
A Robust and Optimal Online Algorithm for
Minimum Metric Bipartite Matching
Sharath Raghvendra∗

Dept. of Computer Science, Virginia Tech, Blacksburg, USA
sharathr@vt.edu

Abstract
We study the Online Minimum Metric Bipartite Matching Problem. In this problem, we are given
point sets S and R which correspond to the server and request locations; here |S| = |R| = n. All
these locations are points from some metric space and the cost of matching a server to a request
is given by the distance between their locations in this space. In this problem, the request points
arrive one at a time. When a request arrives, we must immediately and irrevocably match it to a
“free" server. The matching obtained after all the requests are processed is the online matching
M . The cost of M is the sum of the cost of its edges. The performance of any online algorithm
is the worst-case ratio of the cost of its online solution M to the minimum-cost matching.

We present a deterministic online algorithm for this problem. Our algorithm is the first
to simultaneously achieve optimal performances in the well-known adversarial and the random
arrival models. For the adversarial model, we obtain a competitive ratio of 2n − 1 + o(1); it is
known that no deterministic algorithm can do better than 2n− 1. In the random arrival model,
our algorithm obtains a competitive ratio of 2Hn−1+o(1); where Hn is the nth Harmonic number.
We also prove that any online algorithm will have a competitive ratio of at least 2Hn − 1− o(1)
in this model.

We use a new variation of the offline primal-dual method for computing minimum cost match-
ing to compute the online matching. Our primal-dual method is based on a relaxed linear-
program. Under metric costs, this specific relaxation helps us relate the cost of the online
matching with the offline matching leading to its robust properties.
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1 Introduction

In an era of instant gratification, consumers desire speedy access to goods and services.
Several new business ventures promise on-demand delivery of such services to consumers.
Typically, these ventures have servers in various locations of the city and when a new request
arrives, they match one of the available servers to this request. The cost associated with
this match is often a metric cost; for instance, it could be the minimum distance traveled
by the server to reach the request. A primary objective is to minimize the overall cost of
the assignments made. This problem is difficult because all of the request locations are not
known in advance.

Each server may have a maximum capacity of how many requests it can serve. A central
problem in online algorithms is the k-server problem where each of the k servers has a
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18:2 A Robust and Optimal Online Algorithm for Minimum Metric Bipartite Matching

capacity to serve an arbitrary number of requests. In the case where the server capacity is 1,
the problem reduces to the well-studied online minimum metric bipartite matching problem.

To define this problem, let S be a set of servers and let R be a set of requests. We assume
that the locations in S ∪R are points from some metric space. Let d(a, b) be the distance
between any two points in this space. Consider a complete bipartite graph G(S ∪R,S ×R),
|S| = |R| = n, with the edge set S × R. Every pair of server and request, (s, r) ∈ S × R
has a distance d(s, r). We refer to this distance as the cost of server s serving request r. A
matching M ⊆ S×R is any set of vertex-disjoint edges of the bipartite graph G(S∪R,S×R).
The cost of any matching M is given by w(M) =

∑
(s,r)∈M d(s, r). A perfect matching is

a matching where every server in S is serving exactly one request in R, i.e., |M | = n. A
minimum-cost perfect matching is a perfect matching with the minimum cost.

Ideally, we would like to match servers to requests so that the cost of this matching is as
small as possible. However, in the online metric bipartite matching problem, the requests
arrive one at a time and when any request arrives, we have to immediately and irrevocably
match it to some unmatched server. The resulting matching is referred to as an online
matching. Designing an online algorithm which finds a matching with minimum-cost is
impossible because, for any partial assignment made by the algorithm, an adversary can
easily fill up the remaining request locations in R so that this partial assignment becomes
sub-optimal. Therefore, we want our algorithm to compute an online matching which is
only near optimal. For any input S,R and any arrival order of requests in R, we say our
algorithm is α-competitive, for α > 1, when the cost of the online matching M is at most α
times the minimum cost, i.e.,

w(M) ≤ αw(Mopt).

Here Mopt is the minimum-cost matching of the locations in S and R.
In the above discussion, note the role of the adversary. In the adversarial model, the

adversary knows the server locations and the assignments made by the algorithm and
generates a sequence to maximize α. In order to account for adversarial input sequence,
algorithms which work well in this model may become very cautious in making low-cost
assignments. As a result, their performance may be hampered on realistic input sequences.

A less pessimistic model is the random arrival model. In this model [13], the adversary
chooses the set of request locations R at the start but the arrival order is a permutation
chosen uniformly at random from the set of all possible permutations; we refer to this as a
random permutation. For any input S,R and an arrival order which is a random permutation
of R, we say our algorithm is α-competitive, for α > 1, when the expected cost of the online
matching M is at most α times the minimum cost, i.e.,

E[w(M)] ≤ αw(Mopt).

In practical situations, one can assume that the requests locations are independent and
identically distributed (i.i.d.) random variables from an unknown but fixed distribution
D . On many occasions, using historical data, one can learn this distribution D . These
KnownIID and UnknownIID models are weaker than the random arrival model. Therefore,
the competitive ratio of an algorithm in the random arrival model is an upper bound on
its performance in the KnownIID and the UnknownIID models; see [9] for algorithms in
these models.

Another popular model of theoretical interest is the oblivious adversary model. In this
model, the adversary knows the algorithm and decides the request locations and their arrival
order. However, the online algorithm is a randomized algorithm and the adversary does not
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know the random choices made by the algorithm. This model is weaker than the adversarial
model but stronger than the random arrival model.

