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Abstract
A distributed computing system can be viewed as the result of the interplay between a dis-
tributed algorithm specifying the effects of a local event (e.g. reception of a message), and an
adversary choosing the interleaving (schedule) of these events in the execution. In the context of
large networks of mobile pairwise interacting agents (population protocols), the adversary models
the mobility of the agents by choosing the successive pairs of interacting agents. For some prob-
lems, assuming that the adversary selects the schedule according to some probability distribution
greatly helps to devise (almost) correct solutions. But how much randomness is really necessary?
To what extent does a problem admit implementations that are robust against a “not so random”
schedule?

This paper takes a first step in addressing this question by borrowing the concept of T -
randomness, 0 ≤ T ≤ 1, from algorithmic information theory. Roughly speaking, the value T
fixes the entropy rate of the considered schedules. For instance, the case T = 1 corresponds, in
a specific sense, to schedules in which the pairs of interacting agents are chosen independently
and uniformly (perfect randomness). The holy grail question can then be precisely stated as
determining the optimal entropy rate to solve a given problem.

We first show that perfect randomness is never required. Precisely, if a finite-state algorithm
solves a problem with 1-randomness, then this algorithm still solves the same problem with
T -randomness for some T < 1. Second, we illustrate how to compute bounds on the optimal
entropy rate of a specific problem, namely the leader election problem.
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1 Introduction

The way that events in a distributed system are triggered depends on some external causes,
often referred to as the environment. To model the environment, an abstraction, called
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scheduler, is introduced. The scheduler specifies which sequences of events are possible
and which ones are impossible. As the correctness of a distributed algorithm depends both
on the algorithm and on the scheduler, this latter is often considered as an adversary. In
this context, one can think of the scheduler as trying to trigger a sequence of events that
will fool the algorithm. Most of the impossibility proofs rely on exhibiting a particular
schedule for which the specification of the problem is not satisfied. One way to circumvent
such impossibility proofs is to assume that the adversary selects a random schedule. This
assumption is generally not in contradiction with real environments, which endure phenomena
like variations of temperature, power supply, network traffic, etc., in sort of a randomized
way.

However, it is not as obvious as it may seem at first sight that a given environment
yields truly random schedules. Actually, truly random sequences are very hard to get. For
instance, the scheduling of processes in a multi-core architecture depends on a physical
process which may exhibit a partially predictable behaviour. Or, this scheduler may rely on
some algorithm using a pseudo-random source, which is not truly random. In other settings,
like mobile networks, the interactions between nodes may follow some regularity because,
e.g., the mobility area is limited, or some paths are statistically preferred to others, etc.

This raises the following interesting question: to what extent an algorithm may exhibit
some robustness against imperfect randomness? And, for a specific problem, what is the
optimal robustness that one may hope to achieve? The main goal of this paper is to tackle
these important questions.

A first step towards this goal is to lay down a definition of randomness, and a measure
of robustness, which are amenable to analysis. Randomness and probability theory are
obviously strongly related, but here probability theory does not help because it does not
allow to qualify an individual schedule as being random. In this context, probability theory
is more about measuring the number of, say, “bad” schedules, which leads to notions of
solving a problem almost surely, or with high probability.

Algorithmic information theory, on the other hand, allows to define what it means for
an individual schedule to be random. Intuitively, the complexity of a finite schedule is
defined as the length of the shortest computer program able to produce this schedule; and
the schedule is random if no program is substantially shorter than the sequence itself1. This
intuition extends to infinite schedule by considering how the complexity of its prefixes grow.
More precisely, we borrow the concept of T -randomness, 0 ≤ T ≤ 1, from [23, 24], where T
measures the entropy rate of a schedule, i.e., the complexity growth of the schedule’s prefixes.
Roughly speaking, the larger is T , the more random is the schedule. In particular, the case
of T = 1 represents perfect randomness.

This notion allows to precisely quantify the robustness of an algorithm against imperfect
randomness: this is simply the least entropy rate T such that any T -random schedule induces
an execution that still satisfies the problem’s specification. In this context, a natural issue
is to determine, given a problem P , the optimal entropy rate T such that some algorithm
solves P for all T -random schedules.

We illustrate this notion in a simple distributed computing model (population protocols
[5]). Our contributions are twofold. First, we show that perfect randomness is never required
in finite-state systems (Section 4). That is, whenever a finite-state algorithm solves a problem
P over the 1-random schedules, then this algorithm solves the same problem P over the
T -random schedules for some T < 1. That is, the optimal entropy rate of P is strictly less

1 Roughly speaking, the shortest computer program just enumerates the successive events of the schedule.
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than 1. Moreover, our proof exhibits a general method to compute upper bounds on the
optimal entropy rate.

