
The Densest k-Subhypergraph Problem

Eden Chlamtáč∗1, Michael Dinitz†2, Christian Konrad‡3,
Guy Kortsarz§4, and George Rabanca¶5

1 Department of Computer Science, Ben Gurion University, Beersheva, Israel
chlamtac@cs.bgu.ac.il.

2 Dept. of Computer Science, Johns Hopkins University, Baltimore, MD, USA
mdinitz@cs.jhu.edu

3 ICE-TCS, School of Computer Science, Reykjavik University, Iceland
christiank@ru.is

4 Computer Science Department, Rutgers University, Camden, NY, USA
guyk@crab.rutgers.edu

5 Department of Computer Science, The Graduate Center, CUNY, USA
grabanca@gradcenter.cuny.edu

Abstract
The Densest k-Subgraph (DkS) problem, and its corresponding minimization problem Smallest
p-Edge Subgraph (SpES), have come to play a central role in approximation algorithms. This is
due both to their practical importance, and their usefulness as a tool for solving and establishing
approximation bounds for other problems. These two problems are not well understood, and it
is widely believed that they do not an admit a subpolynomial approximation ratio (although the
best known hardness results do not rule this out).

In this paper we generalize both DkS and SpES from graphs to hypergraphs. We consider the
Densest k-Subhypergraph problem (given a hypergraph (V,E), find a subsetW ⊆ V of k vertices
so as to maximize the number of hyperedges contained in W ) and define the Minimum p-Union
problem (given a hypergraph, choose p of the hyperedges so as to minimize the number of vertices
in their union). We focus in particular on the case where all hyperedges have size 3, as this is
the simplest non-graph setting. For this case we provide an O(n4(4−

√
3)/13+ε) ≤ O(n0.697831+ε)-

approximation (for arbitrary constant ε > 0) for Densest k-Subhypergraph and an Õ(n2/5)-
approximation for Minimum p-Union. We also give an O(

√
m)-approximation for Minimum

p-Union in general hypergraphs. Finally, we examine the interesting special case of interval
hypergraphs (instances where the vertices are a subset of the natural numbers and the hyperedges
are intervals of the line) and prove that both problems admit an exact polynomial time solution
on these instances.
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6:2 The Densest k-Subhypergraph Problem

1 Introduction

Two of the most important outstanding problems in approximation algorithms are the
approximability of the Densest k-Subgraph problem (DkS) and its minimization version, the
Smallest p-Edge Subgraph problem (SpES or min-DkS). In DkS we are given as input a graph
G = (V,E) and an integer k, and the goal is to find a subset V ′ ⊆ V with |V ′| = k which
maximizes the number of edges in the subgraph of G induced by V ′. In the minimization
version, SpES, we are given a lower bound p on the number of required edges and the goal
is to find a set V ′ ⊆ V of minimum size so that the subgraph induced by V ′ has at least p
edges. These problems have proved to be extremely useful: for example, a variant of DkS
was recently used to obtain a new cryptographic system [3]. The same variant of the DkS
problem was shown to be central in understanding financial derivatives [4]. The best-known
algorithms for many other problems involve using an algorithm for Densest k-Subgraph or
SpES as a black box (e.g. [22, 15, 11]).

Despite decades of work, very little is actually known about these problems. The first
approximation ratio for DkS was O(n2/5) [18] and was devised in 1993. These days, 23 years
later, the best known ratio for the Densest k-Subgraph is O(n1/4+ε) for arbitrarily small
constant ε > 0 [7], and the best known approximation for SpES is O(n3−2

√
2+ε) for arbitrarily

small constant ε > 0 [9]. Given the slow improvement over 23 years, it is widely believed that
DkS and SpES do not admit better than a polynomial approximation ratio. Furthermore, the
existing approximation guarantees are tight assuming the recently conjectured hardness of
finding a planted dense subgraph in a random graph (for certain parameters) [7, 9]. However,
there has been very little progress towards an actual proof of hardness of approximation. It
is clear that they are both NP-hard, but that is all that is known under the assumption that
P 6= NP . Under much stronger complexity assumptions it is known that they cannot be
approximated better than some constant [16, 12] or any constant [1], but this is still a long
way from the conjectured polynomial hardness.

Based on the believed hardness of DkS and SpES, they have been used many times to
give evidence for hardness of approximation. For example, consider the Steiner k-Forest
problem in which the input is an edge weighted graph, a collection of q pairs {si, ti}qi=1, and
a number k < q. The goal is to find a minimum cost subgraph that connects at least k of
the pairs. It is immediate to see that SpES is a special case of the Steiner k-forest problem1,
and hence it seems highly unlikely that the Steiner k-Forest problem admits a better than
polynomial approximation ratios.

Given the interest in and importance of DkS and SpES, it is somewhat surprising that
there has been very little exploration of the equivalent problems in hypergraphs. A hypergraph
is most simply understood as a collection E of subsets over a universe V of vertices, where
each e ∈ E is called a hyperedge (so graphs are the special case when each e ∈ E has
cardinality 2). In general hypergraphs, the obvious extensions of DkS and SpES are quite
intuitive. In the Densest k-Subhypergraph (DkSH) problem we are given a hypergraph (V,E)
and a value k, and the goal is to find a set W ⊆ V of size k that contains the largest number
of hyperedges from E. In the Minimum p-Union (MpU) problem we are given a hypergraph
and a number p, and the goal is to choose p of the hyperedges to minimize the size of their
union.

Clearly these problems are at least as hard as the associated problems in graphs, but how
much harder are they? Can we design nontrivial approximation algorithms? Can we extend

1 Given an instance (G = (V, E), p) of SpES, create an instance of Steiner k-Forest on a star with V as
the leaves, uniform weights, a demand pair for each edge in E, and k = p.



E. Chlamtáč, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca 6:3

the known algorithms for graphs to the hypergraph setting? Currently, essentially only lower
bounds are known: Applebaum [2] showed that they are both hard to approximate to within
nε for some fixed ε > 0, assuming that a certain class of one-way functions exist. But it was
left as an open problem to design any nontrivial upper bound (see footnote 5 of [2]).

1.1 Our Results
In this paper we provide the first nontrivial upper bounds for these problems. Let n denote
the number of vertices and m denote the number of hyperedges in the input hypergraph.
Our first result is an approximation for Minimum p-Union in general hypergraphs:

I Theorem 1. There is an O(
√
m)-approximation for the Minimum p-Union problem.

