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Abstract
Motivated by the importance of energy storage networks in smart grids, we provide an algorithmic
study of the online energy storage management problem in a network setting, the first to the
best of our knowledge. Given online power supplies, either entirely renewable supplies or those
in combination with traditional supplies, we want to route power from the supplies to demands
using storage units subject to a decay factor. Our goal is to maximize the total utility of satisfied
demands less the total production cost of routed power. We model renewable supplies with the
zero production cost function and traditional supplies with convex production cost functions.
For two natural storage unit settings, private and public, we design poly-logarithmic competitive
algorithms in the network flow model using the dual fitting and online primal dual methods
for convex problems. Furthermore, we show strong hardness results for more general settings
of the problem. Our techniques may be of independent interest in other routing and storage
management problems.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Online Algorithms, Competitive Analysis, Routing, Storage, Approxima-
tion Algorithms, Power Control

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.12

1 Introduction

With recent advancements in renewable energy generation technologies and smart grids, the
problem of energy storage management has become a central problem. While renewable
energy sources such as solar and wind are expected to supply a significant portion of electricity
demand (by some measure, 50% by 2050 [37, 19, 23]), they have rather intermittent and
variable output compared to the traditional fossil-fuel power generators. These uncertainties
can lead to supply-demand imbalance and higher reserve requirements and pose a significant
challenge to the renewable power supplies’ integration to the existing power grids and energy
distribution to consumers.

Energy storage provides a solution for maintaining supply-demand balance by providing
the flexibility of transporting energy across time, just as a power network provides transporta-
tion flexibility over a geographical area. Many storage technologies have been researched and
developed: batteries, flywheels, pumped-hydro, and compressed air energy storages [27, 17].
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These technologies can help integrate renewable energy sources, such as solar arrays and
wind farms, to the power grids as they become more robust, reliable and economically viable.

In recent years, the energy storage management problem has become a focus of active
research by the power systems community. The problem of single storage control has been
investigated extensively in various settings and several analytical solutions using stochastic
dynamic programming exist (e.g., [34, 39, 35, 21]). For the general case when multiple
storage units are available on a power network, analytical solutions with efficient algorithmic
implementation are more challenging to obtain. We mostly have heuristics such as Model
Predictive Control [41] and look-ahead policies [32] without any performance guarantees with
the exception of few cases (e.g., [36] for a long-term average cost minimization problem).

Motivated by the importance of energy storage networks within smart grids, we provide
an algorithmic study of an online problem of energy storage management with storage units
subject to decay. We consider both private and public storage unit settings and model the
unpredictable output of renewable sources as online power supplies and the predictable, say
hourly, variation of demand as either online or offline demands. We assume a network flow
model which is a good approximation of power flows in the power grids in certain high-voltage
operation regimes. To the best of our knowledge, there is no prior study of energy storage
networks in an online setting which provides provable guarantees.

Our work is closely related to the classical max-flow and multicommodity flow problems
and their generalized flow variants with decay (e.g., [40]) and online variants (e.g., [2, 3, 12])
in terms of the model and techniques. However, these problems have not been studied in
combination with storage units subject to a decay factor in an online setting. Our online
primal dual approach in the case of public storage units is similar to Buchbinder and Naor [12]
and Devanur and Jain [18] and more recent work on online covering and packing problems
with convex objectives in [14, 11, 4, 22]. Furthermore, our work is related to inventory
problems such as the multi-item lot sizing and joint replenishment problems in the planning
aspect. In these problems, one wants to balance the cost of surplus inventory maintenance
for future demand against the cost of frequent inventory replenishment; both offline and
online settings have been well-studied [26, 31, 7, 10].

Other Related Work

Competitive analysis has been applied in other power management problems. Lu et al. [30]
studied the problem of generation scheduling for micro-grids with renewable power sources.
Chau et al. [15] designed an online algorithm for single storage operation with uncertain
prices and renewable generation. Decay factors have been studied previously in different
contexts. Babaioff et al. [5] investigated a variant of the classical secretary problem with
discounts. More broadly speaking, deterioration, perishability and lifetime constraints of
goods have been studied in numerous mathematical models and optimization problems [33].
In addition to the storage challenges of renewable energy, the economic issues around the
energy market and pricing have been investigated by various communities (e.g., [24, 9]).

Our Contributions

In this paper, we develop algorithmic techniques for the Online Energy Storage Management
Problem (OESMP). In addition to bridging between the smart grid and TCS communities,
we believe our techniques can be of its own interest in analyzing other routing and storage
management problems.

Given a network represented by a directed graph G = (V,E) with n nodes and m

capacitated edges, we want to route power from online supplies to demands, online or offline,
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over T time steps using storage units subject to decay factor γ. We consider two main
storage unit settings: 1) private storage units which are dedicated storage units co-located
with power supplies, and 2) public storage units which are networked units that can store
energy from any power supplies with a routing path. Demands have utility functions W and
supplies have either zero production cost in the case of renewable power supplies or convex
production cost, of the form Q(z) = azρ, in the case of traditional power supplies.

We assume a network flow model which is equivalent to the widely adopted “DC approxi-
mation” of AC power flow for power transmission network [38] when power flow routing is
possible. Power flow routing is possible if the flows on all edges can be directly controlled as
long as conservation and capacity constraints are satisfied. This holds naturally when the
network topology is a tree, which is the case for some bulk transmission networks [16] and is
approximately true for transmission networks in which congestion1 does not involve cycles
[13]. For transmission networks with general network topologies, this may be enabled by
Flexible AC Transmission system (FACTS) devices such as phase shifters or smart wires [25].
The flow model can also be used to approximate power flow on distribution networks when
line capacity constraints are considered (cf. simplified DistFlow model [6]). More details are
provided in Appendix A.

In OESMP, our goal is to route power from supplies to demands and maximize the total
utility of satisfied demands less the total production cost of routed power over a finite time
horizon of T . We design online deterministic algorithms with poly-logarithmic2 competitive
ratios against the optimal offline algorithm. For simplicity, we assume a single decay factor
γ for storage units and a single power exponent ρ for convex cost functions in the following
theorem statements. Furthermore, we assume the marginal utility W ′ is bounded between
wmax and wmin > 0 and let ∆w = wmax/wmin. Note n (m) is the number of nodes (edges).

In the private storage unit setting with online demands (Section 3), we consider only
renewable sources and maximize the utility of satisfied demands. First, we show that an
intuitive greedy algorithm achieves a constant competitive ratio if the utility functions are
linear and identical.

I Theorem 1. For OESMP with private storage units and online demands, there exists a
deterministic online algorithm with the constant competitive ratio of 3 in the case of uniform
utilities.

We analyze the greedy algorithm using a dual-fitting approach. We show that the
congestion on links and storage units leads to a natural dual construction corresponding to
the flow in each time step. However, the decay factor introduces strong dependency between
different time steps which requires a global evaluation of the dual vectors across the time.
We next extend our result to obtain an algorithm with a logarithmic competitive ratio for
the private storage unit setting with concave utility functions.

I Theorem 2. For OESMP with private storage units and online demands, there exists a
deterministic online algorithm with the competitive ratio of O(log ∆w) in the case of concave
utilities.

1 In power systems, thermal constraints limit the amount of power that can be routed through a
transmission line. If the maximum is reached for a line, we say the line is congested. Similarly, we say a
path of multiple consecutive lines is congested if at least one of the lines on the path is congested.

