
Atomic Snapshots from Small Registers
Leqi Zhu1 and Faith Ellen2

1 University of Toronto, Toronto, Canada
2 University of Toronto, Toronto, Canada

Abstract
Existing n-process implementations of atomic snapshots from registers use large registers. We con-
sider the problem of implementing an m-component snapshot from small, Θ(log n)-bit registers.
A natural solution is to consider simulating the large registers. Doing so straightforwardly can
significantly increase the step complexity. We introduce the notion of an interruptible read and
show how it can reduce the step complexity of simulating the large registers in the snapshot of
Afek et al. [1]. In particular, we show how to modify a recent large register simulation [2] to
support interruptible reads. Using this modified simulation, the step complexity of UPDATE
and SCAN changes from Θ(nm) to Θ(nm + mw), instead of Θ(nmw), if each component of
the snapshot consists of Θ(w log n) bits. We also show how to modify a limited-use snapshot
[4] to use small registers when the number of UPDATE operations is in nO(1). In this case, we
change the step complexity of UPDATE from Θ((log n)3) to O(w + (log n)2 log m) and the step
complexity of SCAN from Θ(log n) to O(mw + log n).

1998 ACM Subject Classification E.1 Distributed data structures

Keywords and phrases atomic snapshot, limited-use snapshot, small registers, simulation

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.17

1 Introduction

Atomic snapshots give processes the ability to obtain a consistent view of shared memory
through a SCAN operation, even when other processes are concurrently performing UPDATE
operations to the memory. This allows programmers to reason about the concurrency in
the system in a higher-level manner and can greatly simplify development and verification
of concurrent programs. In their seminal paper on atomic snapshots, Afek et al. [1] cite
many applications. In the same paper, they presented an n-process, m-component snapshot
implementation from registers (i.e., using only READ and WRITE) with Θ(nm) step
complexity for both SCAN and UPDATE.

A well-known concern with this implementation, and indeed all known snapshot imple-
mentations from registers, is the assumption that the system provides registers large enough
to store the result of a SCAN. As the number of components or the size of each component
of the snapshot grows, this assumption becomes less and less practical. We consider the
problem of implementing snapshots shared by n processes from Θ(log n)-bit registers. We
call such registers words. It is customary to use registers with Ω(log n) bits, so they can store
process identifiers.

A natural solution is to consider simulating the large registers. Recently, Aghazadeh,
Golab, and Woelfel [2] showed how to simulate a Θ(w log n)-bit register from words with
optimal step complexity, Θ(w), for READ and WRITE. Straightforwardly applying their
register simulation to the snapshot implementation by Afek et al. significantly increases the
step complexity from Θ(nm) to Θ(nmw), if each component of the snapshot consists of
Θ(w log n) bits.

© Leqi Zhu and Faith Ellen;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Atomic Snapshots from Small Registers

Most of these extra steps come from (unnecessarily) reading the embedded scans and
value fields contained in each of the large registers during the double-collects. However,
it is possible to determine if the embedded scans and values are needed by reading only
Θ(log n) bits from each of the registers. Motivated by this, we introduce the notion of an
interruptible read. This means that a process can read part of the large register’s data, pause
the simulated READ to perform other operations, and then return to read more of the data,
so that the entire read appears to occur at the same time. The large register simulation of
Aghazadeh, Golab, and Woelfel can be modified to have interruptible reads. Applying this
modified simulation to the snapshot of Afek et al. reduces the step complexity of UPDATE
and SCAN from Θ(nmw) to Θ(nm + mw).

Recently, Aspnes, Attiya, Censor-Hillel, and Ellen [4] showed that, if the number of
UPDATE operations, b, is in nO(1), then it is possible to implement a b-limited-use m-
component snapshot from Θ(nmw log n)-bit registers with step complexity Θ((log n)3) for
UPDATE and step complexity Θ(log n) for SCAN. Simulating the large registers from words
increases the step complexity of UPDATE to Θ(n2mw) and the step complexity of SCAN to
Θ(nmw), even with interruptible reads.

We show how to directly modify their implementation to use Θ(log n)-bit registers
while only slightly increasing the step complexity: O(w + (log n)2 log m) for UPDATE and
O(mw + log n) for SCAN. The idea is similar to interruptible reads. Instead of directly
returning a view, a SCAN returns an index into a sequence of views, whose length is
proportional to the number of UPDATE operations that have been performed. We call this
an implicit SCAN. The view may then be examined by using this index as input to a VIEW
operation. We call snapshots implemented in this way implicit. We provide a simple recursive
construction of an implicit snapshot from two implicit snapshots with fewer components.
Instead of representing a view directly, we represent it implicitly, by a pair of indices into the
sequences of views of these two smaller implicit snapshots. The actual view can be recovered
recursively. This also allows us to also implement a partial scan [5], in which only c of the
components are queried, with step complexity O(c(w + log m) + log n).

2 Model and Preliminaries

We consider an asynchronous shared memory system with n processes which communicate
using shared Θ(log n)-bit (multi-writer) registers. We call these registers words. We assume
that processes may fail at any time by crashing.

An execution in this system is an alternating sequence of configurations and events
C0, e1, C1, Each event ei (or, step) is either a READ or WRITE operation on a shared
register and each configuration Ci consists of the contents of every register and the state of
each process after event ei is applied to configuration Ci−1. For any two events a and b in
an execution, we write a→ b to mean that a precedes b in the execution.

An implementation of a shared object in this system provides a representation of the
object using words and an algorithm for each type of operation supported by the object
and for each process sharing the object. We only consider wait-free implementations, where
each operation invoked by a non-faulty process is guaranteed to be completed within a finite
number of its own steps. The step complexity of an operation O in an implementation is the
maximum, over all possible executions, of the number of steps taken by any process to finish
an instance of O that it invoked.