We then switch our attention to the low rank case, since this is the setting closest to
graphs. In particular, we focus on the 3-uniform case, where all hyperedges have size at
most 3. In this setting it is relatively straightforward to design an O(n)-approximation for
Densest k-Subhypergraph, although even this is not entirely trivial (the optimal solution
could have size up to k3 rather than k2 as in graphs, which would make the trivial algorithm
of choosing k/3 hyperedges only an O(n2)-approximation rather than an O(n)-approximation
as in graphs). We show that by very carefully combining a set of algorithms and considering
the cases where they are all jointly tight we can significantly improve this approximation,
obtaining the following theorem:

I Theorem 2. For every constant ε > 0, there is an O(n4(4−
√

3)/13+ε) ≤ O(n0.697831+ε)-
approximation for the Densest k-Subhypergraph problem on 3-uniform hypergraphs.

Adapting these ideas to the minimization setting gives an improved bound for Minimum
p-Union as well.

I Theorem 3. There is an Õ(n2/5)-approximation for the Minimum p-Union problem on
3-uniform hypergraphs.

It is worth noting that any f -approximation for DkSH can be used to give an Õ(f)-
approximation for MpU (see Theorem 10), so Theorem 3 gives a significant improvement
over this blackbox reduction from Theorem 2.

Finally, we define an interesting special case of Densest k-Subhypergraph and Minimum p-
Union that can be solved exactly in polynomial time. Suppose we have an interval hypergraph:
a hypergraph in which the vertices are a finite subset of N and each hyperedge is an interval
of the real line (restricted to the vertices). Then we show that a dynamic programming
algorithm can be used to actually solve our problems.

I Theorem 4. Densest k-Subhypergraph and Minimum p-Union can be solved in polynomial
time on interval hypergraphs.

1.2 Related Work
As discussed, the motivation for these problems mostly comes from the associated graph
problems, which have been extensively studied and yet are still poorly understood. The
Densest k-Subgraph problem was introduced by Kortsarz and Peleg [18], who gave an O(n2/5)
ratio for the problem. Feige, Kortsarz and Peleg [13] improved the ratio to O(n1/3−ε) for
ε that is roughly 1/60. The current best-known approximation for DkS is O(n1/4+ε) for
arbitrarily small constant ε > 0, due to Bhaskara et al. [7]. For many years the minimization

APPROX/RANDOM’16
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version, SpES, was not considered separately, and it was only relatively recently that the
first separation was developed: building on the techniques of [7] but optimizing them for
the minimization version, Chlamtáč, Dinitz, and Krauthgamer [9] gave an O(n3−2

√
2+ε)-

approximation for SpES for arbitrarily small constant ε > 0.
While defined slightly differently, DkSH and MpU were introduced earlier by Apple-

baum [2] in the context of cryptography: he showed that if certain one way functions exist
(or that certain pseudorandom generators exist) then DkSH is hard to approximate within nε
for some constant ε > 0. Based on this result, DkSH and MpU were used to prove hardness
for other problems, such as the k-route cut problem [10]. To the best of our knowledge,
though, there has been no previous work on algorithms for these problems.

1.3 Organization
We begin in Section 2 with some preliminaries, showing the basic relationships between the
problems. In Section 3 we give our O(

√
m)-approximation for MpU in general hypergraphs.

We then focus on small-rank hypergraphs, giving an O(n4/5)-approximation for DkSH on
3-uniform hypergraphs in Section 4, which we then improve to roughly O(n0.698) in Section 5.
We follow this in Section 6 with our improved bound for MpU on 3-uniform hypergraphs.
Finally in Section 7 we show how to solve both problems exactly in polynomial time on
interval hypergraphs. We conclude in Section 8 with some open questions for future work.

2 Preliminaries and Notation

A hypergraph H = (V,E) consists of a set V (the vertices) together with a collection E ⊆ 2V
(the hyperedges), where each hyperedge is a subset of V . We will typically use n = |V | and
m = |E| to denote the number of vertices and hyperedges respectively. The degree of a
vertex in a hypergraph is the number of hyperedges which contain it. Given a subset V ′ ⊆ V ,
the subhypergraph of H induced by V ′ is H[V ′] = (V ′, EH) where EH = {e ∈ E : e ⊆ V ′}.
We say that H is α-uniform if |e| = α for all e ∈ E, and that the rank of H is maxe∈E |e|
(i.e. the smallest α such that all edges have cardinality at most α). A hyperedge e is covered
by a set of vertices V ′ if e ⊆ V ′.

Given a graph G = (V,E) and a vertex v ∈ V , we use ΓG(v) to denote the set of nodes
adjacent to v, and for a subset V ′ ⊆ V we let ΓG(V ′) = ∪v∈V ′Γ(v). If G is clear from
context, we will sometimes drop the subscript.

The main problems that we will consider are the following.

I Definition 5. Given a hypergraph H = (V,E) and an integer k, the Densest k-Subhyper-
graph problem (DkSH) is to find a set V ′ ⊆ V , with |V ′| = k, such that the number of edges
in H[V ′] is maximized.

I Definition 6. Given a hypergraph H = (V,E) and an integer p, the Minimum p-Union
problem (MpU) is to find a set E′ ⊆ E, with |E′| = p, such that | ∪e∈E′ e| is minimized.

Note that on 2-uniform hypergraphs, these two problems are the classic graph problems
DkS and SpES respectively.

A special class of hypergraphs that we will consider are interval hypergraphs, defined as
follows.

I Definition 7. H = (V,E) is an interval hypergraph if V is a finite subset of N and for each
e ∈ E there are values ae, be ∈ N such that e = {i ∈ V : ae ≤ i ≤ be}.
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2.1 Relationship Between Problems
We begin by proving some relatively straightforward relationships between the two problems.
We first make the obvious observation that a solution for one problem implies a solution for
the other.

I Observation 8. If there exists a polynomial time algorithm that solves the Densest k-
Subhypergraph problem for any k on a hypergraph H, then there exists a polynomial time
algorithm that solves the Minimum p-Union problem on the hypergraph H. Similarly, if there
is an algorithm that solves MpU on H, then there is an algorithm that solves DkSH on H.

The relationship is not quite so simple when we are reduced to approximating the
problems, but it is relatively straightforward to show that a relationship still exists. This is
given by the following lemma, which will also prove to be useful later.

I Lemma 9. If there exists an algorithm which in a hypergraph H containing a subhypergraph
with k vertices and p hyperedges finds a subhypergraph (V ′, E′) with |V ′| ≤ fk and |E′| ≥
|V ′|p/(kf), we can get an O(f log p)-approximation for Min p-Union.

Since any f -approximation algorithm for Densest k-Subhypergraph satisfies the conditions
of the lemma, as an immediate corollary we get the following:

I Theorem 10. If there is an f-approximation for Densest k-Subhypergraph, then there is
an O(f log p)-approximation for Minimum p-Union.

