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Abstract
We consider the classical k-means clustering problem in the setting of bi-criteria approximation,
in which an algorithm is allowed to output βk > k clusters, and must produce a clustering
with cost at most α times the to the cost of the optimal set of k clusters. We argue that this
approach is natural in many settings, for which the exact number of clusters is a priori unknown,
or unimportant up to a constant factor. We give new bi-criteria approximation algorithms, based
on linear programming and local search, respectively, which attain a guarantee α(β) depending
on the number βk of clusters that may be opened. Our guarantee α(β) is always at most 9+ε and
improves rapidly with β (for example: α(2) < 2.59, and α(3) < 1.4). Moreover, our algorithms
have only polynomial dependence on the dimension of the input data, and so are applicable in
high-dimensional settings.
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1 Introduction

The k-means clustering problem is one of the most popular models for unsupervised machine
learning. The problem is formally defined as follows.

I Definition 1. In the k-means problem, we are given a set X of n points x1, . . . , xn in Rp
and an integer parameter k ≥ 1. Our goal is to partition X into k clusters S1, . . . , Sk and
assign each cluster a center ai so as to minimize the cost

∑k
i=1
∑
xj∈Si

‖xj − ai‖2.

The most common heuristic for k-means is Lloyd’s algorithm introduced in 1957 [22, 23].
Lloyd’s algorithm starts with some initial solution and then iteratively improves it by
alternating two steps: at the first step, the algorithm picks the optimal clustering for the
current set of centers; at the second step, the algorithm picks the optimal set of centers for
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14:2 A Bi-Criteria Approximation Algorithm for k-Means

the current clustering. While we know that the algorithm performs well on well-clusterable
data [26] it performs arbitrarily badly on general instances. There exist many variants of
this algorithm and many heuristics for picking the initial solution. Unfortunately, none of
them give a constant (not depending on k) factor approximation. One of the most popular
ones is the k-means++ algorithm that has an O(log k)-approximation factor [5].

There are several results showing that k-means is NP-hard even in restricted special
cases [3, 24, 13]. The general k-means clustering problem has recently been shown to be
APX-hard, ruling out a PTAS in the general case [7]. However, a variety of PTASes exist
for special cases of the problem. Inaba, Katoh, and Imai [16] gave a (1 + ε)-approximation
algorithm for the case in which the number of clusters, k, and the dimension of the space,
p, are fixed. Since then many more PTASes were proposed for other special cases. Most
recently, PTASes have been obtained via local search algorithms in the general setting in
which distances come from a metric of constant doubling dimension [15] or from a graph
with forbidden minors [12]. Both of these results can be specialized yield PTASes in the
standard, Euclidean setting considered here whenever the dimension of the space is fixed.

In the general case, in which the dimension is not fixed, the best constant factor ap-
proximation algorithm was proposed by Kanungo et al. [18]. Their algorithm gives 9 + ε

factor approximation. Previously, Jain and Vazirani [17] gave a (larger) constant-factor
approximation for a discrete variant of k-means, via the primal-dual method. Using and
connection with the k-median problem, Anagnostopoulos, Dasgupta, and Kumar [4] also
designed a constant factor approximation algorithm for the general co-clustering problem,
which includes k-means as a special case. Aggarwal, Deshpande, and Kanan [2] showed that
running the k-means++ algorithm for more steps gives an α = 4 + ε factor approximation
by opening d16(k +

√
k)e centers, and also showed how to modify the resulting solution to

obtain a set of k centers attaining an O(1) factor guarantee.
In most practical applications the target number k of clusters is not fixed in advance.

Rather, we would like to find a number k that provides a well-clusterable solution. Here,
we show how to substantially improve the approximation factor by slightly violating the
constraint on the number of clusters. We present bi-criteria approximation algorithms for
the general case of the problem. A (β, α) bi-criteria approximation algorithm finds a solution
with βk clusters, whose cost is at most α times the optimal cost of a solution using k clusters.
In contrast to the approach of Aggarwal, Deshpand, and Kanan [2], our algorithms find
an approximate solution for every β > 1. Our approximation is always at most 9, and
decreases rapidly with β. In particular, we obtain a 4-approximation by opening only 1.65k
centers, improving over previous results [2] by a factor of nearly 10, and obtain improved
approximation factors α(β) as β continues to grow. For example, α(1.3) < 6.45, α(1.5) < 4.8;
α(2) < 2.59, and α(3) < 1.4. In general, we argue that in many applications the number of
clusters is not important as long as it approximately equals k. For these applications we can
obtain an approximation factor very close to 1.

We give three bi-criteria algorithms – two based on linear programming and one based on
local search. We show the algorithms’ approximation factors as a function of β in Figure 1.
Note that our linear programming algorithm attains a better approximation α for large β,
while the local search algorithm is better for β near 1.

Both of our algorithms are based on a reduction from the general k-means problem, in
which cluster centers may be placed at any point in Rp, to the following problem, in which
we are restricted to a given, discrete set of candidate cluster centers with specified distances
from each point. As part of reduction, we utilize dimensionality reduction to ensure that
the number of discrete candidate centers that must be considered is polynomial in both the
number of points n and in the dimension p.
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Figure 1 Approximation ratios obtained from opening βk centers.

I Definition 2. In the k-median problem, we are given a set of points D, a set of potential
center locations C and a distance function1 (d(i, j))i∈C,j∈D. The cost of assigning point j to
center i is d(i, j). Our goal is to open at most k centers and assign each point to a center so
as to minimize the total cost.

The first approximation algorithms for the k-median problem were given by Lin and Vitter
[21], who gave an LP-rounding algorithm that attains an approximation factor of 1 + ε

by opening O(k lnn) centers (i.e. a (1 + ε, O(lnn)) bi-criteria approximation). In further
work, Lin and Vitter [20] showed that if the distance function d is a metric, it is possible
to obtain a 2(1 + ε) approximation algorithm by opening only (1 + 1/ε)k centers. The first
constant-factor approximation for the metric k-median problem using only k centers was
obtained by Arya et al. [6], who showed that a simple local search algorithm gives a 3 + ε

approximation. This remained the state of the art until recently, when Li and Svensson [19]
gave a 2.732 + ε approximation algorithm based on LP rounding. Subsequently, this has
been improved to 2.675 + ε by Byrka [8].

Unfortunately, our resulting k-median instance is non-metric, and so we must employ an
alternative to the standard triangle inequality in our analysis. In the case of our LP-based
algorithms, we use the fact that our reduction produces instances satisfying a 3-relaxed 3-hop
triangle inequality, a concept that we define in Section 2. In the case of local search, we note
that given any partition of points of Rp into clusters S1, . . . , Sk, the optimal location of each
k-means cluster Si’s center is the centroid of all points in Si. This, combined with the fact
that our reduction to k-median approximately preserves the k-means cluster costs allows us
to employ a similar approach to that of Kanungo et al. [18].