2 In this paper, we say a factor is poly-logarithmic if it is poly-logarithmic with respect to system
parameters n, ∆w and γ; and not necessarily with respect to the input size.
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In the public storage unit setting (Section 4), we consider both traditional and renewable
sources and the storage units that can be used by any sources. We show that online demands
are hard to cope with:

I Theorem 3. For OESMP with public storage units and online demands, the competitive
ratio of any online algorithm is Ω(n) even in the case of uniform utilities.

Therefore, for the public storage unit setting, we focus on the offline demand variant.
We apply the online primal dual method to a convex program formulation of the problem
using Fenchel duality. Our analysis requires connections between the convex production cost
functions and their convex conjugates and utilizes similar critical ideas to those recently
developed in [18, 14, 11, 4, 22].

We show poly-logarithmic competitive online algorithms when demands are offline.
Inspired by the daily power markets, we assume that T is a small constant3.

I Theorem 4. For OESMP with public storage units and offline demands, there exists a
deterministic online algorithm with the competitive ratio of O(logn+ log γ−T + log ∆w) in
the case of concave utilities.

I Theorem 5. For OESMP with public storage units and offline demands, there exists a deter-
ministic online algorithm with the competitive ratio of O

(
ρρ/(ρ−1)(logn+ log γ−T + log ∆w)

)
for ρ > ρ0 in the case of concave utilities and convex costs of the form Q(z) = azρ, where ρ0
is some constant arbitrarily close to 1.4

Finally for the general network with cycles where the network flow model does not apply
directly, we show a strong lower bound (Appendix B):

I Theorem 6. For OESMP with public storage units in the general power network model
and offline demands, the competitive ratio of any online algorithm is Ω(n1/5) even in the
case of uniform utilities. This holds even if all the links are physically identical.

2 Notations and Preliminaries

We define the Online Energy Storage Management Problem (OESMP) as follows.

Storage Management Problem

We consider a power transmission network with nodes and edges over a finite time horizon
T .5 The network is represented by a directed graph G = (V,E) with n nodes and m edges.6
Following the DC-approximation framework for high-voltage regimes, we have edge capacities
C : E → R+ modeling the thermal constraints on transmission lines. A node can be a supply
or demand node at different times and some nodes have storage units.

We denote the set of vertices with nonzero power supply (demand) at time step i by Si
(Di). Supply sets Si are given online. Each supply node s has a convex production cost

3 For many markets, T = 24 and γ ∈ [0.9, 1]. Hence, note log γ−T < 1.1 in practice.
4 We can remove the condition ρ > ρ0 completely and obtain a poly-logarithmic competitive ratio in

terms of m, the number of edges, instead of n. The condition arises from our technical analysis and the
constant ρ0 is accompanied by a correspondingly large constant in the big O notation.

5 For our applications, T is a small constant, e.g., T = 24 for 24 hours.
6 For a directed edge (u, v), we assume power can only move from u to v on this edge. Forcing direction
on the edges makes the model only stronger since a bidirectional link between nodes u and v can be
simulated in this model by putting two directed edges (u, v) and (v, u).
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function Qis(z) for generating z units of power. If s is a renewable power supply, then it has
zero production cost up to the generation capacity at that time. If s is a traditional power
supply, then Qs(z) = asz

ρs for some constants as and ρs, omitting the superscript i.7 We
would need traditional power generators when the renewable ones alone are not enough.

Demand sets Di may be given online or offline. We assume that Si and Di are disjoint
after locally satisfying the demand when there also exists some supply at the same node.
Each demand node d has a concave utility function Wd (positive and non-decreasing) such
that it would receive Wd(y) units of utility for y units of power received. Since Wd is concave,
we have (weakly) diminishing returns on each additional unit of power routed. We assume
the slope of the utility function is bounded, i.e., dWd(y)

dy ∈ [wmin, wmax] where wmin > 0 for
i ∈ [T ] and d ∈ Di. Let ∆w := wmax/wmin.8

We denote the set of nodes with storage units by R. Each storage node has a maximum
capacity, a decay factor, charging/discharging inefficiency factors, and ramping constraints.
A storage node r can store at most Lr units of power across a time step and maintains γr
fraction of power stored in the process. When charging or discharging, we are subject to
inefficiency factors and ramping constraints in that we lose some fraction of the power in
these operations and are limited to some maximum amount of charge/discharge rate per time
step. Without loss of generality, we focus on the maximum capacity Lr and decay factor γr
as we can treat the inefficiency factors and ramping constraints similarly.9

Our goal is to route power from supplies to demands and maximize the total utility of
satisfied demands less the total production cost of routed power. We model power flows
using the standard network flow model, which is equivalent to the widely adopted DC
approximation to AC power flow when power routing is possible (see Appendix A).

For analysis, we may represent Si and Di with additional nodes and edges. For example,
for a renewable supply s with Qs(z) = 0 for z ≤ τ and ∞ otherwise, we create a new node s′
with zero production cost and connect it to s with an edge of capacity τ . Similarly, for a
demand d with, say, a linear utility function up until a threshold τ , we create d′ and connect
it to d with an edge of capacity τ . We treat supplies and demands on the same node across
different time steps separately as independent supplies and demands.

Private and Public Storage Units

We consider two main storage unit settings. In the private storage setting, we have dedicated
storage units co-located with power supplies such that each supply node can use only its
own storage unit, if it has one10. In this setting, only renewable sources are considered. In
the public storage setting, we have networked storage units that can store energy from any

7 For many real-life applications, we model Qs(z) = asz
2 + bsz for as, bs > 0 when considering just the

traditional power generators.
8 In real-life applications, ∆w describes the difference between the marginal cost of generation for
traditional sources over time, and log ∆w is often a small constant in the scope of power management
problems.

9 Suppose a storage node r is subject to charging/discharging inefficiency factors (γ+/γ−) and ramping
constraints (τ+/τ−). In our model, we would add a new node r′ and the following edges: an edge (r, r′)
with capacity τ+ and decay factor γ+, and an edge (r′, r) with capacity τ− and decay factor γ−. Node
r becomes an ordinary connection node and node r′ becomes a storage node with the same operation
characteristics as the original r.

10This corresponds to the important practical case where the storage is co-located with some renewable
generation source and is used to smooth the output of random renewable generation [8]. Given the
physical size of the inverter and other equipments in such settings, it is natural to assume that power
always flows from the generation sites (with both renewable generation and storage) to the grid but not
in the other direction.

APPROX/RANDOM’16
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power supplies (including traditional sources) with a routing path. Consequently, a unit of
power can be stored on multiple storage units over time.

Competitive Analysis

In the online paradigm, supply set Si arrives at each time step i. Demand set Di may be
given online or offline depending on the storage unit setting. Upon the arrival of Si, we need
to dispatch power from supplies in Si and storage units to demands in Di, and possibly to
other storage units. To evaluate the performance of online algorithms, we use the standard
competitive analysis framework. An online algorithm is c-competitive if its achieved objective
value ALG is at least 1

c fraction of the optimal offline algorithm’s value OPT (which knows
the entire input in advance) up to an additive constant in all problem instances, i.e., there
exist c and a constant c0 such that ALG ≥ 1

cOPT− c0 .

