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Abstract
We show that the Hausdorff metric over constant-size pointsets in constant-dimensional Euclidean
space admits an embedding into constant-dimensional `∞ space with constant distortion. More
specifically for any s, d ≥ 1, we obtain an embedding of the Hausdorff metric over pointsets of size
s in d-dimensional Euclidean space, into `sO(s+d)

∞ with distortion sO(s+d). We remark that any
metric space M admits an isometric embedding into `∞ with dimension proportional to the size
of M . In contrast, we obtain an embedding of a space of infinite size into constant-dimensional
`∞.

We further improve the distortion and dimension trade-offs by considering probabilistic em-
beddings of the snowflake version of the Hausdorff metric. For the case of pointsets of size s
in the real line of bounded resolution, we obtain a probabilistic embedding into `O(s log s)

1 with
distortion O(s).
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1 Introduction

Low-distortion embeddings between metric spaces have given rise to a plethora of tools in
computer science and mathematics [10, 15, 2, 5, 17]. The most well-studied case is embedding
into `dp, that is Rd endowed with the `p distance. In this case the most important parameters
are the distortion of the embedding and the dimension of the target space; the former
quantifies the extent to which the geometry of the input space is preserved, while the latter
affects the complexity of various algorithmic methods performed on the target space.

In most embeddings of finite metric spaces both of these parameters depend on the size of
the input space. Prototypical such examples are Bourgain’s Theorem [4] which asserts that
any n-point metric admits an embedding into `2 with distortion O(logn), and the seminal
result of Johnson and Lindenstrauss [14] asserting that any n-point subset of `2 admits an
embedding into `O(ε−2 logn)

2 with distortion 1 + ε.
However, in several applications one seeks an embedding of some input space of infinite

size. One such application is in algorithms and data structures (e.g. nearest neighbor data
structures) with approximation guarantee independent of the input size. Another application
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1:2 Constant-Distortion Embeddings of Hausdorff Metrics

is when designing an oblivious or streaming algorithm that requires an embedding of the
input space that can be computed independently at each point without having access to the
rest of the input (e.g. [12, 13]).

A classical example of an embedding of an infinite metric is Dvoretzky’s Theorem [6]
which asserts that for any k ≥ 1, there exists d ≥ 1 such that `k2 admits an embedding into
any d-dimensional normed space with distortion 1 + ε.

Interestingly, the case of input spaces that are not normed, is much less understood.
One important such space is given by the Hausdorff metric which is used to measure
the dissimilarity between two pointsets. Given two finite pointsets A = {a1, . . . , as} and
B = {b1, . . . , bs}, the Hausdorff distance is defined as

Hs(A,B) = max(h(A,B), h(B,A)),

where

h(A,B) = max
a∈A

min
b∈B

m(a, b)

and m(·, ·) is underlying metric on the points of A and B. We use the notation Hs,d to denote
the Hausdorff distance with underlying metric `d2. We will omit subscripts if the cardinality
of the pointsets or the underlying metric is clear from the context, or the statement is valid
independent from the cardinality or the underlying space.

We study embeddings of the Hausdorff metric over finite subsets of Euclidean space.
This is an infinite space since there are infinitely many possible subsets even in the real line.
Therefore known results for embedding finite metrics into `p space are not directly applicable
in this case.

1.1 Our results and techniques

1.1.1 Embedding for Hausdorff metric over pointsets in R1

We show that there exists an embedding of Hs,1 into `sO(s)

∞ with distortion sO(s). LetM be a
collection of metric spaces on the same pointset X. We say that a metric is a `∞-metric over
M if for any pair of points in X the distance is given by the maximum over all distances in
M. Our result is obtained via iteratively embedding Hs into an `∞-metric over Hs−1 metrics.
The key property in this mapping is that it preserves all distances in the infinite space Hs.
Repeating this process we inductively obtain an embedding of Hs into an `∞-metric over H1
metrics. Since H1 = R1, the resulting embedding is into `∞.

1.1.2 Embedding for Hausdorff metric over pointsets in Rd

We extend the above approach to Hs,d. This is done by embedding Hs,d into an `∞-metric
over Hs,d−1 metrics. By repeating this embedding we obtain an embedding of Hs,d into an
`∞ metric over Hs,1 metrics. Combining with the above embedding we obtain the desired
embedding of Hs,d into `∞.

1.1.3 Probabilistic embeddings
The above embeddings obtain distortion and dimension that depend only on s. We show how
to exponentially improve the dependence of both parameters on s by considering probabilistic
embeddings of the snowflake version of Hs into `1.
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Table 1 Summary of our and previous results on embedding Hausdorff distance into `p spaces.
Column “dimension” specifies the dimension of the target `p space. We consider Hausdorff distance
over pointsets of size s coming from the underlying space. Here, ε > 0 is a small constant.