Proof of Lemma 9. Let (H = (V,E), p) be an instance of Minimum p-Union, and let A be
an algorithm as described in the lemma. We assume without loss of generality that we know
the number of nodes k in the optimal solution (since we can just try all possibilities for
k), and hence that there exists a set V ∗ ⊆ V with |V ∗| = k such that V ∗ covers at least p
hyperedges. Initialize E′ = ∅, and consider the following algorithm for Minimum p-Union
that repeats the following until |E′| ≥ p.
1. Let V ′ = A(H, k), and let E′′ be the hyperedges of H covered by V ′.
2. Let E′ ← E′ ∪ E′′.
3. Remove E′′ from H (remove only the edges, not the corresponding vertices).

We claim that this is an Õ(f)-approximation for Minimum p-Union. Indeed, suppose at
iteration i we added xi vertices, and that at the beginning of the iteration, we had already
added p− pi edges to the solution. In particular, that means that at least pi of the original
hyperedges contained in V ∗ were not yet removed. This then implies that the number of
edges added in iteration i was at least xi · pi/(kf). Thus the number of edges we still need to
add after iteration i is pi+1 ≤ pi − xi · pi/(kf) = pi(1− xi/(kf)). Thus by induction, after t
iterations, the number of hyperedges we need to add is bounded by

pt+1 ≤ p
t∏
i=1

(1− xi/(kf)) ≤ p exp
(
−

t∑
i=1

xi/(kf)
)
.

Thus, as soon as the total number of vertices added exceeds kf ln p for the first time, the
number of edges will exceed p. Since the last iteration adds at most kf vertices, we are
done. J

A standard argument also shows a (more lossy) reduction in the other direction.

I Theorem 11. If there is an f -approximation for Minimum p-Union on α-uniform hyper-
graphs, then there is an O(fα)-approximation for Densest k-Subhypergraph on α-uniform
hypergraphs (when α = O(1)).

APPROX/RANDOM’16



6:6 The Densest k-Subhypergraph Problem

Algorithm 1: 2
√
m-approximation algorithm for the Minimum p-Union problem

Data: Bipartite input graph G = (E, V, F ) with m = |E|, n = |V |, parameter p
1 E′ ← {};
2 repeat
3 E′′ ←Min-Exp(G[E \ E′, V ]);
4 if |E′|+ |E′′| ≤ p then
5 E′ ← E′ ∪ E′′;
6 else
7 Add arbitrary p− |E′| nodes from E′′ to E′;

8 until |E′| ≥ p−
√
m;

9 E′′ ← subset of p− |E′| nodes of E \ E′ of smallest degree;
10 E′ ← E′ ∪ E′′;
11 return E′;

3 Minimum p-Union in General Hypergraphs

Given a hypergraph H = (V,E), in this section we work with the bipartite incidence graph
G = (E, V, F ) of H, where F = {(e, v) ∈ E × V : v ∈ e}. Solving MpU on H corresponds to
finding a subset E′ ⊆ E of p vertices in G of minimum vertex expansion, i.e., E′ such that
|ΓG(E′)| is minimized.

Our algorithm requires a subroutine that returns a subset of vertices of minimum expansion
(without the cardinality bound on the set). In other words, we need a polynomial-time
algorithm Min-Exp(G) which returns a subset of E so that

|Min-Exp(G)|
|ΓG(Min-Exp(G))| ≥

|E′|
|ΓG(E′)| ,

for every subset E′ ⊆ E.
Minimally expanding subsets of this kind have previously been used (e.g. in [17, 14]) in

communication settings where computation time is disregarded, but in our context we need
a polynomial-time algorithm. In Appendices A and B we give two different algorithms for
doing this. The first, in Appendix A, uses a reduction to network flows. The second, in
Appendix B, is based on a straightforward adaptation of a linear programming approach for
the graph case due to Charikar [8]. In order to simplify the presentation, we will for the rest
of the section assume that we have such an algorithm and will defer them to the appendices.

In the following, for subsets E′ ⊆ E and V ′ ⊆ V , we denote the induced subgraph of G
by vertex set E′ ∪ V ′ by G[E′, V ′].

In the first phase, our algorithm (Algorithm 1) iteratively adds vertices E′′ to an initially
empty set E′ until E′ exceeds the size p−

√
m. The set E′′ is a minimally expanding subset

in the induced subgraph G[E \E′, V ]. If E′′ is large so that |E′ ∪E′′| > p, then an arbitrary
subset of E′′ is added to E′ so that E′ has the desired size p. Then, in the second phase, we
add the p− |E′| vertices of E \ E′ of smallest degree to E′ (ties broken arbitrarily), and the
algorithm returns set E′.

I Theorem 12. Algorithm 1 is a (2
√
m)-approximation algorithm for MpU.

Proof. Let OPT ⊆ E be an optimal solution and let r = |ΓG(OPT )|. Let E′i denote the set
E′ in the beginning of the ith iteration of the repeat loop. Suppose that the algorithm runs
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in l rounds. Then, E′l+1 is the set E′ after the last iteration of the loop, but before the nodes
selected in Line 9 are added.

Consider an arbitrary iteration i ≤ l and let E′′ ← Min-Exp(G[E \ E′i, V ]) as in the
algorithm. Note that by the condition of the loop, we have |E′i| ≤ p−

√
m. Furthermore, we

have

|E′′|
|ΓG(E′′)| ≥

|OPT \ E′i|
|ΓG(|OPT \ E′i|)|

≥ p− |E′i|
r

,

since E′′ is a set of minimum expansion. Then,

|ΓG(E′′)| ≤ |E′′|r
p− |E′i|

≤ |E′′|r
p− p+

√
m

= |E
′′|r√
m

.

Thus, we have |ΓG(E′i+1)| ≤ |ΓG(E′i)| +
|E′′|r√
m

(note that this inequality also captures
the case when only a subset of E′′ is added to E′ in Line 7). Now, note that the sets E′′
of any two different iterations are disjoint and thus the sizes of the sets E′′ of the different
iterations sum up to at most m. We thus obtain the bound:

|ΓG(E′l+1)| ≤ mr√
m

=
√
mr.

In phase two, we select at most
√
m vertices E′′ of minimum degree in G[E \ E′, V ].

Clearly, the maximum degree of these vertices is at most r (if it was larger, then |ΓG(OPT )|
would be larger as well) and thus |ΓG(E′′)| ≤

√
mr. The neighborhood of the returned set of

our algorithm is hence at most 2
√
mr which gives an approximation factor of 2

√
m. J

4 Densest k-Subhypergraph in 3-uniform hypergraphs

In this section, we consider the Densest k-Subhypergraph problem in 3-uniform hypergraphs.
We develop an O(n4/5)-approximation algorithm here, and show in Section 5 how to improve
the approximation factor to O(n0.697831+ε), for any ε > 0, by replacing one of our subroutines
with an algorithm of Bhaskara et al. [7].