Our second contribution focuses on a specific problem, fundamental in distributed
computing, namely leader election (Section 5). In this problem, all processes start in the
same initial state (with the same initial knowledge), and a unique process (the elected leader)
eventually permanently outputs 1 while the others output 0. The method exhibited in the
previous part (Section 4) is applied to derive an explicit upper bound on the optimal entropy
rate of leader election. Next, we compute a lower bound Tsym. This bound exploits the
relation between leader election and symmetry breaking. Indeed, some schedulers are able
to produce schedules which “maintain symmetry”, in the sense that any process have the
same state as some other process; thereby preventing the election of a unique leader. The
bound Tsym quantifies exactly the maximum entropy rate above which a schedule cannot be
symmetric in the previous sense.

The rest of the paper is organized as follows. Section 2 recalls basic definitions of
algorithmic information theory, as well as the distributed computing model we consider. In
Section 3, we introduce the notions of T -random adversary and optimal entropy rate of a
distributed computing problem. Our first contribution, i.e., proving that perfect randomness
is never required, is presented in Section 4. We give upper and lower bounds for the entropy
rate of leader election in Section 5.

For the sake of clarity, some proofs are postponed to the appendix.

Related Work. Algorithmic information theory has started with the seminal work of
Solomonoff [20, 21] and Kolmogorov [16]. One of the major achievements of this field was
a precise definition of randomness. In [18], Martin-Löf defines random sequences as those
which withstand all effective statistical tests. In [10], an equivalent formulation of a random
sequence is given, as one whose shortest (prefix-free) program has the same length as the
schedule. In [23, 24], Tadaki generalizes this formulation, and introduces the notion of partial
randomness, namely T -randomness (0 ≤ T ≤ 1). The original Martin-Löf’s definition of
randomness then coincides with 1-randomness.

The computational model used in this paper, known as population protocol, has been
introduced by Angluin et al. in [5] to model large wireless networks of anonymous finite-state
mobile processes interacting pairwise. In much of the literature on this model [5, 6, 4], the
scheduler is subject to a fairness condition, namely global fairness, which depends on the
algorithm being run: if a configuration is reachable infinitely often, then this configuration is
reached infinitely often. Actually, the proof in Section 4 (indirectly) shows that 1-randomness,
which is a condition independent of the algorithm being run, implies global fairness for
any finite-state algorithm. In particular, any algorithm working under global fairness is
guaranteed to work under 1-randomness.

Being an important primitive in distributed computing, leader election has been extensively
studied. In particular, in [3], Angluin relates the notion of graph coverings with the
impossibility of leader election, and more generally, to any problem that requires “symmetry
breaking”. This approach has been proved to be fruitful in other contexts as well [12, 19].
To circumvent this issue, many approaches [15, 1, 13] have proposed randomized algorithms,
each process having access to some random sequence. These algorithms are probabilistic and
solve the problem at hand, either almost surely, or with high probability, but not exactly.
Our approach is orthogonal. We consider deterministic algorithms, the randomness being put
entirely on the side of the adversary. In some sense, our approach is closer to the works [2, 7],
where random scheduling helps solving the problem at hand; except that our motivation is
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to assess the amount of randomness required. In [8], thanks to the almost random nature
of global fairness, authors propose a deterministic algorithm solving leader election over
arbitrary graphs.

2 Background Definitions

Let X be a finite set, |X| its cardinality, and X∗ (resp. Xω) the set of finite (resp. infinite)
sequences on X. The length of a finite sequence w ∈ X∗ is denoted by |w|. For any w ∈ X∗,
we denote by w � n the prefix of w of length n. The concatenation of two sequences u, v ∈ X∗
is denoted by uv. We denote by uk the concatenation of k copies of u.

2.1 Algorithmic Information Theory
Here, we briefly recall the basic definitions and properties. For further details, please refer
to, e.g., [17, 9, 22, 25]. Our presentation is slightly different from the usual one as we will be
dealing with several alphabets.

Consider finite alphabets X,Y . A (partial) recursive function M : X∗ → Y ∗ is a function
computed by some Turing machine (with input alphabet X, and output alphabet Y ). The
function M is prefix-free if its domain does not contain two elements, one of which being a
prefix of the other. It is known that there exists a universal prefix-free recursive function
UXY : X∗ → Y ∗. Intuitively, this function is universal in the sense that it can simulate any
other prefix-free recursive function (of type X∗ → Y ∗).2 We fix such a universal function
UXY .

The following defines the complexity of a finite word S ∈ X∗ as the length (in bits) of the
smallest word p (with the same alphabet) such that the universal function UXX(p) produces
S. Intuitively, the word p is the program which computes S when executed on the machine
U .

I Definition 1 (Complexity). The complexity of a sequence S ∈ X∗ is HX(S) = |p| log |X|
where p ∈ X∗ is the shortest sequence such that UXX(p) = S.

The factor log |X| is simply a rescaling factor, so that the complexity is expressed in bits.
We now consider infinite sequences, i.e., elements of Xω. The notion of partial randomness

from [23] allows to quantify the degree of randomness of an infinite sequence by looking at
how the complexity of its prefixes grows. We adapt Tadaki’s definition to the case of an
arbitrary alphabet.

I Definition 2 (T -randomness). Given a real value T ∈ [0, 1], S ∈ Xω is T -random on X if,
for all n, HX(S � n) ≥ T · n · log |X| −O(1).