Underlying
space To Dimension Distortion Comments

Theorem 10 `d
2 `∞ sO(s+d) sO(s+d)

Theorem 23 `1
p `1 O(s log s) O(s/α) Snowflaked embedding

with parameter α

[11] {0, . . . ,∆}d
∞ `∞ s2 · eO(d) · log2 ∆ 1 + ε Threshold embedding

[16] `d
2 `∞ eO(ds) 1 + ε Snowflaking

1.1.4 Embedding into high-dimensional `1 space
To improve the distortion of the embedding, we relax the requirements of the embedding.
First, we embed a snowflake version of the Hausdorff distance into `1. This means that we
embed the distance H1−α

s for some α > 0 into `1. Second, we allow that the expansion
property holds in expectation (see Section 2 for a formal definition). This allows us to achieve
distortion O(s/α), which is an exponential improvement over the deterministic embedding.
The embedding uses ideas that were previously used to construct embeddings for earth-mover
distance [9, 1]. In particular, we recursively subdivide the underlying metric space into cells
and designate a coordinate in the target space for every cell. Instead of counting the number
of points that fall into each cell (as was done in the case of embeddings of earth-mover
distance), we instead detect whether at least one point falls into the cell. To achieve distortion
that does not depend on the size of the underlying metric, we use ideas developed in [1],
embedding a snowflake version of the Hausdorff distance.

1.1.5 Embedding into low-dimensional `1 space
To improve the dimension of the target `1 space, we further relax the requirements of the
embedding. We allow that the embedding contracts with probability bounded by some
small constant. This allows us to reduce the dimension exponentially. The dimension of
the target `1 space becomes O(s log s). This improvement is obtained by observing that a
vector resulting from the embedding into high dimensional space, is essentially sparse; that
is, the main contribution to the `1 norm comes from few non-zero entries. This suggests
that we can use dimensionality reduction techniques for `1 space for sparse vectors. To this
end we use a construction from [3]. We remark that a similar dimensionality reduction idea
was used in [1]. We note that we can decrease the probability of contraction to an arbitrary
δ > 0 by combining O(log(1/δ)) independent copies of the embedding.

In Table 1 we summarize our results and highlight the previous work on embedding
Hausdorff distance into simpler spaces.

1.2 Related work
Farach-Colton and Indyk [7] have studied the problem of embedding the Hausdorff metric
over finite pointsets into `∞. However, they only obtain embeddings that approximately
preserve distances that are within a fixed range [r,R], for some 0 < r < R. This weaker
guarantee is sufficient for designing an approximate nearest neighbor data structure. However,
in order to obtain an embedding that preserves all distances up to some small distortion, one

APPROX/RANDOM’16



1:4 Constant-Distortion Embeddings of Hausdorff Metrics

has to concatenate O(log ∆) such embeddings, where ∆ is the spread of the metric. Since ∆
is in general unbounded, this leads to a host space of arbitrarily large dimension.

Indyk [11] studied threshold embeddings for Hausdorff distance. In this setting the goal is
to obtain an embedding so that the following two conditions hold: First, the embedding is a
contraction. Second, if the distance between two points in the original space is at least r,
then their distance in the target space is at least r′, for some r ≥ r′ > 0. The distortion of a
threshold embedding is defined to be the ratio r/r′. The dimension of the target space in
[11] depends on the size of the underlying metric, which can be unbounded.

Previous works [8, 16] studied embeddings of snowflake metrics. They showed that, if
the doubling dimension of a metric is t, then it is possible to embed such a metric into `eO(t)

∞
with distortion 1 + ε, for any constant ε > 0. We will not define doubling dimension here but
we note that for the case of Hausdorff metric over `dp, it is bounded by O(ds).

2 Preliminaries

I Definition 1. Consider the Hausdorff distance over pointsets in some underlying space.
Let f be a function that maps pointsets to vectors in some `∞-space. We say that f is an
embedding if there exist L ≥ l > 0 such that

l · ‖f(A)− f(B)‖∞ ≤ H(A,B) ≤ L · ‖f(A)− f(B)‖∞ (1)

for all pointsets A and B. The quantity L/l is the distortion of the embedding.

I Definition 2. Let D be a probability distribution over functions that map pointsets of
some space into some `∞-space. We say that a function f chosen from D is a probabilistic
embedding. Moreover, if there exist L ≥ l > 0 such that for all sets A,B, we have

l · Ef [‖f(A)− f(B)‖∞] ≤ H(A,B)

and

Pr
f

[H(A,B) ≤ L · ‖f(A)− f(B)‖∞] ≥ 2/3,

then the distortion of f is defined to be L/l. Note that the choice of 2/3 is arbitrary; we can
amplify it by sampling independent copies of the function f and concatenating the resulting
embeddings.

I Definition 3. A probabilistic embedding f is called a snowflaked embedding with parameter
α > 0 if it satisfies the following properties: There exist L ≥ l > 0 such that for all sets A,B,
we have

l · Ef [‖f(A)− f(B)‖∞] ≤ H1−α(A,B)

and

Pr
f

[
H1−α(A,B) ≤ L · ‖f(A)− f(B)‖∞

]
≥ 2/3.

