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Abstract
We study the Target Set Selection (TSS) problem introduced by Kempe, Kleinberg, and Tardos
(2003). This problem models the propagation of influence in a network, in a sequence of rounds.
A set of nodes is made “active” initially. In each subsequent round, a vertex is activated if at
least a certain number of its neighbors are (already) active. In the minimization version, the goal
is to activate a small set of vertices initially – a seed, or target, set – so that activation spreads
to the entire graph. In the absence of a sublinear-factor algorithm for the general version, we
provide a (sublinear) approximation algorithm for the bounded-round version, where the goal
is to activate all the vertices in r rounds. Assuming a known conjecture on the hardness of
Planted Dense Subgraph, we establish hardness-of-approximation results for the bounded-round
version. We show that they translate to general Target Set Selection, leading to a hardness factor
of n1/2−ε for all ε > 0. This is the first polynomial hardness result for Target Set Selection, and
the strongest conditional result known for a large class of monotone satisfiability problems. In
the maximization version of TSS, the goal is to pick a target set of size k so as to maximize
the number of nodes eventually active. We show an n1−ε hardness result for the undirected
maximization version of the problem, thus establishing that the undirected case is as hard as the
directed case. Finally, we demonstrate an SETH lower bound for the exact computation of the
optimal seed set.
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1 Introduction

In this paper, we address the problem of targeting individuals to spread influence (or infection)
in a network. Based on an average-case assumption about finding a planted dense subgraph,
we develop the first polynomial-factor lower bound for a key minimization problem. Also, for
a fixed-round version, we introduce the first sub-linear-factor approximation algorithm.

Motivated by work of Domingos and Richardson [14, 20], Kempe, Kleinberg, and Tardos
[18] introduced the following model. A vertex is either active (infected) or inactive (uninfected).
Given an initial seed set of active vertices, influence proceeds in a sequence of rounds. Every
vertex v has a known, deterministic threshold τ(v). A previously inactive vertex v becomes
active in a particular round if in the previous round at least τ(v) neighbors of v were
active. Once a vertex is active, it remains active in all subsequent rounds. Since the process
(essentially) stops if there is no new active vertex in some round, there are at most n rounds.
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Both directed and undirected versions have been considered. In the directed case, the
head vertex of an edge directly contributes to activating the tail vertex, but not vice versa.

The key question that arises in the study of viral marketing is Target Set Selection.
Given the graph and the activation thresholds for vertices, which nodes should be initially
targeted so as to spread the activation widely in the network? Specifically, we have these
two problems,

Min-TSS: Find a minimum-size seed set that leads to all vertices eventually being active;
Max-TSS: Given budget k, find a size-k seed set that maximizes the final active set size.

Kempe, Kleinberg, and Tardos focused on the maximization problem where all thresholds
are drawn randomly from a given range [18]. For the directed Max-TSS problem, with
deterministic thresholds, they showed that obtaining an n1−ε approximation is NP-hard. By
reducing from Label Cover, Chen [7] showed that the minimization problem, Min-TSS,
cannot be approximated to within 2log1−ε n unless NP ⊆ DTIME(npolylog(n)), even for
instances with uniform thresholds of 2. In fact [13], it is NP-hard to approximate Label
Cover within 2log1−ε n, and this hardness bound extends to Min-TSS.

Cicalese et al. [11, 10], considered versions of the problem in which the number of rounds
is bounded. For graphs of bounded clique-width, given parameters α, β, and λ, they gave
polynomial-time algorithms to determine whether there exists a target set of size β, such
that at least α vertices are activated in at most λ rounds. Various other aspects of target set
selection have been studied. For example, Coja-Oghlan et al. [12] obtained combinatorial
bounds for the size of target sets in expanders, while Ben-Zwi et al. [5] obtained upper and
lower bounds for this problem on low-treewidth graphs.

Our Results
We seek a polynomial-factor lower-bound for approximating Min-TSS. Obtaining such
a result by reduction from known NP-hard problems would be a breakthrough. As we
point out in Section 7, (the bounded-round version of) Min-TSS belongs to the MMSA
hierarchy [13]. A prevailing definition of this class of problems is: Given a monotone Boolean
circuit, minimize the number of inputs set to True so that the circuit evaluates to True. No
problem in the MMSA hierarchy is currently known to have a polynomial hardness result.1
We derive a polynomial-factor hardness result for Min-TSS from an average-case hardness
conjecture for the Planted Dense Subgraph problem (see Section 3.2)

In Section 4.2, we show the following hardness result for the bounded-round version
of Min-TSS. Assuming the Planted Dense Subgraph Conjecture, for every ε > 0,
r-round Min-TSS is n1/2−1/2br/2c−ε hard to approximate. In Section 4.3, we prove the
corollary that, assuming the Planted Dense Subgraph Conjecture, Min-TSS (with
unbounded number of rounds) is NP-hard to approximate within n1/2−ε for every ε > 0.

After this, in Section 5, we provide an O((τmax/τmin)1−1/rn1−1/r log1/r n) approximation
algorithm for r-round Min-TSS, where τmax and τmin are the maximum and minimum
thresholds in the instance, respectively. Subsequently, we show in Section 6 that undirected
Max-TSS is as hard as the directed version, giving an n1−ε hardness for undirected Max-
TSS. Finally, in Section 8, we reuse ideas from Section 4.3 to give an O(nk) SETH-lower

1 As explained in Section 7, another variant of MMSA, where the circuits may use non-monotone gates in
computing a monotone function, is known to admit problems that are O(n1−ε) hard to approximate
unless NP ⊆ DTIME[nO(log n)] [21].
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bound on the time needed to find contagious sets of size k, for k = O(1), which is tight up to
near-linear factors.

2 Outline of Key Technical Ideas

The main goal of our paper is to obtain a better understanding of the complexity of Min-TSS.
We focus in particular on the bounded-round variant, which has previously only been studied
from the point of view of fixed-parameter tractability. As we show, understanding the
hardness of the bounded-round variant is a good stepping stone in obtaining hardness results
for (unbounded) Min-TSS.