Below is the summary of relative hardness of all these models

Adversarial � Oblivious Adversary � Random Arrival � UnknownIID � KnownIID.

Existing Work. Solutions for the k-server problem and the online bipartite matching
problem use similar mathematical tools and methodologies. Both of these problems have
been extensively studied in the adversarial model and the oblivious model. However, we are
not aware of any work on these problems under the random arrival model.

The k-server problem is central to the theory of online algorithms. The problem was
first posted by Manasse et al. [14]. In the adversarial model, the best-known deterministic
algorithm for this problem is the 2k − 1-competitive work function algorithm [12]. In this
problem, we assume there are k servers, each of which can serve arbitrary many of the n
arriving requests. It is known that no deterministic algorithm can achieve a competitive
ratio better than k and is conjectured that in fact there is a k-competitive algorithm for this
problem. This conjecture is popularly called the k-server conjecture.

For the online metric bipartite matching problem, in the adversarial model, there is a
2n− 1-competitive deterministic algorithm by Khuller et al. [10] and Kalyanasundaram and
Pruhs [8]. They also show that no online algorithm can achieve a better competitive ratio in
this model.

For the oblivious adversary, there are O(poly logn)-competitive algorithms for both the
k-server problem and the online metric bipartite matching problem. Bansal et al. [5] achieve
an O(log2 n)-competitive algorithm for the metric bipartite matching problem. For the
k-server problem, Bansal et al. [4] presented a O(poly logn log k)-competitive algorithm.

All of these algorithms use a standard approach. They first embed the metric space into a
tree metric that leads to a O(logn) distortion in costs. Then, they design a logn-competitive
algorithm for this tree metric. As a consequence, these results obtain a log2 n-competitive
algorithm (poly logn-competitive for the k-server). The bottleneck in improving existing
work is the O(logn)-distortion associated with the tree metric. An open question is whether
one can design an O(logn)-competitive algorithm for these problems.

Also note that for bounded doubling dimension metric, there is an a O(d logn)-competitive
algorithm in the oblivious model [6]; here d is the doubling dimension of the metric space.
In the adversarial model, the question of finding a deterministic O(1)-competitive online
algorithm for the line metric remains an important open question; see [3, 11] for results on
this special case. We would like to note the existence of several fast primal-dual algorithms
to compute approximate (offline) matching in metric and geometric settings [7, 2, 16, 17, 1].

Our Results. In this paper, we give a robust deterministic online algorithm for the metric
bipartite matching problem. Our algorithm achieves an optimal performance of 2n− 1 in
the adversarial model. This same algorithm has an exponentially better performance in the
random arrival model where we obtain optimal 2Hn − 1 + o(1)-competitive ratio. Here Hn is
the nth harmonic number (approximately lnn). We also prove that no algorithm can achieve
a competitive ratio better than 2Hn − 1− o(1).

To our knowledge, this is the first online algorithm which achieves optimal performances
in two different models simultaneously. Our algorithm’s robustness across different models of
adversaries is also crucial in practical settings where there is limited information about the
model of adversary.

APPROX/RANDOM’16



18:4 A Robust and Optimal Online Algorithm for Minimum Metric Bipartite Matching

Unlike previous work, our approach does not use a tree metric, thereby allowing us to
achieve a O(logn)-competitive algorithm in the random arrival model.

Our Techniques. Many deterministic online algorithms use the best minimum-cost offline
solution to construct the online solution. This includes the work-function algorithm for the
k-server problem and the deterministic algorithms for the online minimum metric bipartite
matching problem. Our approach is similar in style, except we use, for some t > 1, a t-
approximate minimum-cost solution to guide our online solution. This approximate matching
is derived from a relaxed linear program where the constraint for every non-matching edge is
relaxed by a multiplicative factor of t. We will fix the value of t for the entire execution of
the algorithm. When a new request arrives, our algorithm updates the offline matching by
computing an augmenting path P . For the online matching, the algorithm simply matches
the two free end points of P .

We observe that for larger values of t, the algorithm picks an augmenting path P of
a smaller length leading to lower cost of the online matching. On the other hand, larger
values of t causes the offline matching to be a weaker approximation which leads to a weaker
bound for the online matching. Therefore, it may seem that the best trade-off between these
opposing observations is achieved at some finite value of t.

However, surprisingly, we show that the performance of our online algorithm improves as
t→∞. We show that the competitive ratio of our algorithm is (2 + 2

t−1 )n− (1 + 2
t−1 ) in

the adversarial model and (2 + 2
t−1 )Hn − (1 + 2

t−1 ) in the random arrival model.

2 Preliminaries

In this section, we present preliminary notations required to describe our algorithm.
Given a matching M∗ on this bipartite graph, an alternating path (or cycle) is a simple

path (resp. cycle) whose edges alternate between those in M∗ and those not in M∗. We
refer to any vertex that is not matched in M∗ as a free vertex. An augmenting path P is an
alternating path between two free vertices. We can augment M∗ by one edge along P if we
remove the edges of P ∩M∗ from M∗ and add the edges of P \M∗ to M∗. After augmenting,
the new matching is given by M∗ ←M∗ ⊕ P , where ⊕ is the symmetric difference operator.
For a parameter t ≥ 1, we define the t-net-cost of an augmenting path P as follows:

φt(P ) = t

 ∑
(s,r)∈P\M∗

d(s, r)

− ∑
(s,r)∈P∩M∗

d(s, r) .