Throughout this section, let H = (V,E) be the input 3-uniform hypergraph. Let
K ⊆ V denote an optimal solution, i.e., a subset of vertices such that H[K] is a densest
k-subhypergraph. The average degree of H[K] is denoted by d = 3|E(H[K])|/k. We say
that a hyperedge is optimal if it is contained in H[K].

4.1 Overview of our Algorithm
Let K1 ⊆ V be a set of k/3 vertices of largest degree (ties broken arbitrarily), ∆ the minimum
degree of a node in K1, and H ′ = H[V \K1]. Note that the maximum degree in H ′ is ∆.

Suppose first that at least half of the optimal hyperedges contain at least one vertex of
K1. Then the following lemma shows that we can easily achieve a much better approximation
than we are aiming for:

I Lemma 13. Suppose that at least half of the optimal hyperedges contain a vertex of K1.
Then we can achieve an O(n1/4+ε) approximation for any ε > 0.

Proof. By our assumption, there is a set P of optimal hyperedges of size at least dk/6 such
that every edge in P intersects K1. Consider two cases.

Case 1: For at least half the edges e ∈ P , we have |e ∩K1| ≥ 2. Denote the set of these
edges by P ′. For every vertex u ∈ V , let its K1-weight be the number of pairs {v, x} such

APPROX/RANDOM’16



6:8 The Densest k-Subhypergraph Problem

Algorithm 2: Greedy algorithm for Densest k-Subhypergraph in 3-uniform hypergraphs
Data: 3-uniform Hypergraph H = (V,E), parameter k, vertex set K1 ⊆ V of size k/3

1 For every v ∈ V , let its K1-degree be |{e ∈ E | v ∈ e, e ∩K1 6= ∅}|;
2 K2 ← a set of k/3 vertices of highest K1-degree (K1 and K2 may intersect);
3 For any u ∈ V , let its (K1,K2)-degree be the number of edges of the form (u, v, x) ∈ E

such that v ∈ K2 and x ∈ K1;
4 K3 ← a set of k/3 vertices of highest (K1,K2)-degree. (K3 may intersect K1 and/or

K2);
5 return K1 ∪K2 ∪K3;

v, x ∈ K1 and {u, v, x} is a hyperedge. Then by our assumption, the vertices in K have
average K1-weight at least |P ′|/k ≥ d/12. Choosing 2k/3 vertices greedily (by maximum
K1-weight) gives (along with K1) a k-subhypergraph with at least dk/18 hyperedges.

Case 2: P ′′ = P \ P ′ contains at least half the hyperedges in P . Note that |e ∩K1| = 1
for every e ∈ P ′′. For every pair of vertices u, v ∈ V \K1, let its K1-weight be the number of
vertices x ∈ K1 such that {u, v, x} is a hyperedge, and let G be the graph on vertices V \K1
with these edge weights. Then any k′-subgraph of G with total edge weight w corresponds to
a (|K1|+ k′)-subhypergraph of H with at least w hyperedges, and in particular, G contains
a k-subgraph with average weighted degree at least 2|P ′′|/k ≥ d/6, which can be easily
pruned (randomly or greedily) down to a 2k/3-subgraph with average weighted degree Ω(d).
Thus we can run the Densest k-Subgraph approximation algorithm of Bhaskara et al. [7]2,
and find a 2k/3-subgraph of G with total weight at least kd/n1/4+ε, which in turn gives a
(|K1|+ 2k/3 =)k-subhypergraph of H with a corresponding number of hyperedges. J

In the more difficult case, at least half of the optimal hyperedges are fully contained in H ′.
Exploiting the fact that the maximum degree in H ′ is ∆ and trading off multiple algorithms,
we show in the following subsection how to obtain an O(n 4

5 )-approximation algorithm in
this case.

4.2 An O(n4/5)-approximation

We start with a greedy algorithm similar to the greedy algorithm commonly used for Densest
k-Subgraph [18, 13, 7].

Algorithm 2 selects a subset K2 of k/3 vertices v with largest K1-degree, i.e., the number
of hyperedges incident to v that contain at least one vertex of K1. Then, a subset K3 of k/3
vertices w with largest (K1,K2)-degree is selected, where the (K1,K2)-degree of w is the
number of hyperedges containing w of the form {w, x, y} with x ∈ K1 and y ∈ K2. Note
that the sets K1,K2 and K3 are not necessarily disjoint and the returned set may thus be
smaller than k.

The following lemma gives a lower bound on the average degree guaranteed by this
algorithm. It is a straightforward extension of similar algorithms for graphs.

I Lemma 14. Algorithm 2 returns a k-subhypergraph with average degree Ω(∆k2/n2).

2 Strictly speaking, the algorithm in [7] is defined for unweighted graphs, but one can easily adapt it by
partitioning the edges into O(log n) sets with similar edge weights, and running the algorithm separately
on every set of edges, thus losing only an additional O(log n) factor in the approximation.



E. Chlamtáč, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca 6:9

Algorithm 3: A neighborhood-based algorithm for Densest k-Subhypergraph in 3-
uniform hypergraphs

Data: 3-uniform Hypergraph H ′ = (V ′, E′) and parameter k.
1 foreach vertex v ∈ V do
2 Gv ← (V \ {v}, {(u, x) | (v, u, x) ∈ E});
3 foreach integer d̂ ∈ [k − 1] do
4 Gd̂v ← Gv;
5 while there exists a vertex u in Gd̂v of degree < d̂ do
6 delete u from Gd̂v;

7 Sd̂v ← a set of (k − 1)/2 vertices with highest degree in Gd̂v;
8 T d̂v ← a set of (k − 1)/2 vertices with the most neighbors in Sd̂v ;

9 return The densest among all subhypergraphs H ′[{v}∪Sd̂v ∪T d̂v ] over all choices of v, d̂;

Proof. By choice of K1 and definition of ∆, every vertex in K1 has degree at least ∆, and
so the total number of edges containing vertices in K1 is at least ∆|K1|/3 = ∆k/9 (since we
could potentially be double-counting or triple-counting some edges).

If we were to choose n vertices for K2, there would be at least ∆k/9 edges containing
both a vertex in K1 and a vertex in K2 (as noted above). Choosing k/3 vertices greedily out
of n yields a set K2 such that there are at least ∆k/9 · (k/3)/n = ∆k2/(27n) such edges.

Finally, choosing the k/3 vertices with the largest contribution (out of n) for K3 ensures
that there will be at least ∆k2/(27n) · (k/3)/n = Ω(∆k3/n2) edges in E ∩K1 ×K2 ×K3,
giving average degree Ω(∆k2/n2). J

We now offer a second algorithm, which acts on H ′ and is based on neighborhoods of
vertices.