2.1 Hardness of Min-TSS
A 2log1−ε n hardness factor is known for Min-TSS, but there are no non-trivial approximation
upper bounds for this problem. We obtain a polynomial hardness factor based on the planted
dense subgraph conjecture by introducing and exploiting a recursive version. Roughly
speaking, the planted dense subgraph conjecture says that it is hard to distinguish random
graphs of degree nα from such graphs where k =

√
n vertices have a planted dense subgraph

of degree kβ , for β < α.
To assist our exposition of the intuition, we will sacrifice a little accuracy, and think

of β = α = 1/2. So (pretend that) it is hard to distinguish random graphs of degree
√
n

(unplanted) from such graphs where a subset of
√
n vertices have a planted random graph of

degree n1/4 (planted) – a factor of roughly n1/4 larger than the expected vertex degree in a
random subgraph of that size. Consider these graph families as inputs to Min-TSS with
the threshold set to a large constant. In the unplanted case, we can show that at least n1/2

vertices must be initially activated in order to activate all vertices in a constant number of
rounds. On the other hand, in the planted case, a target set of roughly n1/4 vertices will
activate all vertices in at most four rounds: in two rounds, all the vertices in the planted set
will be activated, and in two more rounds all vertices in the graph will be activated. This
leads to an Ω(n1/4) hardness result for 4-round Min-TSS.

In order to show stronger hardness results (for more rounds), we recurse. Consider
a recursively planted dense subgraph instance where we start with a random graph of
degree n1/2 and plant a random subgraph of n1/2 vertices and degree n1/4. Within this, we
plant a random subgraph of n1/4 vertices and degree n1/8, and so on; the last subgraph in
this sequence is on n1/2t vertices with degree n1/2t+1 . (Again, to facilitate the explanation,
the parameters are slightly inaccurate.) We show that the planted dense subgraph conjecture
implies the hardness of the recursive version. As before, in the unplanted case, at least n1/2

vertices must be initially activated in order to activate all vertices in a constant number
of rounds. In the recursively planted case, activating roughly n1/2t+1 vertices will activate
all vertices in at most 2(t + 1) rounds: in two rounds, all the vertices of the inner-most
planted subgraph will be activated, in a further two rounds, all vertices of the second-deepest
planted subgraph will be activated, and so on. This establishes a hardness of n1/2−1/2t+1 for
2(t+ 1)-round Min-TSS.

Via a direct reduction, we show that the hardness results for r-round Min-TSS imply
hardness for (unbounded-round) Min-TSS. For every constant ε > 0, we show that Min-TSS
is n1/2−ε hard to approximate. The reduction is easiest to describe with directed edges, but
these can be simulated with a gadget comprising undirected edges. Given an instance of
r-round Min-TSS on G(V,E), the construction consists of 2r + 1 layers of copies of vertices
of V : layers S0, S1, . . . , Sr are interleaved with layers M0, . . . ,Mr−1. Layer S0 contains the

APPROX/RANDOM’16
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seed set and for each i > 0, vertices active in Si represent the set of vertices active in G

after i rounds. Each layer Mi contains “memory” vertices: the copy of vertex v in this
layer is activated if a copy of v is activated in at least one of the previous layers, S0, . . . , Si.
Between layers Mi and Si+1 we place a bipartite copy of the original graph G, and the copy
of v in Si+1 has the same threshold as v in the original graph. This simulates one round of
the activation process on the original graph. Finally, we place a complete bipartite graph
directed from vertices in Sr to those in S0: each vertex in S0 has threshold |V |, so, unless in
the seed set, it is activated if and only if all vertices in Sr are active.

The recursive planted dense subgraph construction and its application are new. It would
be interesting to understand what sequences of parameters in the recursive construction
imply indistinguishability between the unplanted case and the recursively planted case. Our
hybrid-like argument for indistinguishibility relies on the fact that the recursively planted
instances are scaled-down copies of hard instances of planted dense subgraph; however, this
might not be needed in the recursive construction. Together with a better understanding
of planted dense subgraph in regimes where the planted subgraph size k �

√
n, this could

lead to tight hardness results for Min-TSS. Although we are unaware of an algorithm for
Min-TSS with approximation factor o(n), our current construction establishes hardness at
most n1/2 because the unplanted case has OPT = O(n1/2). Establishing stronger hardness
results will need constructions where OPT is much higher; this could be achieved by setting
the order of the planted subgraph to be n1−ε, with appropriate choices of degrees for the
planted and ambient graphs. Because the assumptions were originally formulated to capture
the hard case for approximating densest subgraph, the stated assumptions in the literature
about hardness of planted dense subgraph only apply to k ≤

√
n. A more comprehensive

understanding of planted dense subgraph in the k >
√
n regime would be interesting in its

own right, and could lead to an almost-tight n1−ε hardness for Min-TSS.

2.2 Approximation of r-round Min-TSS
Until now, no non-trivial approximation algorithms for bounded-latency Min-TSS is known.
When all thresholds are the same, our algorithm follows a greedy approach and obtains an
Õ(n1−1/r)-approximation for r-round Min-TSS. In general, the approximation factor also
depends on the ratio of the largest to smallest thresholds. The challenge in applying a greedy
approach to Min-TSS is quantifying the progress made in adding a single vertex to the
seed set. Indeed, a single vertex may have negligible impact until several other vertices are
picked. The key idea behind our algorithm is a potential function, called hunger, that guides
the algorithm. Given a seed set S and a bound r on the number of rounds, a vertex v has
positive hunger if and only if it remains inactive after r rounds. In this case, v’s hunger is
the number of additional neighbors that need to be active after r − 1 rounds, in order to
activate v in the next round.