When t = 1, we can interpret the t-net-cost of a path as the increase in the cost of
the matching due to augmenting it along P , i.e., for t = 1, φ1(P ) = w(M ⊕ P ) − w(M).
The well-known Hungarian method iteratively augments along an augmenting path with
the minimum 1-net-cost to compute the optimal matching. For t > 1, the t-net-cost φt(P )
can be very different from w(M ⊕ P ) − w(M). As noted earlier, larger values of t yields
smaller length augmenting paths. In Figure 1, there are two augmenting paths. Let the
augmenting path from r to s′ be P ′ and the augmenting path from r to s be P . When t = 1,
the φ1(P ) = φ1(P ′) = 1. However, φ2(P ′) = 3 and φ2(P ) = 4. As t increases, the difference
between the t-net-costs of these paths is magnified.

We derive an alternate interpretation of the t-net-cost in Section 3 which will be crucial
in providing guarantees for our online solution. The definition of t-net-cost easily extends to
alternating paths and cycles as well.
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Figure 1 All solid edges are edges in the matching M∗ and the dashed edges are not in M∗. The
cost of every edge is 1.

Feasibility of a Matching. For every vertex v of the graph G(S ∪ R,S × R), let its dual
weight be y(v). For a parameter t ≥ 1, we define a t-feasible matching to be a matching M∗
and a set of dual weights y(·) on the vertex set such that for every edge between request
r ∈ R and server s ∈ S, we have

y(s) + y(r) ≤ td(s, r), (1)
y(s) + y(r) = d(s, r) for (s, r) ∈M∗. (2)

Using t-feasibility and t-net-cost we describe our algorithm next.

2.1 Algorithm

In this section, we present our algorithm without fixing the parameter t. Eventually, to
obtain the bounds on the competitive ratio, we set t = n2 + 1.

For every vertex v ∈ S ∪R, our algorithm will maintain a dual weight y(v). At the start
of the algorithm, the dual weight of every vertex is set to 0. Recollect that, in the online
setting, requests from the set R arrive one at a time. For those requests r′ ∈ R which have
not yet arrived, their dual weight remains 0, i.e., y(r′) = 0. The algorithm also maintains
two matchings M and M∗; both these matchings are initialized to ∅ at the start. M and M∗
match all the request seen so far to servers in S. The matching M∗ together with the dual
weights y(·) is a t-feasible matching; we refer to this as the offline matching. The matching
M , on the other hand, is the online matching.

Algorithm. Given a new request r, our algorithm computes the minimum t-net-cost
augmenting path P with respect to matching M∗. P starts at r and ends at some free
vertex s. The algorithm updates M∗ by augmenting it along P , i.e., M∗ ←M∗⊕P . For
the online matchingM , the algorithm will match the server s to r, i.e.,M ←M∪{(s, r)}.

At any given stage in the algorithm, let SF be the set of free servers in S with respect to
the offline matching M∗. It follows from the description of our algorithm that SF is also the
set of free servers with respect to the online matching M .

Our algorithm maintains the following invariants:
(I1) M∗ and dual weights y(·) form a t-feasible matching, and,
(I2) for every vertex s ∈ S, y(s) ≤ 0 and if s ∈ SF , y(s) = 0.

Next, we present an O(n2) time algorithm to compute the minimum t-net-cost augmenting
path P and update the matchingsM,M∗ and the dual weights. After describing the algorithm,
we prove the invariants (I1) and (I2).

APPROX/RANDOM’16
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Algorithm Details. To compute a minimum t-net-cost augmenting path P with respect to
the offline matchingM∗, we construct a weighted residual graph GM∗ with S∪R as the vertex
set and EM∗ as the set of edges as follows. Let −→sr represent an edge directed from s to r. For
every edge (s, r) ∈M∗, we have an edge −→sr in EM∗ . For every edge (s, r) ∈ (S ×R) \M∗,
there is an edge −→rs in EM∗ . Every edge

−→
ab ∈ EM∗ is assigned a cost as follows:

If (a, b) ∈M∗, we set the cost of the edge to be the slack s(a, b) = d(a, b)− y(a)− y(b).
From t-feasibility (condition (2)) of M∗, we know the slack of every edge in the matching
is s(a, b) = 0.
If (a, b) 6∈M∗, we set the cost of the edge (a, b) to be the slack s(a, b) = td(a, b)−y(a)−y(b).
From t-feasibility (condition (1)) of M∗, we know s(a, b) ≥ 0.

By construction, every edge in E∗M has a non-negative edge cost. Also, notice that the
set of nodes in G(S ∪R,S ×R) (henceforth referred to as G) and GM∗ are identical. GM∗

and G have the same set of edges except that the edges of GM∗ have directions. For any
directed path −→P in GM∗ , we can define its associated path P by replacing every edge

−→
ab ∈

−→
P

with the corresponding undirected edge (a, b) from G. For any directed path −→P in GM∗ , its
associated path P is an alternating path in G. More so, if the two end vertices of −→P are free
vertices, then the associated path P will be an augmenting path.

To compute the minimum t-net-cost augmenting path P , we simply execute Dijkstra’s
algorithm and find the minimum-cost path from r to every other node in GM∗ . For any node
v, let dv be the cost of the shortest path from r to v. Among all free servers of S, we pick
s ∈ SF with the lowest minimum-cost path from r in GM∗ , i.e., s = arg mins′∈SF

ds′ . Let
this lowest minimum-cost path be −→P . Clearly −→P is a directed path from r to s. Let P be
the associated augmenting path of −→P in G. In Lemma 1 and Corollary 2, we show that P is
the minimum t-net-cost augmenting path starting at r.

