
Every Property of Outerplanar Graphs is Testable
Jasine Babu1, Areej Khoury∗2, and Ilan Newman3

1 Department of Computer Science and Engg, Indian Institute of Technology
Palakkad, India
jasine@iitpkd.ac.in

2 Department of Computer Science, University of Haifa, Haifa, Israel
areejkhoury@csweb.haifa.ac.il

3 Department of Computer Science, University of Haifa, Haifa, Israel
ilan@cs.haifa.ac.il

Abstract
A D-disc around a vertex v of a graph G = (V,E) is the subgraph induced by all vertices of
distance at most D from v. We show that the structure of an outerplanar graph on n vertices
is determined, up to modification (insertion or deletion) of at most εn edges, by a set of D-discs
around the vertices, for D = D(ε) that is independent of the size of the graph. Such a result was
already known for planar graphs (and any hyperfinite graph class), in the limited case of bounded
degree graphs (that is, their maximum degree is bounded by some fixed constant, independent of
|V |). We prove this result with no assumption on the degree of the graph.

A pure combinatorial consequence of this result is that two outerplanar graphs that share the
same local views are close to be isomorphic.

We also obtain the following property testing results in the sparse graph model:
graph isomorphism is testable for outerplanar graphs by poly(logn) queries.
every graph property is testable for outerplanar graphs by poly(logn) queries.

We note that we can replace outerplanar graphs by a slightly more general family of k-edge-
outerplanar graphs. The only previous general testing results, as above, where known for forests
(Kusumoto and Yoshida), and for some power-law graphs that are extremely close to be bounded
degree hyperfinite (by Ito).

1998 ACM Subject Classification G.3 Probability and Statistics

Keywords and phrases Property testing, Isomorphism, Outerplanar graphs

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.21

1 Introduction

We study property testing and the related learning problem for some classes of sparse graphs.
The theory of property testing in the dense graph model is quite well understood (see [1]
and bibliography therein). The theory of sparse graphs is less understood, and, in particular,
there is no characterization of what properties can be tested, even for the bounded degree
model.

Our starting point is the result in Newman-Sohler [9] stating roughly that every graph
property can be tested by constantly many queries for bounded degree planar1 graphs. The
result follows a long line of previous results, and uses heavily a basic idea of Onak [10], and

∗ Research supported by ERC grant 279559.
1 The result in[9] is for the larger family of hyperfinite graphs containing planar graphs.

© Jasine Babu, Areej Khoury, and Ilan Newman;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 21; pp. 21:1–21:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Every Property of Outerplanar Graphs is Testable

Hassidim et al. [4], (a.k.a. “local partition oracle”) showing that a bounded degree graph G
can be approximated, up to the deletion of εn edges, by a graph G′ whose components are
all of constant size. Moreover, the graph G′ (or a short description of it), can be obtained by
making a constant number of queries to the original graph G.

This result is essentially equivalent to two other formulations: the first is that every
bounded degree planar graph can be learned up to the deletion of εn edges, by making a
constant number of queries to it. For the other formulation, let D be a constant natural
number. The D-local views of a graph G on n vertices is the collection (multiset) of the n
unlabelled discs (balls) of radius D around the n vertices. The other, purely combinatorial
result, states that for any ε, there is a constant D = D(ε, d), such that if two n-vertices
d-bounded degree planar graphs G,H, have the same2 D-local neighbourhoods, then changing
at most εn edges in G makes it isomorphic to H (we will say that G is ε-close to H in this
case).

The results above restrict the graphs they are applicable to, in two conceptually different
ways. The first is being planar (or hyperfinite). Indeed it is known that this is essential;
namely, we know that similar statements as above are wrong for e.g., bounded degree, but
otherwise general graphs. The other restriction is being bounded degree. The results above
(specifically the distance measure) are defined so to be used for sparse graphs - namely of
bounded (constant) average degree. Bounding the maximum degree is essential for the proof
machinery in the papers above, but does not seem to be essential for the results. However, as
of now, the only general results for non-bounded degree families of sparse graphs are known
only for the much simpler family of Forests [6], and the special power-law graphs of Ito [5]
(that are very close to be hyperfinite). In particular, the following, purely combinatorial
question proposed by Sohler [12] is still wide open: Suppose that two n-vertex planar graphs
H,G have identical D-local views (for some large enough constant D), is it true that the
graphs are ε-close to be isomorphic? (ε-close means that we can change at most εn edges in
one to make it isomorphic to the other).

We answer this question positively for a subclass of planar graphs that includes forests
and outerplanar graphs (and k-edge-outerplanar graphs - to be defined later). We follow
coarsely the route used by Newman-Sohler [9], and the generalization of it to non-bounded
degree forests by Kusumoto and Yoshida [6]. As an outcome, we also obtain three other
results as well: (a) every graph property is testable for this subclass. (b) isomorphism is
testable for any two graphs of this subclass. (c) every such graph G can be “learned”, namely
one can infer a graph H that is ε-close to G. All results using poly(logn) many queries.

The presentation is arranged as follows: In Section 2 we present the essential definitions,
and the tools we use. We then state the formal results in Section 3, along with a road map
to the structure of the proof.

2 Notations and Tools

In this paper we consider labelled undirected graphs without multiple edges and self-loops.
We use G = (V,E) to denote a graph with vertex set V and edge set E. We will assume
by default that V (G) = [n], unless otherwise stated. We will say that a graph is d-
bounded degree if its maximum degree is at most d. For a set S ⊆ V we denote by

2 The result are asserted even when the the D-local neighbourhoods are not the same, but just close
enough.

J. Babu, A. Khoury, and I. Newman 21:3

E(S) = {(u, v) ∈ E(G)| u ∈ S, v /∈ S}, and e(S) = |E(S)|. A block in a graph G is a
maximal 2-connected subgraph of G.

The subclass of planar graphs that is discussed in this paper is that of k-edge-outerplanar
graph for some fixed constant k.

I Definition 2.1 (k-Edge-Outerplanar). A graph G is 1-edge-outerplanar if it has a planar
embedding in which all vertices of G are on the outer face.

We say that G is k-edge-outerplanar if G has a planar embedding such that if all edges
on the exterior face are deleted, the connected components of the remaining graph are all
(k − 1)-edge-outerplanar.

Note: Being 1-outerplanar coincides with the standard definition of being outerplanar.
However, for k > 1, being k-edge-outerplanar is a weaker notion than the standard notion of
being k-outerplanar - namely, graphs that have a planar embedding such that the removal of
the vertices on the outer face results in a (k − 1)-outerplanar graph. In particular, a graph
may be 2-outerplanar, but not k-edge-outerplanar for any given constant k.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphic, if there is a
bijective mapping Φ : V1 → V2 such that (u, v) ∈ E1, if and only if (Φ(u),Φ(v)) ∈ E2. A
graph property is a (possibly infinite) collection of graphs, which is closed under isomorphism.
We will consider graph properties of graphs with fixed number of vertices (n in what follows),
where the number is growing to infinity. The graphs that are discussed in this paper are all
sparse graphs, specifically, they are planar, and hence their average degree is at most 6.

2.1 Property Testing
I Definition 2.2 (Graph distance). Let G1 = (V1, E1) and G2 = (V2, E2) be planar graphs
on n vertices. The distance dist(G1, G2) is the number of edges that needs to be deleted
and/or inserted from G1 in order to make it isomorphic to G2.

We extend the definition of dist(G1, G2) for the case where G1 and G2 have different
number of vertices, by adding a sufficient number of isolated vertices to the graph with the
lesser number of vertices.

We say that G1, G2 are ε-far from being isomorphic (or G1 is ε-far from G2), if dist(G1, G2)
> εn, where n = min{|V1|, |V2|}. Otherwise, we say that they are ε-close (to being iso-
morphic).

I Definition 2.3 (ε-far). Let Π be any (non-empty) graph property. A graph G = (V,E) is
said to be ε-far from Π, if it is ε-far from every G′ ∈ Π. If G is not ε-far from Π, it is said to
be ε-close to Π.