Our algorithm chooses the seed set in two phases, based on a parameter β that we choose
appropriately to obtain the approximation guarantee. In the first phase, we greedily pick
vertices that have more than β neighbors that would not otherwise become active within one
round. The first phase ensures that in the “residual” graph, degrees of vertices are bounded
by β. With this, we can relate the size of the seed set picked in the second phase to the
optimum seed set size. In the second phase, given the current seed set, we repeatedly pick
vertices greedily to reduce the total hunger. Our analysis shows that one of the vertices of
the optimal solution reduces the total hunger by a significant quantity. However, we lose
a factor of βr−1 in relating the drop in the total hunger to the effect of this vertex on the
optimal solution. Consequently, in the second phase, the bound on the size of the picked
seed set is (roughly) a factor βr−1 times optimal.
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3 Preliminaries

3.1 Formal definition and notation
An instance of Target Set Selection (TSS) is an n-vertex (di)graph G = (V,E) coupled
with a threshold function τ : V → Z+. Seed set S ⊂ V comprises the vertices that are
active in round 0. For all t > 0, a vertex v ∈ V is called active in round t if either it is
active in round t − 1 or at least τ(v) of its (in)neighbors were active in round t − 1. The
rth-round activation family of a seed set S ⊂ V , denoted by Ar(S), comprises those vertices
active in round t = r, conditioned on exactly the vertices in S being active at time t = 0.
The activation family of seed set S is A∞(S) ≡ limr→∞Ar(S). By monotonicity, and the
Markovian nature of this process, it is easy to verify that A∞(S) is equivalent to An−1(S).
We study three variants of the Target Set Selection problem.

TSS: Given G and τ , what is the size of the smallest seed set S for which A∞(S) = V ?
RTSSr: Given G and τ , what is the size of the smallest seed set S for which Ar(S) = V ?
MaxTSS: Given G, τ , and k > 0, conditioned on |S| ≤ k, what is the largest value

of |A∞(S)|?

We sometimes refer to TSS as Min-TSS, and RTSS stands for r-Round TSS. For both
minimization problems, a seed set whose activation family (within the round limit, if any) is
the whole graph is called a contagious set. When all thresholds are equal, we may abuse
notation and let τ itself be an integer. All tuples in this paper are written thus ~a, and are
indexed in two ways. If ~ξ = (ξ1, ξ2, · · · , ξm) is a tuple and 1 ≤ i < j ≤ m, we let ~ξji denote
the contiguous sub-tuple (ξi, ξi+1, · · · , ξj). Sometimes, we are interested in the suffix of the
tuple, so we can index the final elements thus: ~ξ(−1)

(−i) = (xm−(i−1), xm−(i−2), . . . , xm).

3.2 Planted Dense Subgraph Conjecture
The Planted Dense Subgraph (PDS) problem is a generalization of Planted Clique,
in which the goal is to distinguish a G(n, p), Erdős-Rényi, random graph from one that
contains a planted dense Erdős-Rényi component. Formally, an instance of the problem
PDS(n, k, α, β) is parameterized by the graph order n, the subgraph order k, and log-densities
α, β ∈ (0, 1). We are then asked for an algorithm that with high probability distinguishes
between these two families of random graphs:

Unplanted: An Erdős-Rényi random graph G(n, nα−1) (i.e., a random graph with expected
degree ≈ nα).

Planted: An Erdős-Rényi random graph G(n, nα−1) from which k vertices are chosen uni-
formly at random and their induced subgraph is replaced by an instance of G(k, kβ−1).

The input to the PDS(n, k, α, β) problem is a graph, with the promise that with prob-
ability 1/2 it is drawn from the Planted distribution and with probability 1/2 it is drawn
from the Unplanted distribution. The output is True or False, indicating whether the
graph has a planted subcomponent. An algorithm solves the problem if, for some ε > 0,
independent of n, it attains an ε advantage over random guessing. That is, with probability
at least 1/2 + ε, it correctly states from which of the two distributions the input graph was
drawn. This statement about probability is over the joint distribution of the input graph
and the random choice sequence of the algorithm.

APPROX/RANDOM’16
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As observed by Bhaskara et al. [6], PDS(n, k, α, β) admits a simple polynomial-time
deterministic algorithm when β > α; for k >

√
n, an eigenvalue approach works with a

weaker condition on β. For β < α and k ≤
√
n, there is no quasipolynomial-time algorithm

(deterministic or randomized) known for PDS, giving rise to the Planted Dense Subgraph
Conjecture, viz.

I Conjecture 1. For every ε > 0, k ≤
√
n, and β < α, no probabilistic polynomial-time

(PPT) algorithm can, with advantage greater than ε, solve PDS(n, k, α, β).

This conjecture is attractive because the current best-known algorithms for the problem
require 2nΘ(1) time (as opposed to nΘ(logn) for the well-studied Planted Clique problem).

Similar conjectures have previously been made in different contexts in theoretical computer
science [2, 3, 4]. The precise form of the conjecture we state is very similar to the conjecture
stated by Awasthi et al. [4]. As we show in Section 4, Planted Dense Subgraph also
naturally lends itself to showing hardness for the bounded-round version of Min-TSS, which
in turn leads to a hardness result for the (unbounded) Min-TSS problem.

4 Hardness of Min-TSS

In this section, we prove that the Planted Dense Subgraph (PDS) conjecture implies that for
all ε > 0, there is no probabilistic polynomial-time algorithm for Min-TSS that achieves
an approximation factor of O(n1/2−ε). We first show that the Planted Dense Subgraph
conjecture implies the hardness of a recursive version, and we use this recursive version to
show hardness for Min-TSS.

4.1 Recursive extension of PDS
To simplify notation, we define a right-associative operator, /, on distributions of graphs.
Suppose there are two distributions on graphs, G1, on graphs of order n, and G2, on graphs
of order n′, with n > n′. The distribution G1 / G2 is defined thus:

Draw a graph G1 from G1 and a graph G2 from G2, then choose uniformly at random
a subset S′ of vertices of size n′ from G1 and replace its induced subgraph with G2.

Hence PDS(n, k, α, β) asks us to state whether a graph is drawn from G(n, nα−1)/G(k, kβ−1)
(True) or from G(n, nα−1) (False).

In the definition of PDS(n, k, α, β), one consequence of the random construction of both
G(n, nα−1) and G(k, kβ−1) is that the planting process can be naturally recursed. For every
pair of length-m tuples ~n = (n1, n2, . . . , nm) – the subgraph orders – and ~α = (α1, α2, . . . , αm)
– the subgraph log-densities – with, for each i, ni ∈ Z+, ni > ni+1, and αi ∈ (0, 1), we define
the PDSm(~n, ~α) distribution via the recurrence

PDSm(~n, ~α) =
{
G(n1, n1

α1−1) /PDSm−1(~n(−1)
(−m+1), ~α

(−1)
(−m+1)) if m > 1;

G(n1, n1
α1−1), otherwise.