The distortion of f is defined to be L/l.
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2.1 Notation
Given two vectors A ∈ Rx, A = (a1, . . . ax)T and B ∈ Ry, B = (b1, . . . , by)T , we denote
concatenation of A and B by

A⊕B := (a1, . . . , ax, b1, . . . , by)T .

For an integer n, we denote the set {1, 2, . . . , n} by [n]. For any x, y ∈ R, we denote the
set {x ≤ z ≤ y | z ∈ R} by [x, y]. For any X ⊆ R and y ∈ R, we denote the set {x ·y | x ∈ X}
by X · y. Similarly, we denote the set {x− y | x ∈ X} by X − y. For any function g : R→ R
and X ⊆ R, we denote the set {g(x) | x ∈ X} by g(X).

3 Embedding for Hausdorff metric over pointsets in R1

Below we will work with Hs,1(A,B) and we will write Hs(A,B) instead of Hs,1(A,B).
We define 10s2 functions f i : [0, 1]→ [0, 1], one for each i ∈ {1, . . . , 10s2}, as follows.

f i(x) :=
{

x
yi

if x ≤ yi;
1−x
1−yi

otherwise,

where yi = 1
3 + i

3(10s2+1) . Notice that the function f i satisfies the following four properties:
1. f i achieves the maximum value 1 at yi;
2. 1

3 < yi <
2
3 ;

3. f i(0) = f i(1) = 0;
4. f i grows linearly in the interval [0, yi] and decreases linearly in the interval [yi, 1].

To prove our results, we need the following lemma.

I Lemma 4. Let A = {a1, . . . , as} ⊆ R and B = {b1, . . . , bs} ⊆ R with 0 = a1 ≤ a2 ≤ . . . ≤
as = 1 and 0 = b1 ≤ b2 ≤ . . . ≤ bs = 1. We have

Hs(A,B) ∈ [1/10, 1000s2] ·max
i
Hs−1

(
f i(A), f i(B)

)
.

Proof. Notice that, since f i(0) = f i(1) = 0, we have |f i(A)|, |f i(B)| = s− 1. This is why
we have Hs−1 in the right side of the equation in the statement of the lemma. From now on
we will use H instead of Hs or Hs−1.

Now we will establish H(A,B) ≥ 1
10 maxi(H(f i(A), f i(B))). It is sufficient to show that

H(A,B) ≥ 1
10H(f i(A), f i(B)) for all i ∈ [10s2]. Fix i ∈ [10s2]. We can check that for all

x, y ∈ [0, 1], |f i(x)− f i(y)| ≤ 10|x− y| (f i is a piece-wise linear function with the derivative
bounded by 3 in absolute value in every piece). That is, f i is a Lipschitz function with
constant 10 in the interval [0, 1]. That means that f i can increase distance between any
two points by a factor of at most 10. Therefore, inequality H(A,B) ≥ 1

10H(f i(A), f i(B))
follows.

It remains to show that H(A,B) ≤ 1000s2 maxiHs−1
(
f i(A), f i(B)

)
. The remainder of

the proof is devoted to show this inequality. We need to show that there exists i ∈ [10s2]
such that H(f i(A), f i(B)) ≥ 1

1000s2H(A,B). We will show that there exists i such that

∀a ∈ A, d(f i(a), f i(B)) ≥ 1
1000s2 d(a,B) (2)

and

∀b ∈ B, d(f i(b), f i(A)) ≥ 1
1000s2 d(b, A), (3)

APPROX/RANDOM’16
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where function d is defined as follows. For point y and finite pointset X,

d(y,X) := min
x∈X
‖x− y‖.

The first inequality shows that for every point from A, the distance to the closest point from
B decreases by a factor of at most 1000s2 if we apply map f i to the point and to the set
B. Similarly, the second inequality shows that for every point from B, the distance to the
closest point from A decreases by a factor of at most 1000s2 if we apply map f i to the point
and to the set A. By the definition of Hausdorff distance, it is sufficient to show these two
inequalities to establish what we need.

To prove (2) and (3), we will use the following proposition.

I Proposition 5. For all i1 6= i2 and x, y ∈ [0, 1] with x ≤ y,

1
1000s2 min(x, y − x) ≤ max

(
|f i1(x)− f i1(y)|, |f i2(x)− f i2(y)|

)
(4)

and
1

1000s2 min(1− y, y − x) ≤ max
(
|f i1(x)− f i1(y)|, |f i2(x)− f i2(y)|

)
. (5)

Proof. We will show (4). The proof of (5) is analogous. W.l.o.g., i1 < i2. We have that
yi1 < yi2 (see the definition of function f i). If x ≥ yi1 , we have that |f i1(x)− f i1(y)| ≥ y−x
by the definition of the function f i1 . Similarly, if y ≤ yi2 , we have that |f i2(x)−f i2(y)| ≥ y−x
by the definition of function f i2 . Therefore, if x ≥ yi1 or y ≤ yi2 ,

y − x ≤ max
(
|f i1(x)− f i1(y)|, |f i2(x)− f i2(y)|

)
(6)

and we are done proving (4) and (5).
Now we consider the complement case: x ≤ yi1 and y ≥ yi2 . We will show inequality