3 Private Storage Units

In this section, we consider the private storage setting in which the storage units used by
a supply node are located at that same node. Our goal is to maximize the total utility of
satisfied demands using only the renewable power supplies. As discussed in Section 2, we
assume, without loss of generality, that the renewable supplies Si have unbounded zero-cost
power generation.

We show strong competitive guarantees for the private storage setting given that both
the supply nodes Si and the demand nodes Di are arriving online. In Section 3.1, we analyze
an intuitive greedy algorithm in the simplified case with uniform utility functions where all
demands have the same linear utility function W (y) = y up to the limit y = 1, i.e., each
demand requires at most 1 unit of power. We show that the greedy algorithm has a constant
competitive ratio against the optimal offline algorithm which knows all the supplies and
demands in advance.

In contrast to the uniform utility case, we can show that the greedy algorithm is not
competitive when the utility functions are arbitrary concave functions. In Section 3.2, we
show that we can still design a competitive algorithm for the concave utility case using the
constant competitive greedy algorithm as a black-box. More precisely, we show that an
algorithm with the competitive ratio c for the uniform utility case can be modified to obtain
an algorithm with the competitive ratio of O(c · log ∆w) for the general concave utility case.

3.1 Uniform Utilities
We consider the following primal-dual linear program formulation of the problem with private
storage units. Assume that every supply node s ∈ Si is connected to a private storage unit
rs. For time step i and demand node d ∈ Di, let P+(i, d) denote the set of all paths ending
at d and starting from a supply node or a storage node. For time step i and storage node
r, let p+(i, r) denote the path ending at r and starting from the supply s which owns the
storage node. Let P−(i, r) denote the set of paths from r to a demand node in Di. Note
that since the storage units are co-located with supplies, the paths p+(i, r) are edge-disjoint.
We define P+

D =
⋃
i,d∈Di P

+(i, d), P+ = P+
D ∪

⋃
i,r{p+(i, r)}, and P− =

⋃
i,r P

−(i, r).
For a path p, the variable xp denotes the amount of flow passing through the path.

Furthermore, for a path p ∈ P+ the parameters i(p) and v(p) denote the time step in which
p lies and the node at the beginning of p. For a storage node r and a time step i, yir denotes
the amount of power stored in the node r at the end of time step i.
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The first set of primal constraints ensure that the total flow routing through an edge does
not violate the edge capacity. The second set of constraints bounds the amount of energy in
storage units. The last set of primal constraints ensures the feasibility of flow over time: we
may assume that a storage node sends the stored energy to the next time step and receives
energy from the previous time step. Intuitively, the last constraint implies that the total
outgoing flow cannot be more than the total incoming flow.

max
∑
p∈P+

D

xp (P)

∀e
∑
p3e

xp ≤ Ce (αe)

∀i, r yir ≤ Lr (βir)

∀i, r yir +
∑

p∈P−(i,r)

xp ≤ γryi−1
r + xp+(i,r) (τ ir)

y0
r = 0; xp, y

i
r ≥ 0

min
∑
e

Ceαe +
∑
i,r

Lrβ
i
r (D)

∀p ∈ P+
D

∑
e∈p

αe + τ
i(p)
v(p) ≥ 1 (D1)

∀i, r
∑

e∈p+(i,r)

αe ≥ τ ir (D2)

∀i, r βir + τ ir ≥ γrτ i+1
r (D3)

α, β, τ ≥ 0;∀v ∈ Si : τi,v = 0

Greedy Algorithm

Upon the arrival of Si and Di, we route the maximum power flow from Si and the storage
units to the demand nodes in Di. We store the residual power generated at a supply in its
private storage unit, up to the storage capacity and edge capacities on the path from the
supply to the storage. Recall that based on the simplifications in our model, there can be
two edges on the path from a supply to its dedicated storage unit.

Dual Construction

We now use a dual-fitting argument to show that the greedy algorithm is indeed constant
competitive. For a time step i, let P+(i) :=

⋃
d∈Di P

+(i, d). After the run of the greedy
algorithm, consider the flow paths x̂ and the storage amounts ŷ chosen by the greedy
algorithm, corresponding to the primal solution. Let x̂i denote the selected flow at time step
i. Furthermore, let x̂(Di) denote the selected flow that satisfies the demands in Di. We note
that by definition, x̂(Di) is a sub-flow of x̂i. In what follows, we say a flow f on a graph
separates a vertex u from v, if f cannot be augmented by a u–v flow in the residual network.
We now describe the construction of our dual solution. We then show the feasibility of the
dual solution and the bound on its objective.
DC Part I. Let Riφ denote the set of storage nodes that are not separated from Di by x̂(Di).

We choose a minimum cut separating Si ∪ (R \ Riφ) from Di. For every edge e in this
cut, we set αe = 1.

DC Part II. We repeat the following process for every j by starting from j = T and ending at
j = 1: For every r ∈ Rjφ, set τ jr = 1. Let i denote the last step before j for which ŷir = Lr
in the greedy solution. If no such i exists, set i = 0. For k = {j− 1, j− 2, . . . , i+ 2, i+ 1},
set the dual variable τkr = γrτ

k+1
r . Furthermore, if i > 0 set βir = γrτ

i+1
r . We note that

in this process, we may reassign values multiple times to τ ir for some i and r11. Hence, it
is important to iterate j from T to 1.

11 In fact, the assigned values can only be non-decreasing.

APPROX/RANDOM’16
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DC Part III. For every i ∈ [T ] and storage node r, if the path p+(i, r) is congested in x̂i, we
choose a congested edge e ∈ p+(i, r). If αe is not set in Part I, we set αe = τ ir.

We now need to prove the feasibility of the constructed dual vector. See Appendix C for
proofs.

I Lemma 7. The dual vector 〈α, β, τ〉 constructed by DC-Parts I-III is feasible.

It now remains to prove a bound on the dual objective. Let GA denote the total primal
value of the greedy solution.

Proof of Theorem 1. We analyze the cost we incur at every part of the dual construction
separately. We show that the dual cost in each part can be upper bounded by GA.

For a flow F , let |F | denote the amount of flow routed by F . Recall that for a flow
F on a graph, if there is no augmenting path from a set U to a set V (i.e., F separates
U from V ), then the size of the minimum cut separating U and V is upper bounded by
|F |. Now consider x̂(Di) for some i. By definition, R \Riφ is separated by x̂(Di) from Di.
Furthermore, since the greedy algorithm chooses a maximum flow, we know that x̂i(Di)
cannot be augmented by a path from a supply node in Si to a demand node. Therefore x̂(Di)
is separating Si ∪ (R \Riφ) from Di. The total dual cost of the minimum cut we choose in
Part I for some i is upper bounded by |x̂i(Di)|. Hence, the total cost we incur in Part I is
bounded by

∑
i |x̂i(Di)| ≤ GA.