All the entropy-related computations in the paper rely solely on the following lemmas.
These are adaptations of known results of algorithmic information theory [17, 9]. For
the reader’s convenience, we give an intuitive interpretation of Lemma 3 in the appendix
(Section A).

I Lemma 3.
(a) Let q : X∗ → Y ∗ be a partial recursive function. Then, for all S ∈ X∗, HY (q(S)) ≤

HX(S) +O(1).

2 Formally, there exists an effective enumeration (Mi)i∈X∗ of all the prefix-free recursive function (type
X∗ → Y ∗) such that, for all i, p ∈ X∗, UXY 〈i, p〉 = Mi(p).
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(b) For all S ∈ X∗, HX(S) ≤ |S| · log |X|+ 2 · log |S|+O(1).
(c) Let A ⊆ X∗×N be a recursively enumerable set such that the subset An = {w : (w, n) ∈

A} is finite for every n ∈ N. Then, for all n, for every S ∈ An with |S| = n,
HX(S) ≤ log |An|+ 4 · logn+O(1).

(d) An infinite sequence S ∈ Xω is T -random if and only if any of its suffixes is T -random.

I Lemma 4 (Existence of a T -random sequence). For any 0 ≤ T ≤ 1, there exists an infinite
sequence S ∈ Xω which is T -random on X.

2.2 Computational Model
The computational model used in this paper was introduced in [5]. The model involves two
parts: a graph representing the possibilities of interactions between the processes, and a list
of rules (the algorithm) describing how the states of two interacting processes are updated.

Formally, a communication graph is a directed graph G (without self-loops). Each node x
represents a process. Each directed edge (x, y) represents a possible meeting event in which
x is the initiator and y is the responder. We denote by V(G) and E(G) the set of processes
(vertices) and meeting events (edges) of G respectively. In this work, unless stated otherwise,
every graph is assumed to be weakly connected. A schedule on G is a sequence of edges of G,
that is, a finite or infinite sequence on the alphabet E(G). An assignment on G is a map
that associates with every vertex in G some value (in some given set). A trace on G is a
sequence of assignments on G.

An algorithm A is a tuple (Q,X I−→ Q,Q
O−→ Y,Q2 δ−→ Q2) where Q is a set called the

state space, X I−→ Q is the input function, Q O−→ Y is the output function, and Q2 δ−→ Q2 is
the transition function. Note that we consider only deterministic algorithms (the transition
function is single valued).

An input assignment (resp. output assignment) is an assignment with values in X (resp.
Y ). A configuration is an assignment with values in the state space Q. Each input assignment
α yields an initial configuration I ◦ α. Similarly, each configuration γ yields an output
assignment O ◦ γ.

Given an edge e = (x, y) in G and two configurations γ, γ′, we write γ e−→ γ′ when
(γ′(x), γ′(y)) = δ(γ(x), γ(y)) and, for all z 6∈ {x, y}, γ(z) = γ′(z). An (finite or infinite)
execution of A on G is a sequence γ0

e1−→ γ1 . . . where γ0 is the initial configuration. The
sequence of edges of G appearing in the execution is the underlying schedule of the execution.
Note that an execution is entirely determined by its underlying schedule and the initial
configuration. It is assumed that every edge occurs infinitely often in the schedule. The
output trace of an execution γ0

e1−→ γ1 . . . is the corresponding sequence (O ◦ γ0)(O ◦ γ1) . . .
of output assignments.

3 Entropy of Schedules

Since schedules are infinite sequences on the alphabet E(G), we can apply the concept of
T -randomness to classify them. This motivates the following definition.

I Definition 5 (Adversary A(T,G)). Given a real value T ∈ [0, 1], and a communication
graph G, the T -random adversary A(T,G) is the set of infinite schedules S ∈ E(G)ω such
that S is T -random on E(G).

For the sake of simplicity, schedules of A(T,G) are simply said to be T -random on G. We
denote by HG(·) the quantity HE(G)(·).
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21:6 The Benefits of Entropy in Population Protocols

A decision problem on G is a tuple (P,X, Y ) where X is the input alphabet, Y the output
alphabet, and P is a function that associates with every input assignment α (with values in
X) on G, a set P (α) of output assignments (with values in Y ) on G. The input and output
alphabets are often implicitly assumed, and we refer to P as the problem directly.

An algorithm A is said to solve a problem P on G under adversary A(T,G) if, for every
schedule S ∈ A(T,G), for every input assignment α, the execution induced by S and α yields
an output trace having a suffix ββ . . . where β ∈ P (α). Intuitively, this means that the
output of the algorithm eventually stabilizes to a legal output assignment, given the input
assignment the execution started with.

I Definition 6 (Optimal entropy rate). The optimal entropy rate of P on G is T (P,G) =
inf{T : some algorithm solves P on G with adversary A(T,G)}. If the problem is impossible
to solve with any A(T,G), we set T (P,G) =∞.

