only difference occurs

at the root. The proof of Proposition 11 shows that the Belief Propagation recurrence enjoys
certain contraction properties. In combination with the non-reconstruction property we thus
obtain an asymptotic formula for the marginals of the distribution (16).

I Proposition 12. Assume that d−(k) < d ≤ dk−SAT and β > β−(k, d). The sequence
(ν(2`)
T ′

∞
)`≥1 converges almost surely to a limit ν?T ′

∞
. Moreover,

lim
`→∞

lim
n→∞

1
n

n∑
i=1

E
∣∣∣〈1{σ(xi) = 1}〉′Φ̂,1,β − E[ν?T ′

∞
(1)|∆2`+1T ′∞

∼= ∆2`+1
Φ̂ x]

∣∣∣ = 0

Plugging the asymptotic marginals from Proposition 11 into the Bethe free energy formula,
we obtain an expression for the quenched average lim 1

nE[lnZΦ̂,σ̂(β)]. Due to the inherent
connection between ν?T∞

and ν?T ′
∞
, a (tedious) bit of calculus reveals that this formula can

be expressed in terms of the fixed point distribution π?k,d,β . The Bethe free energy formula
then morphs into the expression B(k, d, β) from (7). In the course of this we also find that
(6) matches the “annealed average” lim 1

n lnE[ZΦ(β)]. Thus Proposition 8 follows.
In the following two sections we outline the two key parts of the proof in some more detail,

namely the proof of the non-reconstruction property and the analysis of Belief Propagation
on the random tree.
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4 Non-reconstruction

We assume that d ∈ [d−(k), dk−SAT] and that β ≥ β−(k, d). Let cβ = 1− exp(−β).

To prove Proposition 9 we exhibit six deterministic conditions that entail the non-reconstruc-
tion property. First, a formula Φ on variables V = {x1, . . . , xn} satisfies property `-Local
Structure if
`-Local Structure: for all trees T of height 2`+ 2 we have

|ρΦ(T )− P
[
∆2`+3T ′∞

∼= T
]
| ≤ n−0.49.

In words, the empirical distribution of the depth-2` + 2 neighbourhoods is close to the
distribution of the random tree T ′.

The second condition reads
Cycles: The formula Φ contains o(

√
n) cycles of length at most

√
lnn.

To state the third condition we identify a large “well-behaved” bit of the random formula
that we call the core. Similar constructions have been used extensively in prior work on
random constraint satisfaction problems (e.g., [1, 7, 8]). Let ∂±1x be the set of clauses
where the variable x appears as a positive/negative literal and, conversely, let ∂±1a be the
set of variables that appear in clause a positively/negatively. Now, the λ-core of Φ (in
symbols: Coreλ(Φ)) is the largest set W of variables such that all x ∈W satisfy the following
conditions.
CR1: there are at least λ−1k0.99 clauses a ∈ ∂1x such that ∂1a = {x}.
CR2: there are no more than 10λ clauses a ∈ ∂x such that |∂−1a| = k.
CR3: for any 1 ≤ l ≤ k the number of a ∈ ∂−1x such that |∂1a| = l is bounded by λkl+3/l! .
CR4: there are no more than λk3/4 clauses a ∈ ∂1x such that |∂1a| = 1 but ∂a 6⊂W .
CR5: there are no more than λk3/4 clauses a ∈ ∂−1x such that |∂−1a| < k and |∂1a \W | ≥
|∂1a|/4.

The λ-core is well-defined; for if W,W ′ satisfy the above conditions, then so does W ∪W ′.
Further, if λ < λ′, then Coreλ(Φ) ⊂ Coreλ′(Φ). The formula Φ has the property λ-Core if

λ-Core: |Coreλ(Φ)| ≥ (1− 2−0.95k)n.