For algorithms in the model that we will discuss in this paper, the input graph, G = (V,E),
is given but not known to the algorithm. The vertex set V = [n] is known. The neighbours
of each vertex v ∈ [n] are assumed to be ordered, namely by a list u1, . . . , ud(v), where
d(v) = deg(v) is the degree of v. The access of the algorithm to the input graph is via
‘neighbourhood’ queries: A query is to specify a vertex name v ∈ [n], and i ∈ [n], on which
the answer to the query is the name of the i-th neighbour of v, or a special indication if
deg(v) < i. We further augment this standard model with an additional type of queries: On
a queried vertex v, one gets deg(v). It is easy to see that deg(v) can be determined using
the standard model at the cost of O(logn) queries3.

3 A good enough approximation at a better cost would suffice for all our purposes; but we do not use
this here, as we do not expect to optimize the query complexity to better than poly(log n).

APPROX/RANDOM’16

21:4 Every Property of Outerplanar Graphs is Testable

The notion of property testing was introduced by Rubinfeld and Sudan [11] and then
formally defined by Goldreich, Goldwasser and Ron [3]. A property testing algorithm for
property Π, for the model of sparse graphs, or bounded degree graph model is a (randomized)
algorithm that, given query access to a graph G as described above, accepts every graph from
Π with probability at least 2/3, and rejects every graph that is ε-far from Π with probability
at least 2/3. If the graph neither has property Π nor is ε-far from Π, then a property tester
may accept or reject.

2.2 Partitions and the local views of the graph

For a graph G = (V,E), and a set of vertices S ⊆ V (G), G[S] denotes the subgraph induced
by S. A partition of a set V is a set of pairwise disjoint non-empty subsets of V whose union
is V . For a partition P = (C1, C2, ..., Cr) of V (G) we denote by G[P] the graph that is the
union of G[Ci]. Note that G[P] is disconnected if r ≥ 2 and is obtained from G by deleting
all edges whose endpoints are in different partition classes of P .

Every d-bounded degree planar graph admits a partitioning into small (constant size) con-
nected components by removing a fraction of the edges, by using recursively the Lipton-Tarjan
separator [8]. To be useful for property testing and sub-linear approximation algorithms, it
would be nice if the features of such partitions could be obtained by some local sampling.
Hassidim, Kelner, Nguyen, and Onak in a seminal work, [4], following an earlier work of
Benjamini, Schramm and Shapira[2], showed how to construct an oracle to such a partition,
that takes a vertex as input and returns in constant time the partition class that vertex
belongs to.

We will use extensively the local-partition-oracle for d-bounded degree planar graphs,
and the related results which we present in what follows.

A connected graph G = (V,E) with a specially identified vertex v, is called rooted graph
and we sometimes say that G is rooted at v. A rooted graph G = (V,E) has radius D, if
every vertex in V has distance at most D from v. Two rooted graphs G and H are isomorphic,
if there is a graph isomorphism between H and G that identifies the roots with each other.
For a graph G = (V,E), an integer D and a vertex v ∈ V , let BG(v,D) be the subgraph
rooted at v that is induced by all vertices of G that are at distance less or equal to D from v.
BG(v,D) is a graph of radius at most D with root v, and we call it the D-disc around v.
The collection (multiset) of the n unlabelled D-discs of G is called the D-local views of G.
Note that for d-bounded degree graphs, the number of possible non-isomorphic D-discs is a
constant depending on D and d, and does not depend on n.

I Definition 2.4 (Frequency Vector). For integers d ≥ 1 and s ≥ 1, a graph is called
(d, s)-graph if it is d-bounded degree and has at most s vertices.

Let F(d, s) = F (1), F (2), ..., F (f(d,s)) be the family of all non-isomorphic (d, s) planar
graphs and let f(d, s) = |F(d, s)|.

For a graph G = (V,E) and a partition P of V that gives a collection of (d, s) compon-
ents G[P], the P -frequency vector Freq(G[P]) is the f(d, s)-dimensional vector whose i-th
coordinate is the number of (d, s)-components of G that are isomorphic to F (i). Let the
normalized P -frequency vector freq(G[P]) be the `1-unit vector 1

m ·Freq(G[P]), where m is
the number of (d, s) components4 in G[P].

4 In [9] the frequency vector is for rooted components, hence normalization is by dividing into n - the
number of vertices. These two notions are interchangeable in terms of the ability to approximate them.

J. Babu, A. Khoury, and I. Newman 21:5

We will use the following theorem considered and proved first by Onak [10], and by
Hassidim, Kelner, Nguyen, and Onak [4] on partitions of bounded degree hyperfinite graphs.
For the statement below, we use the better bounds achieved by Levi-Ron [7] and we state it
here only for the restricted case of planar graphs.

I Lemma 2.5 (Onak’s local-partition oracle, [7]). Let ε > 0, and d ≥ 2. Then there is an
s = s2.5(ε, d) = O(d2/ε2) and a randomized algorithm (a.k.a “local partition oracle”), A, such
that for every d-bounded degree planar graph G = (V,E), algorithm A produces an implicit
partition P so that G[P] is a collection of (d, s)-components.

Algorithm A provides a “neighbourhood oracle” to G[P], namely, for a query to a vertex
v ∈ V (G), the algorithm returns the name of a component of G[P] in which v lies in, by doing
(d/ε)O(log(1/ε)) queries to the graph G, and more specifically to vertices in BG(v, poly(1/ε)).

The total time complexity of a sequence of q queries to the oracle is q log q · (d/ε)O(log(1/ε))

and with success probability 9/10, the answers are all consistent with a partition P such that
G[P] is ε-close to G.

Using the local partition oracle, Newman-Sohler [9] proved that the normalized P -
frequency vector of G[P], for a (d, s) partition P of a d-bounded degree hyperfinite graph
G can be estimated with an additive error of ε in its l1-norm, simply by querying the
D = D(s)-neighbourhoods (D-discs) around some constant number of randomly chosen
vertices in G.

I Definition 2.6. Let f, g ∈ Rn be two vectors. We say that g λ-approximates f if
|f − g|1 =

∑n
1 |gi − fi| ≤ λ.

The following lemma is a restatement of Lemma 5.2 of [9] for the restricted case of planar
graphs (originally stated in [9] for hyperfinite graphs). Here we do not specify the function
types explicitly, so to make the lemma more readable.

I Lemma 2.7 ([9]). Let G = (V,E) be a d-bounded degree planar graph, and ε ∈ (0, 1) any
constant. Let s = 100d2/ε2. Then there are values D2.7 = D2.7(ε, d), q2.7 = q2.7(ε, d) and a
randomized algorithm Sampler, that accesses the graph G by querying independently q2.7
random vertices of G and exploring the D2.7-discs around them. The algorithm outputs a
frequency vector f̃ with the following properties.

With probability at least 4/5 (over the internal coins of the algorithm) the following
two events occur simultaneously: (a) the output vector f̃ ε-approximates the normalized
(d, s)-frequency vector freq(G[P]) of the graph G[P], where P is a partition of G into
(d, s)-components. (b) G[P] is ε-close to G.

Finally, to close the cycle, the following simple claim shows why an approximation of
freq(G[P]) as above is useful.

I Claim 2.8 ([9]). Let s ≥ 1 be an integer and let 0 < λ < 1. Let G and H be two graphs
that are each a union of (d, s)-graphs on n vertices such that their normalized frequency
vectors (for the corresponding partitions into components) f, g respectively have |f − g|1 ≤ λ.
Then G and H are λ-close.

For non-bounded degree outerplanar graphs it is not always possible to delete εn edges
so that in the resulting graph all components are of constant sizes. E.g., consider the star of
n vertices. Hence, we allow some more complex pieces in the partitions. This motivates the
following definition that is introduced in [6] for partitions of forests.

APPROX/RANDOM’16

21:6 Every Property of Outerplanar Graphs is Testable

I Definition 2.9 ((d, s)-union). A graph G = (V,E) is a (d, s)-rooted graph if G contains
a (unique) vertex v with deg(v) ≥ d+ 1 and each connected component of G \ {v} is (d, s)
graph. The unique vertex v (with degG(v) ≥ d + 1) is called the root vertex of G and is
denoted by root(G).

A graph is a (d, s)-union if it is a vertex disjoint union of (d, s)-rooted components and
(d, s)-components.

I Definition 2.10 (Multiway-Cut). For a graph G and a set of vertices T ⊆ V (G) a T -
multiway cut is a set of edges E′ ⊆ E(G) such that in the graph G \E′ no two vertices from
T are in the same connected component.