I Remark. Note that we classify the schedules according to their entropy rate only. Hence,
this classification applies to a very broad spectrum of adversary schedulers, from, e.g., typical
schedules of a uniform bernoullian scheduler, to, e.g., those of a possibly non-markovian one.
If an algorithm is proven to solve a problem for all T -random schedules, then it does not
matter how exactly the real schedules are produced: as long as they are all T -random, the
algorithm will work.

4 Perfect Randomness is Never Required

I Proposition 7. Let P be a problem, and G a graph. If there exists a protocol A with finite
state space solving problem P under adversary A(1, G), then there exists 0 ≤ T < 1 such that
A solves P under A(T,G). In particular, the optimal entropy rate of P on G is strictly less
than 1.

The main idea consists in the analysis of the transition graph of the protocol, whose nodes
represent the configurations, and the (directed) edges, the transitions between configurations.
The transition graph can be partitioned into strongly connected components. The final
components, i.e., the components with no out-going edges play a particular role. Indeed,
a 1-random schedule necessarily drives the system towards a final component, and makes
it visit every configuration in that component infinitely often. Thus, by the assumption
on the protocol, the configurations in this component produce the same output assignment
satisfying the problem’s specification. In particular, it suffices to drive the system into one
final component to yield an execution satisfying the problem’s specification.

The proof below relies on the observation that, if an execution is stuck into a non-final
component C, then its underlying schedule repeatedly avoids some pattern of events which
would drive the system out of this component. This repeated dodge imposes an upper
bound t(C) < 1 on the underlying schedule. Taking the contrapositive, if the schedule were
T -random with t(C) < T < 1, then the corresponding execution would escape the component
C. Since the protocol is finite-state, there are finitely many non-final components, and it
suffices to take maxC t(C) < T < 1 for any T -random schedule to escape any non-final
component. We now give the detailed proof.

Proof.
Basics. We define the transition graph Γ = Γ(A) as the edge-labeled directed graph whose
nodes are the configurations reachable from the initial configurations, and the edges denote
the transition γ e−→ γ′ where e is an event (an edge of G). The underlying schedule of a finite
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path in Γ is the sequence of successive labels (edges of G) along the path. Since A has a
finite state space, the graph Γ has finitely many nodes.

We can decompose Γ in strongly connected components. A final component is a component
without any out-going transitions. Given a component C in Γ, we define for each natural
number n, the set C[n] of underlying schedules of paths of length n in C. Then, letting d be
the number of edges in G, we define t(C) = lim infn→∞ log |C[n]|

n log d and T0 = max t(C) over all
the non-final components C.
T0 < 1. We prove that T0 < 1. Consider any non-final component C. We build a finite
schedule u such that applying u to any configuration in C leads outside of C. Because it
is non-final, there exists configuration γ0 ∈ C, and an event u0 such that the transition
γ0

u0−→ γ′0 6∈ C. We consider the set D0 of configurations such that applying u0 to any of them
leads outside of C. If D0 comprises all the configurations of C, then we are done. Otherwise,
pick any configuration γ1 ∈ C − D0; then γ1

u0−→ γ′1 ∈ C. Since C is strongly connected,
there exists a finite schedule w1 such that applying w1 to γ′1 leads to some configuration in
D0. Therefore, applying the schedule u1 = u0w1u0 to any configuration in D0 ∪ {γ1} leads
outside of C. We can consider the set D1 of configurations in C such that applying the
schedule u1 to any of them leads outside of C. If D1 comprises all the configurations of C,
then we are done. Otherwise, we can repeat the same procedure. Because C has finitely
many configurations, this process eventually ends: applying the constructed schedule u to
any configuration of C leads outside of C.

Therefore, for all n sufficiently large, C[n] is included in the set of finite schedules of length
n which do not contain u as a factor. In [14], the authors describe the asymptotic behaviour
of the number of finite words of length n not containing a given word. Their results imply that
there exists a constant k > 0, and a real value 1.7 < θ < d (depending on u only) such that
for all n |C[n]| ≤ k · θn + O((1.7)n). In particular, t(C) = lim infn→∞ log |C[n]|

n·log d ≤
log θ
log d < 1.

Since there are finitely many non-final components, we have T0 < 1.
Final components reachability. Consider a T -random schedule S on G, and an input
assignment α. Assume that the corresponding execution never reaches a final component
of Γ. Then a suffix of this execution remains in some non-final component C forever. In
particular, the underlying schedule S′ of this suffix is such that, for all n, the prefix S′ � n
belongs to C[n]. By Lemma 3, HG(S′ � n) ≤ log |C[n]| + 4 logn + O(1). But S′ is also
T -random, which implies that

T · n log d ≤ log |C[n]|+ 4 logn+O(1)