Given an execution, the execution interval of an operation is the portion of the execution
which begins with the first step in the operation and ends with the last step in the operation.

L. Zhu and F. Ellen 17:3

An implementation is linearizable [8] if, for every execution, we can choose a linearization
point in the execution interval of each operation such that operations appear to occur
instantaneously at their linearization points.

An m-component atomic snapshot (or simply snapshot) has two operations, SCAN and
UPDATE(j, v). The SCAN operation returns an instantaneous view of the components,
as if all m components were read in a single atomic step. The UPDATE(j, v) operation
updates component j to have value v and returns nothing. For b ≥ 1, we say a snapshot is
b-limited-use if it supports at most b UPDATE operations in any execution.

A max register has two operations, READ-MAX and WRITE-MAX(v). The READ-MAX
operation returns the largest value written thus far, while WRITE-MAX(v) adds a number
v to the set of values written and returns nothing. For b ≥ 1, we say a max register is
b-bounded if its values are restricted to {0, . . . , b− 1}. Aspnes, Attiya, and Censor-Hillel [3]
showed that:

I Theorem 1. There is a b-bounded max register implementation with step complexity
Θ(log b) which uses only 1-bit registers.

A 2-component max array has two operations, MAX-SCAN and MAX-UPDATE(j, v).
Each component behaves like a max register. The MAX-SCAN operation returns an
instantaneous view of the two components, as if both components had READ-MAX performed
on them in a single atomic step. The MAX-UPDATE(j, v) operation updates component j

as if it had performed WRITE-MAX(v) to it and returns nothing. For b1, b2 ≥ 1, we say a
2-component max array is (b1, b2)-bounded if the values of its first component are restricted to
{0, . . . , b1 − 1} and the values of its second component are restricted {0, . . . , b2 − 1}. Aspnes,
Attiya, Censor-Hillel, and Ellen [4] showed that:

I Theorem 2. There is a (b1, b2)-bounded 2-component max array implementation with step
complexity Θ(log b1 log b2) which uses only 1-bit registers.

3 Unlimited-use snapshot from small registers

We show how to obtain an m-component snapshot implementation from words with step
complexity Θ(nm+mw) for SCAN and UPDATE, if each component of the snapshot consists
of Θ(w log n) bits.

Our approach is to simulate the large registers in the m-component snapshot by Afek et
al. [1] from words. In their implementation, a SCAN performs Θ(n) collects on an array of
m registers, each containing Θ(w log n) bits. The large register simulation by Aghazadeh,
Golab, and Woelfel [2] has Θ(w) step complexity for READ and WRITE of a Θ(w log n)-bit
register. Thus, if we directly apply their simulation, the step complexity of SCAN and
UPDATE (which contains an embedded SCAN) becomes Θ(nmw) instead of Θ(nm).

We observe that not all the bits read during the collects are needed. Indeed, in all but the
last collect, only Θ(log n) bits from each of the m registers end up being used. Furthermore,
after reading only these bits, it is possible to determine which additional bits need to be read.
Motivated by this, we introduce the notion of an interruptible read which, intuitively, allows
a process to reserve a copy of the value in the large register (BEGIN-IREAD), read particular
words in the copy (READ-WORD), and then return the memory for reuse (END-IREAD).
In general, this is useful for algorithms in which a process can read only a small fraction of
the bits in a large register to determine if it needs to read the rest of the bits.

In Section 3.1, we formally define an interruptible read. In Section 3.2, we explain how
to modify the simulation by Aghazadeh et al. to implement BEGIN-IREAD, READ-WORD,

OPODIS 2015

17:4 Atomic Snapshots from Small Registers

p1

p2

W(00)

BI = t1 RW(t1, 1) = 0

W(11)

BI = t2 RW(t2, 1) = 1 RW(t2, 0) = 0

Figure 1 Example of an execution using interruptible reads.

and END-IREAD in constant time. In Section 3.3, we carefully apply this modified simulation
with interruptible reads to the standard snapshot of Afek et al. to obtain an m-component
snapshot with SCAN and UPDATE step complexity Θ(nm + mw). Finally, in Section 3.4,
we describe some other, faster snapshot implementations and why it is difficult to modify
them to use words while maintaining their step complexity.

3.1 Interruptible reads
Formally, a simulation of a Θ(w log n)-bit register from words supports interruptible reads
if it implements 3 operations: BEGIN-IREADp, READ-WORDp, and END-IREADp, for
each process p. BEGIN-IREADp takes no arguments and returns a pointer to a block of w

words which represents the current value of the large register. END-IREADp takes a pointer
returned by a BEGIN-IREADp operation and returns nothing. READ-WORDp takes a
pointer t returned by a BEGIN-IREADp operation and an integer j. It returns the value
of the j’th word in the block of memory pointed to by t. Between a BEGIN-IREADp that
returns a pointer t and the next occurrence of END-IREADp(t), the memory pointed to by t

is not changed. We say that a process p has an active interruptible read at the end of an
execution if the execution contains a BEGIN-IREADp operation that returns some pointer t

which is not followed by a corresponding END-IREADp(t) operation.
For example, we can use interruptible reads to implement a normal READ by obtaining a

pointer t via BEGIN-IREADp, concatenating the values returned by READ-WORDp(t, j) for
j = 1, . . . , w into a single value v, releasing the memory pointed to by t via END-IREADp(t),
and then returning v.