The cost we incur in Part II is
∑
i,r Lrβ

i
r. The variable βir is positive only if r is full at

time i, i.e., ŷir = Lr. By Lemma 14, we know that the stored power will be used in at most
logγr(β

i
r) steps. Therefore the primal gain from the power stored at time step i in r is at

least γlogγr (βir)
r ŷir = Lrβ

i
r. Furthermore, suppose for two time steps i2 > i1, we have that

βi1r > 0 and βi2r > 0. By Part II of the construction, we know that r should become empty
for some time step j ∈ {i1 + 1, . . . , i2 − 1}. Thus the power stored in r in time steps i for
which βir > 0, are disjoint. Therefore now we can charge the cost

∑
i,r Lrβ

i
r to the utility we

gain from dispatching power stored in the storage units at time steps in which βir > 0.
The cost we incur in Part III can be upper bounded as follows. Suppose τ ir > 0 for some

i and r. The cost we incur is τ irCe for some congested edge e ∈ p+(i, r). We note that the
flow passing through e is either satisfying a demand in Di, or it is being stored in r. In the
former, the utility we gain is 1 per unit of power. In the latter, by Lemma 14, we gain utility
at rate at least γlogγr (τ ir)

r = τ ir. Therefore our primal gain from the flow routed on e is at
least Ceτ ir. Now since the storage nodes are co-located, all the paths p+(i, r) are disjoint.
Therefore we can bound the total cost incurred in Part III by GA.

Finally summing over the three parts, we have that the dual objective is at most 3 GA.
The theorem follows from Lemma 7 and weak duality. J

3.2 Concave Utilities
In this section, we demonstrate a simple reduction from the variant with concave utility
functions to the variant with uniform linear functions losing only a logarithmic factor. We
then use the algorithm of Theorem 1 as a blackbox to solve the case of concave utilities and
obtain the competitive ratio of O(log ∆w).

Proof Sketch of Theorem 2. The main idea is to reduce an instance of the problem with
concave utility functions to O(log ∆w) instances of the problem with uniform utility functions.
Since Wd

′(x) ∈ [wmin, wmax] for each demand node d, we can construct O(log ∆w) instances
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where each Wd
′ is approximately constant within each instance. Then, we solve each instance

independently using a constant competitive algorithm. Due to the space constraints, we
defer the complete proof to Appendix C. J

4 Public Storage Units

We consider the general setting with public storage units on the network. A supply node can
access any storage unit as long as there is a path, and, consequently, a unit of power can be
stored on multiple storage units over time. As Theorem 3 shows online demands are hard to
satisfy (see Appendix D for proof), we focus on the offline demands in this section. Note
offline demands naturally model scenarios where consumer demands’, say, hourly variation is
predictable.

We investigate two specific cases: the case of renewable power generation in Section 4.1 and
the case of combined traditional and renewable power generation in Section 4.2. In the first
case, we want to route power from renewable supplies to demands assuming the production
cost is zero. In the second case, we still route power but the supplies are equipped with
both traditional and renewable power generators and have time-varying convex production
costs. Supplies are arriving online while demands are given offline and have concave utility
functions.

We design poly-logarithmic competitive online algorithms using the online primal dual
method on convex programming formulations. Our approach is closely related to Buchbinder
and Naor [12] and Devanur and Jain [18] and more recent work on online covering and
packing problems with convex objectives in [14, 11, 4, 22]. For analysis, we use the following
bicriteria notion of competitive algorithms: An algorithm is (c1, c2)-competitive if it routes
the total flow of amount at least 1

c1
of the optimal and the load on each edge is at most

c2, where the load of an edge is the ratio of the total flow going through it divided by its
capacity. Ideally, the total bandwidth allocated for flows should not exceed the capacity.

Time-Expanded Graph

We use time-expanded graph G∗ = (V ∗, E∗) constructed as follows. For i = 1, . . . , T , we
create a time-copy of G, Gi = (V i, Ei). To represent storage, we create storage edges between
time-copies of G; for each node v and time step i, we create an edge of capacity Lv from
vi to vi+1. Let S∗ =

⋃
i S

i and D∗ =
⋃
iD

i. Instead of creating a node for each individual
demand as in Section 2, we add a single node d∗ as the designated super-demand. For each
i ∈ [T ] and demand d ∈ Di, we add an edge of infinite capacity from di to d∗; these are
demand edges and we use D∗ to denote both the demand edges and corresponding demands.

For s ∈ S∗ and d ∈ D∗, let P (s, d) be the set of simple paths in G∗ from supply s to
demand d. Let P (s, ·) =

⋃
d P (s, d), P (·, d) =

⋃
s P (s, d), and P be the set of all simple

paths from supplies to demands. For a routing path p, we denote the corresponding supply
and demand nodes by s(p) and d(p), respectively; we simply use s and d if p is clear from the
context. For simplicity, we assume a single decay factor γ for all storage units. We define:

γ(p) := overall decay due to storage edges on p;
γ(p, e) := overall decay due to storage edges on p preceeding edge e ∈ p.

In our case, γ(p) = γ(number of storage edges on p) and γ(p, e) = γ(number of storage edges on p before e).
Let lmax = nT be the maximum routing path length, and γmin = γT be the greatest overall
decay.

APPROX/RANDOM’16
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Algorithm 1 Online Algorithm for Concave Utilities
1: Let yd =

∑
p∈P (·,d) γ(p)xp,∀d. . y determined in terms of x

2: for i = 1, . . . , T do
3: for s ∈ Si in arbitrary order do
4: while P ′ = {p ∈ P (s, ·) :

∑
e∈p γ(p, e)αe < γ(p)Wd(p)

′(λd(p))} is not empty do
5: Update continuously:
6: p = arg maxp∈P ′ γ(p)Wd(p)

′(λd(p))
7: dxp = 1 . Increase xp at a uniform rate
8: dλd(p)

dxp
= γ(p)

9: dαe
dxp

= c
(
γ(p,e)αe
Ce

+ γ(p)Wd(p)
′(λd(p))

lmaxCe

)
,∀e ∈ p . c ≥ 1 is some parameter

10: end while
11: end for
12: end for

4.1 Concave Utilities
In this section, we consider only renewable power generation with zero production cost and
route power from supplies to demands. We model the demand nodes’ utility functions with
monotonically nondecreasing concave functions Wd such that demand node d gains the utility
of Wd(f) for receiving f units of flow. There is diminishing returns on each additional flow
routed.

We consider the following primal-dual convex program formulation. For each path p, xp
denotes the amount of flow passing through the path. For demand d, yd denotes the total
amount of flow routed to the demand and is set to equal yd =

∑
p∈P (·,d) γ(p)xp. Wd is a

monotonically nondecreasing concave function and we define Ŵd(λ) := Wd(λ)− λWd
′(λ).

max
∑
d

Wd(yd)

∀e
∑
p3e

γ(p, e)xp ≤ Ce

∀d ∈ D∗ yd ≤
∑

p∈P (·,d)

γ(p)xp

x, y ≥ 0

min
∑
e

Ceαe +
∑
d

Ŵd(λd)

∀p ∈ P
∑
e∈p

γ(p, e)αe ≥ γ(p)Wd(p)
′(λd(p))

α, β, λ ≥ 0

We first prove Algorithm 1 is bicriteria competitive.

I Lemma 8. For any c ≥ 1, Algorithm 1 is
(

2c+ 1, O(logn+log γ−T+log ∆w)
c

)
-competitive.

Proof. We show that Algorithm 1 returns a primal solution that violates the edge capacity
constraints by some factor and a feasible dual solution. From the ratio of the primal and
dual objective values, P and D, we obtain the stated competitive ratio.