We also define the (eponymous) PDSm(~n, ~α) problem: distinguish with ε advantage graphs
drawn from the PDSm(~n, ~α) distribution from those drawn simply from PDS1(n1, α1) =
G(n1, n

α1−1). More formally, under the promise that with probability 1/2 the graph is from
the former distribution, and with probability 1/2 from the latter, an algorithm solves the
problem if with probability at least 1/2 + ε it correctly states which of the distributions the
graph came from. Setting m = 2, ~n = (n, k), and ~α = (α, β) recovers exactly PDS(n, k, α, β).
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We now show that for monotonically decreasing log-densities, recursive planting of small,
but polynomially sized, subgraphs leads to a problem no simpler than PDS.

I Lemma 2. Assuming Conjecture 1, if m ≥ 2 is a constant, αi > αi+1 for every i < m, and
for some constant c > 0, ni+1 ∈ [nci ,

√
ni], then no PPT algorithm can solve the PDSm(~n, ~α)

problem with ε advantage.

Proof (by contradiction). Consider the minimum m for which some algorithm A solves
PDSm(~n, ~α) with ε advantage. We show how to construct an algorithm that attains an
ε′ > 0 advantage for the problem PDSm−1(~n(−1)

(−m+1), ~α
(−1)
(−m+1)), contradicting the minimality

of m. For a distribution H, let F(H) be the distribution G(n1, n
α1−1
1 ) /H. Hence

F
(

PDSm−1(~n(−1)
(−m+1), ~α

(−1)
(−m+1))

)
is PDSm(~n, ~α) and F

(
G(n2, n2

α2−1)
)
is PDS2 ((n1, n2), (α1, α2)). But, of course, this F

operator represents a (randomized) polynomial-time-computable operation on a graph, once
drawn from distribution H. Assuming the existence of algorithm A, we propose algorithm AF
for PDSm−1(~n(−1)

(−m+1), ~α
(−1)
(−m+1)):

Given graph H, apply algorithm A to F(H) and return A’s answer.

For the following three distributions, let pi be the probability that A reports True when the
graph is drawn from distribution i.
1. G(n1, n1

α1−1);
2. F

(
G(n2, n2

α2−1)
)

= PDS2 ((n1, n2), (α1, α2));
3. F

(
PDSm−1(~n(−1)

(−m+1), ~α
(−1)
(−m+1))

)
= PDSm(~n, ~α)

Since we assumed the Planted Dense Subgraph Conjecture, the probability
of returning the correct answer when distinguishing between distributions 1 and 2 is at
most 1/2 + o(1). That is, (1− p1)/2 + p2/2 ≤ 1/2 + o(1). On the other hand, since A solves
PDSm(~n, ~α), with ε advantage, (1− p1)/2 + p3/2 ≥ 1/2 + ε.

Consider algorithm AF , it applies F to its input graph and sends it to A. Although A
was promised a graph that was with probability 1/2 from the first distribution and with
probability 1/2 from the third2, its input is merely a graph with nonzero mass in each of the
two distributions, and thus it outputs some value in probabilistic polynomial time3. The
probability of algorithm AF correctly reporting True is (by definition) (1− p2)/2 + p3/2,
which, from the two previous inequalities, is easily seen to be at least 1/2 + ε− o(1). Hence,
for sufficiently large n, Algorithm AF is a PPT algorithm with advantage ε/2 for the
PDSm−1(~n(−1)

(−m+1), ~α
(−1)
(−m+1)) problem, contradicting the minimality of m. J

4.2 Hardness of fixed-round TSS
We now prove the following theorem on the hardness of r-round Min-TSS.

2 This application of a promise oracle to non-promise-satisfying inputs is an example of a non-smart
reduction [16].

3 Although the positivity of the mass on some order-n graph might seem like a technicality, it is not
intrinsic to the analysis. For other, similar, distributions of graphs where F(H) may have 0 probability
in either distribution, we can run A up to its polynomial-time upper-bound for promise-satisfying
instances and return False if it has failed to return by then. The rest of the analysis proceeds identically,
up to the necessary modifications needed to handle the new ensemble of distributions.

APPROX/RANDOM’16
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I Theorem 3. Assuming the Planted Dense Subgraph Conjecture, for every ε > 0, no
PPT algorithm can approximate r-round Min-TSS to within a factor of O(n1/2−1/2br/2c−ε).

The general idea is as follows. We first prove (in Lemma 4) a lower bound on the size of r-round
contagious sets on G(n1, n1

α1−1) for particular (ranges of) values of n1 and α1. Afterwards,
we argue (in Lemma 5) that for some appropriate setting of ~n = (n1, n2, · · · , nbr/2c) and
~α = (α1, α2, · · · , αbr/2c), the nbr/2c vertices in the densest component of PDSbr/2c(~n, ~α)
must form a contagious set of size nbr/2c. Theorem 3 then follows from a direct application
of Lemma 2.

I Lemma 4. For all α ∈ (0, 1/2] and all positive integers r, τ , the r-round Min-TSS instance
RTSSr(G(n, nα−1), τ) has |OPT | = Ω̃(nβ), where β = (τ(1− α)− 1)/(τ − 1).

Proof. For a seed set S of size Õ(nβ), chosen uniformly at random (u.a.r.), and a vertex v /∈ S,
chosen u.a.r., the probability that v has k neighbors in S is, by the union bound, at most(|S|
k

)
(nα−1)k = Õ

(
(nβnα−1)k

)
(for constant k), which decreases geometrically with k. Thus,

the number of vertices newly activated after one round, |A1(S) \ S|, follows a binomial
distribution with mean µ = Õ(n(nβnα−1)τ ) = Õ(n1+(α+β−1)τ ). Because (α+β−1)τ = β−1,
this expression simplifies to Õ(nβ). Chernoff bounds tell us that the probability that
|A1(S) \ S| exceeds its expectation by a log2 n factor is bounded by

exp[µ(log2 n− 1− 2 log2 n(log logn))] < exp[µ(− log2 n)] = n−µ logn .