Before augmenting the matching M∗ along P , we update the dual weights of all nodes of
S ∪R. Let ds = d be the cost of the directed path −→P . We update the dual weight of every
node v as follows:
(a) If dv ≥ d, then y(v) remains unchanged.
(b) If dv < d, and v ∈ R, then we increase the dual weight y(v)← y(v) + d− dv

(c) If dv < d, and v ∈ S, then we decrease the dual weight y(v)← y(v)− d+ dv.
In Lemma 4, we show that the updated dual weights and the matching M∗ are t-feasible.

We also show, in Lemma 4, that after the dual updates, every edge in P \M∗ will satisfy (1)
with equality.

At this point, we update matching M∗ by augmenting M∗ along P , i.e., M∗ ←M∗ ⊕ P .
We also update the dual weight of every vertex r′ ∈ R ∩ P as follows: y(r′) ← y(r′) −
(t− 1)d(s′, r′); here s′ is the match of r′ in the updated M∗. Lemma 5 will show that the
matching after the augmentation and the updated dual weights remain t-feasible.

In processing a new request, note that we update the dual weights twice. First, we update
them right before augmenting the matching along P as describe in a–c. Then, immediately
after augmenting M∗ along the path P , we update the dual weight again. In Lemma 4 and
Lemma 5, we will show that both these updates do not violate the t-feasibility property of
M∗. Therefore, (I1) holds. The proofs of Lemma 1, Lemma 3, Lemma 4, Lemma 5 and Proof
of (I2) are variants of the proofs for the standard primal-dual based Hungarian method. For
the sake of completion, we present these proofs. An expert may choose to skip these proofs.

The following lemma will show that Dijkstra’s algorithm will compute the minimum
t-net-cost path between r and any free server s.
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I Lemma 1. For any free server s ∈ SF , let
−→
P be a directed path from the new request r to

s in GM∗ with a cost d′. Then, the associated path P of −→P is an augmenting path whose
t-net-cost is d′.

Proof. The cost of −→P is:

d′ =
∑
−→
ab∈
−→
P

s(a, b) (3)

For the associated path P , from the definition of t-net-cost and the feasibility of dual weights,
we have

φt(P ) = t(
∑

(s′,r′)∈P\M∗
d(s′, r′))−

∑
(s′,r′)∈P∩M∗

d(s′, r′)

= t(
∑

(s′,r′)∈P\M∗
d(s′, r′))−

∑
(s′,r′)∈P∩M∗

(y(s′) + y(r′)) (4)

Since the first and the last vertex of the associated path P , i.e., s and r, are unmatched
in M∗, both the first and the last edge of P is not in the matching M∗. Therefore, we can
write (4) as:

φt(P ) =
∑

(s′,r′)∈P\M∗
(t(d(s′, r′))− y(s′)− y(r′)) + y(s) + y(r) (5)

Note that y(s) is 0 by invariant (I2) and by construction y(r) is 0. For every edge (s′, r′) ∈
P ∩M∗, d(s′, r′)− y(s′)− y(r′) = 0. Combining this, we can rewrite equation 5 as

φt(P ) =
∑

(s′,r′)∈P\M∗
(t(d(s′, r′))− y(s′)− y(r′)) +

∑
(s′,r′)∈P∩M∗

(d(s′, r′)− y(s′)− y(r′))

=
∑
−→
ab∈
−→
P

s(a, b) = d′ J

As an immediate corollary to Lemma 1, we conclude that the path chosen by our algorithm
is the minimum t-net-cost path.

I Corollary 2. In processing the new request r, the augmenting path P chosen by our
algorithm has the smallest t-net-cost among all augmenting paths that begin at r.

In order to show that M∗ and dual weights y(·) form a t-feasible, we need to show that all
edges in the complete bipartite graph G(S ∪R,S ×R) satisfy t-feasibility conditions (1) and
(2). This includes the edges incident on requests that have not yet arrived. The following
simple lemma will show that any such edge will satisfy t-feasibility conditions at all times.

I Lemma 3. At any stage of the algorithm, consider any edge (r′, s′) ∈ R× S where r′ is
a request that has not yet arrived. We claim that the edge (r′, s′) satisfies the t-feasibility
condition.

Proof. Since r′ has not yet arrived, r′ is a free node. Therefore, the edge (r′, s′) is not in
the current matching M∗. By construction, every request that has not yet arrived has a
dual weight of 0. Therefore, y(r′) = 0. From invariant (I2), y(s′) ≤ 0. Since t ≥ 1 and
d(s′, r′) ≥ 0, we have

y(r′) + y(s′) ≤ 0 ≤ td(s′, r′),

showing that (r′, s′) satisfies (1). J

APPROX/RANDOM’16
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From this point onwards, to show that M∗ is t-feasible, we will focus only on the edges
incident on requests that have already arrived. Lemma 3, allows us to ignore all other edges
incident on requests which have not yet arrived.

The following lemma shows that the updated dual weights before augmenting along P
satisfy the desired properties:

I Lemma 4. Let y(·) be the dual weights assigned to S ∪ R before executing Dijkstra’s
algorithm and let y′(·) be the updated dual weights computed before augmenting M∗ along
P . The matching M∗ and dual weights y′(·) are t-feasible. Furthermore, suppose P is the
augmenting path chosen by the algorithm. Then, every edge of P has 0 slack with respect to
the updated dual weights y′(·), i.e., for every (s′, r′) ∈M∗ ∩ P , d(s′, r′)− y(s′)− y(r′) = 0
and for every (s′, r′) ∈ P \M∗, td(s′, r′)− y(s′)− y(r′) = 0.