For a supply s, P ′ in Line 4 is nonempty if there is a violated dual constraint. As
long as P ′ is nonempty, we continuously increase xp and dual variables correspondingly.
Since all variables increase monotonically and the first derivatives Wd

′ are monotonically
non-increasing, violated dual constraints for p ∈ P (s, ·) eventually become satisfied and no
previously satisfied constraints become violated. Hence, the while loop terminates with no
violated dual constraints for p ∈ P (s, ·), and the algorithm terminates with a feasible dual
solution.
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The lemma follows from the following claims (proved in Appendix D) and the weak
duality:

I Claim 9. The load on each edge is at most O(logn+log γ−T+log ∆w)
c in the primal solution.

I Claim 10. At termination, D ≤ (2c+ 1) · P.
J

We can now prove Theorem 4. For checking the condition and choosing path p in Lines
4–6 in Algorithm 1, we can use a backward variant of Dijkstra’s algorithm in polynomial
time (details in Appendix D):

Proof of Theorem 4. We choose c = c′ · (logn+ log γ−T + log ∆w) for the constant c′ that
results from the analysis in Lemma 8. Then, we get an

(
O(logn+ log γ−T + log ∆w), 1

)
-

competitive algorithm. J

4.2 Concave Utilities and Convex Costs
We consider the more general case where each supply is equipped with both renewable and
traditional power generators. Each supply node s individually manages its own renewable
and traditional power generation and only pays cost for using the traditional generators. It
generates power according to the production cost function Qs(z) = asz

ρs which changes from
time to time depending on the renewable power generation. The production cost functions
are given online.

We consider the following primal-dual convex program formulation. For each path p, xp
denotes the amount of flow passing through the path. For demand d, yd denotes the total
amount of flow routed to the demand and is set to equal yd =

∑
p∈P (·,d) γ(p)xp. For supply

s, zs denotes the total power generated using the traditional power generators and is set
to equal zs =

∑
p∈P (s,·) xp. We define Ŵd(λ) := Wd(λ) − λWd

′(λ) and Q∗ is the convex
conjugate of Q defined to be Q∗(µ) := supz≥0{µz −Q(z)}.

max
∑
d

Wd(yd)−
∑
s

Qs(zs)

∀e ∈ E
∑
p3e

γ(p, e)xp ≤ Ce

∀d ∈ D∗
∑

p∈P (·,d)

γ(p)xp ≥ yd

∀s ∈ S∗
∑

p∈P (s,·)

xp ≤ zs

x, y, z ≥ 0

min
∑
e

Ceαe +
∑
d

Ŵd(λd) +
∑
s

Q∗s(µs)

∀p ∈ P
∑
e∈p

γ(p, e)αe + µs(p) ≥ γ(p)Wd(p)
′(λd(p))

α, λ, µ ≥ 0

We show that Algorithm 2, given in Appendix D, is poly-logarithmic competitive. For
concreteness, we prove Theorem 5 with ρ0 = 1.44. The constant ρ0 can be replaced with a
smaller constant arbitrarily close 1 and with a correspondingly large multiplicative constant
in the competitive ratio. We first prove the following lemma:

I Lemma 11. For any c ≥ 1, Algorithm 2 (in Appendix D) is(
(2c+ 1)ρρ/(ρ−1) + 1, O(logn+log γ−T+log ∆w)

c

)
-competitive where ρ = maxsρs > 1.44.
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Proof. The proof is similar to that of Lemma 8. We need to prove claims about the load and
competitive ratio. Analyzing the competitive ratio is more difficult because of the convex
cost functions and requires a different approach.

The lemma follows from the following claims (with complete proofs in Appendix D) and
the weak duality.

I Claim 12. The load on each edge is at most O(logn+log γ−T+log ∆w)
c in the primal solution.

I Claim 13. At termination, D ≤
(
(2c+ 1)ρρ/(ρ−1) + 1

)
· P.

Proof Sketch of Claim 13. Let D0 =
∑
e Ceαe +

∑
sQ
∗
s(µs); so, D = D0 +

∑
d Ŵd(λd).

Assume D0 ≤ (2c + 1)ρρ/(ρ−1)P. Since Ŵd(z) ≤ Wd(z),∀z ≥ 0, it would follow that∑
d Ŵd(λd) ≤

∑
dWd(yd) ≤ P. Then, D =

∑
d Ŵd(λd) + D0 ≤

(
(2c+ 1)ρρ/(ρ−1) + 1

)
P,

and the claim would follow.
To show D0 ≤ (2c + 1)ρρ/(ρ−1)P, we prove dP ≥ 1

σdD0 for σ = (2c + 1)ρρ/(ρ−1) and
ρ > 1.44 when we route power. This reduces to showing(

1− 2c
σ

)
µs −Qs′(zs) ≥

1
σ

(Q∗s)′(µs)
dµs
dzs

,

which is satisfied by our choice of updates to primal and dual variables. For a ρ0 constant
smaller than 1.44, we would need to have a multiplicative factor greater than 2c+ 1. Due to
the space constraints, we defer the complete proof to Appendix D. J

J

We can now prove Theorem 5. For the path construction routine in Algorithm 2, we find
the routing paths in the same manner as in Section 4.1:

Proof of Theorem 5. Let ρ = maxsρs. We choose c = c′ · (logn+ log γ−T + log ∆w) for the
constant c′ that results from the analysis in Lemma 11. Then, we get an(
O
(
ρρ/(ρ−1)(logn+ log γ−T + log ∆w)

)
, 1
)
-competitive algorithm. J
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A From Electric Power Flow to Network Flow

Bulk electric power grids are operated with Alternating current (AC) power flow, where
the physical quantities of interest, such as voltage, current and power, are sinusoidal signals
of time. Economic and market operations of the grid are usually solved and scheduled
for a slow timescale, such that the controls or set points for the system are modified at a
frequency of every 5 minutes or lower. Consequently the sinusoidal signals have stabilized
into a steady state for almost all time points in each time slot, and are characterized by
constant-frequency sinusoidal waveforms and permit a phasor representation [20, Section 2.1].
The AC voltage is then represented as a phasor, denoted by V exp(iθ) ∈ C, where V ∈ R+ is
the (root-mean-square) voltage magnitude, θ ∈ R is the voltage phase angle, and i =

√
−1.

Provided that current has a similar phasor representation, the resulting power is a complex
number, whose real part is referred to as real power P and imaginary part is referred to as
reactive power Q. Intuitively speaking, real power can be thought of as the actual power that
serves the load, while reactive power is a consequence of the phase difference between the
current and voltage phasors. Thus the majority of the economic aspect of the grid operation
has centered around real power, with reactive power considered often for other purposes such
as power quality.

Given an electric grid represented by a graph G = (V,E) consisting of a set V of buses and
a set E of lines connecting the buses, the AC power flow equation is a set of 2|V | nonlinear
equations relating the voltage phasors (Vv, θv) at each bus v ∈ V and the corresponding
complex powers (Pv,Qv), v ∈ V. Together with additional operational constraints such as
line capacity and suitable objectives, one can formulate corresponding optimization problems
for the set points of the controllable devices on the grid. In general, such optimization
problems are often referred to as AC optimal power flow (AC-OPF) problems. Given the
nonlinear nature of the AC power flow equations, AC OPF is in general nonconvex and
NP-hard [28, 29], so that practical solutions have relied on approximation of the AC power
flow equations.