We are going to identify a large set Vgood ⊂ V of variables that are very likely to be
set to one under a typical assignment σ chosen from 〈 · 〉′Φ,β . As a first attempt we might
try Vgood = Core1/2(Φ). However, the conditions CR1–CR5 are not quite strong enough
to enable an estimate of the 〈 · 〉′Φ,β-marginals. For instance, if the marginals of most of
the neighbors of a given vertex x ∈ Core1/2(Φ) go astray, x will likely follow suit. Yet the
variables x in the core such that 〈σ(x)〉′Φ,β is “small” must clump together. Formally, we say
that a set S ⊂ V is λ-sticky if for all x ∈ S one of the following conditions holds.
ST1: There are at least λk3/4 clauses a ∈ ∂1x such that ∂1a = {x} and ∂−1a ∩ S 6= ∅.
ST2: Yhere are at least λk3/4 clauses a ∈ ∂−1x such that |∂−1a| < k and |∂1a∩S| ≥ |∂1a|/4.
Further, Φ satisfies the property λ-Sticky if
λ-Sticky: Φ has no λ-sticky set of size between 2−0.95kn and 2−k/20n.

The condition Sticky ensures that for λ ∈ {1/2, 1} there is a unique maximal λ-sticky
set Sλ(Φ) ⊂ Coreλ(Φ) of size Sλ(Φ) ≤ 2−0.1kn. Indeed, if S, S′ ⊂ Coreλ(Φ) are two λ-sticky
sets of size at most 2−0.1kn, then S ∪ S′ is sticky as well. Consequently, Sticky guarantees
that |S ∪ S′| ≤ 2−0.95kn. In fact, this argument shows that Sλ(Φ) ≤ 2−0.95kn.

Further, the next condition reads

APPROX/RANDOM’16
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Gap:
〈
1{σ · 1 < (1− 2−k/3)n}

〉′ ≤ exp(−Ωn(n)).
Hence, comparing the above with (14), we realise that Gap requires that assignments σ
with 1− 2−k/10 < σ · 1/n < 1− 2−k/3 contribute little to the cluster size.

Finally, we come to the seventh and last condition. A variable x ∈ V is (ε, 2`)-cold if
the following two conditions are satisfied. Write ∂2`x for the set of all variables at distance
exactly 2` from x.
CD1: The sub-formula T = ∆2`+1x is a tree.
CD2: If τ : ∂2`x→ {±1} is a random assignment such that independently for all y ∈ ∂2`x,

τ (y) =
{
−1 if y 6∈ Core1(Φ) ∪ S1(Φ)
(−1)Be(exp(−k0.9β)) otherwise

,

then

E
[
max

{∣∣∣ν(2`)
T (1)− 〈1{σ(x) = 1}|∇(Φ, x, `, τ)〉′

∣∣∣ : τ ≥ τ
}]
≤ ε. (20)

In words, suppose that we choose a random “boundary condition” τ such that all y at
distance 2` from x that do not belong to the core are set to −1 and all y in the core are
set to −1 with probability exp(−k0.9β) independently. Then an adversary comes along and
obtains τ from τ maliciously by setting τ(y) = 1 for a few y such that τ (y) = −1. (The
adversary is not allowed to make changes in the opposite direction.) Then (20) requires that
the spin σ(x) given the boundary condition τ be close to the Belief Propagation marginal
ν

(2`)
T (1). Of course, the expectation in (20) is over τ only.

(ε, 2`)-Cold: All but εn variables are (ε, 2`)-cold.

A formula Φ is (ε, `, λ)-quasirandom if the properties `-Local Structure, Cycles, λ-
Core, λ-Sticky, Gap and (ε, 2`)-Cold hold.

I Proposition 13. For any ε > 0 there is ` > 0 such that w.h.p. Φ̂ is (ε, `, 1)-quasirandom.

The proof that Φ̂ has the first five properties w.h.p. is based on standard arguments. But
the proof of the (ε, 2`)-Cold property is novel. The argument is intertwined with the study
of the Belief Propagation recurrence on the random tree. In particular, that analysis, which
we sketch in Section 5, is via a contraction argument that enables a comparison between the
result ν∂νT for a given bounardy condition and the result for the all-ones boundardy condition
(Lemma 20 below). In order to transfer this result from the random tree to the random
formula, in which the boundary condition depends on the core, we use a switching argument.
The details can be found in the appendix.

Proposition 9 is immediate from Proposition 13 and the following statement.