Given it has size Õ(nβ), there are Õ
((

n
nβ

))
choices of seed set S. By the union bound,

the probability that at least one of them activates more than Õ(nβ) vertices within one
round is 1/nΩ(1). By induction, after a constant number of activation rounds, for all ε > 0,
the number of active nodes is with high probability at most o(nβ+ε). Hence, with high
probability, no seed set of size Õ(nβ) is an r-round contagious set. J

I Lemma 5. Suppose, in an instance of the r-round Min-TSS problem, every vertex shares
the same constant threshold τ , with

ρ ≡ br/2c, ε0 ∈
(

0, 1
3(τ + 1)2

)
, ~n =

(
n,
√
n,

√√
n, . . . , 2ρ

√
n

)
, and

~α =
(

1
2 ,

1
2 −

ε0

1 + ρ
,

1
2 −

2ε0

1 + ρ
. . . ,

1
2 −

ρε0

1 + ρ

)
.

If G ∼ PDSρ(~n, ~α), then RTSSr(G, τ) has |OPT | = O( 2ρ
√
n).

Proof. For i ∈ 1, 2, · · · , 1 + ρ, let Gi be the depth-i planted component of G, i.e., the
graph of order ki = 2i−1√

n and average degree ki1/2−(i−1)ε0/(1+ρ) planted in G. Further,
for every i, define ai = ki

−1/2−ε0 , making ai a lower bound on the edge probability in Gi.
For i ∈ {1, 2, . . . , ρ}, choosing a subset of size

√
ki = ki+1 of Gi’s vertices u.a.r. to be the

seed set S, leads to random variable |A1(S) \ S| following a binomial distribution with
µ = Ω(ki · (

√
kiai)τ ). Each indicator of membership in A1(S) \ S is a Bernoulli random

variable with probability (of activation) at least
(√

ki
τ

)
ai
τ . The expression for the mean is thus

Ω(ki(
√
ki · ki−1/2−ε0)τ ), which is Ω(ki1−τε0). The probability that, for a randomly chosen

seed set of size
√
ki, fewer than µ/2 vertices become active is, again by the Chernoff bounds,

less than e−Ω(µ) = n−Ω(µ/ logn) = n−Ω(ki1−τε0/ logn) < n−k
2/3
i � n−

√
ki−2. Every remaining

inactive vertex in Gi would now have d̂ = µai = Ω̃(ki1/2−ε0(τ+1)) = Ω̃(ki1/2−1/(3(τ+1)))
activated neighbors in expectation. Thus, with high probability, no vertex has fewer than
Ω̃(ki1/3) active neighbors. Since each vertex has so many active neighbors, with high
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Figure 1 Sample of the first few layers of the r-round Min-TSS to TSS reduction. The i-th
stage vertices are white and the memory vertices are grey. All drawn arcs are oriented rightwards.
Not shown: directed edges from each vertex in Sr to all those in S0.

probability, all of Gi’s vertices becomes active within two rounds of all of Gi+1’s vertices
becoming active. By induction, activating all of Gr′+1’s vertices will with high probability
activate all of G1’s vertices after 2ρ ≤ r rounds. Since |V (Gρ+1)| = n1/2ρ , the lemma
follows. J

Proof of Theorem 3. Given an instance G of the PDSm(~n, ~α) problem with ~n and ~α satis-
fying the conditions of Lemma 5 (and thus Lemma 2), we choose a threshold τ satisfying
(τ/2 − 1)/(τ − 1) > 1/2 − ε/2 and generate the r-round Min-TSS instance RTSSr(G, τ).
If G comes from the unplanted distribution, an application of Lemma 4 provides a lower
bound of Ω̃(n1/2−ε/2) on the size of some optimal seed set, OPT. On the other hand, if G
comes from the planted distribution, Lemma 5 provides an upper bound of O(n1/2br/2c) on
the size of OPT. Thus a PPT algorithm with approximation factor in

Õ(n1/2−ε/2/n1/2br/2c) = Õ(n1/2−1/2br/2c−ε/2) = O(n1/2−1/2br/2c−ε)

for r-round Min-TSS can distinguish the two cases, contradicting the Planted Dense
Subgraph Conjecture. J

4.3 Hardness of round-unbounded TSS
We now show that for every constant r the general form of Min-TSS is, up to a constant
factor, at least as hard to approximate as r-round Min-TSS.

I Theorem 6. An O(f(n))-approximation algorithm for Min-TSS can be transformed into
an O(f(n))-approximation algorithm for r-round Min-TSS.

Proof. Our reduction relies heavily on directed edges. The hardness for undirected Min-TSS
follows by simulating each directed edge with a directed-edge gadget, as shown in the left
part of Figure 2. Given an instance RTSSr(G = (V,E), τ) of r-round Min-TSS, we create
an instance TSS(G′, τ ′) of TSS as follows, and as depicted in Figure 1.
1. For i = 0, 1, . . . , r, and for each v ∈ V , there is a vertex vi. Collectively, the vertices
{vi}v∈V constitute Si, the “i-th stage” vertices of G′.

2. For j = 0, 1, . . . , r − 1, and for each v ∈ V , there is a vertex v+
j . Collectively, the vertices

{v+
j }v∈V constitute Mj , the “j-th stage memory vertices” of G′.

3. For i = 0, 1, . . . , r − 1, and for j = i, . . . , r − 1, there is a directed edge (gadget) from vi
to v+

j .
4. For i = 0, 1, . . . , r − 1, and for each pair (u, v) in E, there is a directed edge (gadget)

from u+
i to vi+1.

5. For each vertex x ∈ Sr and for each y ∈ S0 there is a directed-edge (gadget) from x to y.

APPROX/RANDOM’16
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6. For each v ∈ V , and i = 0, . . . , r and j = 0, . . . , r − 1, τ ′(v0) = |V |, τ ′(vi) = τ(v), and
τ ′(v+

j ) = 1.

The goal of the construction is for the active vertices in S0 to represent (at least initially)
the seed set S and for the active vertices in Si to represent Ai(S) in G. If Sr is entirely
active – representing Ar(S) = V – this set in turn activates all of S0, causing all vertices
in G′ to become active. With the exception of those from Sr to S0, the directed edges ensure
that vertices in some stage cannot activate those in an “earlier” stage.