Figure 1 gives an example of an execution involving 2 processes, p1 and p2, using
interruptible reads. It features a 2-bit register being simulated by 1-bit registers. At the
start, p1 writes 00, denoted by W(00). Then p2 begins an interruptible read and obtain a
pointer t1. This is denoted by BI = t1. Next, p2 reads the first word (in this case, a bit)
being pointed to by t1, which has value 0. We denote this by RW(t1, 1) = 0. Now p1 writes
11. Then p2 begins another interruptible read to obtain a pointer t2 and reads the first word
being pointed to by t2, which has value 1. Finally, when p2 reads the second word pointed
to by t1, it is still 0. At the end of this execution, p2 has 2 active interruptible reads.

3.2 A large register simulation supporting fast interruptible reads
Not all large register simulations support fast interruptible reads. For instance, Peterson
[10] showed how to simulate a large single-writer Θ(w log n)-bit register from single-writer
Θ(log n)-bit registers. His simulation represents a large register by collections of Θ(w) words,
called buffers. The writer alternately writes to two of these buffers. A switch bit indicates
which of these two buffers was most recently written to. The writer flips the switch bit after
completing a sequence of Θ(w) writes to one of these buffers. Ideally, the readers would
read from one buffer while the writer writes to the other. However, processes may fall asleep
for a long time. Using handshakes, the writer can detect if a reader is concurrent with its
WRITE. In this case, it also writes the current value of the register to the reader’s designated
copy buffer. The reader performs collects on both of the main buffers as well as its own

L. Zhu and F. Ellen 17:5

copy buffer. By checking the switch and handshake bits, the reader returns the value of a
buffer that was not being written to while it was being read. Implementing fast interruptible
reads is difficult in this case because the reader cannot quickly determine which pointer
BEGIN-IREAD should return.

The simulation by Aghazadeh et al. [2] can easily be modified to support a polynomial
(in n) number of active interruptible reads per process. Like Peterson’s simulation, they use
buffers. Writers have a pool of buffers to which they may write and there is a pointer to
the most recently written buffer. To READ, a reader reads the pointer to the most recently
written buffer and announces this pointer. The algorithm guarantees that an announced
buffer will not be modified by any writer. Since a writer may miss this announcement, there
is also a mechanism for a writer to pass hints to the reader about alternate buffers which
have been written to in the meantime, from which it is safe to read. These hints can be read
by the reader in a constant number of steps. The algorithm guarantees that, until the reader
acknowledges a hint, no writer is allowed to modify the buffers mentioned in the hint. The
reader acknowledges a hint when it will no longer read from the buffer to which it points.
This takes a constant number of steps. It is possible, but not necessary, for the reader to
clear its initial announcement.

To implement interruptible reads, we break this READ operation into pieces. In particular,
BEGIN-IREAD is the portion of the READ that determines the buffer to be read. It returns a
pointer to that buffer. READ-WORD simply reads the appropriate word from the buffer. By
the correctness of the simulation, the words may be read in any order. Finally, END-IREAD
is be the portion of the READ that acknowledges hints. Note that each of these operations
take a constant number of steps.

This simulation assumes that each process can only have one operation active at a time.
To support c ∈ nO(1) active interruptible reads of the same large register per process, we
need to increase the size of the buffer pool for each writer by a factor of c. Then the size of
each pointer increases by dlog2 ce = Θ(log n) bits.

3.3 Application to Afek et al.
We consider the m-component snapshot implementation of Afek et al. [1]. Suppose that
each component of the snapshot consists of Θ(w log n) bits. The implementation uses binary
registers, qi,j and q′i,j , for i, j ∈ {0, 1, . . . , n−1}, which are the handshaking bits, Θ(mw log n)-
bit registers, view1, . . . , viewn, which store views, and Θ(w log n)-bit registers, R1, . . . , Rm,
each of which stores the current value of the component, a process identifier, and a toggle bit.

A SCAN operation by process pi consists of a loop, each iteration of which (1) col-
lects q1,i, . . . , qn,i, (2) writes to q′i,1, . . . , q′i,n, (3) collects R1, . . . , Rm twice, and (4) collects
q1,i, . . . , qn,i again. The iteration is successful if the handshaking bits read in both collects of
q1,i, . . . , qn,i are the same and the process identifiers and toggle bits read in both collects of
R1, . . . , Rm are the same. In this case, (5) the current value of the components read from
the second collect of R1, . . . , Rm are returned. Otherwise, the algorithms (6) checks (by
examining the previously read handshaking bits, process identifiers, and toggle bits) if some
process pj has performed at least one complete UPDATE since the start of the SCAN and,
if so, (7) reads and returns viewj . They prove that there can be at most O(n) iterations of
the loop. An UPDATE operation by process pi consists of a collect of q′1,i, . . . , q′n,i, writes to
qi,j , for j ∈ {0, 1, . . . , n− 1}, an embedded SCAN, a write to viewi, and a write to Rc, for
some c ∈ {1, . . . , m}.

Steps (1), (2), and (4) have Θ(n) step complexity. If we directly apply the simulation of
Aghazadeh et al. [2], the step complexity of step (3) will be Θ(mw) and the step complexity

OPODIS 2015

17:6 Atomic Snapshots from Small Registers

of the SCAN is Θ(nmw). We can improve this to Θ(m) using interruptible reads by reading
only the words containing the process identifiers and toggle bits from R1, . . . , Rm in both
collects. We can end the interruptible reads started during the first collect immediately after
the first collect is finished. If the iteration is successful, then we read the current value of
each component and end each interruptible read started during the second collect. If the
iteration is unsuccessful, then we end each interruptible read started during the second collect
without reading the current value of each component. We note that each process has at
most one active interruptible read on each register at any time. Steps (5) and (7) have step
complexity Θ(mw). Step (6) consists of only local operations. Since steps (5) and (7) are
performed just before returning, they contribute Θ(mw) steps to the total. Steps (1) to (4)
occur Θ(n) times in the worst case. Overall, the step complexity of SCAN is Θ(nm + mw).