3 Global Partitions

In this section we prove the main structural theorem stating that every k-edge outerplanar
graph is close to a k-edge outerplanar (d, s)-union, for some constants d, s (which depend only
on ε and k). For clarity we present in this version the statements, and results for outerplanar
graphs (rather than k-edge outerplanar graphs). The generalization to k-edge-outerplanar
graphs is immediate, but will not be presented here. Note, however that the constants d and
s will depend also on k when the generalization is done.

I Theorem 3.1. Every outerplanar graph G is ε-close to a graph G′ that is an outerplanar
(d, s)-union for some d = d(ε) and s = s(ε).

We note that this does not immediately imply that every such G has a ’short’ (constant
size) description, as each component of G′ may have a root of different and unbounded
degree. It does not imply also, that such a “close” graph G′ can be “learned” from the
local views in G. Thus, this is not directly applicable for property testing, but could be of
independent interest. We will prove the theorem, and provide positive answer for the two
additional properties above, namely that G′ can be learned from the local views, and that it
has a “short” description.

Before we present the proof of Theorem 3.1 we make some observations about outerplanar
graphs which provides the core tool for the proof as well as the motivation for the definition
of k-edge outerplanar graphs.

For a graph G = (V,E) and a, b ∈ V let c(a, b) denote the minimum edge cut in G,
separating a and b. The following basic Lemma 3.2 is used, via a chain of reductions, to
prove Corollary 3.3 (See appendix for further details and proofs).

I Lemma 3.2. Let G(V,E) be 2-connected outerplanar graph, s, t ∈ V such that (s, t) is
an edge of the outer face in the embedding of G as an outerplanar graph. Then c(s, t) ≤
b(log(|V |+ 1))c.

I Corollary 3.3. Let G(V,E) be a connected outerplanar graph and U,W (V be disjoint
subsets of vertices. Suppose that U is an independent set in G Then, there is a U -multiway
cut of size at most 2(|U | − 1) log(2|W |+ 1) in the graph G[W ∪ U].

I Claim 3.4. Let G be a bipartite outerplanar graph with bipartition A,B. If degree of each
vertex in B is at least two, then |B| ≤ 4|A| and hence, G has at most 15|A| edges.

We note that reducing the constants 4 and 15 in the above claim can be reduced by a
factor of two, but this is of little interest in our context. We prefer the current proof of
Claim 3.4 in the appendix, because its generalization to handle k-edge-outerplanar graphs is
easy.

J. Babu, A. Khoury, and I. Newman 21:7

Algorithm 1 Given d, ε, and an outerplanar graph G(V,E) this algorithm returns an
outerplanar (d, s)-union graph G′(V,E′), such that G′ is obtained from G by removing
f(s, d, ε) · n edges, where s = s2.5(ε/4, d).
1: procedure GlobalPartition(G)
2: Let V h = {v ∈ V | degG(v) > d}, and V l = V \ V h.
3: Let E1 = E(G[V h]) be the set of edges with both endpoints in G[V h], and let G1 be

the graph obtained from G by deleting E1.
4: Find a (ε/4, s)-partition of G[V l]. Such a partition exists, and, in particular, as

asserted in Lemma 2.5, a (local) oracle to such partition can be found. Let G2 be the
graph resulting from G[V l] after partitioning. G2 is a disjoint union of (d, s)-components.

5: Replace G[V l] by G2 in G1, that is: let G3 = (V,E2 ∪ F), where E2 = E(G2) and
F = E(G) ∩ (V h × V l). Namely F contains all edges of G with exactly one endpoint in
V h and one endpoint in V l.

6: Finally, obtain G′ from G3 by removing for each component C of G2 a minimum size
V h-multiway cut in the graph G3[C ∪ (V h ∩N(C))].

7: end procedure

Now we are ready to prove Theorem 3.1. The proof will be algorithmic, namely, Algorithm
1 below will produce the required G′ that is close to G.

I Theorem 3.5. Let ε ∈ (0, 1) be any constant. Let G = (V,E) be an outerplanar graph,
d = d(ε) = O(1

ε2), s = s2.5(ε/4, d) = O(d2/ε2). Then Algorithm 1 produces a (d, s)-union
subgraph G′ of G, that is ε-close to G with probability better than 0.9.

Proof. Since G is planar, it follows that |E(G)| ≤ 3n. This implies that |V h| ≤ 6n/d. Since
the graph is planar then G[V h] is planar too. Hence, at most 3|V h| ≤ 18n/d edges are
removed in step 3 of the algorithm. We fix d = O(1

ε2) to be sufficiently high, so to make sure
that at most ε2n/10 edges are removed in step 3.

Applying the global partition in step 4 with parameters ε1 = ε
4 and d we obtain, with

success probability 0.9, a graph G2 that is a a union of (d, s)-components, and that is ε1-close
to G[V l]. This defines the graph G3 in step 5 of the algorithm.

By Claim 3.4, the number of connected components in G2 with at least two neighbours
in V h in the graph G3 is at most 4|V h|. If each of these components is contracted to a single
representative vertex for the component, after removal of parallel edges and self loops, there
are only 15|V h| edges between the representative vertices and V h.

For step 6, observe that if for each component C of G3[V l] we get a N(C) ∩ V h-
multiway cut MC in G3[V (C) ∪ (N(C) ∩ V h)], then M = ∪CMC will be a V h-multiway
cut in G3. Moreover, we can restrict our attention to only components which have at
least two neighbours in V h. As explained in the paragraph above, the number of such
components is only 4|V h| and

∑
C |N(C) ∩ V h| is at most 15|V h|. For each such component

C, we have |MC | ≤ |N(C) ∩ V h| · (2 log(2s + 1)) by Corollary 3.3. From this, it follows
that |M | ≤ 15|V h|(2 log(2s + 1)). Since s = O(d2/ε2), a proper choice of d ensures that
|M | ≤ εn/3.

Thus, the total number of edges removed in all steps of the algorithm is at most εn,
implying that the resultant graph G′ is ε-close to G.

After applying the partitioning oracle in step 4 the size of every connected component in
G2 is at most s. Since V h becomes an independent set after step 3, after executing step 6,
no two vertices in V h have a path between them in G′. Therefore, each component of G′ has

APPROX/RANDOM’16

21:8 Every Property of Outerplanar Graphs is Testable

at most one vertex of degree greater than d. Therefore G′ is a (d, s)-union for d and s as
above. J

We note that in the proof above, step 4 of the algorithm, which is the only random part,
may be replaced with any deterministic partition (e.g., recursively removing edges connected
to a good enough separator). We used random local partition, in the spirit of Onak [4],
looking ahead, to hint to the fact that the partition can actually be done in a distributed
manner, and hence “approximated” locally. The same is also true with respect to step 6,
where a global multiway cut could be taken. It is possible to do step 6 in a distributed way
and locally, because a component C of G2 has at most d · s (which is a constant) neighbours
in Vh, and hence G3[C ∪ (V h ∩N(C))] is a graph of constant size.

4 From global partition to Local partition

Let G = (V,E) be an outerplanar graph. Recall that our goal is two fold: the first is to
roughly “learn” G from its local views. Learning here means to find a graph G′ that is a
(d, s)-union and that is close to G, as asserted by Theorem 3.1. Conceptually this implies
that two graphs with the same local views are close to be isomorphic (some extra care
should be taken here). The 2nd goal is to find the above approximating G′ using a small
number of queries. Conceptually this immediately implies a property testing mechanism for
all properties.

This is summed up in the following theorems.

I Theorem 4.1. For every ε > 0 there is a D = D4.1(ε), s = s4.1(ε), d = d4.1(ε), q =
q4.1(ε, n) = O(poly(logn)), and a randomized algorithm Approx that on an outerplanar
graph G = (V,E) on n vertices:

Approx outputs an outerplanar (d, s)-union graph G∗.
Approx does random queries to q vertices in G, and only inside the D-disc around the
above vertices.
With success probability at least 0.9, G∗ will be ε-close to G.

I Theorem 4.2. For every ε > 0 there is a D4.1 = D(ε), q = q4.1(ε, n) = O(poly(logn)),
and a randomized algorithm Tester, that on two outerplanar graphs G,H on n vertices, it
accepts if H is isomorphic to G and rejects if H is ε far from G with error probability at
most 1/3.