Proof. First, for any edge (s′, r′) ∈ M∗, we show that the updated dual weights does not
violate feasibility condition (2). For any edge (s′, r′) ∈M∗ there is a directed edge

−→
s′r′ in

GM∗ . By construction, all edges incident on r′ except for the edge
−→
s′r′ is directed away

from r′ (edges that are not in the matching are directed away from the requests in GM∗).
Therefore any path in GM∗ from the new request r to r′ must contain the edge

−→
s′r′; note that

since (s′, r′) ∈M∗, it has 0 slack and therefore the cost of this edge in GM∗ is s(s′, r′) = 0.
Therefore, the shortest path from r to r′ has the same cost as the shortest path from r to s′,
i.e., ds′ = dr′ . If ds′ ≥ d, the dual weights of s′ and r′ are not updated (update condition
(a)), and therefore the edge continues to satisfy (2). On the other hand, if (ds′ = dr′) < d,
the dual weight y(r′) increases by d− dr′ and the dual weight of y(s′) decreases by d− ds′ .
Since ds′ = dr′ , we have

y′(s′) + y′(r′) = y(s′)− d+ ds′ + y(r′) + d− dr′ = y(s′) + y(r′) = d(s′, r′).

Therefore, every edge (s′, r′) ∈M∗ continues to satisfy the t-feasibility condition (2).
For any edge (s′, r′) ∈ (S ×R) \M∗, there is an edge

−→
r′s′ in GM∗ . Since shortest path

costs satisfy triangle inequality, we have ds′ ≤ dr′ + s(r′, s′), or

ds′ − dr′ ≤ s(r′, s′).

After the dual weights are updated, we have

y′(r′) + y′(s′) = y(r′) + d− dr′ + y(s′)− d+ ds′ ≤ y(s′) + y(r′) + s(s′, r′) ≤ td(s′, r′).

Therefore, every edge (s′, r′) remains feasible after the dual updates.
For every edge in P ∩M∗, we have already shown that the edge satisfies t-feasibility

condition (2) and therefore has a slack of 0. Next, we show that the slack on every edge
(s′, r′) ∈ P \M is also 0. Since (s′, r′) 6∈M∗, there is a directed edge

−→
r′s′ in GM∗ . From the

optimal substructure property of shortest paths, we have ds′ = dr′ + s(r′, s′),. Therefore, we
have

y′(r′) + y′(s′) = y(r′) + d− dr′ + y(s′)− d+ ds′ = y(s′) + y(r′) + s(s′, r′) = td(s′, r′),

implying that the slack on every such edge after the dual weights are updated is 0. J

At this point, the algorithm augments M∗ along P and updates the dual weights again.
The following lemma shows that the augmentation process and the updated dual weights
continue to satisfy t-feasibility conditions.
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I Lemma 5. After augmentation, the updated dual weights together with the updated matching
M∗ form a t-feasible matching.

Proof. For the sake of this proof, let us refer to the matching before augmenting along P as
M∗ and the matching after augmentation as M ′, i.e., M ′ ←M∗⊕P . Also, let y(·) represent
the dual weight right before augmenting M∗ along P and let y′(·) represent the updated
dual weight after augmentation.

Augmenting along P removed edges from P ∩M∗ and adds edges of P \M∗ to matching.
Then, the algorithm updates dual weights of every vertex in R ∩ P . Every edge in (s′, r′) ∈
M∗ ∩M ′ is vertex-disjoint from the path P . Therefore, for every such edge, the dual weights
of s′ and r′ remains unchanged and the edge continues to satisfy (2).

For any edge (s′, r′) ∈ P \M∗, we know (s′, r′) is in the updated matching M ′. From
Lemma 4, every such edge has a 0 slack and therefore,

y(s′) + y(r′) = td(s′, r′).

The updated dual weights for r′ is y′(r′)← y(r′)− (t− 1)d(s′, r′), whereas the dual weight
for s′ remains unchanged. Therefore, the new dual weight will satisfy

y′(s′) + y′(r′) + (t− 1)d(s′, r′) = td(s′, r′),

or

y′(s′) + y′(r′) = d(s′, r′)

satisfying feasibility condition (2) with respect to matching M ′.
For every other edge (s′, r′) ∈ (S ×R) \M ′, if r′ is not on P , then the dual weights of s′

and r′ do not change and therefore the edge continues to be feasible. On the other hand, if
r′ is on the path P , suppose s′′ is the match of r′ in M ′. the dual update will be as follows:
y′(r′)← y(r′)− (t− 1)d(s′′, r′). Therefore,

y′(s′) + y′(r′) = y(s′) + y(r′)− (t− 1)d(s′′, r′) ≤ d(s′, r′).

The last inequality follows from the fact that t ≥ 1, d(s′′, r′) ≥ 0, and the dual weights before
augmentation satisfied (1). J

Proof of (I2). Initially, for every vertex s′ ∈ S, its dual weight y(s′) = 0. At the end of any
iteration, we claim that the dual weight of every vertex in SF remains 0. Recollect that our
algorithm selects the free vertex v ∈ SF with the smallest dv value. Therefore, for every
other free vertex v′ ∈ SF \ {v}, dv′ ≥ dv and therefore from (a), the dual weight of v′ is
not updated and remains 0. After augmentation, only the dual weights of points on P get
updated. Since every vertex of P is matched after augmentation, there is no vertex of SF on
P . Therefore, the dual weight of every vertex of SF remains 0.