1 Here, and throughout, we do not require the distance function to be a metric, as in some alternative
definitions of the k-median problem. In particular, in our k-median instance, the distances will be the
squared distances from given k-means instance.

APPROX/RANDOM’16
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1.1 Our Results
We give three approximation algorithms. The first algorithm is based on linear programming.
It gives an

α1(β) = 1 + e−β
( 6β

1− β + (β − 1)2

β

)
approximation (see also (14) for a slightly tighter bound). The second algorithm is based on
local search. It gives an

α2(β) = (1 +O(ε))
(

1 + 2
β

)2

approximation. The third algorithm is also based on linear programming. It gives an

α3(β) = max
(
1 + 8e−β , β(e−1 + 8e−β)

β − 1
)

approximation. The algorithm is similar to the first algorithm, but it uses pipage rounding
(see [1]) instead of randomized rounding. In the conference version of the paper, we omit the
description of the third algorithm. The approximation factors are shown in Figure 1.

In Section 2, we introduce the notation that we shall use throughout the rest of the
paper and review standard notions related to both the k-means and k-median problems. In
Section 3, we give the details of our reduction to the k-median problem. Finally, in Sections 4
and 5, respectively, we present our main LP-based algorithm and local search algorithm
for the resulting k-median instances. For the sake of presentation, we defer some technical
details to the appendix.

2 Preliminaries

We now fix some notation, and recall some basic properties of k-means solutions and the
standard linear program for the k-median problem. Additionally, we define the notion of an
α-relaxed 3-hop triangle inequality, which will be crucial to the analysis of our LP-rounding
algorithms.

2.1 k-means
Consider a given instance of the k-means problem, specified by a set of points X ∈ Rp. Given
a partition S = 〈S1, . . . , Sk〉 of X and a set C = 〈c1, . . . , ck〉 of centers in Rp, denote by
costX(S,C) the total cost of the clustering that, for each 1 ≤ i ≤ k assigns each point of Si
to the center ci:

costX(S,C) =
k∑
i=1

∑
x∈Si

‖x− ci‖2.

Note that to describe an optimal solution to the k-means problem, it is sufficient to specify
either all clusters or all centers in the solution. Indeed, given a list of clusters S1, . . . , Sk, we
can find the optimal assignment of centers ci for it: the optimal choice of center ci for Si is

1
|Si|
∑
xj∈Si

xj . For this choice of ci, we have

∑
x∈Si

‖x− ci‖2 = 1
2|Si|

∑
x′,x′′∈Si

‖x′ − x′′‖2. (1)
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Given a partition S = 〈S1, . . . , Sk〉 of X into clusters, we then denote by costX(S) the cost
of this optimal choice of centers. That is,

costX(S) =
k∑
i=1

1
2|Si|

∑
x′,x′′∈Si

‖x′ − x′′‖2.

Similarly, given a list C of centers c1, . . . , ck, we can find the optimal partition S =
〈S1, . . . , Sk〉 of X into clusters. For each c ∈ C, let NC(c) be the set of those points
x ∈ X that are closer to ci than to other centers cj 6= ci (if a point x is at the same
distance from several centers, we break the ties arbitrarily). The optimal partition for C
then sets Si = NC(ci). Given a set C of k centers, we define costX(C) ≡ costX(T ), where
T = 〈NC(c1), . . . , NC(ck)〉 is the partition induced by C.

2.2 k-median
We will reduce a given instance X of the k-means problem to an instance of the (non-metric)
discrete k-median problem, specified by 〈D, C, d〉. By analogy with the k-means problem, we
can consider a partition S = S1, . . . , Sk of points from D, and then consider the best choice
of a single center for each partition. We denote the cost of this choice by costD,d(S):

costD,d(S) =
k∑
i=1

min
x∈C

∑
j∈Si

d(x, j).

Similarly, given a list of k centers C = 〈c1, . . . , ck〉, let NC(ci) be the set of those points x ∈ D
that are closer (according to the distance function d) to ci than to any other center in C
(again, if a point x is at the same distance from several facilities, we break ties arbitrarily). As
in the case of k-means, we define costD,d(C) ≡ costD,d(T ) where T = 〈NC(c1), . . . , NC(ck)〉
is the partition of D induced by C.

Although the distance function d in our k-median instances will not satisfy the standard
triangle inequality, we can show that it satisfies a relaxed variant of the following sort:

I Definition 3. We say that d satisfies an α-relaxed 3-hop triangle inequality on D ∪ C if,
for any j, j′ ∈ D and i, i′ ∈ C, we have

d(i, j) ≤ α (d(i, j′) + d(i′, j′) + d(i′, j)) .

Specifically, we shall show that the distances produced by our reduction satisfy a 3-relaxed
3-hop triangle inequality.

3 Reduction from k-means to k-median

We now give the details of our reduction from the k-means to the k-median problem. In
the k-median problem, a finite set C of candidate centers is specified, while in the k-means
problem, the ideal center for each cluster Si of points is given by the centroid of Si. Ideally,
we want to ensure that for every possible centroid of the original k-means instance, there is
some nearby candidate center in C. The following notion of an ε-approximate centroid set,
introduced by2 Matoušek [25], captures this requirement.

2 Matoušek’s original definition requires that C contains some point in an ε-tolerance ball centered at the
centroid of each non-empty cluster of points from X. The condition presented here follows from this
one (see, for example, the proof of Lemma 4.1, in [25]).

APPROX/RANDOM’16
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I Definition 4. A set of points C ⊂ Rp is an ε-approximate centroid set for X ⊂ Rp if for
every S ⊂ X,

min
c∈C

∑
x∈S
‖x− c‖2 ≤ (1 + ε) min

c∈Rp

∑
x∈S
‖x− c‖2.

Observe that if C is an ε-approximate centroid set for X, then for every set of k centers C
(in particular, for the optimal set C∗), there exists a k-point subset C̃ ⊂ C such that

costX(C̃) =
∑
x∈X

min
c∈C̃
‖x− c‖2 ≤ (1 + ε)

∑
x∈X

min
c∈C
‖x− c‖2 = (1 + ε) costX(C).

Thus, if we restrict our search for k center points in the k-means problem to only those
points of C, we lose at most a factor of (1 + ε).

Matoušek showed that for every set X in Rp and ε > 0, there exists an ε-approximate
centroid set of size O(|X|ε−p log(1/ε)).

I Theorem 5 (Theorem 4.4 in [25]). Given an n-point set X ⊂ Rp and ε > 0, an ε-
approximate centroid set for X of size O(nε−p log(1/ε)) can be computed in time O(n logn+
nε−p log(1/ε)).