T ≤ log |C[n]|
n log d +O

(
logn
n

)
Taking the inferior limit, we get T ≤ T0. Therefore, for every T0 < T ≤ 1, every execution
whose underlying schedule is T -random reaches a final component.
Output is constant in any final component. Let α be an input assignment, and F any
final component reachable from the initial configuration γα corresponding to α. We claim
that the output assignments yielded by the configurations in F are all equal to some β ∈ P (α).
Let S0 be any finite schedule leading to F when applied to γα, and S be any 1-random
extension of S0 (it suffices to append a 1-random schedule, which exists by Lemma 4). Let
E be the execution with schedule S starting with γα. The execution E eventually reaches
the final component F and remains inside forever. Since A solves P under A(1, G), the
output assignments associated with the configurations in F which are visited infinitely often
during E are all equal to some output assignment β ∈ P (α). Since F is strongly connected,
if the execution E did not visit all the configurations in F , then, by an argument similar
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21:8 The Benefits of Entropy in Population Protocols

to the second paragraph above, the schedule S could not be 1-random. Therefore, all the
configurations in F are visited infinitely often during E, and they all yield the same output
assignments β ∈ P (α).
Conclusion. Pick any T0 < T < 1. Consider any input assignment α, and any T -random
schedule S. The corresponding execution E reaches a final component F and remains in
there forever. Moreover, the output assignments associated with the configurations in F

are all equal to some β ∈ P (α). This implies that the execution E yields an output trace
which is eventually constant and equal to β ∈ P (α). In other words, the algorithm A solves
P under adversary A(T,G) with T < 1. In particular, the optimal entropy of P on G is less
than 1. J

I Remark. Note that, the value T0 = T0(A) defined in the proof is the optimal entropy above
which the algorithm A solves the problem P on G. This is different, a priori, from the value
T (P,G) which is the optimal entropy above which, some algorithm solves the problem P on
G.

5 Entropy Bounds for Leader Election

The previous section addressed the issue of randomness in a general setting. Now that we
know that full randomness is not needed, it is natural to ask for the optimal entropy rate of
a problem. We tackle this issue in this section, by considering the leader election problem.

Its specifications are the following. There is no input, and all the processes start in the
same initial state and with the same initial knowledge. In particular, they do not have
identifiers. The output of each process is 0 or 1. The goal is to eventually have a unique
process permanently outputting 1 while the others permanently output 0. Note that, the
processes are not required to make an irrevocable decision: we only ask for their outputs to
eventually stabilize.

We are interested in computing upper and lower bounds on the optimal entropy rate for
solving leader election. Actually, the approach taken in the proof of Proposition 7 already
leads to an upper bound.

I Proposition 8 (LE – upper bound). For any strongly connected graph G with d = |E(G)|
edges, T (LE,G) ≤ log θ(G)

log d < 1 where θ(G) is the absolute value of the largest zero of the
polynomial 1 + (z − d)(z2K(G)−1 + zK(G)−1), and K(G) is the length of the shortest loop
visiting each vertex at least once in G.

We postpone the details to the appendix (Section B). The proof relies on an analysis of an
algorithm from [8]. Roughly speaking, we exhibit a specific schedule S0 of length 2K(G)
which drives the system out of any non-final component of the transition graph. Then, we
show that, whenever T > log θ(G)/ log d, any T -random schedule contains infinitely many
occurrences of S0.

As for a lower bound, the method presented in the proof Proposition 7 cannot be applied.
In the sequel, we adopt another approach for deriving a lower bound.

5.1 Lower Bound
Our approach here exploits the fact that leader election requires symmetry breaking. If the
communication graph G has local symmetries, then one can design schedules that maintain
the symmetry of the system, as shown below. We prove that these schedules have an entropy
rate, at most, Tsym(G); thereby exhibiting a lower bound on T (LE,G).
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Figure 1 Graph covering: the ring G of 12 vertices is projected onto the ring B of 4 vertices, the
dashed lines indicate the fibers, the degree is 12/4 = 3.

Formally, the local symmetries of a graph G are measured by coverings. A covering is
a surjective graph morphism φ : G → B such that, for every vertex b ∈ V(B), for every
neighbor c of b, for every vertex x ∈ φ−1(b) (the fiber over b), there exists a unique neighbor
y of x in the fiber over c. This concept measures the local symmetries of G in the sense that
all vertices in the same fiber have isomorphic neighborhoods. It can be shown that every
fiber φ−1(b) has the same cardinality ∆φ, and that |E(G)| = ∆φ · |E(B)|. The number ∆φ is
the degree of the covering. The covering is proper if ∆φ ≥ 2, i.e., φ is not an isomorphism.

I Proposition 9 (LE – Lower bound). For any graph G with d = |E(G)| edges

Tsym(G) =
def

max
φ

log(d/∆φ) + log ∆φ!
∆φ log d ≤ T (LE,G)

where φ runs over all the proper coverings from G. If there are no proper coverings, Tsym(G)
is set to zero.