In designing G′, simply linking vertices in Si to those in Si+1 with directed edges is
inappropriate. We need to ensure that a vertex in G that is active in round i, represented by
an active vertex in stage i of G′, is (also) represented as active in stage i+ 1 of G′. That is, if
all vi are active for v ∈ Ai(S), then all vi+1 are also active for v ∈ Ai(S). To assist us in this,
the memory vertex v+

j , in Mj is active whenever there is some vi, with i < j, that is active.
Thus, a contagious set for the RTSS instance corresponds exactly to a contagious set

in S0. To show that G′ does not contain smaller contagious sets, observe that activating v0
weakly dominates activating each of vi, for i > 0, and v+

i , for i ≥ 0. Vertex vi will become
active within i rounds anyway, so there is no benefit in activating it earlier; a similar argument
applies to v+

i . Thus, a contagious set containing vertices in V (G′) \ S0 can be transformed
into a no-larger contagious set entirely inside S0. Hence the optimal values of both this
instance G′ of TSS and of the initial instance G of RTSS are equal. J

Picking r sufficiently large, Theorem 3 and Theorem 6 together imply the following theorem.

I Theorem 7. Assuming the Planted Dense Subgraph Conjecture, for no ε > 0 can
a PPT algorithm approximate Min-TSS to within a factor of O(n1/2−ε).

5 Approximation of r-round Min-TSS

In Section 4.2, we showed that the Planted Dense Subgraph Conjecture implies
O(n1/2−1/2br/2c−ε) hardness for the r-round Min-TSS problem, even in instances where all
vertices have thresholds bounded by a constant. In this section, we complement the hardness
result with an Õ(n1−1/r) approximation algorithm for such graphs, viz.

I Theorem 8. For every r ∈ Z+, there is a polynomial-time algorithm approximating r-round
TSS to within a factor of O((τmax/τmin)1−1/rn1−1/r log1/r n).

Overall, the algorithm follows a two-step process. A degree-reduction step – where we greedily
add vertices to the seed set S whose neighborhoods contain many vertices that would not be
in A1(S) for the S thus far – followed by a greedy step – where we greedily select vertices
that most reduce a potential function we call the total hunger. Roughly, if the seed set S
would activate vertex v in r rounds, then v’s hunger is zero; otherwise, its is the number of
active neighbors v still “lacks” at the end of the (r − 1)th round. The total hunger of the
graph is the sum of these vertex hungers. We then argue that each vertex chosen in the
degree-reduction step necessarily reduces the total hunger by a large amount. After these
degree-reducing vertices have been added to the seed set, the residual graph has bounded
degree, which means that the greedy algorithm is effective.

Formally, for a vertex v and seed set S, define v’s hunger thus, where δ(v) is the set of
v’s neighbors:

hS,r(v) =
{

0, if v ∈ Ar(S)
τ(v)− |{u : u ∈ δ(v), u ∈ Ar−1(S)}|, otherwise.
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Algorithm 1 Algorithm for computing a target set: parameter β specified below.
1: S1 ← ∅, S2 ← ∅ {Initialization}
2: while There exists some vertex u with more than β (S1, 1)-hungry neighbors do
3: Add u to S1. {Degree-reduction step}
4: end while
5: while There exists an (S1 ∪ S2, r)-hungry vertex do
6: Add to S2 the vertex that most reduces the total hunger of (S1 ∪S2, r)-hungry vertices.

{Greedy step}
7: end while
8: Return S1 ∪ S2.

Likewise, define the total (S, r) hunger in the graph thus, hr(S) =
∑
v∈V hS,r(v). Vertex v is

called (S, r)-hungry if hS,r(v) > 0. Algorithm 1, including a parameter β that will be defined
below, details the construction of the two components of the seed set, S1 and S2.

Since Step 5 only terminates when there are no more (S1 ∪ S2, r)-hungry vertices, the
algorithm returns a valid contagious set. We now bound the sizes of sets S1 and S2.

I Lemma 9. |S1| ≤ nτmax/β

Proof of Lemma 9. The initial total 1-round hunger is bounded by nτmax. Each element
added to S1 reduces this quantity by at least β, and since the total 1-round hunger is
non-negative, |S1|β ≤ nτmax. J

To analyze the size of S2, we focus on the sub-problem induced by including S1 in
the seed set. The residual problem, Residual(S1), is an instance of r-round Min-TSS
on V \ S1 in which, because the process is Markovian, τ(v) becomes hS1,1(v). This residual
instance has the unusual feature that zero-threshold vertices become active in one round. The
degree-reduction step ensures that no vertex in Residual(S1) has more than β neighbors in
V \ S1, which leads to the following lemma.

I Lemma 10. |S2| ≤ O(|OPT|βr−1 logn)

Proof of Lemma 10. During each iteration of the greedy step, letO be a minimum-cardinality
set for which S2 ∪O is (r-round) contagious for Residual(S1). We let ~O = o1, o2, o3, . . . , ok
be an arbitrary, but fixed, ordering over O. Were we to add the elements of ~O, in order,
to some initially empty set S3, we would reduce the total hunger hr(S2 ∪ S3) from hr(S2)
down to 0. Therefore, for some o∗ in the sequence ~O, adding o∗ to S3 causes hr(S2 ∪ S3) to
decrease by at least ∆∗ ≡ hr(S2)/k.

We now argue that adding o∗ directly to S2 must also significantly reduce the total
amount of hunger amongst (S2, r)-hungry vertices. Denote the magnitude of this change
in total hunger by δ∗, that is, δ∗ = hr(S2) − hr(S2 ∪ {o∗}). In a t-round activation
process, the amount of hunger that can be removed by adding some vertex u to the seed
set is bounded above by the number of up-to-length-t simple paths coming out of u. The
residual graph has degree bounded by β, and thus the number of such paths is bounded by
1 + β + (β − 1)2 + · · ·+ (β − 1)t ≤ 2βt.