The algorithm Tester does q random queries to q vertices in G and H, only inside the
D-disc around (some of) the above vertices.

I Theorem 4.3. For every ε > 0 and a graph property Π, of graphs on n vertices, there is a
D = D4.1(ε), q = q4.1(ε, n) = O(poly(logn)), and a randomized algorithm TΠ, that accepts
every outerplanar graph G having the property, and rejects every outerplanar graph G that is
ε-far from Π, with error probability 1/3.

The algorithm TΠ does q random queries to q vertices in G, and only inside the D-disc
around (some of) the above vertices. Moreover, the queries to G are oblivious of Π: only the
final decision once the q queries are done, is dependent on Π.

I Theorem 4.4. For every ε > 0 there is a D = D4.1(ε) such that if two outerplanar graphs
G,H on n vertices, have identical D-views then H is ε-close to G.

We note that analogue theorems for planar d-bounded-degree graphs are given in [9].
However, unlike the case for d-bounded-degree planar graphs, that have constant size

J. Babu, A. Khoury, and I. Newman 21:9

approximations in form of a union of (d, s)-components, a (d, s)-union graph does not
necessarily has a short description. This is due to the fact that the degree of the root of
every component may be arbitrary number in [n− 1], and hence there are non-constant many
types of possible components (let alone their number). To overcome this difficulty we define
an ε-net for (d, s)-union graphs, namely, a set G(d, s) of (d, s)-union graphs (of relatively
short description), and show that for every G′ as above, there is a graph G′′ ∈ G(d, s) that is
close to G′.

Further we will show that G′′ can be obtained from the original G by sampling. As will
turn out, this sampling can be restricted to randomly sampling a relatively small number
of vertices (poly(logn)), in some constant-diameter discs in G. Hence this will provide
the “locality” that is stated as desirable above. A similar method in nature, was used by
Kusumoto and Yoshida, [6], for unbounded degree forests.

We need the following definitions.

I Definition 4.5. [γ-layered (d, s) union graphs] Let γ > 1 be a constant. A γ-layered (d, s)
union graph is a (d, s) union graph in which all high-degree vertices have degrees that are
γ-powers, namely, in the set {γi}Li=α where L = blogγ n− 1c and α = min{i|γi ≥ d+ 1}. We
denote by G0 the components of a (d, s) union G that are (d, s) graphs.

In the above definition, all γi are assumed to be integral. This is achieved by rounding
if necessary. We do not explicitly write this rounding to increase readability. The extra
rounding will not affect any of our results.

The role of γ-layered graphs is obvious from the following claim.

I Claim 4.6. For every ε > 0 there is a γ = γ4.6(ε, d) ∈ (1, 2) such that every (d, s)-union
graph G is ε-close to a γ-layered (d, s)-union graph.

Proof. Let γ ∈ (1, 2) to be defined later, and let G0, , ..., GL be a partition of G, where
Gi, i = α, . . . , L contains all (d, s)-rooted components C with deg(root(C)) ∈ (γi−1, γi] and
G0 contains the (d, s) components. Let ni be the number of components in Gi.

Consider each Gi separately. For i ≥ α, and for each component C in Gi we add at
most γi − γi−1 isolated vertices and link them to root(C). This obviously makes the graph
γ-layered. Thus for Gi we added at most ni · (γi − γi−1) = ni(γ − 1)γi−1 edges. Note,
however, that ni · γi−1 ≤ |V (Gi)|, as every component in Gi contains a vertex with degree
larger than γi−1.

For G0 we do not need to change anything. This results in a total number of edge
changes bounded by (γ − 1) ·

∑
i≥α |V (Gi)| ≤ (γ − 1)n. Hence setting γ ≤ (1 + ε) implies

the claim. J

Now, to define a short description (a.k.a. “sketch”) for a γ-layered (d, s) union graph, all
we need is to define the structure of Gi, i = α, . . . , L, and that of G0. For the latter, a good
sketch is the (d, s)-frequency vector of G0, (or a good approximation of it), as being done in
[9]. This will also become clear as a special case in what follows. For Gi, i ≥ α, we only need
to define the structure of C for each component C ∈ Gi.

Note that C \ root(C) is a union of (d, s) components, each with some marked subset of
vertices, indicating the neighbour set of root(C). Since there are constantly many possible
(d, s) graphs, there are also constantly many (d, s)-graphs with marked vertices. Hence, each
component C of Gi is defined by the (d, s) frequency vectors of the marked components,
{Freq(C \ root(C))}C∈Gi . Still, computing for each C ∈ Gi its frequency vector would be
too demanding. Instead we will approximate this vector, using the easy Claim 2.8. Doing
this will bring us two advantages; the first is that we will still get a component C ′ which is

APPROX/RANDOM’16

21:10 Every Property of Outerplanar Graphs is Testable

close enough to C, but which we will be able to afford (in terms of number of queries). The
second and more important feature is the reduction in the number of types of components
to a constant, thereby making it possible to approximate Gi by estimating the number of
components of each of these constantly many types.

This is summed up in what follows:
Recall that for fixed d and s we set f(d, s) = |F(d, s)| (which is a constant), where F(d, s)

is the set of all possible outerplanar(d, s)-graphs. We now add a boolean marking of vertices
in each (d, s)-graph. This boolean marking will be used later to indicate which vertices in the
component are connected to its root in a rooted component (if at all). Hence the histogram,
and the frequency vector, is of dimension 2s · f(d, s), since corresponding to each graph in
F(d, s), we have also to specify which subset of vertices in it are marked (have 1-marking).

For fixed γ > 1 and d, s, let G = G0 ∪ (∪Li=αGi) be a γ-layered (d, s) union graph,
and fix an i ∈ {α, . . . , L}. As explained above, each component C ∈ Gi is completely
defined by its (d, s) frequency vector Freq(C) ∈ [n]2sf(d,s), where the marked vertices in
each (d, s)-component of C \ root(C) are the vertices that are connected to root(C). Let
freq(C) = Freq(C)/(sum of coordinates of Freq(C)). Note that ||freq(C)||1 = 1.

Let 0 < δ < 1 be small enough constant (to be defined later), andN(δ) be a δ-net for the `1-
unit ball of dimension 2sf(d, s). Obviously such an N(δ) whose size is a constant that depends
only on δ, d, s exists. For example, take N(δ) = {δx | x is a (2sf(d, s))-dim vector of integral
coordinates whose absolute values sum up to 1/δ}.

For Freq(C) as above, we define its δ-normalized approximation as a closest vector in
N(δ) to freq(C) (in case of tie choose an arbitrary closest vector). Thus, we have a mapping
that maps each component C of Gi to a constant size alphabet (of size |N(δ)|), and hence
Gi is mapped into a vector LFreq(Gi) ∈ [n]|N(δ)|, where the jth coordinate is the number
of components C in Gi that have type=j as their δ-normalized approximation. Again,
we normalize as follows: Let ni be the number of components in Gi, we let lfreq(Gi) =
1
ni
· LFreq(Gi).

I Claim 4.7. Let Gi be the ith layer, i > 0, of a γ-layered (d, s)-union graph as above. Let
ε > 0. Then there is a constant ν = ν4.7 = ν4.7(d, s, δ, ε) ∈ (0, 1) such that if |ñi − ni|γi ≤
ν ·max{niγi, n/L}, and |f̃ − lfreq(Gi)|1 ≤ ν, the graph G̃i that is defined as stated below
has dist(Gi, G̃i) ≤ ε ·max{niγi, n/L}.

Here G̃i is the following graph: let F = ñi · f̃ = (m̃1, . . . , m̃|N(δ)|) and for j = 1 . . . , |N(δ)|,
let Cj be a rooted component whose frequency vector is the j-type frequency vector. Then for
j = 1 . . . , |N(δ)| we include dm̃je disjoint copies of Cj in G̃i.

Note that the claim only asserts an additive error between Gi and G̃i that is not necessarily
proportional to the size of Gi. However, since there are L “layers”, the average Gi has n/L
vertices. For Gi larger than the average, the above approximation is with a ν-multiplicative
error. For Gi smaller than the average, the additive error is a fraction of the average, which
we will be able to afford.