I Theorem 3. For k ∈ Ω(log n), there is an m-component snapshot implementation from
k-bit registers with step complexity Θ(nm + mw) for SCAN and UPDATE, if each component
of the snapshot consists of Θ(wk) bits.

3.4 Other snapshots
There are snapshots with better step complexity. Attiya and Rachman [7] implemented a
single-writer snapshot from single-writer registers with Θ(n log n) step complexity. However,
they perform too many reads on large registers. In particular, they perform Θ(n log n) reads
of Θ(nw log n)-bit registers, if each component of the snapshot consists of Θ(w log n) bits.
Moreover, they always use the entire value obtained from each read, so interruptible reads
are not helpful. This results in a step complexity of Ω(n2w log n) using any large register
simulation. Inoue and Chen [9] showed how to implement lattice agreement from multi-writer
registers with Θ(n) step complexity. Attiya, Herlihy, and Rachman showed how to implement
a single-writer snapshot from lattice agreement [6]. This implies an implementation of a
single-writer snapshot from multi-writer registers with Θ(n) step complexity. Unfortunately,
the implementation of Attiya, Herlihy, and Rachman uses unbounded size registers. It is
unclear whether it is possible to modify these implementations to use small registers while
maintaining their step complexity.

4 Limited-use snapshot from small registers

An implicit snapshot object is like a regular snapshot object except that a SCAN operation
is separated into two parts, an ISCAN operation and a VIEW operation. Intuitively, the
ISCAN operation is where the actual SCAN occurs. It returns a pointer to a view, which
may then be read via the VIEW operation. To facilitate our implementation of a partial
SCAN [5], a VIEW operation takes a range of components as input and returns the values of
the components in that range. We formalize this as follows.

An ISCAN operation S returns a value t(S) ≥ 0, which we call the index of S. We require
that, for any two ISCAN operations S1 and S2, t(S1) < t(S2) if and only if S1 is linearized
before S2 and there is at least one UPDATE linearized between them. We also require that
an ISCAN operation S has t(S) = 0 if and only if no UPDATE operation is linearized before
it.

Given an ISCAN operation S, we define the view at index t(S) to be the m-component
vector whose c’th component contains the value of the last UPDATE operation to component
c linearized before S, or the initial value ⊥, if no such operation exists, for all c ∈ {1, . . . , m}.
This is well-defined since, by our requirement on the indices returned by ISCANs, there can

L. Zhu and F. Ellen 17:7

be no UPDATE operations linearized between two ISCAN operations returning the same
index. The VIEW(t, i, j, V) operation, takes as input an index t returned by a previously
completed ISCAN operation, integers 1 ≤ i ≤ j ≤ m, and an output array V [1..j − i + 1].
It writes components i through j of the view at index t(S) into entries 1 through j − i + 1
of V . A VIEW could simply return an array containing the values of components i to j.
However, since we recursively build implicit snapshots from implicit snapshots with fewer
components in Section 4.2, it is more efficient to copy values to one array versus repeatedly
creating arrays and concatenating them.

We note that an implicit snapshot object can implement a regular snapshot object
by substituting the SCAN operation with VIEW(ISCAN(), 1, m, V [1..m]). Furthermore,
an implicit snapshot can implement a partial SCAN [5] on a set of disjoint component
ranges (i1, j1), . . . , (ir, jr) by performing ISCAN and then running VIEW(t, ik, jk, V [c]) for
all k ∈ {1, . . . , r}, where t is the index returned by the initial ISCAN.

4.1 A 1-component limited-use implicit snapshot implementation
We can implement a b-limited-use 1-component single-writer implicit snapshot using an array
A of b single-writer registers and a single-writer register index. To UPDATE component 1 to
v, the writer increments a local counter t, writes v to A[t], and then writes t to index. An
ISCAN reads index and returns it. VIEW(t, 1, 1, V) reads A[t] and writes this value to V [1].

To extend this implementation to multiple writers, we change index to be a (bn + 1)-
bounded max register. Furthermore, instead of incrementing a local counter, a writer
performs index.read-max to determine the current index t, chooses an index t′ > t that no
other writer will choose, writes the value v to A[t′], and then performs index.write-max(t′).
An ISCAN consists of performing index.read-max and returning the resulting value. The
VIEW operation is unchanged. Always choosing t′ to be the smallest integer larger than t

which is congruent to the writer’s process identifier modulo n ensures that different indices
are chosen by different writers and they are all bounded above by bn. See Algorithm 1 for
the pseudocode.

Algorithm 1 A b-limited-use 1-component implicit snapshot object.
1: procedure UPDATE(1, u)
2: t← index.read-max()
3: t′ ← min{j : j > t and j ≡ i mod n} . code for process pi

4: A[t′].write(u)
5: index.write-max(t′)
6: procedure ISCAN
7: return index.read-max()
8: procedure VIEW(t, 1, 1, V [1..1])
9: V [1]← A[t].read()

Recall that, from Theorem 1, there is a linearizable implementation of a bounded max
register from binary registers. Thus, we will assume that all operations on index are atomic
and treat them as steps in the executions we consider.

For every UPDATE operation U , let t(U) be the value t′ used as the argument of the
index.write-max that U performed on line 5.

I Lemma 4. For all t ≥ 1, there is at most one UPDATE operation U with t(U) = t. No
UPDATE operation U has t(U) = 0.