I Proposition 14. For any δ > 0 there exists ε > 0 and `0(ε) > 0 such that for any ` > `0(ε)
there exists n0(ε, `) such that for all n > n0 the following is true. If Φ is (ε, `)-quasirandom,
then

1
n

n∑
i=1

〈∣∣∣ν(2`)
∆2`

Φ xi
(1)− 〈1{σ(xi) = 1}|∇(Φ, xi, `, τ )〉′

∣∣∣〉′
Φ,β

< δ.

Proof of Proposition 14
Assume that Φ is (ε, `)-quasirandom and that n > n0 for some large n0 = n0(ε, `). In
particular, |Core1(Φ)| ≥ (1 − 20.95k)n. Let σ : V → {±1} be an assignment. A set
T ⊂ Core1(Φ) \ S1(Φ) is σ-closed if for any x ∈ T and all a ∈ ∂x we have

{y ∈ ∂a ∩ Core1(Φ) \ S1(Φ) : σ(y) = −1} ⊂ T. (21)
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Hence, if y ∈ Core1(Φ) \ S1(Φ) is set to −1 and there is a clause a connecting y to some
x ∈ T , then y itself must be in T . Moreover, for a clause b we say T ⊂ Core1(Φ) \ S1(Φ) is
(σ, b)-closed if (21) holds for all x ∈ T and all a ∈ ∂x \ b. Additionally, let

∂±1,lx = {a ∈ ∂±1x : |∂1a| = l}

be the set of clauses a with a total number of l positive literals where x appears posit-
ively/negatively.

I Lemma 15. Suppose that Φ is (ε, `)-quasirandom. Then for any σ such that 1 · σ ≥
(1− 2−k/9)n and for any (σ, b)-closed set T ⊂ Core1(Φ) \ S1(Φ) the following is true. Let
σ̃(x) = (−1)1{x∈T}σ(x). Then

EΦ(σ̃) ≤ EΦ(σ)− k0.98|T |. (22)

Proof. Consider the following process:
Let σ0 = σ, V0 = T and U0 = σ−1(−1) \ V0.
While there is it ∈ Vt such that EΦ((−1)1{ ·=it}σt( · )) ≤ EΦ(σt)− k0.98, pick one such it
arbitrarily and let σt+1( · ) = (−1)1{ ·=it}σt( · ) and Vt+1 = Vt \ {it}.

Clearly,

EΦ(σt) ≤ EΦ(σ)− k0.98t. (23)

Let τ be the stopping time of this process and assume that τ < |T |, or, in other words, that
Vτ 6= ∅. We claim that Vτ is a 1-sticky set. Indeed, because T is σ-closed for i ∈ Vτ we have

−k0.98 ≤ EΦ((−1)1{ ·=i}σt( · ))− EΦ(στ )
≤ 1{b ∈ ∂i} − |∂1,0(i)|+ |{a ∈ ∂1,0i, ∂−1a ∩ (Vτ ∪ U0) 6= ∅}|

+ |∂−1,0i|+ | ∪1≤l≤k {a ∈ ∂−1,li, ∂1a ⊂ Vτ ∪ U0)}|.

Because i ∈ Core1(Φ) we have |∂1,0i| ≥ k0.99, |∂−1,0i| ≤ 10, |{a ∈ ∂1,0i, ∂−1a ∩ U0 6= ∅}| ≤
k3/4 and |{a ∈ ∂1,0i, |∂−1a ∩ U0| ≥ |∂−1a|/4}| ≤ k3/4. Therefore, one of the following must
hold.
(a) |{a ∈ ∂1,0, ∂−1a ∩ Vτ 6= ∅}| ≥ k3/4,
(b) |{a ∈ ∂1,0i, |∂−1a ∩ Vτ | ≥ |∂−1a|/4}| ≥ k3/4.
It follows that the set Vτ ⊂ T ⊂ Core1(Φ) \ S1(Φ) is 1-sticky.

However, Core1(Φ) \ S1(Φ) cannot contain a 1-sticky set of size |Vτ | ≤ |T | ≤ 2−k/10 as
this would contradict the maximality of S1(Φ). It follows that τ = |T |, and therefore στ = σ̃,
whence (22) follows using (23). J

Lemma 15 is going to be our principal tool to establish Proposition 14. To put it to work,
we need the following simple observation that follows from the fact that Φ is d-regular.