Proof. Let Gi, G̃i as above , and let mj = LFreq(Gi)j = fj ·ni be the number of components
in Gi of type j. Namely lfreq(Gi) = (f1, . . . , f|N(δ)|). Let ∆ = max{niγi, n/L}. A close
isomorphism between Gi, G̃i is clear: we map for each type j, the corresponding matching
components, leaving |m̃j −mj | components unmatched. For the unmatched components we
remove all edges and make the corresponding nodes isolated points. Hence the contribution
of type j to the distance (edge-count) is bounded by |mj − m̃j | · γi · e(d, s) (disregarding
here errors due to non-integrality), where e(d, s) is the maximum number of edges in a (d, s)
graph (which is constant).

J. Babu, A. Khoury, and I. Newman 21:11

Summing this over all j ∈ [|N(δ)|] one gets:

dist(G̃i, Gi) ≤
|N(δ)|∑
j=1
|mj − m̃j | · γi · e(d, s) ≤ e(d, s)γi

∑
j

|ñif̃j − nifj |

≤ e(d, s)γi
∑
j

|ñif̃j − ñifj + ñifj − nifj |

≤ e(d, s)γiñi · ν + e(d, s)γi|ñi − ni| · |lfreq(Gi)|1
≤ e(d, s) · 2ν∆ + e(d, s)ν∆

Now if we set ν ≤ ε
3e(d,s) we get the asserted claim. J

We now restate Theorem 4.1 in a more detailed version, and present its proof.

I Theorem 4.8. For every ε > 0 there is a D4.1 = D(ε), s = s4.1(ε), d = d4.1(ε), γ4.1(ε),
q = q4.1(ε, n) = O(poly(logn)), there is a randomized algorithm Approx, that on an
outerplanar graph G = (V,E) on n vertices, outputs an outerplanar γ-layered graph G∗.

The algorithm Approx does q random queries to q vertices in G, and only inside the
D-disc around (some of) the above vertices.

It holds that with success probability at least 0.9, G∗ will be ε-close to G.

Proof of Theorem 4.8 (Sketch). We start by defining G′ as the (d, s)-union graph obtained
by Algorithm 1, for ε′ = ε/10. We do not know G′, but we know how it would have been
formed by Algorithm 1. We also know that with high probability it would be ε/10-close to G.
By Claim 4.6, this implicitly defines a γ-layered graph G∗ that is close to G′, for a suitably
small γ. Let G∗ = G0 ∪ ∪Li=αGi, and for i = 0, α, . . . L, let ni be the number of components
of Gi, and fi = lfreq(Gi). Let roots(G′) be the set of high-degree vertices in G′, namely
the roots of the (d, s)-components of G′.

The main part of the algorithm, is algorithm Sampler that is described in the appendix.
Algorithm Sampler aims at choosing a vertex y that is distributed uniformly at random
among the roots(G′) that are in any given layer of G∗. For such y it will also approximate
its degree in G′ accurately enough, and while doing this it will also approximate freq(y),
the approximated frequency vector of y (although this is defined w.r.t G∗ rather than G′).

Once this is done, approximation ni, lfreq(Gi) as required by Claim 4.7, for every i ≤ L is
straight forwards: we just sample q random y’s as above, for q large enough (q = poly(logn))
and for each obtain its freq and degree. Then, by normalizing, the proportion of such
vertices that are in any interval [γi−1, γi) is a good approximation of ni, while the proportion
of each type of freq(y) gives an approximation of lfreq(Gi). Finally, having these estimates,
Claim 4.7 ends the proof.

The idea behind the Sampler is also simple. We choose a high-degree vertex y at random
from V h by sampling uniformly an edge (v, y) where v ∈ V l and y ∈ V h. Once we have
such y, we sample a random neighbour v of it of small degree, discover the component of
v, in G′[V l] by running the local partition oracle for d-bounded graphs, and deleting the
multiway cut. As a result, a random (d, s) component connected to y in G′ is found (or a
conclusion that v is not in the (d, s)-component connected to y). Having found such a random
component, we repeat the process for q independent times, which allows us to estimate (again
by Chernoff), the degree of y in G′, and its frequency freq(y).

Some extra care should be taken since the Sampler cannot succeed for every y that is
a root of G′. Consider a vertex y for which degG(y) >> degG′(y). For such y, for most
neighbours v of y, their components in the (d, s) partition of G[V l] (possibly after deleting

APPROX/RANDOM’16

21:12 Every Property of Outerplanar Graphs is Testable

the edges in the relevant multiway cut) will not be connected to y, and degG′(y) might not be
estimated correctly. Such vertices we call “bad”. In the proof of correctness of the algorithm
Approx that outputs G∗ we will show that while bad vertices contribute some additional
increase in the distance between the estimated G∗ and G, this increase in distance is small
enough, so that the produced G∗ will be (w.h.p) as needed.

We end this very high level description of the sampling process by two notes. The first
is that we need to approximate every (large) Gi. Namely, we need to decrease the failure
probability in each large Gi to O(1/ logn).

The second remark is that, a similar estimation in spirit (although starting from a forest
rather than the more general outerplanar graph), is done in [6], but using a different and
finer metric.

For further details, see the algorithm Approx in the appendix. J

I Remark. It is a suitable point here to note the difference of the results in this paper up
to this point, and the results for d-bounded hyperfinite (or planar) graphs of [9, 4]. In the
cited papers, a local oracle (in the sense of Onak, as described above) is obtained for the
(d, s)-graph H that is close to G. This local oracle is used to approximate the frequency
vector of the components in a straight forwards way, by sampling. In our case, a local oracle
to the (d, s) union graph (γ-layered) graph G∗ is not obtained; instead it is only “nearly”
obtained. It fails to produce a local oracle exactly for the bad y’s as explained in the proof.
Namely, let u be a high-degree vertex in G∗ (and hence in G too). It could be that many
edges adjacent to u in G are absent from G∗. Hence when asking for a random neighbour of
u, the sampler above may not succeed in finding one.

We present now the proofs of Theorems 4.3 and 4.2. These proofs follow from Theorem 4.8
exactly as in [9]. Before getting into the proof, it should be noted that in the standard
model, we are concerned only about the number of queries to the input graph and not about
the running time of the algorithm. The number of vertices in the input graphs is also an
information available.

Proof of Theorem 4.3. Let Π be any graph property, and let Πn be its restriction to graph
on n vertices. An ε-tester TΠ for Πn for outerplanar graphs on n vertices is the following:
We first run the randomized algorithm Approx that is guaranteed in Theorem 4.1 with
parameter ε/2, to produce a graph G∗ that is a (d, s) union and is ε/2-close to G with high
probability. Having a full knowledge of G∗, without further queries to G, Algorithm TΠ
checks if G∗ is ε/2-close to Πn. It accepts if the answer is yes, and reject otherwise.

Note that Tπ is oblivious of Π when performing the queries to G. Once the queries are
made to G and G∗ is obtained, a test for any property can be run (in parallel, say).

To analyse the error probability, assume that G∗ is indeed ε/2-close to G, as asserted by
Theorem 4.1. This happens with probability at least 0.9. Now if G has Π, then TΠ would
accept, because G ∈ Πn, and G∗ is ε/2-close G, which makes it ε/2-close to Πn. On the
other hand, if TΠ accepts on account of finding an H ∈ Πn, and such that G∗ is ε/2-close to
H, then by triangle inequality G is ε-close to Πn. Thus the error probability is bounded by
0.1. J

Proof of Theorem 4.2. Let G,H be two outerplanar graphs on which we want to ε-test
isomorphism. The ε-test will be as follows: It will first run the randomized algorithm
Approx, as guaranteed by Theorem 4.1, to produce a G∗ that is (d, s)-union, with distance
parameter ε/2.

It will then consider the graph property of n-vertex graphs Π(G∗) to be the following
property: the input graph is ε/2-close to G∗. By Theorem 4.3, there is an ε/2-tester T ′ for

J. Babu, A. Khoury, and I. Newman 21:13

Π(G∗). We just run T ′ on H, accept if it does and reject if it rejects. Note that the query
complexity is just doubled. Note also that G∗ and hence T ′ are not known in advance, but
this does not matter, as we do not need to worry about the time complexity.