OPODIS 2015

17:8 Atomic Snapshots from Small Registers

Proof. By line 3, if t ≡ i mod n, then only process pi can choose t. Since pi performs
index.write-max(t) on line 5, the values returned to pi from index.read-max on line 2 are
strictly increasing. Therefore, pi will never choose t again. Since index is initially 0, t(U) > 0
for all UPDATE operations U . J

An UPDATE operation U is linearized at the first point that index has value at least
t(U). This occurs when some process, not necessarily the process performing U , performs
index.write-max(t), for some t ≥ t(U). If multiple UPDATE operations are linearized at the
same point, then they are linearized in increasing order of their indices. By Lemma 4, there
will be no ties. An ISCAN operation is linearized when it performs index.read-max. A VIEW
operation is linearized when it performs A[t].read.

Since an UPDATE operation U begins with an index.read-max and t(U) is chosen to be
larger than the value it returns, index < t(U) at the beginning of U ’s execution interval.
Furthermore, since U ends with index.write-max(t(U)), index ≥ t(U) at the end of U ’s
execution interval. Since the value of a max-register is non-decreasing, it follows that each
UPDATE operation is linearized at a point within its execution interval.

I Lemma 5. If an UPDATE operation U1 is linearized before another UPDATE operation
U2, then t(U1) < t(U2).

Proof. Let X be the index.write-max(t) step at which U1 is linearized, so that t ≥ t(U1). If
the index.read-max step of U2 occurs after X, then the value returned by the index.read-max
step of U2 is at least t, so t(U2) > t ≥ t(U1). So, suppose that the index.read-max of U2
occurs before X. If U2 is also linearized at X, then, from the way the linearization order is
defined when multiple UPDATE operations are linearized at the same step, t(U2) > t(U1).
Otherwise, U2 is linearized after X so, by definition, t(U2) > t ≥ t(U1). J

I Lemma 6. Let S be an ISCAN operation. If no UPDATE operation is linearized before
S, then t(S) = 0. Otherwise, if U is the last UPDATE operation linearized before S, then
t(U) = t(S).

Proof. Every UPDATE operation is linearized at no later than its index.write-max step. If
S is linearized before every UPDATE operation, then its index.read-max step occurs before
any index.write-max step and, hence, returns 0. So, suppose some UPDATE operation is
linearized before S and let U be the last such UPDATE operation. Since S obtained index
t(S) from its index.read-max step, there was an UPDATE operation U ′ that previously
performed index.write-max(t(U ′)) with t(U ′) = t(S). U ′ is linearized at no later than its
index.write-max step. Hence, it is linearized before S. Suppose, for a contradiction, that
U 6= U ′, so that U is linearized between U ′ and S. By Lemma 5, t(U) > t(U ′). By definition,
there was a index.write-max(t) with t ≥ t(U) at the linearization point of U . This implies
that t(S) ≥ t(U). This is a contradiction, since t(U) > t(U ′) = t(S). J

I Lemma 7. An UPDATE operation U is linearized before an ISCAN operation S if and
only if t(U) ≤ t(S).

Proof. Suppose an UPDATE operation U is linearized before an ISCAN S. Let U ′ be the
last UPDATE operation linearized before S. By Lemma 6, t(U ′) = t(S). If U = U ′, then
t(U) = t(S). Otherwise, by Lemma 5, t(U) < t(U ′) = t(S). Conversely, suppose that U is
linearized after S. If no UPDATE operation is linearized before S, then t(S) = 0 and, by
Lemma 4, t(U) > t(S). So, suppose that some UPDATE operation is linearized before S

and let U ′ be the last such UPDATE operation. Since U is linearized after U ′, by Lemma 5,
t(U) > t(U ′) = t(S). J

L. Zhu and F. Ellen 17:9

I Lemma 8. For any two ISCAN operations S1 and S2, t(S1) < t(S2) if and only if S1 is
linearized before S2 and there is at least one UPDATE linearized between them.

Proof. If t(S1) < t(S2), then S1 is linearized before S2, since they are linearized at their
respective index.read-max steps. By Lemma 4, there is an unique UPDATE operation U with
t(U) = t(S2). Since t(U) > t(S1), Lemma 7 implies that U is linearized after S1. Since U is
the only UPDATE operation with t(U) = t(S2), the index.write-max step in U occurs before
the index.read-max step in S2. Since U is linearized at no later than its index.write-max
step, it follows that U is linearized before S2. Conversely, suppose S1 is linearized before
S2 and there is at least one UPDATE operation U linearized between them. By Lemma 7,
t(S1) < t(U) ≤ t(S2). J

I Lemma 9. For any two ISCAN operations S1 and S2, |t(S1) − t(S2)| ≤ kn, where k is
the number of UPDATE operations linearized between them.

Proof. Without loss of generality, assume S1 is linearized before S2. Let U1, U2, . . . , Uk be the
UPDATE operations linearized between S1 and S2, in that order. By Lemma 7, t(S1) < t(U1).
By Lemma 6, t(Uk) = t(S2). By Lemma 5, t(Ui−1) < t(Ui) for 2 ≤ i ≤ k. Suppose the
index.read-max step in U1 returned a value t > t(S1). Then there was a index.write-max(t′)
after S1 with t(S1) < t′ < t(U1), and the UPDATE operation U which performed this
index.write-max would be linearized between S1 and U1, contradicting the definition of U1.
Therefore, the index.read-max step in U1 returned a value which is at most t(S1). Similarly,
for 2 ≤ i ≤ k, the index.read-max step in Ui returned a value which is at most t(Ui−1). It
follows by line 3 that |t(U1)− t(S1)| ≤ n and |t(Ui)− t(Ui−1)| ≤ n, for 2 ≤ i ≤ k. It follows
that |t(S1)− t(S2)| = |t(S1)− t(U1) + t(U1)− t(U2) + · · ·+ t(Uk−1)− t(Uk)| ≤ nk. J

I Lemma 10. Let S be an ISCAN operation and let U be the last UPDATE operation
linearized before S. Then every VIEW(t(S), 1, 1, V) operation starting after S will set V [1]
to the value written by U .