1
1000s2x ≤ max

(
|f i1(x)− f i1(y)|, |f i2(x)− f i2(y)|

)
. (7)

Notice that, by combining (6) and (7), we get (4). Suppose that

|f i1(x)− f i1(y)| < 1
1000s2x (8)

since otherwise we have established (7). By the definition of f i1 and f i2 ,

f i1(x)− f i2(x) = 3x ·
(

1
1 + i1

10s2+1
− 1

1 + i2
10s2+1

)
≥ x

20s2 , (9)

where we use the fact that i2 − i1 ≥ 1. Using inequalities f i2(y) ≥ f i1y, (8) and (9), we get

|f i2(x)− f i2(y)| ≥
(
f i2(y)− f i1(y)

)
+
(
f i1(x)− f i2(x)

)
− |f i1(y)− f i1(x)|

≥ x

20s2 −
x

1000s2 ≥
x

1000s2 .

This establishes (7). J

Now we continue the proof of Lemma 4. We will use several times the fact that {0, 1} ⊆ A,B.
Consider a ∈ A and b ∈ B with a ≤ b. By (4), inequality

1
1000s2 d(a,B) ≤ 1

1000s2 min(a, b− a) ≤ |f i(a)− f i(b)| (10)
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holds for all indices i ∈ [10s2] except at most one. Consider a ∈ A and b ∈ B with a > b. By
(5), inequality

1
1000s2 d(a,B) ≤ 1

1000s2 min(1− a, a− b) ≤ |f i(a)− f i(b)| (11)

holds for all indices i ∈ [10s2] except at most one. By fixing a ∈ A and considering all b ∈ B,
from (10) and (11) we have that

1
1000s2 d(a,B) ≤ d(f i(a), f i(B)) (12)

holds for all indices i ∈ [10s2] except for at most s indices.
Analogously we get that for any fixed b ∈ B,

1
1000s2 d(b, A) ≤ d(f i(b), f i(A)) (13)

holds for all indices i ∈ [10s2] except for at most s indices.
From (12) we get that (2) holds for all but s2 indices. From (13) we get that (3) holds

for all but s2 indices. By definition of f i, we consider 10s2 indices. We conclude that there
must be at least 10s2− 2s2 ≥ 1 index that satisfy both (2) and (3). This concludes the proof
of the lemma. J

We define function git(x) : R→ R, parameterized by t ∈ R and i ∈ [10s2], as follows:

git(x) := t · f i
(x
t

)
.

I Lemma 6. Let A = {a1, . . . , as} ⊆ R and B = {b1, . . . , bs} ⊆ R with a1 ≤ . . . ≤ as and
b1 ≤ . . . ≤ bs, and a1 = b1, and as = bs. We have

Hs(A,B) ∈ [1/10, 1000s2] ·max
i
Hs−1

(
gias−a1

(A− a1), gibs−b1(B − b1)
)
.

Proof. Hausdorff distance is shift invariant, that is, for any x ∈ R, H(A,B) = H(A−x,B−x).
Because of this and a1 = b1, we can assume that a1 = b1 = 0. Then the inequality we want
to prove simplifies to

Hs(A,B) ∈ [1/10, 1000s2] ·max
i
Hs−1

(
gias

(A), gibs
(B)

)
. (14)

By the definition of Hausdorff distance, for any positive y ∈ R, H(A,B) = H(x·A,x·B)
x .

Because of this equality, expression (14) follows from Lemma 4 and the definition of git and
f i. J

I Lemma 7. Let A = {a1, . . . , as} ⊆ R and B = {b1, . . . , bs} ⊆ R with a1 ≤ . . . ≤ as and
b1 ≤ . . . ≤ bs. We have

Hs(A,B) ∈[1/1000, 106s2]

·max
(
|a1 − b1|, |as − bs|,max

i
Hs−1

(
gias−a1

(A− a1), gibs−b1(B − b1)
))
.

Proof. We define pointsets A′ = {a′1, . . . , a′s} and B′ = {b′1, . . . , b′s} from A and B in the
following way.
1. We set a′i = ai and b′i = bi for all i ∈ [s];
2. if a′1 < b′1, we set b′1 to be equal to a′1;

APPROX/RANDOM’16
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3. if a′1 > b′1, we set a′1 to be equal to b′1;
4. if a′s < b′s, we set a′s to be equal to b′s;
5. if a′s > b′s, we set b′s to be equal to a′s.
We define M := max(|a1 − b1|, |as − bs|).