The addition of o∗ to S3 activates at most δ∗ neighbors, each of which may be seen as
initiating an (r − 1)-round activation process. Therefore, by adding o∗ to S3 in the original
ordering ~O, hr(S2 ∪ S3) drops by at most δ∗ · 2βr−1. By definition, ∆∗ ≤ 2δ∗βr−1 and hence
δ∗ ≥ ∆∗/(2βr−1) = hr(S2)/(2kβr−1).

APPROX/RANDOM’16
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Figure 2 Left: This gadget, which has only undirected edges, simulates directed edge a→ b. The
threshold of each gadget vertex is displayed. An active a “sends” one unit of activation to b, but an
active b cannot “send” activation to a. Right: To create a hard undirected instance, the unshaded
region augments the shaded region, the hard instance of directed Max-TSS. In the shaded part, all
drawn connections are oriented rightwards; in the unshaded part, solid lines represent undirected
edges.

We cannot identify o∗: it depends both on the unknown optimal solution and some
arbitrary ordering. However, we know that there exists some o∗ for which

hr(S2 ∪ {o∗}) = hr(S2)− δ∗ ≤
(
1− 1/(2βr−1k)

)
hr(S2) . (1)

By iterating through each vertex, we can choose (in polynomial time) the vertex o+ that
minimizes hr(S2 ∪ {o+}): this latter expression is clearly also bounded by the right-hand
side of inequality (1). Therefore, after Θ(kβr−1 logn) iterations of greedily choosing such o+,
and adding it to S2, the total hunger hr(S2), in the residual graph, drops below 1 and so
Algorithm 1 terminates. J

Proof of Theorem 8. Given Lemmas 9 and 10, all that remains is to find the optimal choice
of β for Algorithm 1. If we knew |OPT|, we would let β be Θ([nτmax/(|OPT| logn)]1/r),
and we would have |S1|+ |S2| = O((nτmax)1−1/r|OPT|1/r log1/r n), so the ratio of |S1|+ |S2|
to |OPT| would be

O((nτmax)1−1/r log1/r n/|OPT|1−1/r) = O((τmax/τmin)1−1/rn1−1/r log1/r n) , (2)

where this “inequality” follows from the fact that |OPT| ≥ τmin. Although we do not
know |OPT|, we can run Algorithm 1 with each β in 1, 2, . . . , n, and return the best solution;
our approximation ratio will be at most the right-hand side of “inequality” (2). J

6 Hardness of Undirected Max-TSS

In this section, we show that the hardness of the undirected variant of Max-TSS matches
the O(n1−ε)-hardness of the directed variant studied by Kempe, Kleinberg, and Tardos [18].

I Theorem 11. For every ε > 0, it is NP-hard to approximate the undirected version of
Max-TSS to within an O(n1−ε) multiplicative factor.

6.1 Revisiting the directed-edge construction
First, we recall the O(n1−ε0) hardness construction for the directed variant [18], as depicted
in the shaded region of Figure 2. Given an instance of the NP-hard Max Coverage problem
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with set system S = {S1, S2, . . . , Sm}, universe of n̂ elements X =
⋃m
i=1 Si = {x1, x2, . . . , xn̂}

with |X | ≥ |S|, budget k, and coverage goal g, construct a graph containing a vertex vi ∈ V
for each set Si, a vertex uj ∈ U for each element xj , and a collection P of n̂1/ε0 additional
“padding” vertices {pi}. Whenever xj ∈ Si, add a directed edge from vi to uj . Next, add a
directed edge from each vertex in U to each vertex in P . Every vertex in V has threshold
m+ 1, every vertex in U has threshold 1, and every vertex in P has threshold g.

Now, a seed set that has a vertex y in either U or P is weakly dominated by one that
instead has a vertex v ∈ V with a path to y. If no such v is available, choose an arbitrary
unactivated element of V for the seed set. Therefore, consider only solutions in which the
seed set S is a subset of V . Since the edges are directed, the vertices in U that are in
the activation family are exactly those that have an in-edge from some vertex in the seed
set S ⊂ V . Hence the vertex ui becomes active if and only if the corresponding xi is in some
set Sj for which vj is active. Thus, it is possible to activate ≥ g vertices in U if and only if
the Max Coverage instance is satisfiable.

Each p ∈ P has threshold g and there is the full family of directed edges in U × P . So,
if at least g vertices of U become active at some stage, then all n̂1/ε0 vertices in P become
active. If not, then since m ≤ n̂, no more than O(n̂) vertices in the construction become
active. Therefore, an O(n̂1/ε0/n̂) = O(n̂1/ε0−1)-approximation algorithm to Max-TSS can
distinguish these two cases, and thus solve the initial Max Coverage instance. As the size
of the instance is n = O(n̂1/ε0), this translates to an O(n1−ε0) hardness result.

6.2 Translating to undirected edges
Unfortunately, naively replacing the construction’s directed edges with undirected edges
fails. A single active vertex in P would then activate all of U in a single time step. Instead,
replacing each directed edge with the “directed-edge gadget”, shown at the left of Figure 2,
simulates the previous activation process using only undirected edges. However, these gadgets
introduce O(n̂ · n̂1/ε0) extra vertices. To account for the larger problem size, we add a second
padding set P ′ of size n̂c, for some c � 1/ε0 to be chosen later. Each vertex in P ′, the
unshaded region in the right of Figure 2, has threshold n̂1/ε0 .

Finally, we add an undirected edge for each (p, p′) ∈ P ×P ′. Due to their high thresholds,
no vertex in P ′ will become active before all P are active, so these undirected edges in
P × P ′ are “safe”. As before, including a vertex outside V in the seed set S is dominated
by activating one in V , so the analysis in Section 6.1 translates to the construction with
set P ′. Hence it is NP-hard to distinguish |A∞(S)| = Ω(n̂c) from |A∞(S)| = O(n̂1+1/ε0),
with the potential activation of gadget vertices being the dominating term in the latter
number. As n = Θ(n̂c), this translates to an inapproximability factor of O(n1−(1+1/ε0)/c).
For every ε > 0, choosing c ≥ (1 + 1/ε0)/ε gives a hardness result of O(n1−ε).