Unfortunately, in our setting, the dimension p of the space in which points x1, . . . , xn lie may
be as large as n. Thus, in order to apply Theorem 5, we first embed X into a low-dimensional
space using the Johnson–Lindenstrauss transform.

I Theorem 6 (Johnson–Lindenstrauss Flattening Lemma). For every set of points X in Rp
and ε ∈ (0, 1), there exists a map ϕ of X into p̃ = O(log |X|/ε2) dimensional space such that

‖x− y‖2
2 ≤ ‖ϕ(x)− ϕ(y)‖2

2 ≤ (1 + ε)‖x− y‖2
2. (2)

We say that the map ϕ is a dimension reduction transform for X.

Given an instance X of k-means, we apply the dimension reduction transform to X, get a
set X ′ ⊂ Rp̃, and then find an ε-approximate centroid set C to X ′. We obtain an instance
〈X ′, C, d〉 of k-median with the squared Euclidean distance d. We show in Theorem 7 that the
value of this instance is within a factor of (1 + ε) of the value of instance X of k-means, and,
moreover, that there is a one-to-one correspondence between solutions of instance 〈X ′, C, d〉
and solutions of instance X. We defer the proof of Theorem 7 to Appendix A.

I Theorem 7. The following hold:
1. For every ε ∈ (0, 1/2), there exists a polynomial-time reduction from k-means to k-median

with distance function that satisfies the 3-relaxed 3-hop triangle inequality. Specifically,
given an instance X of k-means, the reduction outputs an instance 〈D, C, d〉 of k-median
with |D| = |X|, |C| = nO(log(1/ε)/ε2), and distance d that satisfies the 3-relaxed 3-hop
triangle inequality such that

OPTX ≤ OPT〈D,d〉 ≤ (1 + ε)OPTX ,

where OPTX is the value of the optimal solution to X and OPT〈D,d〉 is the value of
the optimal solution to 〈D, C, d〉. The reduction also gives a one-to-one correspondence
ψ : D → X such that

costX(ψ(S)) ≤ costD,d(S) ≤ (1 + ε) costX(ψ(S)),

where S = 〈S1, . . . , Sk〉 is a partition of D and ψ(S) = 〈ψ(S1), . . . , ψ(Sk)〉 is the corres-
ponding partition of X. The reduction runs in time nO(log(1/ε)/ε2).
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2. In instance 〈D, C, d〉, C ⊂ Rp̃ (for some p̃), C is an (ε/3)-approximate centroid set for D,
and d(c, x) = ‖c− x‖2.

We remark, briefly, some elements of our reduction may be improved by using more sophist-
icated approaches for constructing approximate centroids and core sets (e.g. [14]), as well as
recent specialized dimensionality reduction techniques [11]. Here we have chosen instead to
present a more straightforward reduction.

4 Algorithm for k-Median with Relaxed Triangle Inequality

We now turn to the problem of approximating the k-median instance from Theorem 7. Our
first algorithm is based on the following standard linear programming relaxation for the
k-median problem:

min
∑
c∈C

∑
x∈X

zxcd(x, c), (3)∑
c∈C

yc = k, (4)∑
c∈C

zxc = 1, ∀x ∈ X, (5)

zxc ≤ yc, ∀c ∈ C, j ∈ X, (6)
zxc, yc ≥ 0. (7)

In the integral solution, each variable yc indicates whether the center c is open; and each
variable zxc indicates whether the point x is assigned to the center c. Constraint (4) asserts
that we should open exactly k centers; constraint (5) ensures that every point is assigned
to exactly one center; finally, constraint (6) says that points can be assigned only to open
centers. In a fractional LP solution, all zxc and yc lie in the interval [0, 1]. Note that in
the integral solution, zxc = yc, if zxc > 0 (as both zxc and yc must be equal to 1). We can
slightly change any feasible LP solution so it also satisfies this property. Specifically, we
split any center c which does not satisfy yc = zxc (for some x ∈ X) into two co-located
centers c1 and c2: one with weight zxc and the other with weight yc − zxc. We distribute the
weights zx′c among them as follows: we let zx′c1 = min(zx′c, yc1); zx′c2 = yc2 −min(zx′c, yc1).
Note that this is a standard assumption in the k-median literature. We refer the reader
to [27] (see Lemma 1) and [10] for more details. The values yc define the measure y on C:
y(C) =

∑
c∈C yc. In the rounding algorithm and in the analysis, it will be convenient to

think of this measure as a “continuous measure”: That is, if needed we will split the centers
into co-located centers to ensure that we can find a set of any given measure µ.

For every point x ∈ X, let Cx = {c ∈ C : zxc > 0}. The set Cx contains all centers that
serve x in the LP solution. Recall that we modify the solution so that yc = zxc if zxc > 0.
Hence, yc = zxc if x ∈ Cx. For every point x ∈ X, we define its LP radius Rx as:

Rx =
∑
c∈C

zxcd(x, c) =
∑
c∈Cx

ycd(x, c).

Observe, that the LP value, which we denote by LP , equals
∑
x∈X Rx.

Algorithm. We now describe our LP-rounding algorithm for the k-median problem with
relaxed 3-hop triangle inequality.

APPROX/RANDOM’16



14:8 A Bi-Criteria Approximation Algorithm for k-Means

I Theorem 8. There exists a (β, α) bi-criteria approximation algorithm for k-means with

α(β) = 1 + e−β
( 6β

1− β + (β − 1)2

β

)
(8)

for every β > 1.

The algorithm first solves the LP problem and modifies the LP solution as described
above if necessary. Then, it partitions all centers into βk groups Z ∈ Z, each with LP
measure 1/β. It picks one center c at random from each group Z with probability βyc (note
that

∑
c∈Z βyc = 1). The algorithm outputs the set of βk chosen centers, and assigns every

point to the closest center.
We now describe the construction of Z in more detail. We partition centers into βk

groups as follows. For every x ∈ X, we find the unique ball Bx around x whose LP weight
exactly equals 1/β (To do so, we may split some centers, and pick some centers in Bx at the
boundary of the ball but not the others). We find a subset of points W such that balls Bx
with x ∈ W are disjoint, and for every point x ∈ X, we also define a “witness” w(x) ∈ W.
To this end, we sort all points x ∈ X by the LP radius Rx in the ascending order, and then
consider them one by one. For each x ∈ X, if Bx is disjoint from all previously chosen balls,
then we add x to the set W and set w(x) = x. Otherwise, if Bx intersects some other ball
Bx′ that is already chosen, we discard Bx and set w(x) = x′. If there are several balls Bx′

intersecting Bx, we pick the first x′ according to our ordering as the witness. Note, that
Rw(x) ≤ Rx for all x. Once we have found a disjoint collection of balls {Bx : x ∈ W}, we add
them to the set Z. We partition centers not covered by ∪x∈WBx into groups of LP weight
1/β arbitrarily and add these groups to Z. Thus, we obtain a partitioning Z of all centers
into groups of LP weight 1/β.