I Proposition 8.∣∣∣H (gias−a1
(A− a1), gibs−b1(B − b1)

)
−H

(
gia′s−a′1(A′ − a′1), gib′s−b′1(B′ − b′1)

)∣∣∣ ≤ 100M.

Proof. Notice that for every x, such that 0 ≤ x ≤ as − a1,

|gias−a1
(x)− gia′s−a′1(x)| ≤ 50M. (15)

This is true because gi is a Lipshitz function with Lipshitz constant at most 10 and |as −
a′s|, |a1 − a′1| ≤M . Similarly, for every x, 0 ≤ x ≤ bs − b1,

|gibs−b1(x)− gib′s−b′1(x)| ≤ 50M. (16)

(15) and (16) mean that, as we apply function gj to set A′ instead of A and to B′ instead of
B, every point in the resulting sets (after application of gj) changes its position by at most
50M , and the assertion follows. J

By Lemma 6,

H(A′, B′) ∈ [1/10, 1000s2] ·max
i
H
(
gia′s−a′1(A′ − a′1), gib′s−b′1(B′ − b′1)

)
.

We get

max
(
|a1 − b1|, |as − bs|,max

i
H
(
gias−a1

(A− a1), gibs−b1(B − b1)
))

≤M + max
i
H
(
gias−a1

(A− a1), gibs−b1(B − b1)
)

≤M + 100M + max
i
H
(
gia′s−a′1(A′ − a′1), gib′s−b′1(B′ − b′1)

)
≤101M + 10H(A′, B′)
≤111M + 10H(A,B)
≤200H(A,B).

In the second inequality we use Proposition 8. In the third inequality we use the result of
Lemma 6. In the second to last inequality we use H(A′, B′) ≤M +H(A,B), which follows
from the definition of A′ and B′. In the last inequality we use H(A,B) ≥M , which follows
from the definition of M . This shows the lower bound in the statement of the lemma. We
prove the upper bound now.

We have

H(A,B) ≤M +H(A′, B′)

≤M + 1000s2 max
i
H
(
gia′s−a′1(A′ − a′1), gib′s−b′1(B′ − b′1)

)
≤M + 1000s2

(
max
i
H
(
gias−a1

(A− a1), gibs−b1(B − b1)
)

+ 100M
)

≤ 106s2 ·max
(
M,H

(
gias−a1

(A− a1), gibs−b1(B − b1)
))
.

The second inequality follows from Lemma 6. The third inequality follows from Proposition 8.
We established the upper bound of the lemma and the proof of Lemma 7 is complete. J
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I Theorem 9. There exists an embedding of Hs,1 into `sO(s)

∞ with distortion sO(s).

Proof. We will construct embedding f of Hs into `sO(s)

∞ with distortion sO(s). Let A =
{a1, . . . , as} ⊆ R and B = {b1, . . . , bs} ⊆ R with a1 ≤ . . . ≤ as and b1 ≤ . . . ≤ bs. By
Lemma 7, we can bound H(A,B) in terms of the maximum of |a1 − b1|, |as − bs| and

Hs−1
(
gias−a1

(A− a1), gibs−b1(B − b1)
)

over all i ∈ [10s2]. By Lemma 7, we lose a factor O(s2) in the distortion. Notice that
pointsets gias−a1

(A − a1) and gibs−b1(B − b1) are of size s − 1. That is, we decreased the
number of points in the sets by 1. Also notice that the functions gias−a1

and gibs−b1 depend
only on sets A and B, respectively. The idea now is to apply this expression recursively until
we arrive at pointsets of size 1, which we can embed into l∞ trivially. More precisely, we
define the following recursive embedding hs of pointset A of size s. If s ≥ 2,

hs(A) :=
(
a1, as, h

s−1(g1
as−a1

(A− a1)), . . . , hs−1(g10s2
as−a1

(A− a1))
)
.

If s = 1, then h1(A) = (a1). hs(A) is concatenation of values a1, as and 10s2 vector defined
recursively by hs−1. We define f(A) := h|A|(A). We call the recursive embedding at most s
times, each time increases number of dimensions by a factor of O(s2) and the distortion by a
factor of O(s2). This means that the final distortion is ≤ [O(s2)]s ≤ sO(s) and the dimension
is ≤ [O(s2)]s ≤ sO(s). J

4 Embedding for Hausdorff metric over pointsets in Rd

I Theorem 10. There exists an embedding of Hs,d into `sO(s+d)

∞ with distortion sO(s+d) for
an arbitrary integer d ≥ 1.