I Fact 16. For any variable x the following is true. Let γ(x, L) be the number of trees
with L ≥ 1 vertices rooted at x that are contained in the factor graph of Φ. Then γ(x, L) ≤
L(100dk)L.

Write T (x, σ) for the smallest σ-closed set that contains x. If σ(x) = 1 we let T (x, σ) = ∅.
The following lemma shows that T (x, σ) is unlikely to be non-empty and very unlikely to be
large.

I Lemma 17. For all x ∈ Core1(Φ) \ S1(Φ) we have

〈σ(x)〉′ ≥ 1− exp(−βk0.97) and 〈1{|T (x,σ)| > ln lnn}〉′ ≤ 1/ lnn.
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22:14 The Condensation Phase Transition in the Regular k-SAT Model

Proof. Let N = 2−k/4n. Due to Gap we have

〈1{1 · σ < n−N/2}〉′ ≤ exp(−Ω(n)).

Therefore,

〈1{|T (x,σ)| > N}〉′ ≤ exp(−Ω(n)). (24)

Hence, let t ≤ N and let θ be a tree of order t with root x that is contained in the factor graph
of Φ and whose vertices lie in Core1(Φ)\S1(Φ). If σ is such that T (x, σ) = θ, then Lemma 15
implies that σ̃(x) = (−1)1{x∈T (x,σ)}σ(x) satisfies EΦ(σ̃) ≤ EΦ(σ)− k0.98t. Consequently,

〈1{σ = σ}〉′

〈1{σ = σ̃}〉′
≤ exp(−βk0.98t).

Hence, by Fact 16, the union bound and our assumptions on β and d,

〈1{|T (x,σ)| = t}〉′

〈1{σ(x) = 1}〉′
≤ t(100dk)t exp(−βk3/4t) ≤ exp(−0.99βk0.98t). (25)

This bound readily implies the second assertion. To obtain the first assertion, we remem-
ber (24) and sum (25) over 1 ≤ t ≤ N . J

Let r be a variable with depth-2` neighborhood T . Guided by (20), we call τ̃ : V → {±1}
a good boundary condition for r if

max
{∣∣∣ν(2`)

T (1)− 〈1{σ(x) = 1}|∇(Φ, x, `, τ)〉′
∣∣∣ : τ ≥ τ̃

}
≤ ε. (26)

I Lemma 18. Let r be a variable for which the following conditions hold.
1. r is (ε, 2`)-cold.
2. r has distance at least ln1/3 n from any cycle of length at most

√
lnn.

Let Γr be the event that σ is a good boundary condition for r. Then 〈1{σ 6∈ Γr}〉′ ≤ 2ε.

Proof. Let X = (∂2`r) ∩ Core1(Φ) \ S1(Φ). Moreover, let A be the event that

max
x∈X
|T (x,σ)| ≤ ln lnn and σ · 1 ≥ (1− 2−k/4)n.

Because |X| ≤ (dk)` < ln lnn by our assumption that n > n0(ε, `), Lemma 17 and the fact
that Φ is quasirandom imply 〈1{σ ∈ A}〉′ ∼ 1. Furthermore, if A occurs, then assumption
(2) ensures that the subgraph of the factor graph induced on Y = (∆2`+1r) ∪

⋃
x∈X T (x,σ)

is acyclic.
Now, fix a variable x ∈ X and σ ∈ A such that σ(x) = −1. Let a be the clause that is

adjacent to x on its shortest path to r and let T (x, a, σ) be the smallest (σ, a)-closed set that
contains x. Further, define

σ̃(y) = (−1)1{y∈T (x,a,σ)}σ(y).

Then Lemma 15 shows that EΦ(σ̃) ≤ k0.98|T (x, a, σ)|. Moreover, because the subgraph
induced on Y is acyclic we have σ̃(x′) = σ(x′) for all x′ ∈ X \ {x}. Consequently, by Fact 16
and the union bound,〈

1{σ(x) = −1}
∏
y∈X\{x} 1{σ(y) = σ(y)}1{σ ∈ A}

〉′
〈
1{σ(x) = 1}

∏
y∈X\{x} 1{σ(y) = σ(y)}

〉′ ≤
∑

t≤ln lnn

t(100dk)t

exp(βk0.98t)