Analysis. We show that the algorithm returns a valid solution, and then prove an upper
bound on its expected cost. For the sake of presentation, we defer some technical claims to
Appendix B.

The algorithm picks exactly one center from each group, so it always picks βk centers.
Hence, it always outputs a valid solution. Let S be the set of centers output by the algorithm.
Denote the radius of the ball Bx by Rβx . For every center x, we estimate the expected
distance from x to the closest center c in the solution S i.e. E[d(x, S)]. We show that
E[d(x, S)] ≤ α(β)Rx for α(β) as in equation (8). Since LP =

∑
xRx, we conclude that the

algorithm has an approximation factor of α(β).
Fix x ∈ X. Recall, that Cx = {c : zxc > 0} is the set of all centers that serve x in the

LP solution. We upper bound d(x, S) by d(x, (Cx ∪ Bw(x)) ∩ S), which is the distance to
the closest center in Cx ∪Bw(x) chosen by the algorithm. Note that the solution S always
contains at least one center in Bw(x), so (Cx ∪ Bw(x)) ∩ S 6= ∅. For the proof, we pick a
particular (random) center f(x) ∈ (Cx ∪Bw(x)) ∩ S.

We define f(x) using the following randomized procedure. Consider the partitioning Z
of all centers into groups of measure 1/β used by the algorithm. Let Z̃ = {Z ∩ Cx : Z ∈
Z; Z ∩ Cx 6= ∅} be the induced partitioning of the set Cx. For all Z̃ ∈ Z̃ we independently
flip a coin and with probability (1− e−βy(Z̃))/(βy(Z̃)) make the set Z̃ active. We let A ⊂ Cx
to be the union of all active sets Z̃; we say that centers in A are active centers. Let f(x) be
the center in A∩ S closest to x, if A∩ S 6= ∅ ; let f(x) to be the unique center in Bw(x) ∩ S,
otherwise. We set E = 0, if A ∩ S 6= ∅; and E = 1, otherwise. Roughly speaking, E indicates
whether f(x) ∈ Cx or f(x) ∈ Bw(x): Specifically, if E = 0, then f(x) ∈ Cx; if E = 1, then
f(x) ∈ Bw(x). Note, however, that Cx ∩Bw(x) 6= ∅, and f(x) may belong to Cx ∩Bw(x).
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The center f(x) may not be the closest to x, but since f(x) ∈ S, we have

d(x, S) ≤ d(x, (Cx ∪Bw(x)) ∩ S) ≤ d(x, f(x)).

Let us now derive bound on the expected distance of a single client x to f(x). We begin by
considering the probability of the event E .

I Lemma 9. Pr(E = 0) = 1− e−β.

Proof. Recall that the algorithm picks one center c in every Z ∈ Z uniformly (with respect
to the measure y) at random. Thus, the probability that the algorithm picks a center from
Z̃ equals βy(Z̃). The probability that a given Z̃ contains a point from the solution S and Z̃
is active equals βy(Z̃)× (1− eβy(Z̃))/(βy(Z̃)) = (1− eβy(Z̃)). The probability that no such
Z̃ exists equals∏

Z̃∈Z̃

e−βy(Z̃) = e
−
∑

Z̃∈Z̃
βy(Z̃) = e−βy(Cx) = e−β . J

Using Lemma 9 we have:

E[d(x, f(x)] = Pr(E = 0)E
[
d(x, f(x)) | E = 0

]
+ Pr(E = 1)E

[
d(x, f(x)) | E = 1

]
= (1− e−β)E

[
d(x, f(x)) | E = 0

]
+ e−β E

[
d(x, f(x)) | E = 1

]
. (9)

Let us now bound each remaining above, in turn.

I Lemma 10. E[d(x, f(x)) | E = 0] ≤ Rx.

Proof. We define two sets of random variables P and Q, and then show that they are
identically distributed. If the algorithm picks a center c in Z̃, and Z̃ is active, let P (Z̃) = c.
Let P (Z̃) =⊥, otherwise. The random variables P (Z̃) are mutually independent for all
Z̃ ∈ Z̃; and

Pr(Z̃ = c) = (1− e−βy(Z̃)) yc
y(Z̃)

for c ∈ Z̃.
To define Q, we introduce an auxiliary Poisson arrival process. At every point of time

t ∈ [0, β], we pick a center c ∈ Cx with probability ycdt (i.e., with arrival rate yc). For every
Z̃, let Q(Z̃) be the first center chosen in Z̃. If no centers in Z̃ are chosen, we let Q(Z̃) =⊥.
Note that we pick two centers at exactly the same time with probability 0, hence Q(Z̃) is well
defined. Conditional on Q(Z̃) 6=⊥, the random variable Q(Z̃) is uniformly distributed in Z̃
with respect to the LP measure y (since at every given time t, the probability of arrival equals
ycdt). Then, Pr(Q(Z̃) 6=⊥) = (1− e−βy(Z̃)). Hence, Pr(Q(Z̃) = c) = (1− e−βy(Z̃))yc/y(Z̃).
Note that all random variables Q are mutually independent. Thus, the random variables Q
have the same distribution as random variables P .

Note that if E = 0, then f(x) is the closest center in {P (Z̃) : Z̃ ∈ Z̃;P (Z̃) 6=⊥} to x. If
E = 1, then all P (Z̃) are equal to ⊥. Let UQ = {Q(Z̃) : Z̃ ∈ Z̃;Q(Z̃) 6=⊥}. Since P and Q
have the same distribution, we have

E[d(x, f(x)) | E = 0] = E[ min
c∈UQ

d(x, c) | UQ 6= ∅].

Conditional on UQ 6= ∅, the first center that arrives according to our stochastic process is
uniformly distributed in Cx, according the measure y. The expected distance from it to x
equals Rx. Hence, E[minc∈UQ

d(x, c) | UQ 6= ∅] ≤ Rx. J
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Observe that for a random center c distributed according to the LP measure y in Cx (i.e.,
Pr(c = c0) = y(c0)/y(Cx) = y(c0)), we have the exact equality E[d(x, c)] = Rx. So Lemma 10
shows that the distribution of f(x) given E = 0 is “not worse” than the distribution according
to y in Cx.

We now bound the expected distance from x to f(x) given E = 1.

I Lemma 11. Let γ = βy(Dx). Then,

E[d(x, f(x)) | E = 1] ≤
(
eγ(1− γ)× 3

( β

β − 1 + r1 + r2

)
+ (1− eγ(1− γ))× β

γ

)
Rx,

for some non-negative numbers r1 and r2 such that r1 ≤ r2 and 1−γ
β r1 + β−1

β r2 ≤ Rx.