To analyse the success probability, assume that G∗ is ε/2-close to G, which is asserted
to happen with probability 0.9. Now, assume that H is isomorphic to G, than G∗ is also
ε/2-close to H, and hence H has property Π(G∗). Thus, test T ′ will indeed accept H with
probability at least 0.9. On the other hand, assume that T ′ accepts H, then with probability
0.9, H is ε/2 close to Π(G∗). Then, by the triangle inequality it is ε-close to G as required.
The total error is hence bounded by the events, that either G∗ is not ε/2-close to G or that
T ′ errs. As both are bounded by 0.1, the total error probability is at most 0.2. J

Proof of Theorem 4.4 (Sketch). The proof in this case is somewhat more involved than
the previous theorems. The basic idea, as in [9] is that if G,H have the same local view,
then applying on both the sampler of Theorem 4.1, one will get identical (or close enough),
approximations G∗, H∗ respectively, as the approximation is done based on the information
in the local views, which is identical for both graphs. However, there was a difficulty in
this argument, even in [9] for bounded-degree hyperfinite graphs. To understand what the
difficulty is, let us start to formalize the proof.

Let D be as in Theorem 4.1, and R = f(D) be a constant depending on D, to be defined
later. Let q = poly(logn) be the number of queries asserted by the algorithm Sampler that
is used in the proof of Theorem 4.1, for some fixed ε.

Let V = V (G), and V ′ = V (H). Assume that the R-views of G is identical to the R-views
of H. Hence, we can fix a 1− 1 map φ : V 7→ V ′ so that every v is mapped to v′ = φ(v) such
that the R-disc of v is identical to the R-disc of v′. Our aim is to simulate the process of
the sampler on H, by observing its run in G: that is, if the sampler on G is making some
q queries to discs around vertices v1, . . . , vq, we will aim to use queries on identical discs
of their images v′1, . . . , v′q in H, with the hope that the output graph G∗ produced by the
sampler on G will be identical to the output graph H∗ obtained from H.

The first problem is that the sampler on G might be successful in G, in respect of obtaining
a good approximation G∗, using the queries v1, . . . , vq, while the output graph H∗ obtained
from H on the corresponding sequence v′1, . . . , v′q might not be a good approximation of
H. However, as both process are assured to be successful with high probability, for most
sequences v1, . . . vq, the processes on G and the corresponding one on H are both going
to be successful: on G with queries to discs of v1, . . . vq, and on H with queries to discs
of v′1 = φ(v1), . . . , v′q = φ(vq). It is not clear however, that they will produce the same
approximation although they seemingly see the same view, due to the following reason.

The sampler needs to makes some q i.i.d queries, to components in Gi, in order to
approximate lfreq(Gi). Concentrate first on G0 (which is an identical case to that considered
in [9]). The sampler makes queries to a sequence v1, . . . vq (on which as explained above, we
may assume it will succeed), and explore the D-disc around each vi on which it can run the
local partition oracle on the graph restricted to low-degree vertices, in order to define the
component of each vi in G0. Now suppose that vi is now being queried and that a vertex u in
the D-disc(vi) is also present in the D-disc(vj), for some previously queried vertex vj . Since
the partition must be consistent, the neighbourhood around u that is discovered when vj
was queried, is the same when viewed exploring the disc around vi. However, from the view
point in H, while v′j , v′i have isomorphic discs of the appropriate size as vj , vi respectively,
they do not have to share a vertex u′ = φ(u). Namely, the u ∈ D-disc(vj) is mapped to u′
that is not necessarily in D-disc(vi).

The argument in [9] addressed this issue is the following way: since the degree is bounded

APPROX/RANDOM’16

21:14 Every Property of Outerplanar Graphs is Testable

by some constant d, a situation as above (that for two random D-discs there is a non-empty
intersection) has very low probability, and hence will not occur on most random sequences.

Here this is not correct any more, as the degree of the roots may be as high as Ω(n) in
higher layers. Then it could happen that any two discs around such high-degree vertices do
intersect. To get rid of this problem assume first that there are no edges with two endpoints
that are high-degree, both in G and H. This may be assumed, as for the map φ above,
vertices are mapped to vertices with isomorphic discs even after deleting edges between two
high degree vertices. Further assume that the set of edges M = {(u, y)| u ∈ V l, y ∈ V h} is of
size |M | ≥ εn

q2 logn (otherwise, there is no problem as no high-degree vertex is likely to be seen
at all as a root (in the first item in phase 3 of the sampler - In addition, in this case the graph
is close to a d-bounded degree, and hence the argument above for d bounded degree graphs
implies that with high probability the sampler will produce an identical approximation for
both G and H, when simulated as explained above.

Recall that our sampler makes a total of q queries (which is poly(logn) in our case). At
the top level, it makes some queries to random edges in M (in phase 3 first item, sub-item
(a)), in order to make independent queries to at most q randomly chosen root vertices in Gi
for every level i, and explore the component in Gi under such roots, by random sampling.

Consider the bad case when a low-degree vertex v might be found while randomly exploring
components formed by two such high-degree roots y and y′. Assume that y′ is chosen after
y, and that the random neighbours of y that are queried are u1, . . . ur, where r ≤ q. Then
while forming the (d, s)-components in G[V l] for u1, . . . , ur, they together involves querying
a total of at most q low-degree vertices (v being among them). Further, these vertices have a
total of r ≤ q edges that are queried and whose end points are high-degree vertices other
than y. Call these edges “bad” with respect to y.

Now, for v to be queried while exploring y′, the same should happen with y′, i.e., v
should be among the total of at most q queried edges once the above exploration is done
with y′. However, v will not be queried while exploring y′, if no bad edge with respect to y is
queried while exploring y′, and if the D-discs in G[V l] around the at most q queries from y

to low-degree vertices do not intersect the D-disc(v) in G[V l]. Hence, when y′ is chosen by
a random edge, if none of its at most q queried random neighbours of y′ are bad edges w.r.t.
y, then v will not be queried while exploring y′, due to the first reason, and conditioned
on that, the D-discs around these random vertices will also be disjoint from D-disc(v) as
D-disc(v) contains only a very small (constant) number of vertices .

Therefore, for y′ such that deg(y′) ≥ q5, while exploring y′, encountering a low-degree
vertex u that was encountered earlier while exploring from another such y will happen with
probability at most 1/q3.

For y′ such that deg(y′) ≤ q5, the layer containing y′ has a high mass (more than n/ log2 n)
only if that layer contains at least n

sq5 log2 n
such high-degree vertices, where s = O(d2/ε2) is

the bound set by the partitioning algorithm on the component size. Now, for such y′, if none
of the low-degree neighbours u of y′ has the edge (u, y′) that is bad w.r.t y, again exploration
from y′ will not query a v that was queried while exploring y. As there are at most q bad
edges w.r.t. y, at most q high-degree vertices y′s will have one of these bad edges incident
on them, and hence the probability of picking such a y′ for exploration is at most s·q6 log2 n

n

which is extremely low.
Over all, combining the two cases, the probability that for (y, y′) as above, a common v

will be queried is lower than 1/q3, and hence by the union bound on all possible q2 pairs,
with very high probability, for no pair (y, y′) a common vertex is queried.

Assuming that indeed for no pair (y, y′) of high-degree vertices, there is a common

J. Babu, A. Khoury, and I. Newman 21:15

low-degree vertex that is queried, the local views that are sampled for each root in Gi, i ≥ α
are distinct.

Hence we can couple the two sampling processes, the one for G and that for H in a
consistent way, so to have the same views, and therefore will produce G∗ and H∗ which are
identical.

Thus, if we run the sampler of Theorem 4.8 with parameter ε/2 on G and H, it is ensured
that with high probability the runs are successful and it produces G∗ and H∗ respectively
with dist(G,G∗) ≤ εn/2, dist(H,H∗) ≤ εn/2 and moreover G∗ = H∗. Therefore, we have
dist(G,H) = ε, as desired.

Finally, let us consider what is the disc radius needed to ensure that the above will
indeed occur. Note that for low-degree vertices, we only need D-discs around them to be
able simulate the sampler behaviour from the local information. For high-degree vertices,
some r ≤ q random queries to neighbours are being made in the disc around them. While
q = poly(logn) and not constant, note that all the possibly q such queries, are done to
neighbours (namely, vertices of distance 1), from such high-degree vertices. Further queries
are done in G[V l] to simulate the local partition on low-degree vertices, with an occasional
query that discovers a high-degree vertex, but, in which case, no further exploration is done
from this high-degree vertex. Hence taking 2D-discs is enough to simulate the sampler
behaviour.