Proof. It suffices to consider the case d > 1, since the case d = 1 has been handled in the
previous Section. Given sets A,B ⊆ `d2 of size |A| = |B| = s, we show how to produce sets
A1, . . . , A2s2+1 and B1, . . . , B2s2+1 with the following properties.
1. Each Ai depends on A only. Each Bi depends on B only.
2. For every i, Ai, Bi ⊆ `d−1

2 and |Ai| = |Bi| = s.
3. For every i, Hs,d−1(Ai, Bi) ≤ Hs,d(A,B).
4. There exists i such that Hs,d−1(Ai, Bi) ≥ 1

Cs2Hs,d(A,B) for sufficiently large constant C.
From the properties we see that

Hs,d(A,B) ≥ max
i=1,...,2s2+1

Hs,d−1(Ai, Bi) ≥
1
Cs2Hs,d(A,B)

where A and B are any two subsets of d dimensional space and Ai, Bi are subsets of d− 1
dimensional space. If we repeat the construction d− 1 times in total, we get embedding that
satisfies inequality

Hs,d(A,B) ≥ max
j=1,...,(2s2+1)d−1

Hs,1(A′j , B′j) ≥
1

(Cs2)d−1Hs,d(A,B).

Now we apply Theorem 9 to embed sets A′j , B′j into ls
O(s)

∞ with distortion sO(s). The final
dimension of the embedding is (2s2 +1)d−1 ·sO(s) = sO(s+d) as promised. The final distortion
of the embedding is (Cs2)d−1 · sO(s) = sO(s+d) as promised.

In the remainder of the proof we show how to construct the embedding with the four
properties stated at the beginning of the proof. Consider the first two vectors of the standard
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basis of `d2. These two vectors span a plane. Choose 2s2 + 1 unit vectors v1, . . . , v2s2+1 in
this plane so that angle between vectors vi, vi+1 is 2π/(2s2 + 1) for all i = 1, . . . , 2s2 + 1 and
v1 is the first standard basis vector of `d2. We define v2s2+2 := v1. We build Ai (Bi, resp.)
by projecting A (B, resp.) on the hyperplane perpendicular to vi for all i = 1, . . . 2s2 + 1.
The first property follows from the definition of Ai and Bi. The second property follows
because every hyperplane of `d2 span `d−1

2 . The third property follows because projection on
hyperplane can only decrease interpoint distances. It remains to show the fourth property.
Consider any pair of points a ∈ A and b ∈ B. There can be at most two values i such that

‖Πi(a)−Πi(b)‖2 <
1

10000s2 ‖a− b‖2, (17)

where Πi denotes projection on the hyperplane defined by vector vi. This is true because of
the following considerations. Consider i such that inequality (17) does not hold. Then we
must have

|vi · (a− b)| >
(

1− 1
10000s2

)
· ‖vi‖2 · ‖a− b‖2.

However, this can happen to at most two vectors vi by the construction of vi. Because there
are 2s2 + 1 vectors vi and at most s2 pairs (a, b), a ∈ A, b ∈ B determine distance Hs(A,B),
the fourth property follows. J

5 Probabilistic embedding

I Theorem 11. For any α ∈ (0, 1/2) and integer ∆ > 0, there exists a probabilistic embedding
f of Hs over subsets of [∆] into 8∆-dimensional `1 space `8∆

1 that satisfies the following
properties. For any two pointsets A,B ⊆ [∆] with |A| = |B| = s,
1. 1

10H
1−α
s (A,B) ≤ ‖f(A)− f(B)‖1;

2. E[‖f(A)− f(B)‖1] ≤ 100s/α ·H1−α
s (A,B),

where the expectation in the second property is over the randomness of the embedding.

Proof. W.l.o.g. we assume that log2 ∆ is positive integer. If this is not so, we increase ∆ to
2dlog2 ∆e. For integer y and finite set X ⊆ R, we define

y +X := {x+ y | x ∈ X}.

For integer i, 0 ≤ i ≤ log2(2∆), and finite set X ⊆ R, we define vector fi(X) ∈ R
2∆
2i as

follows. For l = 1, . . . , 2∆
2i ,

(fi(X))l =
{

1 ∃x ∈ X such that (l − 1)2i < x ≤ l · 2i;
0 otherwise.

For integer v and finite set X ⊆ R, we define embedding fv(X):

fv(X) :=
log2(2∆)⊕
i=0

2i(1−α)fi(v +X).

Embedding f is defined by choosing v ∈ {1, . . . ,∆} uniformly at random and setting
f(X) = fv(X). Now we will show that the embedding satisfy the stated properties. Let
h = Hs(A,B).

The following lemma establishes the first inequality.
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I Lemma 12. For every v,

‖fv(A)− fv(B)‖1 ≥
1
10h

1−α.

Proof. We assume that h ≥ 2. If h = 1, then ‖fv(A)− fv(B)‖1 ≥ 1 ≥ 1
10 . If h = 2, there is

nothing to prove. W.l.o.g., let a ∈ A be such that d(a,B) = h. Let i = (log2 h)− 1 ≥ 0 and
l =

⌈
a+v
2i

⌉
. Because a ∈ A and by the choice of l, we have

(fi(v +A))l = 1.

Because d(a,B) = h and by the choice of i and l, we have

(fi(v +B))l = 0.

Therefore, we conclude:

‖fv(A)− fv(B)‖1 ≥ 2i(1−α)‖fi(v +A)− fi(v +B)‖1

≥
(
h

2

)1−α
| (fi(v +A))l − (fi(v +B))l | ≥

1
10h

1−α. J

The following lemma establishes the second inequality.