Proof. Recall, that w(x) is the witness for x. Thus, the balls Bx and Bw(x) intersect and
Rw(x) ≤ Rx. Let c◦ be an arbitrary center in Bx ∩ Bw(x). By the relaxed 3-hop triangle
inequality,

d(x, f(x)) ≤ 3
(
d(x, c◦) + d(w(x), c◦) + d(w(x), f(x)

)
≤ 3
(
Rβx +Rβw(x) + d(w(x), f(x))

)
. (10)

Here, we used that Rβx is the radius of Bx; Rβw(x) is the radius of Bw(x). Now, let Dx =
Bw(x) ∩ Cx. In Lemmas 15 and 16 in Appendix B, we show that:

Rβx ≤ βRx/(β − 1) (11)

and

Rβw(x) + E[d(w(x), f(x)) | f(x) ∈ Bw(x) \Dx; E = 1] ≤ r1 + r2, (12)

for some pair of nonnegative numbers r1 and r2 (r1 ≤ r2) satisfying the conditions of the
lemma. Taking expectations conditioned on f(x) ∈ Bw(x) \Dx and E = 1 in (10), and then
applying the bounds (11) and (12), we obtain:

E[d(x, f(x)) | f(x) ∈ Bw(x) \Dx; E = 1] ≤ 3
( βRx
β − 1 + r1 + r2

)
. (13)

In Lemmas 17 and 18 in the Appendix, we show, respectively, that

Pr(f(x) ∈ Bw(x) \Dx | E = 1) = eγ(1− γ),

and

E[d(x, f(x)) | f(x) ∈ Dx; E = 1] ≤ βRx
γ

.

Combining these bounds with (13), we obtain the desired inequality. J

Combining Lemmas 10 and 11 with (9), we have:

E[d(x, f(x))] ≤ Rx

(
(1−e−β)+e−β

(
eγ(1−γ)×3

(
β

β − 1 + r1 + r2

Rx

)
+(1−eγ(1−γ))× β

γ

))
.

Now, we recall that γ = βy(Dx), and note that γ ∈ [0, 1], since y(Bw(x)) = 1/β. In order
to bound the right hand side, we take the maximum over all γ ∈ [0, 1] and r1, r2 ≥ 0
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satisfying the conditions given in Lemma 11. The right hand side is a linear function of
r1 and r2. Hence, for a fixed γ the maximum is attained at one of the two extreme points:
(r1, r2) = (0, βRx/(β − 1)) or (r1, r2) = (βRx/(β − γ), βRx/(β − γ)). Substituting r1 and r2
in the previous inequality we get the following upper bound on the ratio E[d(x, f(x))]/Rx:

max
γ∈[0,1]

(
(1−e−β)+3e−(β−γ)(1−γ)

( β

β − 1 +max
( β

β − 1 ,
2β
β − γ

))
+ βe−β(1− eγ(1− γ))

γ

)
.

(14)

This function can in turn be upper bounded by α(β), as defined in (8). We conclude that
the approximation factor of the algorithm is upper bounded by α(β).

5 Local Search

For smaller values of β, we consider the standard local search algorithm (see, e.g., [6]) for the
k-median problem using swaps of size s, but now allow the solution to contain βk centers.
The algorithm works as follows: we maintain a current solution A comprising βk centers in
C. We repeatedly attempt to reduce the cost of the current solution A by closing a set of
at most s centers in A and opening the same number of new centers from C \A. When no
such local swap improves the cost of the solution A we terminate and return A. In order to
simplify our analysis, we do not worry about convergence time of the algorithm here. We
note that by applying standard techniques (see [6, 9]), we can ensure that, for any δ > 0,
the algorithm converges in time polynomial in n = |C ∪ D| and 1

δ by instead stopping when
no local swap improves the cost of A by a factor of

(
1− δ

poly(n)

)
; the resulting algorithm’s

approximation ratio increases by only 1
1−δ .

Unfortunately standard analyses of local search algorithms for the k-median problem[6, 9]
rely heavily on the triangle inequality, while the instances generated by Theorem 7 satisfy
only a 3-relaxed 3-hop triangle inequality. Thus, we proceed as in Kanungo et al. [18].
Similarly to the previous section, we defer some technical details to Appendix C.

Let O = 〈o1, . . . , ok〉 be an optimal set of k centers, and A = 〈a1, . . . , aβk〉 be the set of
βk centers produced by the local search algorithm. As in [18], we say that a center a ∈ A
captures a center o ∈ O if a is the center of A that is closest to o. Note that each center in A
can potentially capture several centers in O, but each center in O is captured by exactly one
center of A. We now construct a set of local swaps to consider in our analysis. We say that
a center in A is “good” if it does not capture any center of O. Then, because each center of
O is captured by only one center of A, we must have at least βk− k = (β − 1)k good centers
in A. We fix some such set of (β − 1)k good centers; we call them “auxiliary” centers and set
them aside for now.

For the remaining k centers B ⊆ A, we proceed exactly as in [18]: we assign each center
in O to the bad center of B that captures it. This creates a partition O1, . . . , Or of centers in
O. We similarly partition the centers of B into r parts B1, . . . , Br with |Bi| = |Oi|; for each
1 ≤ i ≤ r, let Bi contain the bad center of B that captures all of Oi together with |Bi| − 1
unique good centers of B. Note that the fact that each center of O is captured only once
ensures that there are indeed enough good centers in B for our construction. Now, we use
this partition of B and O to construct a set of swaps, each assigned some weight. If |Oi| ≤ s,
we consider the 〈Bi, Oi〉 with weight 1. If |Oi| = q > s, we consider the group of all singleton
swaps 〈{b}, {o}〉, where o ∈ Oi and b is a good center in Bi, each given weight 1

q−1 . At this
point, note that every center in O occurs in swaps of total weight 1, and every center in B
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occurs in swaps of total weight at most q
q−1 ≤ 1 + 1

s . Now, we add swaps involving auxiliary
centers; for each of the (β − 1)k auxiliary centers a ∈ A \ B and each o ∈ O, we consider
singleton swap 〈{a}, {o}〉, assigned weight 1

k . Each center of O now occurs in swaps of total
weight 1 + (β − 1) = β, while each center of A \B occurs in swaps of total weight 1.

Summarizing, our set of swaps satisfies the following properties: (1) each center of O
occurs in swaps of total weight β; (2) each center of A occurs in swaps of total weight at
most 1 + 1

s ; (3) for any swap 〈A′, O′〉 in our set, no center in A′ captures any center not in
O′. We now give a brief sketch of how these properties lead to our desired approximation
ratio (we give a full description of the analysis in the appendix). Our analysis closely follows
that of [18].