For every vertex v ∈ S, initially y(v) = 0.In the update procedure for dual weights, if
the vertex v belongs to S, its dual weight only reduces (see condition (c) for updating dual
weight). The update procedure after augmentation, on the other hand, does not change
the dual weight of any vertex in S. Therefore, the dual weight of v at any time during the
algorithm is y(v) ≤ 0. J

Efficiency. To process a new request, the algorithm executes Dijkstra’s algorithm in O(n2)
time and updates the matching and the dual weights by simply processing every node
individually in O(n) time.
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I Theorem 6. When a new request arrives, our algorithm processes and assigns an unmatched
server to this request in O(n2) time.

For t = 1, our algorithm is identical to the algorithm of Khuller et al. [10]. For t > 1, we
are able to relate the cost of the online matching produced by our algorithm to the t-net-cost
of the paths produced by the algorithm (Lemma 7(ii)). This relation is crucial to achieve
desired performance bounds of our algorithm.

3 Performance of the Algorithm

To simplify the analysis of the algorithm, we introduce a few notations. We index the requests
in the order of their arrival, i.e., let ri be the ith request to arrive. To process request ri, let
Pi be the augmenting path computed by our algorithm. Let si be the free server at the other
end of the augmenting path Pi. Let M∗i be the offline matching after the ith request has
been processed. Note that M∗0 is an empty matching and M∗n = M∗ is the final matching
after all the n requests have been processed. The online matching Mi is the online matching
after i requests have been processed. Mi consists of edges

⋃i
j=1(sj , rj).

For any path P , let `(P ) =
∑

(s,r)∈P d(s, r) be its length. Next, we prove a useful relation
between the t-net-cost of augmenting paths produced by our algorithm and the cost of the
online matching. We utilize the metric property of costs to establish this relation.

I Lemma 7. Let t ≥ 1. Let P1, . . . , Pn be the augmenting paths computed by our algorithm
in that order. Then, the t-net-cost of these paths relate to the cost of the online matching as
follows:
(i) φt(Pi) ≤ td(si, ri) ≤ t`(Pi).
(ii)

∑n
i=1 φt(Pi) ≥ ((t− 1)/2)w(M) + ((t+ 1)/2)w(M∗).

Proof of (i). From triangle inequality, the length `(Pi) of path Pi is at most the distance
d(si, ri) between its end-points. Therefore,

d(si, ri) ≤ `(Pi). (6)

With respect to matching M∗i−1, the edge (si, ri) is an augmenting path of length 1. The
t-net-cost of this path is td(ai, bi). Since, Pi is the minimum net-cost path with respect to
M∗i−1, φt(Pi) ≤ td(ai, bi). This, combined with (6) implies (i). J

Proof of (ii). Since the matchings M∗i and M∗i−1 differ only in the edges of the augmenting
path Pi, we have

w(M∗i )− w(M∗i−1) =
∑

(s,r)∈Pi\M∗i−1

d(s, r)−
∑

(s,r)∈Pi∩M∗
i−1

d(s, r) (7)

= φt(Pi)−

(t− 1)
∑

(s,r)∈Pi\M∗i−1

d(s, r)


= φt(Pi)−

 t− 1
2

∑
(s,r)∈Pi\M∗i−1

d(s, r) + t− 1
2

∑
(s,r)∈Pi\M∗i−1

d(s, r)


The second equality follows from the definition of φt(·).
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We add and subtract ( t− 1
2 )

∑
(s,r)∈Pi∩M∗

i−1

d(s, r) to the RHS and get the following

w(M∗i )− w(M∗i−1) = φt(Pi)−
t− 1

2

 ∑
(s,r)∈Pi\M∗i−1

d(s, r) +
∑

(s,r)∈Pi∩M∗
i−1

d(s, r)


− t− 1

2

 ∑
(s,r)∈Pi\M∗i−1

d(s, r)−
∑

(s,r)∈Pi∩M∗
i−1

d(s, r)


= φt(Pi)−

t− 1
2 (

∑
(s,r)∈Pi

d(s, r))− t− 1
2 (w(M∗i )− w(M∗i−1))

The last equality follows from (7). Rearranging terms and setting
∑

(s,r)∈Pi
d(s, r) = `(Pi),

we get,

t+ 1
2 (w(M∗i )− w(M∗i−1)) = φt(Pi)−

t− 1
2 `(Pi)

t+ 1
2

n∑
i=1

(w(M∗i )− w(M∗i−1)) =
n∑

i=1
φt(Pi)−

t− 1
2

n∑
i=1

`(Pi)

t+ 1
2 w(M∗) ≤

n∑
i=1

φt(Pi)−
t− 1

2 w(M)

In the second to last equation, the summation on the LHS telescopes canceling all terms except
w(M∗n)−w(M∗0 ). Since M∗n = M∗ and M∗0 is an empty matching, we get w(M∗n)−w(M∗0 ) =
w(M∗). From triangle inequality, we know that `(Pi) ≥ d(si, ri). From this, we immediately
get the last inequality. Rearranging the terms, we immediately get (ii). J

Next, equipped with the properties from Lemma 7, we will analyze the performance of
our algorithm in the adversarial and the random arrival models.