Algorithm 3 exploits the bound on the maximum degree in H ′ to find a dense hypergraph
inside the neighborhood of any vertex of degree Ω(d) in K, by considering the neighborhood
of a vertex as a graph. Pruning low-degree vertices in this graph (which would not contribute
many hyperedges to K) helps reduce the size of the graph, and makes it easier to find a
slightly denser subgraph. Since the vertices of K and their degrees are not known, the
algorithm tries all possible vertices.

I Lemma 15. If H ′ contains a k-subhypergraph with average degree d′ = Ω(d), then Algo-
rithm 3 returns a k-subhypergraph with average degree Ω(d2/(∆k)).

Proof. Since at the end of the algorithm we take the densest induced subhypergraph of H ′
(among the various choices), it suffices to show that there is some choice of v and d̂ which
gives this guarantee. So let v be an arbitrary vertex in K with degree (in K) at least d′.
We know that Gv contains a subgraph with at most k vertices and at least d′ edges, so its
average degree is at least 2d′/k. Setting d̂ = d′/(2k), we know that the pruning procedure
can remove at most k · d′/(2k) = d′/2 out of the d′ edges in this subgraph, so the subgraph
still retains at least d′/2 edges. On the other hand, we know that Gv has at most ∆ edges
(since we’ve assumed the maximum degree in H ′ is at most ∆), and therefore, the same
holds for the graph Gd̂v, in which the minimum degree is now at least d′/2k. This means that
Gd̂v has at most 2∆/(d′/2k) = O(∆k/d) vertices.

Since there exists a k-subgraph of Gd̂v with Ω(d) edges, the greedy choice of Sd̂v must give
some set in which at least Ω(d) edges are incident. The greedy choice of T d̂v then reduces the
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6:10 The Densest k-Subhypergraph Problem

lower bound on the number of edges by a ((k − 1)/2)/|V (Gd̂v)| = Ω(d/∆) factor, giving us
Ω(d2/∆) edges. However, by the definition of Gv, together with v these edges correspond to
hyperedges in H ′. Thus, the algorithm returns a k-subhypergraph with Ω(d2/∆) hyperedges,
or average degree d2/(∆k). J

Combining the various algorithms we’ve seen with a trivial algorithm and choosing the
best one gives us the following guarantee:

I Theorem 16. There is an O(n4/5)-approximation for Dense k-Subhypergraph in 3-uniform
hypergraphs.

Proof. By Lemma 13, if at least half the optimal edges intersect K1, then we can achieve a
significantly better approximation (namely, n1/4+ε). Thus, from now on let us assume this is
not the case. That is, H ′ still contains a k-subhypergraph with average degree Ω(d). Again,
recall that the maximum degree in H ′ is at most ∆.

By Lemma 14, Algorithm 2 gives us a k-subhypergraph with average degree d1 =
Ω(∆k2/n2). On the other hand, applying Algorithm 3 to H ′ will give us a k-subhypergraph
with average degree d2 = Ω(d2/(∆k)) by Lemma 15.

Finally, we could choose k/3 arbitrary edges in H and the subhypergraph induced on the
vertices they span, giving us average degree d3 ≥ 1. Thus, the best of the three will give us a
k-subhypergraph with average degree at least

max{d1, d2, d3} ≥ (d2
1d

2
2d3)1/5 = Ω((∆2k4/n4 · d4/(∆2k2))1/5) = d · Ω((k2/d)1/5/n4/5).

Since we must have k2/d ≥ 1, the above gives an O(n4/5)-approximation. J

5 An improved approximation for 3-uniform Densest
k-Subhypergraph

In Section 4 we gave an O(n4/5) approximation which combined a greedy algorithm with
Algorithm 3, which looked for a dense subgraph inside a graph defined by the neighborhood
of a vertex in H. To find this dense subgraph, we used a very simple greedy approach.
However, we have at our disposal more sophisticated algorithms, such as that of Bhaskara et
al. [7]. One way to state the result in that paper (see Bhaskara’s PhD thesis for details on
this version [6]) is as follows:

I Theorem 17. In any n-vertex graph G, for any α ∈ [0, 1], if k = nα, then Densest
k-Subgraph in G can be approximated within an nεk1−α factor in time nO(1/ε) for any ε > 0.

The n1/4+ε guarantee of [7] follows since for any α ∈ [0, 1], we have k1−α = nα(1−α) ≤ n1/4.
Using this guarantee instead of the simple greedy algorithm for DkS, we get the following

improved algorithm for 3-uniform Densest k-Subhypergraph:
The approximation guarantee in this final algorithm is given by the following lemma:

I Lemma 18. Let H ′ be an n-vertex 3-uniform hypergraph with maximum degree ≤ ∆,
containing a k-subhypergraph of average degree d′, and let α, β be such that k = nα and
∆k/d′ = nβ. Then Algorithm 4 returns a k-subhypergraph of H of average degree

Ω
(

d′

nε+α(2−α/min{β,1})

)
.
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Algorithm 4: A DkS-based algorithm for Densest k-Subhypergraph in 3-uniform
hypergraphs

Data: 3-uniform Hypergraph H ′ = (V ′, E′) and parameters k and ε > 0.
1 foreach vertex v ∈ V do
2 Gv ← (V \ {v}, {(u, x) | (v, u, v) ∈ E});
3 foreach integer d̂ ∈ [k − 1] do
4 Gd̂v ← Gv;
5 while there exists a vertex u in Gd̂v of degree < d̂ do
6 Delete u from Gd̂v;

7 K d̂
v ← the vertex set returned by the algorithm of Bhaskara et al. [7] on the
graph Gd̂v with parameters k − 1 and ε;

8 return The densest among all subhypergraphs H ′[{v} ∪K d̂
v ] over all choices of v, d̂;

Proof. As in the proof of Lemma 15, we can deduce that for at least some choice of v
and d̂, the graph Gd̂v has at most min{n,O(∆k/d′)} = O(nmin{1,β}) vertices and contains a
k-subgraph with average degree Ω(d′/k).

By Theorem 17, since k = nα = Ω(|V (Gd̂v)|α/min{1,β}), the algorithm of [7] will return a
(k − 1)-subgraph of Gd̂v with average degree

Ω
(

d′/k

nεk1−α/min{β,1}

)
= Ω

(
d′

nε+α(2−α/min{β,1})

)
.

As noted in the proof of Lemma 15, this corresponds to a k-subhypergraph of H ′ with the
same guarantee. J

I Remark. In the notation of Lemma 18 we have ∆/d′ = nβ−α which implies that β ≥ α

(since ∆ ≥ d′).
Trading off the various algorithms we have seen, we can now prove the guarantee stated

in Theorem 2.