Recall that for some set C of centers and some c ∈ C, we denote by NC(c) the set of all
points x whose closest center in C is c. As in [18], the total change costD,d(A \A′ ∪O′)−
costD,d(A) due to performing a single swap 〈A′, O′〉 is at most:∑

o∈O′

∑
x∈NO(o)

(
d(x, o)− d(x, ax)

)
+
∑
a∈A′

∑
x∈NA(A′)

(
d(x, aox

)− d(x, ax)
)
.

If A is locally optimal, then we must have that costD,d(A \A′ ∪O′)− costD,d(A) ≥ 0 for all
swaps (A′, O′) considered by the algorithm. In particular, for each swap 〈A′, O′〉 in our set,
we have:

0 ≤
∑
o∈O′

∑
x∈NO(o)

(
d(x, o)− d(x, ax)

)
+
∑
a∈A′

∑
x∈NA(A′)

(
d(x, aox

)− d(x, ax)
)
. (15)

Multiplying each inequality (15) by the weight of its swap and then adding the resulting
inequalities we obtain:

0 ≤ β
∑
x∈D

(d(x, ox)− d(x, ax)) +
(

1 + 1
s

)∑
x∈D

(d(x, aox
)− d(x, ax)),

due to properties (1) and (2) of our set of swaps. Theorem 7 part 2, which shows that our
center set is an approximate k-means centroid set, then allows us to simplify the final term
above as in [18], giving:

0 ≤
(
β + 2 + 2

s

)
costD,d(O)−

(
β −

2 + 2
s

α

)
costD,d(A) +O(ε) · costD,d(A),

where α2 = costD,d(A)
costD,d(O) is the squared approximation ratio of our algorithm. Rearranging and

simplifying (again, we give a detailed analysis in the appendix), we obtain

α <

(
1 + 2

β
+ 2
βs

)
1

1−O(ε) .

Thus, we have the following theorem:

I Theorem 12. There exists an algorithm that produces a solution for any instance of
βk-median problem satisfying the properties of Theorem 7, where β > 1 is a fixed constant.
For any s ≥ 1 and any ε ∈ (0, 1], the algorithm runs in time polynomial in |C ∪ D| and
produces a solution A satisfying:

costD,d(A) ≤
(

1 + 2
β

+ 2
βs

)2 1
1−O(ε) · costD,d(O)

where O is the optimal set of k centers in C.
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A Proof of Theorem 7

In this section, we prove Theorem 7. Consider an instance of k-means with a set of points
X ⊂ Rp. Denote n = |X|. Let ε′ = ε/3. Let ϕ : Rp → Rp̃ be a dimension reduction transform
for X with distortion (1 + ε′) as in Theorem 6. Note that p̃ = O(logn/ε′2) = O(logn/ε2).

Let X ′ = ϕ(X) ⊂ Rp̃. Using the algorithm from Theorem 5, we compute an ε′-
approximate centroid set C ⊂ Rp̃ for X ′. The size of C is

O(nε−p̃ log(1/ε)) = nε−O(logn/ε2) log(1/ε) = n · nO(log(1/ε)/ε2) = nO(log(1/ε)/ε2);

we need time O(n logn+ nε−p̃ log(1/ε)) = nO(log(1/ε)/ε2) to compute it.
We first show that for every solution of the k-means problem on X there is a corresponding

solution of k-means problem on X ′ in which all centers lie in C, and vice versa.

I Lemma 13. The following hold:
1. For every partition S = 〈S1, . . . , Sk〉 of X, there is a corresponding clustering of X ′ given

by S′ = 〈ϕ(S1), . . . , ϕ(Sk)〉 and some centers C ′ = 〈c′1, . . . , c′k〉 ⊆ C such that:

costX′(S′, C ′) ≤ (1 + ε′)2 costX(S).

2. For every partition S′ = 〈S′1, . . . , S′k〉 of X ′, there is a corresponding clustering S =〈
ϕ−1(S1), . . . , ϕ−1(Sk)

〉
of X and some centers C = 〈c1, . . . , ck〉 ⊆ Rp such that

costX(S,C) ≤ costX′(S′).

Proof. Part 1: Consider a partition S = 〈S1, . . . , Sk〉 of X and the corresponding partition
S′ = 〈S′1, . . . , S′k〉 of X ′, where S′i = ϕ(Si). Let c′i = arg minc∈C

∑
x∈S′

i
‖x′ − c‖2 for
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i ∈ {1, . . . , k}. Because C is an ε′-approximate centroid set for X ′, we have, for each cluster
S′i, ∑

x∈S′
i

‖x− c′i‖2 ≤ (1 + ε′) min
c∈Rp̃

∑
x∈S′

i

‖x− c‖2 = (1 + ε′) 1
2|S′i|

∑
x′,x′′∈S′

i

‖x′ − x′′‖2

= 1 + ε′

2|S′i|
∑

x′,x′′∈Si

‖ϕ(x′)− ϕ(x′′)‖2 ≤ (1 + ε′)2

2|Si|
∑

x′,x′′∈Si

‖x′ − x′′‖2

Hence,

costX′(S′) =
k∑
i=1

∑
x∈S′

i

‖x− c′i‖2 ≤ (1 + ε′)2 costX(S).

Part 2: Consider a partition S′ = 〈S′1, . . . , S′k〉 of X ′ and the corresponding partition
S = 〈S1, . . . , Sk〉 of X, where Si = ϕ−1(S′i). Define the centers ci =

∑
x∈Si

x/|Si|. Then, for
each cluster Si, we have:∑

x∈Si

‖x− ci‖2 = 1
2|Si|

∑
x′,x′′∈Si

‖x′ − x′′‖2 ≤ 1
2|Si|

∑
x′,x′′∈Si

‖ϕ(x′)− ϕ(x′′)‖2

= 1
2|S′i|

∑
x′,x′′∈S′

i

‖x′ − x′′‖2.

Hence,

costX(S) =
k∑
i=1

∑
x∈Si

‖x− ci‖2 ≤ costX′(S′). J

Now we are ready to define instance 〈D, C, d〉. Let D = X ′, C be the ε-approximate
centroid we defined above, and d(c, x) = ‖c − x‖2 for every c ∈ C and x ∈ D. Define
ψ : D → X by ψ(x) = ϕ−1(x).

We prove that our reduction, which maps instance X of k-means to instance 〈D, C, d〉 of
k-median, satisfies the conditions of the theorem.

I Lemma 14. Our reduction produces an instance that satisfies the following properties:
1. The distance function d satisfies the 3-relaxed 3-hop triangle inequality on D ∪ C.
2. For every partition S = 〈S1, . . . , Sk〉 of D and the corresponding partition ψ(S) =
〈ψ(S1), . . . , ψ(Sk)〉 of X, we have

costX(ψ(S)) ≤ costD,d(S) ≤ (1 + ε) costX(ψ(S)).