To analyze the performance in the online models, letM i
opt be the minimum-cost matching

of the first i requests to the set of servers. Also, we will denote Mn
opt as Mopt. It is easy

to see that w(M i
opt) ≤ w(Mopt). This is because Mopt contains a matching of the first i

request to servers S where as M i
opt is the smallest possible such matching. The cost of M i

opt,
therefore, should be less than the cost of Mopt.

w(M i
opt) ≤ w(Mopt).

Performance in Adversarial Model. We show that the performance of our algorithm in
the adversarial model is optimal.

I Lemma 8. The competitive ratio of our algorithm in the adversarial model is 2n−1 +o(1).

Proof. Consider the graph G̃ with vertex set S∪R and the edges of the symmetric difference
of Mopt and M∗i−1, i.e., G̃(S ∪ R,Mopt ⊕M∗i−1). Since Mopt is a perfect matching, this
graph G̃ contains n− i+ 1 vertex-disjoint augmenting paths with respect to M∗i−1. There
is one augmenting path for each of the n − i + 1 requests that have not yet arrived. Let
{r′1, r′2, . . . , r′n−i+1} be the requests that have not yet arrived and let the n− i+1 augmenting
paths be {P ′1, P ′2, . . . , P ′n−i+1}, where P ′j is an augmenting path that has r′j as one of its
end-vertex.

APPROX/RANDOM’16
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In particular, there is an augmenting path in G̃ with the ith request ri as one of its end
vertex. Let P be this augmenting path.

φt(P ) = t
∑

(s,r)∈Mopt∩P

d(s, r)−
∑

(s,r)∈M∗
i−1∩P

d(s, r) ≤ t
∑

(s,r)∈Mopt∩P

d(s, r) ≤ tw(Mopt)

While processing the ith request, our algorithm produces the minimum t-net-cost aug-
menting path. Therefore, the augmenting path Pi generated by our algorithm will have

φt(Pi) ≤ φt(P ) ≤ tw(Mopt).

If we sum over all the n augmenting paths generated by our algorithm, we get
n∑

i=1
φt(Pi) ≤ ntw(Mopt).

Using property (ii) in Lemma 5 in conjunction with the previous inequality, we get the
following

ntw(Mopt) ≥ ((t− 1)/2)w(M) + ((t+ 1)/2))w(M∗)
2ntw(Mopt)− (t+ 1)w(M∗) ≥ (t− 1)w(M)

2ntw(Mopt)− (t+ 1)w(Mopt) ≥ (t− 1)w(M)
w(M) ≤ w(Mopt)(2nt− (t+ 1))/(t− 1)

w(M)/w(Mopt) ≤ (2 + 2/(t− 1))n− (1 + 2/(t− 1))

The last inequality upper bounds the competitive ratio of the algorithm. If we set t = n2 + 1,
the upper bound can be simplified to 2n− 1 + 1/n which is 2n− 1 + o(1). J

As shown in [8], no deterministic algorithm can achieve a competitive ratio better than
2n− 1. Therefore, our algorithm is optimal.

Performance in Random Arrival Model. In the random arrival model, we show that the
performance ratio of our algorithm is 2Hn − 1 + o(1).

I Lemma 9. In the random arrival model, the competitive ratio of our algorithm is 2Hn −
1 + o(1).

Proof. Consider the graph G̃ with vertex set S∪R and the edges of the symmetric difference
of Mopt and M∗i−1, i.e., G̃(S ∪ R,Mopt ⊕M∗i−1). Since Mopt is a perfect matching, this
graph contains n − i + 1 vertex-disjoint augmenting paths with respect to M∗i−1. There
is one augmenting path for each of the n − i + 1 requests that have not yet arrived. Let
{r′1, r′2, . . . , r′n−i+1} be the requests that have not yet arrived and let the n− i+1 augmenting
paths in G̃ be {P ′1, P ′2, . . . , P ′n−i+1}, where P ′j is an augmenting path that has r′j as one of
its end vertex.

n−i+1∑
j=1

φt(P ′j) =
n−i+1∑

j=1

t ∑
(s,r)∈P ′

j
\M∗

i−1

d(s, r)−
∑

(s,r)∈P ′
j
∩M∗

i−1

d(s, r)


=

n−i+1∑
j=1

t ∑
(s,r)∈P ′

j
∩Mopt

d(s, r)−
∑

(s,r)∈P ′
j
∩M∗

i−1

d(s, r)


≤

n−i+1∑
j=1

t ∑
(s,r)∈P ′

j
∩Mopt

d(s, r)

 ≤ tw(Mopt).
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The second equation follows from the fact that these paths are formed by the symmetric
difference of M∗i−1 and Mopt and therefore P ′j \M∗i−1 = P ′j ∩Mopt. The last inequality
follows from the fact that all the augmenting paths are vertex disjoint.

Let j be such that the ith request ri is r′j . The algorithm computes the minimum t-net-cost
augmenting path Pi from ri with respect to the matching M∗i−1. Therefore, the t-net-cost of
Pi should be less than the t-net-cost of P ′j (note that ri is one of the end-vertex of P ′j).

φt(Pi) ≤ φt(P ′j).

In the random arrival model, the input request sequence is a random permutation.
Therefore, the ith request can be any one of the remaining n− i+ 1 requests with the same
probability and we have,

E[φt(Pi)] ≤
1

n− i+ 1

n−i+1∑
j=1

φt(P ′j) ≤ 1
n− i+ 1 tw(Mopt).

From linearity of expectation,

E[
n∑

i=1
φt(Pi)] ≤

n∑
i=1

1
n− i+ 1 tw(Mopt) = tHnw(Mopt).