We avoid further details in this version. J

5 Discussion

Our results are another step towards understanding the theory of property testing in the
sparse graph model, and mainly for restricted subfamilies of planar graphs. Yet the main
questions in this area are still open:

Which graph properties are testable with sub-linear query complexity?
Is it true that if two n vertices planar graphs H,G have their D-local views identical (for
some large enough constant D), then the graphs are ε-close to be isomorphic? Is this
true for bounded tree-width graphs ?

We note that the above questions are open, even for the class of 2-outerplanar graphs.

References

1 Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial characteriza-
tion of the testable graph properties: It’s all about regularity. SIAM J. Comput., 39(1):143–
167, 2009. doi:10.1137/060667177.

2 Itai Benjamini, Oded Schramm, and Asaf Shapira. Every minor-closed property of sparse
graphs is testable. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, 2008, pages 393–402, 2008. doi:10.1145/1374376.1374433.

3 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998. doi:10.1145/285055.285060.

4 Avinatan Hassidim, Jonathan A. Kelner, Huy N. Nguyen, and Krzysztof Onak. Local graph
partitions for approximation and testing. In 50th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2009, pages 22–31, 2009. doi:10.1109/FOCS.2009.77.

5 Hiro Ito. Every property is testable on a natural class of scale-free multigraphs. CoRR,
abs/1504.00766, 2015. URL: http://arxiv.org/abs/1504.00766.

APPROX/RANDOM’16

http://dx.doi.org/10.1137/060667177
http://dx.doi.org/10.1145/1374376.1374433
http://dx.doi.org/10.1145/285055.285060
http://dx.doi.org/10.1109/FOCS.2009.77
http://arxiv.org/abs/1504.00766

21:16 Every Property of Outerplanar Graphs is Testable

6 Mitsuru Kusumoto and Yuichi Yoshida. Testing forest-isomorphism in the adjacency list
model. In Automata, Languages, and Programming - 41st International Colloquium, IC-
ALP 2014, Proceedings, Part I, pages 763–774, 2014. doi:10.1007/978-3-662-43948-7_
63.

7 Reut Levi and Dana Ron. A quasi-polynomial time partition oracle for graphs with an
excluded minor. ACM Trans. Algorithms, 11(3):24:1–24:13, 2015. doi:10.1145/2629508.

8 Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator theorem.
SIAM Journal on Computing, 9(3):615–627, 1980.

9 Ilan Newman and Christian Sohler. Every property of hyperfinite graphs is testable. SIAM
J. Comput., 42(3):1095–1112, 2013. doi:10.1137/120890946.

10 Krzysztof Onak. New sublinear methods in the struggle against classical problems. PhD
Thesis, Massachusetts Institute of Technology, 2010.

11 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with ap-
plications to program testing. SIAM J. Comput., 25(2):252–271, 1996. doi:10.1137/
S0097539793255151.

12 Christian Sohler. Private Communication, 2015.

A Missing Proofs of Section 3

Proof of Lemma 3.2. We will prove the lemma by induction on |V | = n. Assume that
s, t ∈ V and |V | ≥ 4. Since G is 2-connected and (s, t) ∈ E, then all the vertices are on a
simple path between s and t. Enumerate the vertices along this path v1 = s, v2, . . . vn = t. Let
i < n be the largest such that (s, vi) ∈ E, and let j > 1 be the smallest such that (vj , t) ∈ E.
Since G is outerplanar it follows that i ≤ j, therefore either i ≤ dn2 e or d

n
2 e ≤ j ≤ |V |.

Assume w.l.o.g that i ≤ dn/2e and let V1 = {s, v2, ..., vi}. Note that G[V1] is outerplanar,
with (s, vi) an edge on the outer face. If i = 2, then C1 = {(s, vi)} will separate s from vi in
G[V1]. If i > 2, G[V1] is 2-connected and by induction hypothesis, there is an edge-cut C1
separating between s and vi in G[V1], with |C1| ≤ blog(dn/2e+ 1)c. It is easy to see that
C1 ∪ (s, t) is a {s, t}-multiway cut in G, of size as claimed. J

I Lemma 1.1. Let G be 2-connected outerplanar graph. For any pair of vertices s, t ∈ V (G),
c(s, t) ≤ 2(log(|V (G)|+ 1)).

Proof of Lemma 1.1. Let G be 2-connected outerplanar graph, and s, t ∈ V (G). Since G is
outerplanar, then all vertices of G are on the unique Hamiltonian cycle C of G. We may
assume that s, t are not neighbours on C, as otherwise, Lemma 3.2 immediately implies
the result. Hence, C defines two vertex disjoint paths, from s to t: P1 = (s, v1, . . . , vk = t),
and P2 = (s, u1, . . . , u` = t). Let i ≤ k be the largest such that (s, vi) ∈ E and j < ` the
largest such that (s, uj) ∈ E. Then G1 = G[{s, v1, . . . , vi}] is outerplanar with (s, vi) on its
outer face. If i = 1, then C1 = {(s, vi)} will separate s from vi in G1. Otherwise, G1 is
2-connected and by Lemma 3.2, there exist an edge cut C1 in G1 separating s and vi with
|C1| ≤ log(|V (G)|+ 1). Similarly, G2 = G[{s, u1, . . . , uj}] is outerplanar with (s, uj) on its
outer face and has an edge cut C2 separating s and uj with |C2| ≤ log(|V (G)|+ 1). It is easy
to see that C1 ∪ (s, t) is an edge-cut in G separating s and t, of size as claimed. J

I Lemma 1.2. Let G(V,E) be a connected outerplanar graph and U,W (V be disjoint
subsets of vertices. Suppose that |U | ≥ 2 and U is an independent set in G. Then there exists
an edge cut of size 2 log(2|W |+ 1) in G[W ∪ U] separating some two points in U .

http://dx.doi.org/10.1007/978-3-662-43948-7_63
http://dx.doi.org/10.1007/978-3-662-43948-7_63
http://dx.doi.org/10.1145/2629508
http://dx.doi.org/10.1137/120890946
http://dx.doi.org/10.1137/S0097539793255151
http://dx.doi.org/10.1137/S0097539793255151

J. Babu, A. Khoury, and I. Newman 21:17

Proof of Lemma 1.2. Let G(V,E) be a connected outerplanar graph and U,W (V be
disjoint subsets of vertices. Suppose G[W] is connected and U is an independent set in G
such that every vertex in U is a neighbour of some vertex in W and |U | > 1.

First consider the case when G[W ∪ U] is 2-connected. Since U is an independent set,
then in the Hamiltonian cycle that is the boundary of the outer face of G[W ∪ U], between
every two vertices of U , there must be at least one vertex from W . Hence |U | ≤ |W |, which
implies that |U ∪W | ≤ 2|W |. Take any two arbitrary vertices u1, u2 ∈ U . By Lemma 1.1,
there exists an edge-cut C of size at most 2(log(|U |+ |W |+ 1)) ≤ 2(log(2|W |+ 1)) separating
u1 and u2 in G[W ∪ U].

The same argument as above applies also when G[W ∪ U] is not 2-connected, and there
is a block B of G[W ∪ U] that contains two vertices from U . Hence we may assume that
every block of G contains at most one vertex form U .

Let B be a block of G[W ∪ U] containing a single vertex u from U . Let u′ be another
vertex in U , which by the reasoning above, is in another block B′ of G[W ∪ U]. Let x be
the cut-vertex in B which is a separation point between u and u′ in G[W ∪ U]. In this case,
|V (B)| ≤ |W |+ 1 and by Lemma 1.1, u can be separated from x in B by removing at most
2(log(|W |+ 2)) edges. Such a cut also separates u from u′. J

Proof of Corollary 3.3. We will prove this by induction on |U |. Let t = 2 log(2|W | + 1).
The proof is trivial when |U | = 1. If |U | > 1, by Lemma 1.2 an edge cut C of size t exists
in G[W ∪ U] that separates a subset S ⊆ U from U \ S where 1 ≤ |S| < |U |. Let us now
consider G1 = G[W ∪ S] and G2 = G[W ∪ (U \ S)]. By the induction hypothesis there is a
S-multiway cut C1 of size (|S| − 1)t in the graph G1 and there is a (U \ S) multiway cut of
size C2 of size (|(U \ S)| − 1)t in G2. Taking C ∪ C1 ∪ C2 we obtain a U -multiway cut in G
of size (|U | − 1)t. J

Proof of Claim 3.4. For every vertex b ∈ B remove all but exactly two edges. Hence we
get a subgraph G1 of G in which deg(b) = 2 for every b ∈ B. Hence, every b ∈ B form a
simple path of length 2 in G1. Replace each such path by a single edge; this is equivalent to
the contraction of a single edge in the neighbourhood of every b ∈ B. As a result we get a
multigraph G2 that is a minor of G, and hence outerplanar. In this multigraph, the number
of parallel edges between two vertices is at most two, as otherwise in G, there would have
been a K2,3 minor, which is a contradiction. Hence |E(G2)| ≤ 4|V (G2)|.