3. We have

OPTX ≤ OPT〈D,d〉 ≤ (1 + ε)OPTX .

Proof. Claim 1 follows from the fact that:

‖x− w‖2 ≤ (‖x− y‖+ ‖y − z‖+ ‖z − w‖)2 ≤ 3(‖x− y‖2 + ‖y − z‖2 + ‖z − w‖2).

for any w, x, y, z ∈ Rp̃.
For claim 2, consider any partition S of D. Let T = ψ(S) be the corresponding partition

of X, given by Ti = ψ(Si). Then, from our definition of d, we have costD,d(S) = costX′(S).

APPROX/RANDOM’16



14:16 A Bi-Criteria Approximation Algorithm for k-Means

Moreover, by Lemma 13, we have costX′(S) is between costX(T ) and (1 + ε′)2 costX(T ).
Thus,

costX(ψ(S)) ≤ costD,d(S) ≤ (1 + ε′)2 costX(ψ(S)) ≤ (1 + ε) costX(ψ(S)).

Since for every partition S of C there is a corresponding partition ψ(S) of X, and for every
partition T of X there is a corresponding partition ϕ(T ) of D, we immediately get from
claim 2 that OPTX ≤ OPT〈D,d〉 ≤ (1 + ε)OPTX . J

B Detailed Analysis of the LP Rounding Algorithm

Here we give a detailed proof of the necessary facts for the analysis of Section 4.

I Lemma 15. The following inequality holds: Rβx ≤ βRx/(β − 1).

Proof. We have

Rx =
∑
c∈Cx

ycd(x, c) ≤
∑

c∈Cx\Bx

ycd(x, c).

Every center c ∈ Cx \Bx is at distance at least Rβx from x. Hence,

Rx ≤
∑

c∈Cx\Bx

ycR
β
x = y(Cx \Bx)Rβx =

(
1− 1

β

)
Rβx .

The desired inequality follows. J

I Lemma 16. There exist two nonnegative numbers r1 and r2 satisfying
1.
(

1−γ
β

)
r1 +

(
β−1
β

)
r2 ≤ Rx,

2. r1 ≤ r2,

such that Rβw(x) + E[d(w(x), f(x)) | f(x) ∈ Bw(x) \Dx; E = 1] ≤ r1 + r2.

Proof. Denote the expected distance from a random center c in Bw(x) \Dx to w(x) by r1
and distance from a random center c in Cw(x) \Bw(x) to w(x) by r2:

r1 =
∑
c∈Bw(x)\Dx

ycd(w(x), c)
y(Bw(x) \Dx) r2 =

∑
c∈Cw(x)\Bw(x)

ycd(w(x), c)
y(Cw(x) \Bw(x))

.

By the definition of Rw(x), we have

Rw(x) =
( ∑
c∈Dx

ycd(w(x), c)
)

+ y(Bw(x) \Dx) r1 + y(Cw(x) \Bx) r2

≥
(1− γ

β

)
r1 +

(β − 1
β

)
r2,

since y(Bx) = y(Bw(x)) = 1/β, y(Cw(x)) = 1, and y(Dx) = γ/β. Note that Rw(x) ≤ Rx.
Hence,(1− γ

β

)
r1 +

(β − 1
β

)
r2 ≤ Rx.

Since all centers in Bw(x) \ Dx lie inside of the ball of radius Rβw(x) around w(x), and
all centers in Cw(x) \ Bw(x) lie outside of this ball, we have r1 ≤ Rβw(x) ≤ r2. Hence,
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Rβw(x) + d(w(x), f(x)) ≤ r2 + d(w(x), f(x)) and r1 ≤ r2. Conditional on f(x) ∈ Bw(x) \Dx

and E = 1, the random center f(x) is distributed uniformly in Bw(x) \Dx with respect to
the LP measure y. Hence, E[d(w(x), f(x)) | f(x) ∈ Bw(x) \Dx; E = 1] = r1. Consequently,

Rβw(x) + E[d(w(x), f(x)) | f(x) ∈ Bw(x) \Dx; E = 1] ≤ r1 + r2. J

I Lemma 17. We have Pr(f(x) ∈ Dx | E = 1) = 1− eγ(1− γ).

Proof. Observe that the set Dx = Bw(x) ∩ Cx is one of the sets in the partitioning Z̃ as
w(x) ∈ W and Bw(x) ∈ Z. Assume f(x) ∈ Dx and E = 1. Since f(x) ∈ Dx, we have
S ∩Dx 6= ∅. Thus, Dx must be inactive (otherwise, E would be 0). Moreover, for every
Z̃ 6= Dx (Z̃ ∈ Z), Z̃ is inactive or Z̃ ∩ S = ∅ (again, otherwise, E would be 0). Hence, the
event

{f(x) ∈ Dx and E = 1}

can be represented as the intersection of the following three independent events: {S∩Dx 6= ∅},
{Dx is not active}, and {there are no active centers in (Cx \Dx) ∩ S}. The probability of
the first event is βy(Dx); the probability of the second event is 1− (1− e−βy(Dx))/(βy(Dx));
the probability of the third event is e−βy(Cx\Dx) (this probability is computed as in Lemma 9).
Thus,

Pr(f(x) ∈ Dx and E = 1) = βy(Dx)×
(

1− 1− e−βy(Dx)

βy(Dx)

)
× e−βy(Cx\Dx)

=
(
γ − (1− e−γ)

)
× e−(β−γ) = e−β

(
1− (1− γ)eγ

)
.

Combining this with Lemma 9, which shows that Pr(E = 1) = e−β completes the proof. J

I Lemma 18. The following bound holds: E[d(x, f(x)) | f(x) ∈ Dx; E = 1] ≤ βRx

γ .

Proof. Given f(x) ∈ Dx and E = 1, the random center f(x) is distributed uniformly in Dx

with respect to the LP measure y. Hence, Pr(f(x) = c) = yc/y(Dx) for c ∈ Dx. We have

E[d(x, f(x)) | f(x) ∈ Dx; E = 1] =
∑
c∈Dx

ycd(x, c)
y(Dx) ≤

∑
c∈Cx

ycd(x, c)
y(Dx) = Rx

γ/β
. J

C Detailed Analysis of the Local Search Algorithm

Here we give a detailed analysis of the local search algorithm from Section 5, closely following
Kanungo et al. [18].

For a set of points P ⊆ X and a point c ∈ Rp, define the total distortion of P with
respect to c as ∆(P, c) ≡

∑
c′∈P ‖c′ − c‖2. We shall use the following Lemmas from [18]:

I Lemma 19 (Lemma 2.1 in [18]). Given a finite subset P of points in Rp, let c be the
centroid of P . Then, for any c′ ∈ Rp, ∆(P, c′) = ∆(P, c) + |P | · ‖c− c′‖2

I Lemma 20. Let 〈ρi〉 and 〈ξi〉 be two sequences of reals such that α2 = (
∑
i ρ

2
i )/(

∑
i ξ

2
i )

for some α > 0. Then,

n∑
i=1

ρiξi ≤
1
α

n∑
i=1

ρ2
i .