≤ exp(−βk0.98/2). (27)
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Since 〈1{σ ∈ A}〉′ = 1− on(1) and because for all τ : X → {±1} we have〈 ∏
y∈X\{x}

1{σ(y) = τ(x)}
〉′
≥ exp(−dkβ|X|) = Ωn(1),

(27) implies that for any τ : X → {±1},〈
1{σ(x) = −1}

∏
y∈X\{x} 1{σ(y) = τ(y)}

〉′
〈
1{σ(x) = 1}

∏
y∈X\{x} 1{σ(y) = τ(y)}

〉′ ≤ exp(−βk0.98/3). (28)

Finally, the assertion follows from (28) and the assumption that r is (ε, 2`)-cold. J

Proof of Proposition 14. The condition Cycles ensures that there are at most on(n) vari-
ables r for which condition (2) from Lemma 18 is violated. Furthermore, due to (ε, 2`)-
Cold all but εn variables r satisfy assumption (1). Therefore, the assertion follows from
Lemma 18. J

5 Belief Propagation on the infinite tree

Assume that d ∈ [d−(k), dk−SAT] and that β ≥ β−(k, d). Let cβ = 1− exp(−β).

We sketch the analysis of the Belief Propagation messages on the random tree T∞ to prove
Propositions 2 and 11. The key step is the proof of the following statement.

I Lemma 19. There exists a number `0 = `0(d, k, β) such that for all ` ≥ `0 the following is
true. Suppose that ∂ν : ∂V2` → {±1} is a random boundary condition, independent of T∞,
such that
H: for any x ∈ ∂V2`, P

[
(∂ν)x(1) ≤ 1− exp(−k0.9β) |(∂ν)y 6=x

]
≤ 2−0.9k.

Then

P
[
‖ν∂νT − ν

(2`)
T ‖TV ≥ 2`−1

]
≤ `−1.

Thus, the condition H provides that for any x on the boundary the message ∂νx(1) is
likely close to one, even given T∞ and all the other boundary messages (∂νy)y 6=x. Further,
Lemma 19 states that the message at the root given that the boundary condition satisfies H
is likely within O`(`−1) of the message obtained from the “all-ones” boundary condition.

We will need a version of Lemma 19 for the random tree T ′∞. Condition H becomes
H’: for any x ∈ ∂V ′2`, P

[
(∂ν)x(1) ≤ 1− exp(−k0.9β) |(∂ν)y 6=x

]
≤ 2−0.9k.

I Lemma 20. There is `0 = `0(d, k, β) > 0 such that for all ` ≥ `0 the following is true.
Assume that the random boundary condition ∂ν′′, independent of T ′, satisfies H′. Moreover,
assume that ∂ν′ is a random boundary condition that may depend on T ′,∂ν′′ such that
∂ν′′

x(1) ≥ ∂ν′x(1) for all x ∈ ∂V ′2`. Then for ` ≥ `0 we have

P
[
‖ν∂ν

′

T ′ − ν(2`)
T ′ ‖∞ ≥ 2 exp(dkβ)`−1

]
≤ 2dk`−1.

To grasp the assumptions of Proposition 20, we may think of ∂ν′ as obtained from ∂ν′′

by allowing an “adversary” to switch some of the −1s of ∂ν′′ to +1s. The adversary knows
both T ′ and ∂ν′′. In the following we tacitly assume that ` ≥ `0 for a large constant `0.

To prove Lemma 19–20 we are going to exhibit a deterministic condition on (T, ∂ν) that
ensures that ν∂νT is close to ν(2`)

T . For a variable node x we let ∂1x be the set of all clauses
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in which x appears as a positive literal. Similarly, ∂−1x is the set of clauses containing the
literal ¬x. Conversely, for a clause a we let ∂±1a be the set of all variables that appear in a
positively/negatively. Further, we define the trunk of T under the boundary condition ∂ν,
Trunk(T, ∂ν), as the largest subset W of V2` such that for any x ∈W either
TR0: x ∈ ∂V2` and ∂νx(1) ≥ 1− exp(−k0.9β)
or all of the five following conditions hold
TR1: there are at least b2k0.9c clauses a ∈ ∂↓x such that ∂1a = {x}.
TR2: there are no more than dln ke clauses a ∈ ∂x such that |∂−1a| = k.
TR3: for any 1 ≤ l ≤ k the number of a ∈ ∂−1x such that |∂1a| = l is bounded by kl+3/l! .
TR4: there are no more than k3/4 clauses a ∈ ∂1x such that |∂1a| = 1 but ∂a 6⊂W .
TR5: there are no more than k3/4 clauses a ∈ ∂−1x such that |∂−1a| < k and |∂1a \W | ≥
|∂1a|/4.