Proof. By Lemma 6, t(U) = t(S). By Lemma 4, U is the unique UPDATE operation
with t(U) = t(S). After U completes, A[t(S)] contains the value written by U , since each
UPDATE operation U ′ only writes to A[t(U ′)]. The index.read-max step in S occurs after the
index.write-max step in U , so U completes before S. It follows that any VIEW(t(S), 1, 1, V)
operation starting after S will set V [1] to the value of A[t(S)], which contains the value
written by U . J

I Theorem 11. There is an implementation of a b-limited-use 1-component implicit snapshot
object from w-bit registers and 1-bit registers, where w is the number of bits needed to represent
each component of the snapshot. In the implementation, UPDATE consists of a write to
a w-bit register and Θ(log(bn + 1)) writes and reads on 1-bit registers, SCAN consists of
Θ(log(bn+1)) reads on 1-bit registers, and VIEW consists of a single read on a w-bit register.

Proof. Lemma 10 shows that a VIEW(t, 1, 1, V) operation on an index t returned by an
ISCAN operation S will set V [1] to the value of the last UPDATE linearized before S. It
follows that the implementation is linearizable. Lemma 8 shows that, for any two ISCANs
S1 and S2, t(S1) < t(S2) if and only if S1 is linearized before S2 and there is an UPDATE
linearized between them, so the indices returned by ISCAN operations are correct. Lemma 9
shows that index is bounded by bn, since there can be at most b UPDATE operations between
any two ISCANs. Hence a (bn + 1)-bounded max register suffices and A needs at most bn + 1
entries. By Theorem 1, a READ-MAX or WRITE-MAX on a (bn + 1)-bounded max register
requires Θ(log(bn + 1)) reads and writes on 1-bit registers. J

OPODIS 2015

17:10 Atomic Snapshots from Small Registers

4.2 An m-component implicit snapshot implementation
For m > 1, we obtain a b-limited-use m-component implicit snapshot recursively. Our
implementation is essentially a modification of the implementation in Aspnes, Attiya, Censor-
Hillel, and Ellen [4]. The result is a simpler implementation which uses substantially smaller
registers.

Let snap1 and snap2 be b-limited-use c1-component and c2-component implicit snapshots,
respectively. Let indices be a bounded 2-component max array. We describe a simple, but
incorrect implementation of a b-limited-use (c1 + c2)-component implicit snapshot from snap1
and snap2 and then show how to fix it.

UPDATEs on the first c1 components are handled by snap1.update while UPDATEs on
the last c2 components are handled by snap2.update. The idea is that the ISCAN will use the
2-component max array to keep track of the most recent indices for snap1 and snap2. ISCAN
performs snapj .iscan to obtain index uj and performs indices.max-update(j, uj), for j ∈ {1, 2}.
Then it performs indices.max-scan to obtain new indices (t1, t2), which it writes to the register
T[t1 + t2], before finally returning t1 + t2. The VIEW operation for an index t returned by a
previously completed ISCAN operation reads T[t] to obtain indices (t1, t2), and then calls
snapj .view on index tj , for j ∈ {1, 2}, as necessary to get the appropriate components. By
definition of a 2-component max-array, the indices (t1, t2) and (t′1, t′2) seen by two ISCAN
operations as a result of their indices.max-scan steps are comparable component-wise. It
follows that if t1 + t2 = t′1 + t′2, then t1 = t′1 and t2 = t′2. Hence, if two ISCAN operations
write to T[t], for some index t, then they write the same value.

An UPDATE operation consists of a single snapj .update step, at which it must be linearized.
It is tempting to linearize an ISCAN seeing indices (t1, t2) from its indices.max-scan step
at the first point in its execution interval that component 1 of indices has index t1 and
component 2 of indices has index t2. It is possible to show that, with these linearization
points, for any two ISCAN operation S1 and S2, if t(S1) < t(S2), then S1 is linearized
before S2 and there was an UPDATE operation linearized between them. The converse,
however, does not hold. The problem is that, for S2, some UPDATE operations to the first
c1 components may linearized between the first time that component 1 of indices has index
t1 and the first time that component 2 of indices has index t2, and S2 will fail to see these
UPDATEs, even though it is linearized after them.

To fix this, we ensure that an UPDATE completes only after it knows it will be seen
by all ISCANs linearized after it. Thus, after the UPDATE operation updates snapj , it
performs snapj .iscan to obtain an index t, and then performs indices.max-update(j, t). Since
UPDATEs now perform snapj .iscan and indices.max-update(j,−), we can, in fact, remove the
snapj .iscan and indices.max-update(j,−) steps from ISCAN, for j ∈ {1, 2}. The pseudocode
is presented in Algorithm 2.

Recall that, from Theorem 2, a bounded 2-component max array can be implemented
from 1-bit registers. Thus, we will assume that all operations on indices are atomic and treat
them as steps in the executions we consider.