I Theorem 19 (Theorem 2 restated). For every constant ε > 0, there exists a polynomial time
algorithm that achieves an O(n4(4−

√
3)/13+ε) ≤ O(n0.697831+ε)-approximation for Densest

k-Subhypergraph in 3-uniform hypergraphs.

Proof. By Lemma 13, if at least half the optimal edges intersect K1, then we can achieve a
significantly better approximation (namely, n1/4+ε). Thus, from now on let us assume this is
not the case. That is, H ′ still contains a k-subhypergraph with average degree Ω(d). Again,
recall that the maximum degree in H ′ is at most ∆.

As before, let α, β be such that k = nα and ∆k/d = nβ . By Lemma 14, Algorithm 2
gives us a k-subhypergraph with average degree

d1 = Ω(∆k2/n2) = Ω
(

d

(d/∆)n2/k2

)
= Ω

(
d

nα−βn2−2α

)
= Ω

(
d

n2−α−β

)
.

On the other hand, by Lemma 18, Algorithm 4 to H ′ will give us a k-subhypergraph with
average degree

d2 = Ω
(

d

nε+α(2−α/min{β,1})

)
.
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Let us analyze the guarantee given by the best of Algorithm 2 and Algorithm 4. First,
consider the case of β > 1. In this case, taking the best of the two gives us approximation ratio
at most nε+min{2−α−β,α(2−α)} ≤ nε+min{1−α,α(2−α)}. It is easy to check that this minimum
is maximized when α = (3 −

√
5)/2 giving approximation ratio n(

√
5−1)/2+ε ≤ n0.618034+ε,

which is even better than our claim.
Now suppose β ≤ 1. In this case, the approximation guarantee is nε+min{h1,h2}, where

h1 = 2 − α − β and h2 = α(2 − α/β). If α ≥ 2/3, then it can be checked that we
always have h1 ≤ h2 for any β ∈ [α, 1], in which case we have approximation factor at
most nε+2−2/3−2/3 = n2/3+ε, which is again better than our claim. On the other hand, if
α ≤ (3−

√
5)/2, then h2 ≤ h1 for any β ≤ 1, and so for this range of α we get approximation

factor at most nε+α(2−α) ≤ n(
√

5−1)/2, which as we’ve noted is also better than our claim.
Finally, if α ∈ ((3−

√
5)/2, 2/3) then a straightforward calculation shows that

min{h1, h2} =
{
h1 if β ≥ 1− 3α

2 +
√

1− 3α+ 13α2/4
h2 otherwise,

and that the value of min{h1, h2} is maximized at this threshold value of β. And so for α
in this range we have min{h1, h2} ≤ 1 + α/2−

√
1− 3α+ 13α2/4, which is maximized at

α = 18+2
√

3
39 ≈ 0.55, giving approximation ratio nε+4(4−

√
3)/13. J

6 Minimum p-Union in 3-uniform hypergraphs

In this section we explore Minimum p-Union (the minimization version of Densest k-
Subhypergraph), and give the following guarantee:

I Theorem 20. There is an Õ(n2/5)-approximation algorithm for Minimum p-Union in
3-uniform hypergraphs.

Note that this is significantly better than the n0.69...-approximation we would get by reduc-
ing the problem to Densest k-Subhypergraph via Theorem 10 and applying the approximation
algorithm from Theorem 2.

In this problem, we are given a 3-uniform hypergraph H = (V,E), and a parameter p,
the number of hyperedges that we want to find. Let us assume that the optimal solution,
P ⊆ E, has k vertices (i.e. | ∪e∈P e| = k). We do not know k, but the algorithm can try
every possible value of k = 1, . . . , n, and output the best solution. Thus, we assume that k is
known, in which case the average degree in the optimum solution is d = 3p/k.

Recall that it is not necessary to get p edges in one shot. By Lemma 9, it is enough to
find any subhypergraph of size at most kn2/5 with average degree at least Ω(d/n2/5).

We follow along the lines of DkSH by choosing vertex set K1 to be the kn2/5 vertices of
largest degree. The following lemma (corresponding to Lemma 13 for DkSH) shows that if
at least half the edges in P intersect K1, then by Lemma 9 we are done.

I Lemma 21. Suppose that at least half of the optimal edges contain a vertex of K1. Then
we can find a subhypergraph with at most O(kn2/5) vertices and average degree at least
Ω(d/n2/5).

Proof. By our assumption, there is a set of optimal hyperedges P ′ ⊂ P of size at least dk/6
such that every edge in P ′ intersects K1.

As in the proof of Lemma 13, if at least half the edges in P ′ intersect K1 in more than
one vertex, then we can easily recover a set of k vertices which along with K1 contain at



E. Chlamtáč, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca 6:13

least Ω(p) = Ω(kd) hyperedges. Since |K1| = kn2/5, this subgraph has O(kn2/5) vertices and
average degree Ω(d/n2/5) as required.

Thus, we may assume that at least half the edges in P ′ intersect K1 in exactly one
vertex. Then again as in Lemma 13, we define a graph G on vertices V \K1 where every
pair of vertices u, v ∈ V \K1 is an edge with weight |{x ∈ K1 | (u, v, x) ∈ E}|. Once again,
subgraphs of G with total edge weight w correspond to a subhypergraphs of H with at least w
edges, and in particular, G contains a k-subgraph with average weighted degree at least Ω(d).
Thus running the SpES approximation of [9] (or more precisely, the weighted version [11]),
gives a subgraph with at most kf vertices and total edge weight at least Ω(kd) for some
f = n0.17+ε (which is well below n2/5). Once again, the corresponding subhypergraph has
at most |K1|+ kf = O(kn2/5) vertices, and so the average degree is at least Ω(d/n2/5) as
required. J

Thus, we will assume from now on that at least half of the hyperedges in P do not
contain at least one vertex from K1, i.e. that H ′ = H[V \K1] still contains at least half the
hyperedges in P .

As with DkSH, we now proceed with a greedy algorithm. Starting with the same vertex set
K1 defined above, it follows from Lemma 14 that if we run Algorithm 2 on H with parameter
n2/5k, then we get a subhypergraph on O(kn2/5) vertices induced on sets K1,K2,K3 such
that if the minimum degree in K1 (which bounds the maximum degree in V \K1) is ∆, then
the subhypergraph has average degree Ω(∆k2n4/5/n2). The total number of hyperedges in
this subhypergraph is Ω(∆k3n6/5/n2) = Ω(∆k3/n4/5). If this is at least p = dk/3, then we
are done. Thus, we will assume from now on that ∆k3/n4/5 = O(dk), that is

∆ = O

(
dn4/5

k2

)
. (1)

We reuse Algorithm 3 on H ′, which gives us the following guarantee:

I Lemma 22. Applying Algorithm 3 to the above hypergraph H ′ with parameter

k̂ = k
√
p∆
d

=
√
k3∆
3d

returns a subhypergraph with at most kf vertices and average degree at least d/f for some

f = O(max{k, n2/5/
√
k}).