However, by construction, every edge e ∈ E(G2) corresponds to a vertex b ∈ B, with a
1− 1 correspondence. Further V (G2) = A. Hence the claim follows. J

B Algorithm Approx

Let G = (V,E) be an outerplanar graph, ε > 0 the error parameter, and let G′ be the
(d, s)-union graph obtained by Algorithm 1, for ε′ = ε/10 (and d accordingly).

The purpose of the algorithm Approx is to estimate the γ-layered graph G∗ that is
ε/10-close to G′ (and hence ε/5-close to G). That is, for each i ∈ [L] to give an approximation
to ni the number of high-degree components in Gi, and lfeq[i] the frequency vector of Gi,
where L is as defined in Definition 4.5.

Algorithm Approx runs a main algorithm Sampler that samples high-degree vertices of
G′ accoring to a distribution in which all root vertices in the same layer are sampled with the
same probability. Sampler runs another algorithm, Sampler2 that estimates the degree
and the component frequency of the sampled vertex in order for Sampler to be able to
update ni and lfreq[i] accordingly.

APPROX/RANDOM’16

21:18 Every Property of Outerplanar Graphs is Testable

We now present the algorithm Sampler2, which given an outerplanar graph G(V,E),
and a vertex y, approximates freqG′(y) and degG′(y).

Let q = poly(logn) (e.g., the reader may take q = 10 log3 n to get the right magnitude,
the exact value will not be defined here).

Algorithm Sampler2(y)
y is a vertex. The output is an estimate ˜degG′(y), and an estimate ˜freqG′(y) for degG′(y)
and freqG′(y) respectively.
1. Obtain degG(y) by one query. If deg(y) ≤ d stop; y is not a root of a (d, s)-rooted

component in G′.
Otherwise, let c = 0 (c will count the number of discovered (d, s)-components that are
connected to y). Let Freq(y) be the all-zero vector of dimension f(d, s).

2. Repeat independently for q times: Choose a random low-degree neighbour u ∈R V l∩N(y).
Look at the component of u in G[V l] (by applying Levi-Ron, as needed), take the
multiway cut, and finally see if y is still in the same component as u in G′ which
is the graph obtained by the simulation of Algorithm 1 locally on v (some edges
adjacent to y might be deleted, due to the multiway cut procedure, and due to the
deletion of edges between two high-degree vertices).
If y is still in the same component as u in G∗, increment c. Also, depending on
the type of the (d, s) component containing u and connected to y, increment the
corresponding coefficient of Freq(y).

3. Take ˜degG′(y) = degG(y) · c/q, and ˜freqG′(y) = Freq(y)/c.

It is easy to see that Sampler2 will estimate well the required parameters for y such that
degG′(y) is high enough. This motivates the following definition.

I Definition 2.1. Let Bad = {y| degG′(y) ≤ degG(y)/(20 logn)}.

We present the following lemma without proof.

I Lemma 2.2. Let G′ be the graph obtained from a graph G by the partition, and y /∈ Bad.
Then for the output of Sampler2 it holds that Pr[| ˜degG′(y)−degG′(y)| ≥ ε2 ·degG′(y)/100] ≤
1/ log5 n, and Pr[|freq(y)− ˜freq(y)| ≥ ε2/100] ≤ 1/ log5 n.

The proof is a standard application of Chernoff-Hoefding bound and will not be presented
here.

We now present the algorithm Sampler, which given an outerplanar graph G(V,E) as
input, returns a high-degree vertex in G′. Among high-degree vertices in any fixed layer i,
the probability of obtaining each one will be roughly the same and the total probability of
returning any one of the roots in layer i will be roughly proportional to niγi, where ni is the
number of high-degree vertices in layer i.

Algorithm Sampler
1. Sample uniformly at random, a vertex v ∈ V (G), if degG(v) ≥ d reject.
2. Otherwise, if degG(v) ≤ d, query all neighbours of v and if for all y ∈ N(v), degG(y) ≤ d

reject.
3. Otherwise, let Nh(v) = {y| degG(y) > d} and let degh(v) = |Nh(v)|. Choose uniformly a

random member y ∈ Nh(v). Discard y and reject with probability 1− degh(v)
d . Otherwise

(with probability degh(v)
d), we will consider y to be a candidate for a (random) root of G′.

J. Babu, A. Khoury, and I. Newman 21:19

4. Run Sampler2(y). If y not rejected, check if v is a neighbour of y in G′ by simulating
locally Algorithm 1, (as is done in Sampler2, for other random neighbours of y). If not
reject.

5. With probability γi/ ˜degG′(y), return y, where i is the largest for which γi ≤ d̃egG′ .

We claim that for each layer of G∗, the distribution that Sampler2(y) indices on its roots
is (nearly) uniform. Moreover, if there is enough “mass” in Gi, i = α, . . . L then Sampler
will produce a random root of G′ (in some layer) w.h.p.

Before stating the corresponding lemma, we note that what appears to be a trivial
sampling is not correct. Namely, choosing a random vertex y ∈ V (G) and returning y if
its degree is high enough is not likely to succeed, as it might be the case that the number
of roots in G′ is very small (possibly 1), while their degree is very high. In such a case, a
random sampling will not find a random root, while the influence of the small number of
roots on the structure of G′ (in terms of distance to G), is very high.

I Lemma 2.3. Suppose that
∑
y∈roots(G′) degG′(y) ≥ εn/ logn then Sampler produces a

random y ∈ roots(G′) distributed uniformly on each layer of G∗, with probability at least
1/ log2 n.

Proof. We do not present the full proof of the lemma in this version. We will only prove that
Sampler induces the uniform probability on each layer of G∗ and that with high probability
it will output such y.

Indeed, consider a fixed y ∈ roots(G′). The only way y is going to be accepted is if a
v that is selected in step 1 is one of the degG′(y) neighbours of y in G′. Denote this set of
neighbours of y by N ′. Each such v is chosen with probability 1/n at step 1, and will pass
step 2. Now, conditioned on specific v chosen, the probability that y is chosen in step 3 and
not discarded is 1

degh(v) ·
degh(v)

d = 1
d . Finally, if y is chosen at step 3, and conditioned on

the event that Sampler2(y) accepts y and estimates degG′(y) correctly, which happen with
probability 1− 1/ log5 n, y will be accepted with probability γi/ ˜degG′(y). Altogether, the
probability of returning y is:

Prob(Sampler returns y) =
∑
v∈N ′

1
n
· 1
d
· 1

˜degG′(y)
= 1
nd
· γ

i · degG′(y)
˜degG′(y)

.

Assuming the estimate is as good as we needed, this probability is very close to γi

nd and
hence to uniform on each layer of G∗, as it is essentially independent of y but just on the
layer.

Finally, let i be such that ni · γi = Ω(n/ logn), namely, such that the ith layer in G∗ has
a large mass. The probability some y in the i layer of G∗ is accepted the sum above for all y
in the layer which is just ni · γ

i

nd ≥
ε

d logn . By our choice of d, the proof is concluded. J

Algorithm Approx is now self evident: it runs Sampler for poly(logn) times to generate
enough random roots to hit all significant layers Gi. Would there be no vertices in Bad, the
estimate would clearly be correct, by Chernoff-Hoefding bounds. The effect of vertices in
Bad can be shown to be small, as the total number connected to vertices in Bad is small.
We avoid further details in this version.

APPROX/RANDOM’16

	Introduction
	Notations and Tools
	Property Testing
	Partitions and the local views of the graph

	Global Partitions
	From global partition to Local partition
	Discussion
	Missing Proofs of Section 3
	Algorithm Approx