An ISCAN operation S is linearized at its indices.max-scan step. We use (t1(S), t2(S)) to
denote the value returned by this step, so that t(S) = t1(S) + t2(S). An UPDATE operation
which updates snapj is linearized at the first point in its execution interval that component
j of indices is at least the value returned in its snapj .iscan step. More formally, for each
UPDATE operation U , let X(U) be the snapj .update step in U , let Y(U) be the set of all
snapj .iscan steps occurring after X(U), and let Z(U) be the set of all indices.max-update(j, t)
steps, where t = t(Y) for some Y ∈ Y(U). Let Z(U) be the earliest step in Z(U). Z(U)
is part of some UPDATE operation U ′ which updates snapj . Let Y (U) be the snapj .iscan

L. Zhu and F. Ellen 17:11

Algorithm 2 A b-limited use (c1 + c2)-component implicit snapshot object.
1: procedure UPDATE(c, v)
2: j ← if c ≤ c1 then 1 else 2
3: c← if c ≤ c1 then c else c− c1
4: snapj .update(c, v)
5: t← snapj .iscan()
6: indices.max-update(j, t)
7: procedure ISCAN()
8: (t1, t2)← indices.scan-max()
9: T[t1 + t2].write((t1, t2))

10: return t1 + t2

11: procedure VIEW(t, i, j, V [1..j − i + 1])
12: (t1, t2)← T[t].read()
13: if i ≤ c1 then
14: snap1.view(t1, i, min{j, c1}, V [1.. min{c1 − i + 1, j − i + 1}])
15: if j ≥ c1 + 1 then
16: snap2.view(t2, max{i− c1, 1}, j − c1, V [max{1, c1 − i + 2}..j − i + 1])

step in U ′. Since there is a Y ∈ Y(U) with t(Y) = t(Y (U)), X(U) cannot occur between
Y and Y (U), so X(U) → Y (U) and Y (U) ∈ Y(U). We linearize U at Z(U). If multiple
UPDATE operations are linearized at the same point, then linearize them in the order of
their snapj .update steps. A VIEW operation is linearized when it returns.

I Lemma 12. An UPDATE operation U that updates snapj is linearized before an ISCAN
operation S if and only if X(U) occurs before the first snapj .iscan step returning tj(S).

Proof. Suppose U is linearized before S. Let Y be the first snapj .iscan step returning tj(S).
Since U is linearized before S, its linearization point, Z(U), occurs before the indices.max-scan
step in S, so t(Y (U)) ≤ tj(S) = t(Y). If t(Y (U)) < t(Y), then X(U) → Y (U) → Y .
Otherwise, if t(Y (U)) = t(Y), then Y → Y (U) by definition of Y . Since t(Y) = t(Y (U)),
there are no snapj .update steps between Y and Y (U), so we must have X(U)→ Y → Y (U).

Conversely, suppose X(U) occurs before the first snapj .iscan step Y returning tj(S). Let Z

be the first snapj .max-update(j, tj(S)) step, which is part of some UPDATE operation U ′, and
let Y ′ be the snapj .iscan step in U ′ which returned tj(S). By assumption, X(U)→ Y → Y ′,
so Y ′ ∈ Y(U) and Z ∈ Z(U). Thus, U is linearized no later than Z, which is before the
indices.max-scan step in S, so U is linearized before S. J

I Lemma 13. Let S be an ISCAN operation, and let U1, . . . , Up be the UPDATE operations
linearized before S that update snapj, in the order in which they are linearized. Then
X(U1)→ X(U2)→ · · · → X(Up) and t(Y (U1)) ≤ t(Y (U2)) ≤ · · · ≤ t(Y (Up)) = tj(S).

Proof. Let 1 ≤ i < j ≤ p. Suppose, for a contradiction, that t(Y (Ui)) > t(Y (Uj)), so
X(Uj) → Y (Uj) → Y (Ui), Y (Ui) ∈ Y(Uj), and Z(Ui) ∈ Z(Uj). It follows that Z(Ui) =
Z(Uj), for otherwise Uj is linearized before Ui. Thus, Y (Ui) = Y (Uj), so t(Y (Ui)) = t(Y (Uj)),
which is a contradiction. To see that t(Y (Up)) = tj(S), note that the UPDATE operation
which performs the first indices.max-update(j, tj(S)) step Z, is linearized no later than Z,
which is linearized before S.

Similarly, suppose for a contradiction that X(Uj) → X(Ui). It follows that X(Uj) →
Y (Ui), Y (Ui) ∈ Y(Uj), and Z(Ui) ∈ Z(Uj). Thus, Uj would be linearized at no later than
Z(Ui), and it would be linearized before Ui since X(Uj)→ X(Ui), a contradiction. J

OPODIS 2015

17:12 Atomic Snapshots from Small Registers

I Lemma 14. Consider any ISCAN operation S and any VIEW(t(S), 1, c1 +c2, V [1..c1 +c2])
operation. Then, after this VIEW operation completes, V [c] is set to the value of the last
UPDATE operation on component c linearized before S, or ⊥ if no such operation exists, for
all components c.

Proof. We only consider when c ∈ {1, . . . , c1}; the case for c ∈ {c1 + 1, . . . , c1 + c2} is
similar. Suppose that no UPDATE to component c is linearized before S. By Lemma 12, no
snap1.update(c, u) step occurs before the first snap1.iscan step returning index t1(S). Thus,
the view of snap1 at index t1(S) has component c set to ⊥, so V [c] = ⊥.

Now, suppose some UPDATE to component c is linearized before S. Let U be the last
such UPDATE, and let Y be the first snap1.iscan step returning index t1(S). By Lemma 12,
any UPDATE operation U ′ on component c such that X(U ′) → Y is linearized before S.
Since U is the last UPDATE on component c linearized before S, Lemma 13 implies that
X(U ′)→ X(U). It follows that the view of snap1 at index t1(S) has component c set to the
value of X(U), which is the value of U , so V [c] is set to the value of U . J

I Lemma 15. For any two ISCAN operations S1 and S2, t(S1) < t(S2) if and only if S1 is
linearized before S2 and there is at least one UPDATE linearized between them.