Proof. As in the proof of Lemma 15, we can deduce that for at least some choice of v and d̂,
the graph Gd̂v has at most O(∆k/d) vertices and has minimum degree at least Ω(d/k).

Note that we may not even have k̂ vertices in Gd̂v. If we do have at least k̂ vertices, then
the greedy choice of Sd̂v gives us Ω(k̂d/k) edges incident in the set (in fact, any choice of Ω(k̂)
vertices would do). The greedy choice of T d̂v then reduces the number of edges by (in the
worst case) a k̂/(∆k/d)-factor, giving us a total number of edges

Ω
(
k̂ 2d2

∆k2

)
= Ω(p).

Thus, in this case, we only need to bound the size of the subgraph. By (1), we can bound k̂
as follows:

k̂ =
√
k3∆
3d = O

(√
dn4/5

k2 · k
3

d

)
= O

(
k · n

2/5
√
k

)
,

which proves the lemma for this case.
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If we do not have k̂ vertices in Gd̂v, then the algorithm simply returns Gd̂v itself, which has at
most k̂ = O(k · n2/5/

√
k) vertices and average degree at least Ω(d/k), as required.

As noted in the proof of Lemma 15, this corresponds to a subhypergraph of H ′ with the
same guarantee. J

We can now prove the main theorem.

Proof of Theorem 20. By Lemma 22 and Lemma 9, to prove the theorem it suffices to
show that max{k, n2/5/

√
k} = O(n2/5). Since clearly n2/5/

√
k ≤ n2/5, let us consider the

parameter k. By definition of d and ∆, we clearly have d ≤ ∆, thus, by (1) we have

d ≤ ∆ = O

(
dn4/5

k2

)
which implies k = O(n2/5), and so the theorem follows. J

7 Interval Hypergraphs

We show now that DkS and MpU can be solved in polynomial time on interval hyper-
graphs. We only give an algorithm for MpU; a similar algorithm for DkS follows then from
Observation 8.

As defined in Section 2, a hypergraph H = (V,E) is an interval hypergraph, if V ⊆ N
and for each e ∈ E there are integers ae, be such that e = {i ∈ V : ae ≤ i ≤ be}. Solving
MpU on H can be interpreted as finding p intervals with minimum joint support.

I Theorem 23. Minimum p-Union is solvable in polynomial time on interval hypergraphs.

Proof. Let b1, ..., bm be the largest elements in hyperedges e1, ..., em respectively, and assume
that bi ≤ bj for any i < j. Similarly let a1, ..., am be the smallest elements in e1, ..., em
respectively.

We present a dynamic programming algorithm which calculates for each j ≤ i the optimal
solution to an instance of Minimum p-Union on the hyperedges e1, ..., ei with p = j under the
constraint that ei belongs to the solution. Let A[i, j] store the value of this optimal solution.
Assume that the values of A have been computed for all i′, j′ with j′ ≤ i′ < i. We show how
to compute A[i, j] for any j ≤ i.

We partition the hyperedges e1, ..., ei in three sets Ai, Bi, Ci with Ai containing all
hyperedges disjoint from ei, Bi containing all hyperedges intersecting but not included in ei,
and Ci containing ei and all hyperedges included in ei (see Fig. 1). Therefore we have:
1. bi′ < ai for all ei′ ∈ Ai,
2. ai′ < ai ≤ bi′ for all ei′ ∈ Bi, and
3. ai ≤ ai′ ≤ bi′ ≤ bi for all ei′ ∈ Ci.

Clearly, for every j ≤ |Ci| we have A[i, j] = |ei| since by definition of A, ei is included
in the solution, and adding any other j − 1 sets from Ci to the solution does not increase
the size of the union. In the remainder of the proof, when we refer to an optimal solution
corresponding to A[i′, j′] for some indices i′ and j′ we always mean a solution that uses the
maximum number of sets in Ci′ .

For any t ≥ 0 and j = t+ |Ci|, the optimal solution contains exactly t sets in Ai ∪ Bi.
Fix an optimal solution OPTi corresponding to A[i, j] and let ei∗ be the hyperedge with
largest bei∗ in OPTi that does not belong to Ci. We show that

A[i, j] = A[i∗, j − |Ci \ Ci∗ |] + |ei \ ei∗ |. (2)
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Ci′

ei

ei′

Figure 1 Partitioning of hyperedges induced by ei. The dotted edges form set Ai, the dashed
edge forms set Bi and the elements of Ci are represented by continuous edges. The set Ci′ is also
shown in dashed pattern.

Then, by considering every hyperedge with index i′ < i as the possible i∗ in Eq. (2) and
taking the minimum value, one can compute A[i, j] in linear time.

To complete the proof, we argue why Equation 2 holds. First observe that a solution
with value A[i, j] exists. Indeed, by adding all elements of Ci \ Ci∗ to an optimal solution
for A[i∗, j − |Ci \ Ci∗ |] we obtain a solution for A[i, j] covering exactly |ei \ ei∗ | additional
elements. Next, assume that the value of A[i, j] is less than that of Equation 2. Then we
can obtain a solution for A[i∗, j − |Ci \ Ci∗ |] by removing from OPTi all the elements in
|Ci \ Ci∗ | to obtain a solution with value at most A[i, j]− |ei \ ei∗ |, contradicting the fact
that A[i∗, j − |Ci \ Ci∗ |] is the value of an optimal solution. J

8 Open problems

While no tight hardness results are known for Densest k-Subgraph and Smallest p-Edge
Subgraph, there are lower bounds given by the log-density framework [7, 9]. In this framework,
one considers the problem of distinguishing between a random graph and a graph which
contains a planted dense subgraph. It has been conjectured that for certain parameters
(namely, when the “log-density" of the subgraph is smaller than that of the host graph), this
task is impossible, thus giving lower bounds on the approximability of these problems. In
the graph setting, the existing algorithm of [7, 9] match these lower bounds.

However, in the hypergraph case, our current algorithms are still far from the corresponding
lower bounds. In c-uniform hypergraphs, the lower bounds predicted by the log-density
framework are n(c−1)/4 for Densest k-Subhypergraph and n1−2/(

√
c+1) for Min p-Union. For

c = 3, for example, these lower bounds give n1/2 and n2−
√

3 = n0.2679..., respectively (contrast
with our current guarantees of n0.6978... and n0.4). The existing approach for the graph case
does not seem to easily carry over to hypergraphs, and it remains a technical challenge to
match the log-density based predictions for hypergraphs of bounded rank.