The most widely adopted approximation for bulk electric power networks (transmission
networks) is a particular linearization of the AC power flow equations referred to as DC
approximation to AC power flow [38]. Assuming that i) the voltage magnitudes over all
buses are held constant, ii) all lines are purely inductive (i.e., there is no real power losses
due to resistance), and iii) voltage phase differences between buses are small, we can obtain a
linear relationship between the nodal real power injections Pv, v ∈ V , and the voltage phase
angles θv, v ∈ V . In particular, the real power flow through any line e = (v, u) ∈ E can be
written as

e ∈ E, fe = Be(θv − θu), (1)

where Be is the reciprocal of the reactance of line e. Consequently, by flow conservation on
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node v ∈ V , we have

v ∈ V, Pv =
∑

e=(v,u)

Be(θv − θu).

Therefore, the differences of bus voltage phase angles θv, v ∈ V determine all the line flows
and nodal power injections, and hence fully characterize the operation condition of the system
under the DC approximation. As phase angle differences are invariant to a constant shift,
we can without loss of generality set the phase angle at a bus v0, called slack bus, to be 0
and work with the remaining phase angles θv, v ∈ V \{v0}. When the flow capacities of lines
are considered, together with the fact that the nodal power injection at certain buses may
not be controllable, the feasible set of phase angles is then characterized by the constraints

v ∈ V Fix, gv − dv =
∑

e=(v,u)

Be(θv − θu), (2)

e ∈ E, Be(θv − θu) ≤ Ce, (3)

where V Fix ⊂ V is the set of buses only connected to uncontrollable devices, gv is the
uncontrollable generation at bus v, dv is the uncontrollable demand at bus v, and Ce is the
real power capacity of line e.

To convert the formulation in (2) and (3) in terms of phase angles θv, v ∈ V , into a
network flow formulation which uses the flows fe, e ∈ E, as the variables, we observe that,
using (1), (2) and (3) can be written as

v ∈ V Fix, gv − dv =
∑

e=(v,u)

fe, (4)

e ∈ E, fe ≤ Ce. (5)

This set of constraints, however, in general is not an equivalent formulation to (2) and (3) as
not every collection of flows fe, e ∈ E that satisfies these equations will induce a feasible
collection of phase angles θv, v ∈ V . In particular, when V Fix = ∅, we know that the set
of feasible θv, v ∈ V lives in an affine subspace of dimension |V | − 1. However for general
graph with |E| > |V | − 1, the set of feasible flows is of dimension |E|. Consequently the
mapping between fe, e ∈ E and θv, v ∈ V , defined by (1) is not one-to-one. This mapping
would indeed be one-to-one if the graph G is a tree. In this case, it is easy to check that (4)
and (5), which is the standard network flow constraints, equivalently characterize the set of
feasible operation conditions of the system under the DC approximation.

B Hardness of Networks with Cycles

In this section, we show a hardness result for general instances of OESMP when congested
transmission lines can form a cycle in the network. We assume the general network flow
model described in Appendix A and the network flow formulation given by (4)-(5) where Ce
is the capacity and Be is the susceptance, the reciprocal of the reactance, of edge e.

Proof of Theorem 6. We prove the lower bound by constructing a hard example. We
first consider the network in Figure 1 and then construct a related network with identical
edges with the same susceptance and capacity. In the network in Figure 1, the edges are
bidirectional and have the same susceptance of (sufficiently large) B but different capacities,
1 or M , as indicated.
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k	  copies	  

𝑼	  	  
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every	  step	  1..M	  

1 1
1

u	  

Cap	  M	  

v1	  

d1	  

r1	  
1

MM

2M	  units	  of	  demand	  
at	  step	  M+1	  

Cap	  M	  

vk	  

dk	  

rk	  
1

MM

2M	  units	  of	  demand	  
at	  step	  M+1	  

1

Figure 1 A hard example for general electrical networks with online supplies.

Let M be a large integer and let k = b
√
Mc. In each time step i = 1, . . . ,M , one unit of

power is generated at supply node u. The power can be stored in any of the storage units at
r1, . . . , rk with capacity M . At time i = M + 1, there are 2M units of demand at all the
demand nodes d1, . . . , dk. The demand nodes’ utility functions are linear and uniform.

Consider an arbitrary randomized online algorithm. The algorithm distributes the first
M units of power onto the storage units. Let rj be the storage unit with the least expected
amount of power stored at the beginning of time step i = M + 1. Note the expected amount
of power stored at rj is at most M

k = O(
√
M). At time step i = M + 1, we assume M units

of power at supply vj and zero unit at all other supplies. Then, the algorithm can route at
most O(

√
M) units of power in total to the demand nodes. The algorithm routes O(

√
M)

units of power to demand dj . Since the voltage phase angle difference between vj and rj
can be at most 1, due to the edge of capacity 1 between them, the algorithm routes O(

√
M)

units of newly generated power from vj to dj and O(
√
M) units of stored power from rj to

dj . Similarly, the algorithm further routes at most 2 units of power to other demand nodes.
On the other hand, the optimal offline algorithm routes 2M units of power by first

storing the M units of generated power from u on rj and then routing to dj . The resulting
competitive ratio is Ω(

√
M).

We construct a network with identical edges with the same susceptance and capacity.
Note that we can model an edge of capacity 2c and susceptance B using four edges of capacity
c and susceptance B arranged in the diamond shape.12 We recursively use the diamond
construction logM times to reduce the edges of capacity M to edges of capacity 1. Per an
edge of capacity M , we get 4logM new edges and Θ(4logM ) = Θ(M2) new nodes. Therefore,
this network has Θ(M5/2) nodes and the lower bound becomes Ω(n1/5) where n is the number
of nodes. J

12 In the diamond shape, the four edges are arranged as (a, b), (b, d), (a, c), and (c, d).
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C Missing Materials from Section 3

We provide the missing proofs from Section 3.

C.1 Uniform Utilities
We prove Lemma 7 below. We first prove the following structural lemma:

I Lemma 14. Consider an arbitrary storage node r for which τ ir > 0 or βir > 0 at a time
step i. Then, all the power stored in r at time i will be dispatched to the demands in no
more than logγr(max(βir, τ ir)) time steps. Furthermore, if τ ir > 0, then the path p+(i, r) is
congested in x̂i.

Proof. Let j ≥ i denote the first step after i for which r ∈ Rjφ. By the recursive construction
in Part II, we know that max(βir, τ ir) = γj−ir and one of variables is zero. On the other hand,
since r ∈ Rjφ, congestion does not block all the routes from r to Dj . Since we have not routed
more flow from r to Dj at that time step, we know that ŷjr = 0. This indeed proves the first
part of the lemma. Furthermore, if τ ir > 0, we know that r never gets full between time steps
i to j, otherwise τ ir would have been zero. Thus the reason that the supply s ∈ Si, which
owns r, is not supplying r with more power is that p+(i, r) is congested; which completes
the proof. J

Proof of Lemma 7. We check the feasibility of each set of dual constraints in the program D
separately. Consider an arbitrary path p ∈ P+

D at time interval i. Constraint D1 enforces a
lower bound of one on

∑
e∈p αe + τ

i(p)
v(p). We distinguish between two cases. If v(p) ∈ Riφ, the

constraint is satisfied in DC-Part II by setting τ iv(p) = 1. Otherwise, v(p) ∈ Si ∪ (R \ Riφ),
for which DC-Part I satisfies the constraint.

The feasibility of D2 constraints follows from Lemma 14; which shows that if τ ir > 0 for
some i and r, then p+(i, r) is congested. Therefore DC Part III satisfies D2.