The trunk is well-defined; for if W , W ′ are sets that satisfy the above conditions, then so is
W ∪W ′. Somewhat unbotanically, the trunk is non-empty only if it contains some of the
leaves. In fact, the construction is monotonous with respect to the boundary condition:

if ∂νx(1) ≤ ∂ν′x(1) for all x ∈ ∂V2`, then Trunk(T, ν) ⊂ Trunk(T, ν′). (29)

For T ∈ T2` with root r and x ∈ ∂V2`, we denote by [x→ r] the shortest path from x to
r in T . Moreover,
1. a variable node x ∈ V2` is cold if x ∈ Trunk(T, ∂ν),
2. a clause node a ∈ F2` is cold if ∂1a ∩ Trunk(T, ∂ν) 6= ∅,
3. the pair (x, a) with x ∈ ∂↓a is cold if x is cold or a is cold,
4. a path [x→ r] from x ∈ ∂V2` to r is cold if it contains at least b0.4`c cold pairs (x, a),
5. the pair (T, ∂ν) ∈ T2` × P({−1, 1})∂V2` is cold if all the paths [x→ r] with x ∈ ∂V2` are

cold.
The following estimate shows the use of these concepts.

I Lemma 21. Assume that ` ≥ `0(d, k, β) is sufficiently large. If

(T, ∂ν) ∈ T2` × P({−1, 1})∂V2`

is cold, then

‖ν∂νT,↑ − ν
(2`)
T,↑ ‖∞ ≤ `

−1.

The proof of Lemma 21 is based on a (technically delicate) contraction argument. More
precisely, the basic insight is that the Belief Propagation operation is a contraction along
cold paths. The proof is based on estimating the derivatives of the formulas (18) and (19).
Once contraction is established, convergence of the messages to a unique limit follows just as
in the Banach fixed point theorem. Furthermore, a “classical” analysis of the random tree
based on Chernoff bounds etc. yields

I Lemma 22. Assume that ` ≥ `0(d, k, β) is sufficiently large and that ∂ν satisfies H. Then

P [(T ,∂ν) is cold] ≥ 1− `−1.

Proof of Lemma 19. The assertion follows from the combination of Lemmas 21 and 22
directly. J
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Proof of Lemma 20. For h = 1, . . . , (k − 1)d consider the sub-trees T (h) of T ′ pending on
the variables at distance exactly two from the root r of T ′. Then with ∂ν(h) denoting the
boundary condition on T (h) induced by ∂ν′′, (29) and Lemma 22 yield

P
[
(T (h),∂ν(h)) is cold

]
≥ 1− (`− 1)−1.

Hence, Lemma 21 yields

P
[
‖ν∂ν

(h)

T (h) − ν(2`+1)
T (h) ‖TV ≤ `−1

]
≥ 1− (`− 1)−1.

Therefore, the assertion follows from a coupling argument. J

The convergence of the sequence (ν(2`)
T∞

)`≥1 follows from Lemma 19 rather directly by
indunction on `. Similarly, the existence and uniqueness of the distributional fixed point from
Proposition 2 follows from Lemma 19, albeit with a bit of work. In fact, it is straightforward
to verify that the law of ν?T∞

(br,↑) is a fixed point for Proposition 2. Conversely, any fixed
point distribution for Proposition 2 can be “unravelled” to obtain a P({±1})-valued random
variable λ?T∞

such that the original distribution is the law of λ?T∞
(br,↑) that satisfies condition

H. The contraction property from Lemma 19 therefore implies that λ?T∞
coincides with

ν?T∞
almost surely. Hence the uniqueness of the distributional fixed point. Similarly, the

proof of the (ε, 2`)-Cold property required in the non-reconstruction argument is based on
Lemma 20.
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