For arbitrary rank, the lower bound given by the log-density framework is m1/4 (note
that we do not expect to achieve approximations that are sublinear in n in this case), as
opposed to our current guarantee of

√
m. In general hypergraphs, one may also hope for

hardness results which at the moment are elusive for the graph case or for bounded rank
hypergraphs.

There is also an interesting connection between MpU/DkSH and the Small-Set Vertex
Expansion problem (SSVE) [5, 20, 19]. In Small-Set Vertex Expansion we are given a graph
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G and a parameter δ, and are asked to find the a set V ′ ⊆ V with |V ′| ≤ δn in order
to minimize |{v∈V \V

′:v∈Γ(v)}|
|V ′| . Given a graph G, consider the collection of neighborhoods

Ê = {Γ(v) : v ∈ V } and the hypergraph H = (V, Ê). If we let p = δn, the MpU problem
(choosing p hyperedges in H to minimize their union) is quite similar to the SSVE problem.
The main difference is that SSVE only “counts" nodes that are in V \ V ′, while MpU would
also count nodes in V ′. It is known [21] that this special case of MpU reduces to SSVE, so
it is no harder than SSVE, but it is not clear how much easier it is. This motivates the
study of MpU when hyperedges are neighborhoods in an underlying graph, and studying the
approximability of this problem is an interesting future direction.
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A Finding a Set of Minimum Expansion

Given a bipartite graph G = (E, V, F ), the subroutine Min-Exp(G) returns a subset of E so
that

|Min-Exp(G)|
|ΓG(Min-Exp(G))| ≥

|E′|
|ΓG(E′)| ,

for every subset E′ ⊆ E. Minimally expanding subsets of this kind have previously been
used (e.g. in [17, 14]) in communication settings where computation time is disregarded.
We therefore present a polynomial time implementation for Min-Exp using network flows.
An alternative algorithm can be derived from a straightforward adaptation of a linear
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Es Vs

Graph G Network Nq Et Vt

Figure 2 Left: Input graph G. Center: Network Nq. Right: Min-s-t-cut. Gray edges are cut
edges.

programming approach for the graph case due to Charikar [8] to our setting (see Appendix B
for more details).

Let Nq = (G̃, cq, s, t) be a flow network with directed bipartite graph G̃ = (E ∪ {t}, V ∪
{s}, F̃ ), capacities cq parameterized by a parameter q with m

n < q < m, source s and sink t
as follows (and as illustrated in Figure 2):

1. Vertex s is connected to every e ∈ E via directed edges (leaving s) with capacity 1.
2. Every v ∈ V is connected to t via a directed edge (directed towards t) with capacity q.
3. Edges from F are included in F̃ and directed from E-vertex to V -vertex with capacity ∞.

Denote by C∗ a minimum s-t cut in Nq and let val(C∗) be the value of the cut. Since
cutting all edges incident to vertex s results in a cut of value m, the min-cut value is at most
m and thus finite, and, in particular, no edge connecting E to V is included in the min-cut.
Denote by Es the set of E-vertices that, when removing the cut-edges from the graph, are
incident to s, and let Et = E \Es. Let Vs = ΓG(Es) and let Vt = V \ Vs. Since removing C∗
from G̃ separates s from t, all outgoing edges from Vs are included in C∗. Furthermore, since
C∗ is a minimum cut, none of the edges leaving Vt are contained in the cut. The resulting
structure is illustrated on the right in Figure 2. The value of the cut is computed as follows:

val(F ∗) = |Et|+ q · |Vs|. (3)

We prove now a property connecting the value of a minimum cut to the expansion of a
subset of E. This property allows us then to define an efficient algorithm for Min-Exp.

I Lemma 24. Let q be such that m
n < q < m. Then:

val(F ∗) < m⇔ ∃E′ ⊆ E : |E′|
|ΓG(E′)| > q.

Proof. Suppose that val(F ∗) < m. We prove that E′ = Es fulfills the claimed property.
The value of the cut val(F ∗) is computed according to Inequality 3 as follows:

m > val(F ∗) = |Et|+ q · |Vs| = m− |Es|+ q · |Vs| = m− |E′|+ q · |ΓG(E′)|,

which implies |E′|
|ΓG(E′)| > q as desired.
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Suppose now that there is a E′ ⊆ E such that |E′|
|ΓG(E′)| > q. Then the set of edges C

consisting of those that connect s to E \ E′ and those that connect ΓG(E′) to t form a cut.
We compute val(C):

val(C) = |E \ E′|+ q|ΓG(E′)| = m− |E′|+ q|ΓG(E′)| < m− |E′|+ |E′| = m.

The fact that val(C∗) ≤ val(C) completes the proof. J

Lemma 24 allows us to test whether there is a subset E′ ⊆ E such that |E′|
|ΓG(E′)| > q,

for some value of q. For every set E′ ⊆ E, we have |E′|
|ΓG(E′)| ∈ {

a
b : a ∈ {1, . . . ,m}, b ∈

{1, . . . , n}}. We could thus test all values a
b − ε, for a ∈ {1, . . . ,m}, b ∈ {1, . . . , n} and a

small enough ε, in order to identify the desired set (or use a binary search to speed up the
process). Since computing a min-cut can be done in polynomial time, we obtain the following
theorem:

I Theorem 25. Algorithm Min-Exp can be implemented in polynomial time.

B An LP-based algorithm for Minimum Expansion

We use hypergraph notation in this section. So the goal is to find a set E′ ⊆ E which
minimizes | ∪e∈E′ e|/|E′| over all choices of E′ (so there is no requirement that |E′| = p).

We use the following LP relaxation, which is a straightforward adaptation of Charikar’s [8]
algorithm for graphs.

LP = min
∑
i∈V

xi

s.t.
∑
e∈E

ye = 1

xi ≥ ye ∀e ∈ E, i ∈ e
xi ≥ 0 ∀i ∈ V
ye ≥ 0 ∀e ∈ E

Consider the following simple rounding algorithm:
Pick r ∈R [0, 1] uniformly at random.
Let E′ = {e ∈ E | xe ≥ r}.
Let V ′ =

⋃
e∈E′ e.

Clearly, for every vertex e ∈ E we have

Prob[e ∈ E′] = ye.

Also, for every vertex i ∈ V we have

Prob[i ∈ V ′] = max
e3i

ye ≤ xi.

Therefore, by linearity of expectation, we have

E[LP · |E′| − |V ′|] ≥ LP · 1− LP = 0,

and this is obviously still true when we condition the expectation on |E′| > 0 (a positive
probability event), so with positive probability, we get a pair (V0, E0) such that E0 6= ∅,
V0 =

⋃
e∈E0

e and |V0|/|E0| ≤ LP. The rounding is trivially derandomized by trying r = ye
for every vertex e ∈ E.
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