To illustrate the proof’s basic idea, fix any algorithm A. Let’s say that a configuration
on G is symmetric if, any two processes in the same fiber (the same color in Figure 1) have
the same state. Being uniform, the initial configuration is obviously symmetric. We describe
a possible strategy to obtain symmetric configurations infinitely often. The adversary first
selects an edge b of B, picks any enumeration of the fiber φ−1(b) (the edges in G projecting
to b), triggers the events according to the enumeration order, and repeats this operation.
Since the algorithm A is deterministic, applying such a sequence of events to a symmetric
configuration yields infinitely many symmetric configurations. The successive choices of the
adversary are equivalently described by a sequence Z = (b1, σ1)(b2, σ2) . . . where bi is an
edge of B, and σi is an ordering of the fiber φ−1(bi), i.e., an element of the permutation
group S∆ on {1, . . . ,∆}. To maximize randomness, we assume that Z is 1-random on the
alphabet E(B) × S∆. This allows to compute the entropy rate Tsym(G) of the schedule
produced by the adversary given Z. Since this schedule prevents the election of a leader,
Tsym(G) is a lower bound of the optimal entropy rate T (LE,G). Now, we present the full
proof.

LE – Lower bound. Pick any proper covering φ : G→ B with degree ∆. We have d = ∆ · r
where r = |B|. For each edge b in B, we fix a reference enumeration of the fiber over
b, φ−1(b) = {e1(b), . . . , e∆(b)}. We define X = E(B) × S∆ where S∆ is the group of
permutations on {1, . . . ,∆}. For each element (b, σ) ∈ X, we define the sequence ψ(b, σ) =
eσ(1)(b) . . . eσ(∆)(b) of edges in G; ψ(b, σ) is simply an enumeration of the fiber φ−1(b) ordered
according to σ. Note that the map ψ is injective.
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Let A be any (deterministic) algorithm. Assume that γ is a symmetric configuration in
the sense that for every vertex z ∈ B, for any two vertices x, y ∈ φ−1(z), γ(x) = γ(y). Then
for any element µ ∈ X, applying the schedule ψ(µ) to γ yields a configuration γ′ that is also
symmetric.

Let Z = µ1µ2 . . . be a 1-random sequence on X (which exists by Lemma 4). By
definition, for all m, HX(Z � m) ≥ m · log(r ·∆!)−O(1). We define the schedule S = ψ(Z) =
ψ(µ1)ψ(µ2) . . . . Thanks to the previous remark, for any deterministic algorithm A, since the
initial configuration is symmetric (all the processes starts in the same state), the schedule S
yields an execution in which, infinitely often, a symmetric configuration is reached. Hence,
this prevents any algorithm to solve the leader election problem with the schedule S. Now,
it remains to determine a lower bound on the entropy rate of S. For all n

S � n = ψ(µ1) . . . ψ(µm)R

where m = bn/∆c. Each sequence ψ(µi) has length ∆, and R is strict prefix of ψ(µm+1).
Knowing S � n allows to compute the sequence Z � bn/∆c. In other words, there exists a
prefix-free recursive function q : E(G)∗ → E(B)∗ such that, for all n, q(S � n) = Z � bn/∆c.
By Lemma 3, and the fact that Z is 1-random on X, we have, for all n

HG(S � n) ≥ HX(Z � bn/∆c)−O(1)

≥ n

∆ · log(r ·∆!)−O(1)

≥ log r + log ∆!
∆ · log d︸ ︷︷ ︸
T (φ)

·n · log d−O(1)

Therefore, S is T (φ)-random; whence T (φ) ≤ T (LE,G). J

I Remark. There is a subtlety about this lower bound related to the specification of the
leader election problem we have chosen. Indeed, as stated above, the processes are not
required to make an irrevocable decision, but only to have a stabilized output eventually.

When, instead, the processes have to make an irrevocable decision, the relevant notion
of local symmetries (in the context of population protocols) is that of pseudo-coverings3
[11]. Roughly speaking, a graph G is a pseudo-covering of another graph H, if there exists
a subgraph G′ of G with the same set of vertices such that G′ is a covering of H. In the
case where H is not isomorphic to G′ (i.e., G is not pseudo-covering minimal), one can lift
any terminating execution on H to a terminating execution on G such that, at the end,
any process in G always has the same state as another process in G. In particular, leader
election with irrevocable decision cannot be solved on a graph G which is not pseudo-covering
minimal.

However, when irrevocable decisions are not required, the lifting argument does not hold.
Indeed, one has to lift an infinite execution on H to an infinite execution on G in which
every edge occurs infinitely often. This cannot be achieved if the intermediate graph G′ is
a strict subgraph of G. In other words, not being pseudo-covering minimal may not be an
obstruction to the possibility of leader election without irrevocable decisions.

3 We thank the reviewers for having highlighted this point.
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6 Conclusion

We have shown that, once a problem can be solved by some finite-state algorithm for perfectly
random (1-random) schedules, the optimal entropy rate of the problem is strictly less than 1.
Doing so, we have exhibited a general method for computing upper bounds on a problem’s
optimal entropy rate. Next, we focused on the leader election problem. By refining the
method above, we have computed an upper bound on the optimal entropy rate of leader
election. Then, we computed a lower bound Tsym which encodes the maximum entropy rate
of schedules maintaining symmetry during the execution. Notice that this lower bound also
holds for any other problem requiring symmetry breaking like, e.g., enumeration or spanning
tree construction.