I Lemma 13. E[‖f(A)− f(B)‖1] ≤ 100s/α · h1−α.

Proof.

I Proposition 14. For every i ∈ {0, . . . , log2(2∆)},

Ev[‖fi(v +A)− fi(v +B)‖1] ≤ 2smin(1, 2h/2i).

Proof. We define an undirected bipartite graph G = (A,B,E) as follows. For every a ∈ A,
we add edge (a, b), b ∈ B such that d(a,B) = |a − b|. If there are multiple possibilities
for b, we choose one b arbitrarily. For every b ∈ B, we add edge (a, b), a ∈ A such that
d(b, A) = |a− b|. If there are multiple possibilities for a, we choose one a arbitrarily.

By the definition of Hausdorff distance and fi, we get

Ev[‖fi(v +A)− fi(v +B)‖1] ≤
∑

(a,b)∈E

Pr
v∈[∆]

[⌈
a+ v

2i

⌉
6=
⌈
b+ v

2i

⌉]
.

We can upper bound every probability in the latter quantity by min(1, 2h/2i) because for
every (a, b) ∈ E, |a− b| ≤ h. We get the bound stated in the proposition because |E| ≤ 2s
by the definition of graph G. J

Using this proposition, we get

E[‖f(A)− f(B)‖1] ≤
log2(2∆)∑
i=0

2i(1−α)Ev[‖fi(v +A)− fi(v +B)‖1]

≤ 2s
log2(2∆)∑
i=0

2i(1−α) min(1, 2h/2i)

≤ 2s
1+log2 h∑
i=1

(
2i(1−α)

)
+ 4sh

log2(2∆)∑
i=2+log2 h

2−iα

≤ 20sh1−α + 4sh
(
2−α

)2+log2 h
∞∑
i=0

(
2−α

)i
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1:12 Constant-Distortion Embeddings of Hausdorff Metrics

≤ 20sh1−α + 20sh1−α

α

≤ 100s/α · h1−α,

which is what we needed. J

J

I Lemma 15. Let U := log2 s+ log2 h+ 10. Then

Pr
v

[∀i ≥ U , fi(v +A) = fi(v +B)] ≥ 0.9.

Proof. Since fU (v +A) = fU (v +B) implies that fi(v +A) = fi(v +B) for all i ≥ U , it is
sufficient to prove that Prv[fU (v +A) = fU (v +B)] ≥ 0.9.

Let G = (A,B,E) be the bipartite graph defined in Proposition 14. Since for all (a, b) ∈ E,
|a− b| ≤ h, we have

Pr
v

[fU (v +A) = fU (v +B)] ≥ Pr
v

[
∀(a, b) ∈ E ,

⌈
a+ v

2i

⌉
=
⌈
b+ v

2i

⌉]
≥ 1−

∑
(a,b)∈E

Pr
v

[⌈
a+ v

2i

⌉
6=
⌈
b+ v

2i

⌉]

≥ 1− |E| · 2h
2U ≥ 1− 2s · 2h

2U
≥ 0.9.

J

I Lemma 16. Let L := log2 h− 1
1−α log s− 20. For every v ∈ {1, . . . ,∆},∥∥∥∥∥

L⊕
i=0

2i(1−α)(fi(v +A)− fi(v +B))

∥∥∥∥∥
1

≤ h1−α

1000 .

Proof. We use the definition of ⊕ and L:
L∑
i=0

∥∥∥2i(1−α)(fi(v +A)− fi(v +B))
∥∥∥ ≤ 2s · 5 · 2L(1−α) ≤ h1−α

1000 .

J

From Lemmas 15 and 16, we get that, with probability ≥ 0.9 the following happens.
Almost all `1 mass of ‖f(A)− f(B)‖1 comes from U −L− 1 ≤ 100 log2 s vectors fi(v+A)−
fi(v + B). fi(v + A) − fi(v + B) that correspond to i ≥ U or i < L contribute at most
h1−α/1000 to the `1 mass. Also notice that, by Theorem 11, the `1 mass of f(A)− f(B) is at
least h1−α/10. We get that we lose relatively small amount of `1 mass by discarding of many
vectors f i. We will use these observations in Theorem 23 below to reduce the dimensionality
of the target `1 space in Theorem 11.

I Definition 17. Let G = (A,B,E) be a bipartite graph. We call it r-regular if, for every
vertex a ∈ A, the degree of a is equal to r.

I Definition 18. Graph G = (A,B,E) is called random r-regular bipartite graph if it comes
from a distribution defined by the following process. Initially, E = ∅. For every a ∈ A we
choose a subset of r distinct vertices of B uniformly at random and connect a to the all
chosen vertices.
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I Definition 19. Let G = ([n], [m], E) be r-regular bipartite graph for some integers
r, n,m ≥ 1. We define matrix ΦG ∈ Rm×n as follows.