APPROX/RANDOM’16
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We now show how local optimality implies the desired inequality. For a point x ∈ D,
let ax and ox denote the closest facility to x in A and O, respectively. Recall that for for
a ∈ A, NA(a) is precisely the set of all those points x ∈ D such that ax = a, and, similarly,
for o ∈ O, NO(o) is the set of all points x ∈ D such that ox = o. Now, we upper bound the
change in cost due to some swap 〈A′, O′〉 in our set of swaps. We do this by constructing a
feasible assignment of all points in D to centers in A \A′ ∪O′. For each o ∈ O′, we assign
all the points in NO(o) to o. This changes the cost by

∑
o∈O′

∑
x∈NO(o)

(d(x, o)− d(x, ax)).

Now, fix a point x ∈ NA(A′) \NO(O′), and consider x’s closest optimal center ox. We must
have ox 6∈ O′. Let aox

be the closest center to ox in A. Then, by property (3) of our set of
swaps, aox 6∈ A′, since aox captures ox but ox 6∈ O′. We reassign x to aox . The total cost of
reassigning all such points x is at most:

∑
a∈A′

∑
x∈NA(A′)\NO(O′)

(d(x, aox
)− d(x, ax)) ≤

∑
a∈A′

∑
x∈NA(A′)

(d(x, aox
)− d(x, ax)),

where the inequality follows from the fact that ax is the closest center to x in A, and so
d(x, aox

) − d(x, ax) ≥ 0 for all x ∈ NA(A′) ∩ NO(O′). Thus, the total change costD,d(A \
A′ ∪O′)− costD,d(A) for each swap 〈A′, O′〉 is at most:

∑
o∈O′

∑
x∈NO(o)

(d(x, o)− d(x, ax) +
∑
a∈A′

∑
x∈NA(A′)

(d(x, aox)− d(x, ax)).

If A is locally optimal, then we must have that costD,d(A \A′ ∪O′)− costD,d(A) ≥ 0 for
all swaps (A′, O′) considered by the algorithm. In particular, for each swap 〈A′, O′〉 in our
set, we have:

0 ≤
∑
o∈O′

∑
x∈NO(o)

(
d(x, o)− d(x, ax)

)
+
∑
a∈A′

∑
x∈NA(A′)

(
d(x, aox

)− d(x, ax)
)
.

Set γ = 1 + 1
p . Then, multiplying each such inequality by the weight of its swap and then

adding the resulting inequalities we obtain

0 ≤ β
∑
x∈D

(
d(x, ox)− d(x, ax)

)
+ γ

∑
x∈D

(
d(x, aox

)− d(x, ax)
)

= β costD,d(O)− (β + γ) costD,d(A) + γ
∑
x∈D

d(x, aox
), (16)

where we have exploited properties (1) and (2) of our set of swaps to bound the number of
times a given center in O or A is counted in our sum of inequalities.

It remains to bound the final term in (16). Consider some o ∈ O, and let c be the centroid
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of NO(o). As above, we will let ao denote the closest center in A to O. Then, note that:

∆(NO(o), ao) = ∆(NO(o), c) + |NO(o)| · ‖c− ao‖2 (Lemma 19)
≤ ∆(NO(o), o) + |NO(o)| · ‖c− ao‖2 (c is the centroid of NO(o))

≤
∑

x∈NO(o)

[
d(x, o) + (1 + ε)‖o− ao‖2]

(Theorem 7 part 2, and the fact that o is an optimal center for NO(o))

≤
∑

x∈NO(o)

[
d(x, o) + (1 + ε)‖o− ax‖2] .

(ao is the closest center to o in A)

≤ (1 + ε)
∑

x∈NO(o)

[
d(x, o) + ‖o− ax‖2] .

Let α2 = costD,d(A)
costD,d(O) =

∑
x∈D

d(x,ax)∑
x∈D

d(x,ox)
be the approximation ratio attained by the algorithm.

Summing over all o ∈ O, and recalling that for all x ∈ NO(o) we have ox = o, we obtain:∑
x∈D

d(x, aox) =
∑
o∈O

∆(NO(o), ao)

≤ (1 + ε)
∑
o∈O

∑
x∈NO(o)

[
d(x, o) + ‖o− ax‖2]

= (1 + ε)
∑
x∈D

[
d(x, ox) + ‖ox − ax‖2]

≤ (1 + ε)
∑
x∈D

[
d(x, ox) + ‖x− ox‖2 + ‖x− ax‖2 + 2‖x− ox‖‖x− ax‖

]
= (1 + ε)

∑
x∈D

[2d(x, ox) + d(x, ax) + 2‖x− ox‖‖x− ax‖]

≤ (1 + ε)
∑
x∈D

[
2d(x, ox) + d(x, ax) + 2

α
d(x, ax)

]
= (1 + ε)

[
2 costD,d(O) +

(
1 + 2

α

)
costD,d(A)

]
. (17)

Where in the last inequality, we have applied Lemma 20 to the sequences ρi and ξi defined
by:

α2 =
∑
x∈D d(x, ax)∑
x∈D d(x, ox) =

∑n
i=1 ρi∑n
i=1 ξi

.

Applying the upper bound (17) to the final term of (16), we obtain:

0 ≤ β costD,d(O)− (β + γ) costD,d(A) + γ(1 + ε)
[
2 costD,d(O) +

(
1 + 2

α

)
costD,d(A)

]
≤ (β + 2γ) costD,d(O)−

(
β − 2γ

α

)
costD,d(A) +

(
3 + 2

α

)
γε costD,d(A)

where we have used the fact that costD,d(O) ≤ costD,d(A). Rearranging, we have

(β + 2γ) costD,d(O) ≥
(
β − 2γ

α
−
(
3 + 2

α

)
γε

)
costD,d(A)

=
(
β − 2γ

α
−
(
3 + 2

α

)
γε

)
α2 costD,d(O),

APPROX/RANDOM’16
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which implies:

α2β − 2γα− β − 2γ − α2 (3 + 2
α

)
γε ≤ 0

α2 − 2γα
β
− 1− 2γ

β
− α2

β

(
3 + 2

α

)
γε ≤ 0

(α+ 1)
(
α− 1− 2γ

β

)
− α2

β

(
3 + 2

α

)
γε ≤ 0(

α− 1− 2γ
β

)
− α2

(α+ 1)β
(
3 + 2

α

)
γε ≤ 0.

Thus, we have:

(1−O(ε))α ≤ 1 + 2γ
β

= 1 + 2
β

+ 2
βp
.
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