Finally, the feasibility of D3 constraints follows directly from the iterative construction in
Part II. J

C.2 Concave Utilities
Proof of Theorem 2. Under the concave utility model, scaling down all the storage and
edge capacities by a factor ρ may only change the optimal solution by at worst a factor 1/ρ.
Recall that we assume dWd(x)

dx ∈ [wmin, wmax] for every demand. Let ρ = blog ∆wc+ 1 where
∆w = wmax

wmin
. Given an instance of the general flow problem with concave utility functions

and optimal solution OPT∗, we construct ρ instances of the problem with uniform utility as
follows.

For every i and d ∈ Di, let `d(q) = inf{x : dWd(x)
dx ≤ 2qwmin} for every integer q ∈

{0, . . . , ρ}. We note that `d is monotone non-increasing. For every q ∈ {1, . . . , ρ}, we
construct an uniform-utility instance in which a new node d′ is connected to d with an edge
(d, d′) with capacity `d(q)− `d(q− 1). The node d is not a demand node anymore and instead
d′ is a demand node. Furthermore, we scale down all the storage and edge capacities by a
factor of ρ. Let OPTq denote the optimal solution to the qth instance.

I Claim 15. OPT∗
2ρ ≤

∑ρ
q=1 2q−1wminOPTq ≤ OPT∗ .

Proof. We partition the optimal solution into ρ separate flows of power. Suppose that at
every step of the algorithm, the flows of power are routed continuously. For q ∈ [ρ], let Fq
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denote the flows corresponding to units of power that are ending up satisfying a demand d
during the interval that the total power received by d is between [`d(q), `d(q − 1)). We note
that

OPT∗

2 ≤
∑
q

2q−1wmin|Fq| ≤ OPT∗ .

Let F ′q denote the flow obtained from Fq by reducing the flows on every edge and storage
unit by a factor ρ. We note that F ′q is indeed a feasible solution for the qth instance of the
problem constructed above: we simply need to re-route the flow coming to d to d′. This
completes the proof since OPTq ≥ |F ′q| ≥

|F ′q|
ρ J

Now suppose we have an online algorithm with competitive ratio c for the uniform-utility
model. Given a general instance, for every q ∈ {1, . . . , ρ}, we separately execute the uniform
weight algorithm on the q-th instance of the problem constructed as above. Let ALGq denote
the solution corresponding to the q-th instance. Since all capacities are scaled down in each
instance, we can route the flows in all instances simultaneously. At every time step we simply
output the union of flows output by the instances of the uniform weight algorithm. The final
utility is therefore at least

ρ∑
q=1

2q−1wminALGq ≥
ρ∑
q=1

2q−1wmin
OPTq
c
≥ OPT∗

2cρ ,

which completes the proof since Theorem 1 gives an algorithm with constant c. J

D Missing Materials from Section 4

We provide the missing materials from Section 4.

D.1 Hardness of Online Demands
We show that online demands are hard to satisfy in the public storage setting by proving the
following theorem:

Proof of Theorem 3. Our lower bound instance is a network similar to that considered
in Theorem 6. Consider a network with n nodes where there exist one supply node with
renewable power generators and n− 1 demand nodes that are connected to the “root” supply
node. Each demand node has a public storage unit with unit capacity and the decay factor
of 1; these are the only storage units on the network. We assume the case of uniform utilities
where each demand node requires at most 1 unit of power, that is, the utility functions are
of the form W (y) = y up to the limit y = 1.

At time i = 1, the supply node generates a unit of power. At time i = 2, exactly one
demand node requests power while other nodes do not. Consider an arbitrary randomized
online algorithm and let d be the demand node with the least expected amount of power
stored at the beginning of time step i = 2. Note the expected amount of power stored at d is
at most O(1/n). We let d be the only demand node to request power at time i = 2, and the
online algorithm routes O(1/n) units of power.

However, the optimal offline algorithm knows where the demand is going to be and can
always satisfy the power demand and obtain total utility of 1. Hence, a lower bound of Ω(n)
on the competitive ratio follows. J
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D.2 Concave Utilities
Proof of Claim 9. For each edge e, we show that αe ≥ ωe at all times where

ω(e) := wminγmin

lmax

(
e
c
Ce

∑
p3e

γ(p,e)xp − 1
)
.

Initially, αe = ωe = 0. Note both αe and ωe increase only if some path p containing e is used
for routing. Assume αe ≥ ωe and we show the inequality still holds after the updates due to
routing through p, say, from supply s to demand d. Note that

dωe
dxp

= cγ(p, e)
Ce

wminγmin

lmax
e
c
Ce

∑
p3e

γ(p,e)xp

= cγ(p, e)
Ce

ωe + cwminγminγ(p, e)
lmaxCe

≤ c
(
γ(p, e)αe

Ce
+ γ(p)Wd

′(λd)
lmaxCe

)
= dαe
dxp

.

Hence, αe increases at a faster rate than ωe and it follows that αe ≥ ωe throughout
Algorithm 1.

If αe = wmax, the dual constraints for any path p containing edge e are satisfied and αe
is not further increased. Then, wmax ≥ αe ≥ ωe. It follows that

wmax ≥
wminγmin

lmax

(
e
c
Ce

∑
p3e

γ(p,e)xp − 1
)

log
(
lmax∆w

γmin
+ 1
)
≥ c

Ce

∑
p3e

γ(p, e)xp

O

(
log
(
lmax∆w

γmin

))
Ce
c
≥
∑
p3e

γ(p, e)xp.

Since lmax = nT and γmin = γT , we see that

∑
p3e

γ(p, e)xp ≤
O(lognT + log γ−T + log ∆w)

c
· Ce ≤

O(logn+ log γ−T + log ∆w)
c

· Ce,

where the last inequality follows from the fact that log γ−T dominates log T . J

Proof of Claim 10. Let D0 =
∑
e Ceαe; so, D = D0 +

∑
d Ŵd(λd).

We first show that D0 ≤ 2cP. Initially, P = D0 = 0. Assume we route an in-
finitesimal amount through path p from supply s to demand d and correspondingly up-
date dual variables. We compute corresponding changes in P and D0. Note dP =
Wd
′(yd)dyd = γ(p)Wd

′(yd)dxp since dyd = γ(p)dxp. Furthermore, dD0 =
∑
e∈p Cedαe =∑

e∈p c
(
γ(p, e)αe + wminγmin

lmax

)
dxp ≤ 2cγ(p)Wd

′(λd)dxp. By construction, we increase yd and
λd at the same rate and hence, yd = λd for all demand d ∈ D∗. It follows that dD0 ≤ 2cdP
and D0 ≤ 2cP at termination.

Since Ŵd(z) ≤ Wd(z),∀z ≥ 0, it follows that
∑
d Ŵd(λd) ≤

∑
dWd(yd) = P. Then,

D =
∑
d Ŵd(λd) +D0 ≤ (2c+ 1)P. J
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Path Construction

We show how to check the condition in Line 4 and choose a routing path p in Line 6 in
Algorithm 1 in polynomial time. More specifically, we show how to check the condition
for paths in P (s, d) for supply s and demand d and find a simple path p, if it exists, such
that

∑
e∈p γ(p, e)αe − γ(p)Wd

′(λd) < 0. This is equivalent to finding a discounted variant
of shortest path where αe are the edge lengths and γe are the discount factors, from which
γ(p, e) can be defined (cf. [1]).