7 Application to Minimum Monotone Satisfying Assignment

Intuitively, the MMSA class of problems asks for the smallest minterm of a monotone
Boolean function f , i.e., the Boolean vector ~x with f(~x) = 1 that minimizes |~x|1. However,
there is no single agreed definition of MMSA: both the exact description of function f and
the measure of quality of a candidate solution ~x have been defined in several ways. The
input f has varyingly been given as a monotone formula [17, 13, 8], a monotone circuit [1],
and as a circuit that evaluates a monotone function (though it may use ¬ gates internally) [21].
The quality of an approximate solution (the “n” in the approximation factor) has also been
measured either in terms of the formula/circuit size or in terms of the length of the input
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vector, in which case the circuit size is assumed to be poly(n). To standardize terminology,
we rename MMSA by applying the prefix “MF”, “MC”, or “NMC” when f is a monotone
formula, monotone circuit, or nonmonotone circuit, respectively, and add the superscript “f”
or “x” to denote whether it is the description of f or the length of x, respectively, that
determines n (in other contexts, previously, subscripts have denoted bounded-depth formulas
and circuits).

While each of these models has been shown to give a LabelCover-like hardness of
2log1−ε n, only Umans [21] manages to establish a stronger hardness for the nonmonotone form,
namely n1−ε-hardness for both NMC-MMSAf and NMC-MMSAx. For MC-MMSAx, the
strongest known hardness results (to our knowledge) conditioned on an established conjecture
are only implicitly described by Chlamtac, Dinitz, and Krauthgamer [9]; these lead to a
hardness of n3−2

√
2 ≈ n.172 for the Smallest m-Edge Subgraph problem, assuming some

slight modification of Conjecture 1. Despite the weak lower bounds in the case where f is
given as a monotone formula/circuit, there is no MMSA problem for which we are aware of
a sublinear factor approximation algorithm. A related observation has been previously made
by Coja-Oghlan et al. in the context of Target Set Selection [12].

Here, we discuss the scenario in which f is provided as a monotone circuit, and n is
either the length of the input or the size of the circuit description. We prove the following
conditional results:

I Theorem 12. Assuming Conjecture 1, for every ε > 0, it is hard to approximate
MC-MMSAx to within an O(n1/2−ε) factor. .

I Theorem 13. Assuming Conjecture 1, for every ε > 0, it is hard to approximate
MC-MMSAf to within an O(n1/3−ε).

We begin with the proof of Theorem 12; the proof of Theorem 13 follows naturally.

Proof of Theorem 12. By the construction in Theorem 3, it is hard (assuming PDS) to
approximate constant-round, constant-threshold, degree-O(

√
n) versions of TSS to within a

factor of n1/2−ε. Therefore, it suffices to show that we can transform these instances into
monotone circuits with size polynomial in n. The reduction is quite simple: for each round
t = 1, 2, . . . , r we have n gates, one for each vertex. The gate corresponding to vertex v is
the output of a monotone circuit evaluating the threshold function Thdτ (Nt−1(v)), where τ
is the threshold of v, d is its degree, and Nt−1(v) comprises the gates corresponding to the
previous timestep’s gates that are in-neighbors of v (for the first timestep, these are just
the input gates). Finally, the gates corresponding to the last round all feed into an ∧ gate,
forming our output.

The correctness of this circuit is easy to verify. It simulates running the activation process
for all r rounds, and checking whether all vertices are active by the end of round r. As the
in-degree of each vertex in the RTSSr instance is Õ(

√
n), the monotone circuit construction

of Friedman [15] requires at most O(τ12.6√n log
√
n) = O(

√
n logn) gates. Since we have rn

of these circuits, the total number of gates is O(rn
√
n logn) = poly(n). J

Proof of Theorem 13. The construction used in the proof of Theorem 12 provides a circuit
with O(m3/2 logm) gates for which it is hard to approximate the optimal value to within
m1/2−ε′ for every ε′ > 0. Choosing n such that n = m3/2 logm, for every ε > 0 we have a
circuit with n gates whose hardness is Õ(n(1/2−ε′)/(3/2)) = O(n1/3−ε). J
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8 Lower Bounds for k-Contagious Set

When a Min-TSS instance contains a contagious set of size k, brute force search (plus
simulation of the activation process) can identify such a set in O(mnk) time, where m is
the number of edges in the graph. In this section, we show that improving on this naive
approach on directed graphs by even slightly super-linear factors is difficult. Namely, using a
construction similar to that in Theorem 6, we show that for k ≥ 3 an O(nk−ε)-time algorithm
for k-Contagious Set implies an O(2(1−ε′)n)-time algorithm for CNF-SAT, violating the
Strong Exponential Time Hypothesis (SETH).

I Theorem 14. For k ≥ 3, there is no O(nk−ε)-time algorithm for k-Contagious Set
unless SETH is false.

Proof. We reduce from the k-Dominating Set problem, which has been shown not to
admit an O(nk−ε)-time algorithm unless SETH is false [19]. Suppose we are given an
instance graph G = (V,E) of k-Dominating Set, from which we derive an instance G′ of
k-Contagious Set. Graph G′ contains two vertices, av and bv, for each vertex v ∈ V . A
directed edge exists from au to bv whenever either u = v or when v is a neighbor of u in G.
Additionally, a directed edge exists from bu to av for every pair u and v, regardless of their
adjacency in G. Finally, for all v ∈ V , we set τ(av) = n and τ(bv) = 1.

It is easy to verify that a size-k dominating set S in G corresponds to a size-k contagious
set in G′. The seed set {av | v ∈ S} activates all of the b vertices, which in turn activates
the rest of the a vertices. Conversely, a size-k contagious set S′ in G′ can be converted into
a size-k dominating set for G: {v ∈ V | av ∈ S′ or bv ∈ S′}. Without loss of generality, we
can assume that S′ ⊂ A. The choice of a bv in seed set S′ is dominated by the selection
of av, and no vertex in A \ S′ could become active unless S′ activates all of {b} in one round.
Hence S′ corresponds to a dominating set in G.

Thus, in O(n2) time, we can reduce finding a k-Dominating Set in G to finding a
k-Contagious Set in some G′ that has O(n) vertices. Since k > 2, it follows that a
O(nk−ε)-time algorithm for k-Contagious Set on G′ implies the existence of such an
algorithm for k-Dominating Set, violating SETH. J
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