This work opens many interesting questions. It seems that the bound Tsym could be
reached by some algorithm with unbounded memory. The intuition goes as follows. The
processes could record the whole history of their interactions, and try to deduce the past
schedule. If this schedule breaks symmetry at some point, then it means that the processes
have pairwise different “views” of the past. This distinction could be used to distinguish a
leader among them. Nevertheless, the required memory may be unbounded, as the scheduler
may maintain the symmetry for an arbitrarily long time. This leaves open the question of
determining the optimal entropy rate of leader election achievable with finite-state algorithms.

In this work, we have focused on randomness in the scheduling. But one could also study
algorithms involving local random coins. Similar questions can be raised, e.g., to what extent
randomized algorithms are sensitive to imperfect local coins?

From a more general point of view, we believe that the relation between randomness and
hardness of problems is not yet fully understood in the context of distributed computing.
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A Interpretation of Lemma 3

We briefly give an intuitive interpretation of the facts mentioned in Lemma 3.

I Lemma 3 (restated).
(a) Let q : X∗ → Y ∗ be a partial recursive function. Then, for all S ∈ X∗, HY (q(S)) ≤

HX(S) +O(1).
(b) For all S ∈ X∗, HX(S) ≤ |S| · log |X|+ 2 · log |S|+O(1).
(c) Let A ⊆ X∗×N be a recursively enumerable set such that the subset An = {w : (w, n) ∈

A} is finite for every n ∈ N. Then, for all n, for every S ∈ An with |S| = n,
HX(S) ≤ log |An|+ 4 · logn+O(1).

(d) An infinite sequence S ∈ Xω is T -random if and only if any of its suffixes is T -random.

The point a. states that the information content of the sequence q(w) is no more than
the information content of w (up to an additive constant). This simply comes from the fact
that a computer program cannot produce more information than the information already
present in its input.

The point b. comes from the fact that one can define a computer program p which simply
copies its input to its output. Therefore, a program for generating the sequence S is given
by the concatenation 〈p, S〉 of the program p, and the input S itself. This concatenation has
length |S| plus the length of p (which is independent of S), and an additional logarithmic
term required to distinguish the two sequences p, S in the concatenation. The inequality
follows by the definition of the complexity as the length of the shortest program producing
the sequence S.

The interpretation of c. is slightly more involved. The set A being recursively enumerable
means that there is a computer program p which can successively enumerate all the elements
of A. Thanks to p, one can design a new program q which takes as input a number n
(requiring logn bits), and an index 1 ≤ i ≤ |An| (requiring log |An| bits), and returns the
i-th element in An having length equal to n. Therefore an element S ∈ An with |S| = n can
be generated by the program 〈q, i, n〉 where i is the corresponding index of S. This explains
the logarithmic terms on the right hand side.

Finally, the point d. simply comes from the fact that the notion of T -randomness depends
only on the asymptotic behaviour of the infinite schedule.

B Leader election – upper bound

The proof is achieved by analyzing a specific algorithm, hereafter called B3, from a previous
work [8]. The authors have shown that the algorithm B3 solves leader election over arbitrary
strongly connected graphs using another fairness assumption, namely the global fairness [5].
We show that, actually, the algorithm B3 solves leader election on G under adversary A(T,G)
for every T > log θ(G)/ log d. In the sequel, we use some combinatorial results from [14].

I Definition 10 (Word Correlation [14]). Let u, v be two sequences in X∗. The correlation
〈u, v〉 is the polynomial a1z

|u|−1 + a2z
|u|−2 · · ·+ a|u| where ai ∈ {0, 1} is obtained as follows.

Place v under u so that its leftmost symbol is under the i-th symbol of u. Then if all the
pairs of symbols in the overlapping segment are identical, ai = 1, else ai = 0.

I Lemma 11 (Number of words omitting some word [14]). Consider some sequence u ∈ X∗ of
length k. Let f(z) = 〈u, u〉 be the autocorrelation polynomial of u. Then, the absolute value
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θu of the largest zero of the polynomial 1 + (z − d)f(z) satisfies 1.7 < θu < d. Moreover, the
set An(u) of sequences of length n not containing u as a factor satisfies

|An(u)| = θnu
1− (d− θu)2f ′(θu) +O((1.7)n)

Now, we prove that the algorithm B3 presented in [8] solves leader election on G with
adversary A(T,G) for all T ∈ (log θ(G)/ log d, 1].

The pseudo-code is presented in Algorithm 1. Each process x can be leader or non-leader
(variable leaderx) and can hold a white or black token (variable tokenx). Initially, every
process is a leader and holds a black token. The tokens move through the network by
swapping between two processes during an interaction. When two black tokens meet, one of
them turns white. When a white token interacts with a leader x, x becomes a non-leader
and the token is destroyed. Given a configuration γ, let b(γ) be the number of black tokens,
w(γ) the number of white tokens and l(γ) the number of leaders in γ.