(ΦG)i,j =
{

1
r if (i, j) ∈ E;
0 otherwise.

for all i ∈ [m] and j ∈ [n].

The following lemma can be shown using the probabilistic method.

I Lemma 20. Let G = ([n], [O(n/δ2)], E) be random r-regular bipartite graph for r = O(1/δ).
For any subset X of vertices, let N(X) denote the set of neighbors of vertices in X. Then
we have

Pr
G

[∀X ⊆ A : |N(X)| ≥ (1− δ)r|X|] ≥ 0.99.

The following result was shown in [3].

I Theorem 21. Let G = ([n], [m], E) be some r-regular bipartite graph with the property that

∀X ⊆ A : |N(X)| ≥ (1− δ)r|X|.

Let ΦG be the matrix according as in Definition 19. Then we have that for all x ∈ Rn,

(1−O(δ))‖x‖1 ≤ ‖ΦGx‖1 ≤ ‖x‖1.

Below we will need the following lemma.

I Lemma 22. Let G = ([n′], O(n/δ2), E) be random r-regular bipartite graph for r = O(1/δ).
Then for every x ∈ Rn′ with ‖x‖0 ≤ n (number of non-zero entries of x is at most n),

Pr
G

[(1−O(δ))‖x‖1 ≤ ‖ΦGx‖1 ≤ ‖x‖1] ≥ 0.99.

Proof. Consider matrix ΦG restricted to the columns corresponding to the non-zero entries
of x. This matrix correspond to random r-regular bipartite graph with at most n vertices on
the left side. By Lemma 20, this matrix will satisfy the requirement for Theorem 21 with
probability at least 0.99, concluding the proof. J

I Theorem 23. For any α ∈ (0, 1/2) and integer ∆ > 0, there exists a probabilistic embedding
f ′ of Hs into `O(s log s)

1 that satisfies the following properties. For any two pointsets A,B ⊆ [∆]
with |A| = |B| = s,
1. 1

100H
1−α
s (A,B) ≤ ‖f ′(A)− f ′(B)‖1 with probability ≥ 2/3;

2. E[‖f ′(A)− f ′(B)‖1] ≤ 100s/α ·H1−α
s (A,B).

Proof. Let C1, C2 > 0 be large constants and δ > 0 be a small enough constant that we will
set later.

Let G = ([8∆], C1·200s log2 s
δ2 , E) be random C2

δ -regular bipartite graph. By Lemma 22, for
all x ∈ R8∆ with ‖x‖0 ≤ 200s log2 s,

Pr
G

[0.9 · ‖x‖1 ≤ ‖ΦGx‖1 ≤ ‖x‖1] ≥ 0.99, (18)

where we choose C1 and C2 be large enough constants and δ > 0 to be a small enough
constant so that 1−O(δ) ≥ 0.9.
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Let fv(X) be the embedding as in Theorem 11. For graph G and integer v, we define
embedding f ′G,v(X) := ΦG · fv(X). Embedding f ′(X) is defined by choosing uniformly
random v ∈ [∆] and G. Property 2 in the theorem follows since, for some G and v,

‖f ′(A)− f ′(B)‖1 = ‖ΦG · (fv(A)− fv(B))‖1 ≤ ‖fv(A)− fv(B)‖1

and property 2 of Theorem 11. We used the fact that matrix ΦG is a left stochastic matrix
(that is, all columns of it sum up to 1) to conclude the inequality.

The remainder of the proof is devoted to show the first property. Consider entries of
fv(A)− fv(B) corresponding to embedding fi for i = U, . . . , log2(2∆). By Lemma 15, with
probability ≥ 0.9, all these entries are 0. We assume that this happens from now on. Consider
entries of fv(A)− fv(B) that correspond to embeddings fi for i = 0, . . . , L. By Lemma 16,
the total sum of absolute values of these entries is upper bounded by h1−α/1000. We set all
these entries (corresponding to f0, . . . , fL) to 0. Because ΦG is left stochastic, we change the
value of ‖f ′(A)− f ′(B)‖1 by at most h1−α/1000. Now the only entries that are nonzero in
fv(A)− fv(B) correspond to fL+1, . . . , fU−1. The total number of nonzero entries is at most

(|A|+ |B|) · (U − L− 1) ≤ 2s · 100 log2 s ≤ 200s log2 s.

By (18), we have that with probability ≥ 0.99,

‖f ′(A)− f ′(B)‖1 ≥ 0.9 · ‖fv(A)− fv(B)‖1 − h1−α/1000

≥ 0.9 ·
(

1
10h

1−α − h1−α/1000
)
− h1−α/1000

≥ 1
100h

1−α,

which is what we need. In the second inequality we used the first property from Theorem 11
and the fact that we did set all entries, corresponding to fi with i ≤ L, to 0. The lower
bound holds with probability 1− 0.1− 0.01 ≥ 2/3 by using the union bound. J
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