From Lemma 7 (ii) and the obvious fact that w(M∗) ≥ w(Mopt) we have,

E[
n∑

i=1
φt(Pi)] ≥

t− 1
2 E[w(M)] + t+ 1

2 E[w(M∗)]

tHnw(Mopt) ≥ t− 1
2 E[w(M)] + t+ 1

2 w(Mopt)

(t− 1)E[w(M)] ≤ 2tHnw(Mopt)− (t+ 1)w(Mopt)
E[w(M)]
w(Mopt) ≤ 2tHn − (t+ 1)

t− 1
E[w(M)]
w(Mopt) ≤ (2 + 2

t− 1)Hn − (1 + 2
t− 1)

By setting t = nHn + 1, we can bound this competitive ratio by 2Hn − 1 + o(1). J

I Theorem 10. There is an algorithm for the online minimum metric bipartite matching
problem that has a competitive ratio of 2n− 1 + o(1) in the adversarial model. This algorithm
also has a competitive ratio of 2Hn − 1 + o(1) in the random arrival model.

The performance of our algorithm is optimal in the random arrival model. A lower
bound construction for the oblivious adversary model is described in [15]. We adapt this
construction in the random arrival model. Obtaining a tight lower bound of 2Hn − 1− o(1)
requires some technical calculations which we present next.

Lower Bound in the Random Arrival Model. Consider a undirected weighted star graph
with a vertex v connected by an edge to every other vertex v1, . . . vn of this graph. Note that
this graph has n+ 1 vertices and n edges. The weight of each of these n edges is 1. Consider
the shortest path metric on this graph. For any pair (v, vi), the shortest path distance is 1.
Every other pair, (vi, vj) will have a shortest path distance of 2; this is because the only path
between them goes via v and has cost 2. Given this graph, we place our servers at nodes
S = {v1, . . . , vn}. The adversary chooses request locations at nodes R = {v, v1, . . . vn} \ {vt},
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where t is chosen uniformly at random from integers between 1 and n. Let σ be a random
permutation of requests in R.

First, note that the minimum-cost matching of S and R is of cost 1 – the request at
location v is matched to server at location vt and every other server at location vi is matched
to the corresponding request at location vi.

Consider any online algorithm for this input instance. Let us fix v to be the jth request
in σ. All requests that arrived before v will be matched with zero cost to servers at the same
location. It is easy to see that if the algorithm pursues any other matching scheme, it will
only have a larger final cost. The cost of matching v is 1 since every server is at a distance 1
from v. Therefore, after processing the jth request, the total cost of the matching is 1.

Consider j′th request for any j′ > j. Request rj′ has to be in one of the remaining
n − j′ + 1 locations from the set {v1, . . . , vn} that have not yet seen a request. Since t is
chosen uniformly at random, the next request rj′ can be any one of these n− j′+ 1 locations
with the same probability. Next, observe that, the servers in exactly one of these n− j′ + 1
locations is already matched. If the next request is at this location, it will incur a cost of 2.
This can happen with a probability of 1/(n− j′ + 1). Therefore, the expected cost of serving
the j′th request is at least 2/(n− j′ + 1). Given that v was the jth request, the expected
cost incurred will be at least

1 +
n∑

j′=j+1
(2/(n− j′ + 1)) ≥ 1 + 2Hn−j = 1 + 2 ln(n− j) + 2εn−j + 2γ, (8)

where γ is the Euler–Mascheroni constant and εk ≈ 1/2k. Since σ is a random permutation,
j can be any particular index between 1 and n with probability 1/n. When j = n, the cost
incurred by the algorithm is exactly 1. Equation 8 is meaningful only for 1 ≤ j ≤ n − 1.
Therefore, the expected cost incurred by any algorithm will be at least

1
n

(1 +
n−1∑
j=1

(2 ln(n− j) + 2εn−j + 2γ + 1))

= 1
n

(1 + 2 ln((n− 1)!) + n− 1 + 2
n∑

j=1
εn−j + 2(n− 1)γ)

= 1
n

(n+ 2 ln((n− 1)!) + 2
n−1∑
j=1

εn−j + 2(n− 1)γ)

= 1 + 2
n

((n− 1) ln(n− 1)− (n− 1) + (n− 1)γ +O(logn))

≥ 1 + 2 lnn− 2 + γ + εn − o(1)
≥ 2Hn − 2 + 1− o(1)
≥ 2Hn − 1− o(1)

The third equality follows from Sterling’s approximation which gives us ln((n − 1)!) =
(n− 1) ln(n− 1)− (n− 1) +O(logn). Also,

∑n−1
j=1 εn−j = O(logn).

Therefore, in the random arrival model, any online matching generated by the algorithm
will have an expected cost of 2Hn − 1− o(1) for this input.

I Theorem 11. In the random arrival model, any online algorithm for the minimum metric
bipartite matching problem will have a competitive ratio of at least 2Hn − 1− o(1), where Hn

is the nth Harmonic number.
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4 Conclusion

In this paper, we design a robust deterministic online algorithm for the minimum metric
bipartite matching problem. Our algorithm achieves an optimal competitive ratio in both
the adversarial and the random arrival models. We need such robust solutions for practically
motivated real-time matching problems. We conclude with a few open questions:
(a) Can we extend our approach to the k-server problem and achieve better quality solutions?
(b) Can we improve the performance of our algorithm in special metrics such as the line

metric or the Euclidean metric in 2d?
(c) Can we extend our algorithm to the oblivious model and obtain a O(logn)-competitive

algorithm?
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