Algorithm 1: Algorithm B3

1 variables for every process x:
2 leaderx : 0 (non-leader) or 1 (leader);
3 tokenx : ⊥ (no token), white or black;
4 initialization: ∀x, (leaderx, tokenx) = (1, black); /* uniform */
5 algorithm (initiator x, responder y):
6 if tokenx = tokeny = black then
7 tokeny ← white;
8 if tokenx = white ∧ leadery = 1 then
9 leadery ← 0 ; /* y becomes a non-leader */

10 tokenx ← ⊥ ; /* the token is destroyed */
11 tokenx ↔ tokeny; /* swap the tokens */

I Lemma 12. For any configuration γ of Algorithm 1 reachable from the initial configuration,
b(γ) + w(γ) = l(γ) and b(γ) ≥ 1.

Proof. The initial configuration satisfies this relation. During an interaction, if no leader is
turned into a non-leader, then the total number of tokens remains constant. When a leader
is turned into a non-leader (by a white token), the corresponding token is also destroyed.
Moreover, destroying a black token requires that another black token collide with it, so there
is always at least one black token. In any case, the first formula still holds. J

Consider the shortest loop π = (a1, a2)(a2, a3) . . . (ak, a1) in G which visits every node
at least once. We have k = K(G). We define a finite schedule S0 = ππ, i.e., the path π

repeated twice.

I Lemma 13. Let γ be any configuration reachable from the initial configuration such that
l(γ) ≥ 2. Then, applying the finite schedule S0 to γ yields a configuration γ′ such that
(1, 1) ≤ (l(γ′), b(γ′)) < (l(γ), b(γ)) in the lexicographical order (l first).

Proof. We denote by l, b, w (resp. l′, b′, w′) the value of l(γ), b(γ), w(γ) (resp. l′(γ), b′(γ), w′(γ)).
We first examine the case b = 1. By Lemma 12, we have w = l − 1 ≥ 1 and, since no black
token is ever created, b′ = 1. Let ai be some process in the path π which holds a white
token in the configuration γ. When applying the schedule S0 to the configuration γ, the
white token moves (by swapping) from the process ai through all the processes of G at least
once. Thus, the white token necessarily meets with some leader in the graph, and this leader
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then disappears (along with the white token). Therefore, l′ < l. Assume now that b ≥ 2.
When applying the schedule S0 to γ, either the previous scenario occurs (and then l′ < l), or
two black tokens meet, and one of them turns white (thus b′ < b). In either case, we have
(l′, b′) < (l, b). J

I Proposition 14. For any strongly connected graph G

T (LE,G) ≤ log θ(G)
log d < 1

where θ(G) is the absolute value of the largest zero of the polynomial 1 + (z − d)(z2K(G)−1 +
zK(G)−1) with K(G) being the length of the shortest loop visiting every node at least once in
G.

Proof. Consider any T > log θ(G)/ log d, and any T -random schedule S. We prove that S0
occurs infinitely often in S. Assume that S0 occurs only finitely many times. Without loss
of generality, we can assume that S0 does not occur at all in S. Then, for every n, the prefix
S � n belongs to the set An(S0) of finite schedule of length n which do not contain S0 as a
factor. By Lemma 3, we have, for all n,

HG(S � n) ≤ log |An(S0)|+ 4 logn+O(1) (1)

To estimate the value of |An(S0)|, we compute the autocorrelation polynomial of S0 = ππ.
Since π is a loop of shortest length k = K(G) visiting every node at least once, the
autocorrelation polynomial of π is zK(G)−1. Indeed, let π = (a1, a2) . . . (ak, ak+1) with
ak+1 = a1. Assume that for some 1 ≤ i ≤ k,

(ai, ai+1) . . . (ak, a1) = (a1, a2) . . . (ak−i+1, ak−i+2)

Then, defining j = max(i, k − i + 1), the sequence (a1, a2) . . . (aj , aj+1) is a loop visiting
every vertex at least once. This imposes j = k, and thus i = 1. By definition, this implies
that the autocorrelation polynomial of π is zK(G)−1. Since S0 = ππ, the autocorrelation
polynomial of S0 is z2K(G)−1 + zK(G)−1.

Note that θ = θ(G) is precisely the absolute value of the largest zero of the autocorrelation
polynomial of S0. By Lemma 11, there exists a constant k > 0 such that, for all n,
|An(S0)| = kθn + O((1.7)n). Plugging this into Equation 1, and using the fact that S is
T -random, we have, for all n,

T · n log d ≤ n log θ(G) + 4 logn+O(1)

Therefore, T ≤ log θ(G)/ log d; whence a contradiction. This proves that S0 occurs infinitely
often in S.

Then, by Lemma 13, the corresponding execution of B3 satisfies the specification of
the leader election problem. In other words, B3 solves leader election with adversary
A(T,G). In particular, this shows T (LE,G) ≤ T for every T > log θ(G)/ log d; whence
T (LE,G) ≤ log θ(G)/ log d. J

I Remark. Note that this algorithm was designed in [8] to solve leader election without any
knowledge about the underlying communication graph. Adding such a knowledge may yield
a better upper bound on T (LE,G).
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