Given s and d, we run a backward variant of Dijkstra’s algorithm starting with d

with initialization σ(d) = −Wd
′(λd) and computing iteratively the discounted “distance”

σ(u) = minp∈P (u,d)
∑
e∈p γ(p, e)αe − γ(p)Wd

′(λd) and corresponding successor π(u) for each
node u. We compute σ and π in stages such that if s is in time t1 and d is in time t2, we
process the time-copies Gt2 , Gt2−1, . . . , Gt1 in that order. For t = t2, . . . , t1, we iteratively
initialize σ and π based on nodes in Gt+1 via storage edges and then compute them for all
nodes in Gt.

The correctness follows from the shortest discounted paths’ optimality property in the
time-expanded graph. Note that the shortest discounted paths have an optimal substructure
property similar to that of shortest paths in that any suffix of a shortest discounted path is
a shortest discounted path. If p is a shortest discounted path from u to d and p = (u, v) ∪ p′,
p′ is a shortest discounted path from v to d. Otherwise, we can find a shorter discounted
path from u to d via a shorter path p′′ ∈ P (v, d), since

∑
e∈p γ(p, e)αe − γ(p)Wd

′(λd) =
α(u,v) + γ(u,v)

(∑
e∈p′ γ(p′, e)αe − γ(p′)Wd

′(λd)
)
. Furthermore, a shortest discounted path’s

length increases monotonically within each time-copy Gt when it is extended to another
shortest discounted path; in other words, there are no “negative-weight” edges in Gt. As
storage edges are the only edges with discount factors and do not form cycles in the time-
expanded graph, the path lengths within each time-copy are correctly computed with the
backward variant of Dijkstra’s algorithm which runs in polynomial time.

D.3 Concave Utilities and Convex Costs

We present the missing algorithm:

Algorithm 2 Online Algorithm for Concave Utilities and Convex Costs
1: Let yd =

∑
p∈P (·,d) γ(p)xp,∀d; zs =

∑
p∈P (s,·) xp,∀s . y, z determined in terms of x

2: Let µs = Qs
′(τszs) for τs = ρ

1/(ρs−1)
s , ∀s . µ determined in terms of z

3: for i = 1, . . . , T do
4: for s ∈ Si in arbitrary order do
5: while P ′ = {p ∈ P (s, ·) :

∑
e∈p γ(p, e)αe + µs < γ(p)Wd(p)

′(λd(p))} 6= ∅ do
6: Update continuously:
7: p = arg maxp∈P ′ γ(p)Wd(p)

′(λd(p))
8: dxp = 1 . Increase xp at a uniform rate
9: dλd(p)

dxp
= γ(p)

10: dαe
dxp

= c
(
γ(p,e)αe
Ce

+ γ(p)Wd(p)
′(λd(p))

lmaxCe

)
,∀e ∈ p . c ≥ 1 is some parameter

11: end while
12: end for
13: end for
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Proof of Claim 12. For each edge e, we show that αe ≥ ωe at all times where

ω(e) := wminγmin

lmax

(
e
c
Ce

∑
p3e

γ(p,e)xp − 1
)
.

Initially, αe = ωe = 0. Note both αe and ωe increase only if some path p containing e is used
for routing. Assume αe ≥ ωe and we show the inequality still holds after the updates due to
routing through path p, say, from supply s to demand d. Note that

dωe
dxp

= cγ(p, e)
Ce

wminγmin

lmax
e
c
Ce

∑
p3e

γ(p,e)xp

= cγ(p, e)
Ce

ωe + cwminγminγ(p, e)
lmaxCe

≤ c
(
γ(p, e)αe

Ce
+ Wd

′(λd)γ(p)
lmaxCe

)
= dαe
dxp

.

Hence, αe increases at a faster rate than ωe and it follows that αe ≥ ωe throughout
Algorithm 2.

If αe = wmax, the dual constraints for any path p containing edge e are satisfied and αe is
not further increased. Then, wmax ≥ αe ≥ ωe. On the same line of reasoning as in Lemma 8,
we see that

O(logn+ log γ−T + log ∆w)
c

· Ce ≥
∑
p3e

γ(p, e)xp. J

Proof of Claim 13. Let D0 =
∑
e Ceαe +

∑
sQ
∗
s(µs); so, D = D0 +

∑
d Ŵd(λd). Assume

D0 ≤ (2c+ 1)ρρ/(ρ−1)P. Since Ŵd(z) ≤ Wd(z),∀z ≥ 0, it would follow that
∑
d Ŵd(λd) ≤∑

dWd(yd) ≤ P. Then, D =
∑
d Ŵd(λd) + D0 ≤

(
(2c+ 1)ρρ/(ρ−1) + 1

)
P, and the claim

would follow.
We now show D0 ≤ (2c+ 1)ρρ/(ρ−1)P. For σ = (2c+ 1)ρρ/(ρ−1) and ρ > 1.44, we show

dP ≥ 1
σdD0. Initially, P = D0 = 0. Assume we route an infinitesimal amount through path

p, say, from supply s to demand d and correspondingly update primal and dual variables.
We compute the resulting changes in the primal objective P and (partial) dual objective D0:
dP = Wd

′(yd)dyd − Qs′(zs)dzs; dD0 =
∑
e∈p Cedαe + (Q∗s)′(µs)dµs. Note dzs = dxp and

dyd = γ(p)dxp.
Note dP ≥ 1

σdD0 is equivalent to

Wd
′(yd)dyd −Qs′(zs)dzs ≥

1
σ

(∑
e∈p

Cedαe + (Q∗s)′(µs)dµs

)
. (6)

By the dual variables’ updates, (6) is equivalent to

Wd
′(yd)dyd−Qs′(zs)dzs ≥

1
σ

(
c · dxp ·

∑
e∈p

(
γ(p, e)αe + Wd

′(λd)γ(p)
lmax

)
+ (Q∗s)′(µs)dµs

)
.

Since
∑
e∈p γ(p, e)αe + µs < γ(p)Wd

′(λd), the right hand side is upper bounded by
1
σ

(
2cγ(p)Wd

′(λd)dxp + (Q∗s)′(µs)dµs
)
. It is sufficient to show(

1− 2c
σ

)
γ(p)Wd

′(λd)dxp −Qs′(zs)dzs ≥
1
σ

(Q∗s)′(µs)dµs .
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Since
∑
e∈p γ(p, e)αe + µs < γ(p)Wd

′(λd), it suffices to show(
1− 2c

σ

)
µs −Qs′(zs) ≥

1
σ

(Q∗s)′(µs)
dµs
dzs

. (7)

If Qs(z) = asz
ρs , then Q∗s(µ) = ρs−1

ρs
1

(asρs)1/(ρs−1)µ
ρs/(ρs−1). Also, µs = Qs

′(τszs). Then,
(7) reduces to σ ≥ τs

ρs (ρs−1)
τsρs−1−1 + 2cτsρs−1

τsρs−1−1 . For τs = ρs
1/(ρs−1), the right hand side is equal to

ρs
ρs/(ρs−1) + 2cρs

ρs−1 . For ρs ≥ 1.44, it is upper bounded by (2c+ 1)ρsρs/(ρs−1) which is exactly
the value of σ chosen. Therefore, (7) holds and dP ≥ 1

σdD0. For a ρ0 constant smaller than
1.44, we would need to have a multiplicative factor greater than (2c+ 1) in the penultimate
step. J
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