Proof. If t(S1) < t(S2), then S1 is linearized before S2 since they are linearized at their
respective indices.max-scan steps. Furthermore, we must have either t1(S1) < t1(S2) or
t2(S1) < t2(S2). Suppose t1(S1) < t1(S2); the other case is similar. Since t1(S1) < t1(S2),
there was a indices.max-update(1, t1(S2)) step Z before the start of S2. Let U be the UPDATE
operation which performed Z. Let Y be the first snap1.iscan with t(Y) = t1(S2). Since
t(Y) = t(Y (U)), X(U) → Y and Lemma 12 implies that U is linearized before S. Since
t(Y (U)) = t1(S2) > t1(S1), Lemma 13 implies that U is linearized after S1.

Conversely, suppose S1 is linearized before S2 and there is an UPDATE operation U

linearized between them. Suppose that U updates snapj . Since S1 is linearized before
S2, t(S1) ≤ t(S2). Since U is linearized after S1, by Lemma 12, X(U) occurred after
the first snapj .iscan step Y returning tj(S1). Since Y → X(U) → Y (U), it follows that
t(Y (U)) > t(Y) = tj(S1). Furthermore, since U is linearized before S2, by Lemma 13,
t(Y (U)) ≤ tj(S2). Therefore t(S1) = tj(S1) + t3−j(S1) < tj(S2) + t3−j(S1) ≤ tj(S2) +
t3−j(S2) = t(S2), where t2(S1) ≤ t2(S2) follows since the indices.max-scan step in S1 occurs
before the indices.max-scan step in S2. J

I Lemma 16. For every ` ≥ 0, there is an implementation of a b-limited use 2`-component
implicit snapshot from w-bit registers, Θ(log(bn+1))-bit registers, and 1-bit registers, where w

is the number of bits needed to represent each component of the snapshot. The implementation
satisfies the following properties:
1. The ISCAN operation consists of O((log(bn + 1))2) reads and writes on 1-bit registers

and a write to a Θ(log(bn + 1))-bit register. Furthermore, for any two ISCAN operations
S1 and S2, |t(S1)− t(S2)| ≤ kn, where k is the number of UPDATE operations linearized
between S1 and S2.

2. The UPDATE operation consists of O((log(bn + 1))2(` + 1)) reads and writes on 1-bit
registers, ` writes to Θ(log(bn + 1))-bit registers, and a write to a w-bit register.

3. The VIEW operation on an index returned by an ISCAN operation and a range (i, j) of
components consists of T`(i, j) = 1 + ` + 2(j − i)−

∑`−1
d=0(yd− xd) ≤ 1 + 2(` + j − i) reads

on Θ(log(bn + 1))-bit registers and j − i + 1 reads on w-bit registers, where x`−1 · · ·x0
and y`−1 · · · y0 are the binary representations of i− 1 and j − 1, respectively.

L. Zhu and F. Ellen 17:13

Proof. By induction on `. The base case, when ` = 0, holds by Theorem 11. Suppose now
that the claim holds for ` and consider ` + 1. We consider what happens when we build a
b-limited use 2`+1-component implicit snapshot object from two b-limited use 2`-component
implicit snapshot objects using Algorithm 2.

(1) Let S1 and S2 be any two ISCAN operations. For i, j ∈ {1, 2}, let Y i
j be the first

snapj .iscan step returning tj(Si). By assumption, |tj(Y 1
j)− tj(Y 2

j)| ≤ qjn, where kj is the
number of UPDATE operations which had their snapj .update step linearized between Y 1

j

and Y 2
j . By Lemma 12, an UPDATE operation U which updates snapj is linearized between

S1 and S2 if and only if X(U) occurs between Y 1
j and Y 2

j . It follows that k1 + k2 = k. Thus,
|t(S1)− t(S2)| = |t1(Y 1

1)− t1(Y 2
1) + t2(Y 1

2)− t2(Y 2
2)| ≤ |t(Y 1

1)− t(Y 2
1)|+ |t(Y 1

2)− t(Y 2
2)| ≤

(k1 + k2)n = kn. Since k ≤ b, this shows that indices can be (bn + 1, bn + 1)-bounded and
T can be an array of bn + 1 Θ(log(bn + 1))-bit registers. By Theorem 2, indices can be
implemented from 1-bit registers with step complexity Θ((log(bn + 1))2) for MAX-UPDATE
and MAX-SCAN. Therefore, an ISCAN consists of O((log(bn + 1))2) reads and writes on
1-bit registers, and a write to a Θ(log(bn + 1))-bit register.

(2) snapj .update consists of O((log(bn + 1))2(` + 1)) reads and writes on 1-bit registers, `

writes to Θ(log(bn + 1))-bit registers, and a write to a w-bit register. snapj .iscan consists
of O((log(bn + 1))2) reads and writes on 1-bit registers and a write to a Θ(log(bn + 1))-bit
register. indices.max-update consists of O((log(bn + 1))2) reads and writes on 1-bit registers.
Thus, in total, an UPDATE consists of O((log(bn + 1))2(` + 2)) reads and writes on 1-bit
registers, ` + 1 writes to Θ(log(bn + 1))-bit registers, and a write to a w-bit register.

(3) By Algorithm 2, a VIEW operation at an index returned by an ISCAN operation on a
range (i, j) of components consists of

T`+1(i, j) =

T`(i− 2`, j − 2`) + 1 i > 2`

T`(i, j) + 1 j ≤ 2`

T`(i, 2`) + T`(1, j − 2`) + 1 otherwise

reads on Θ(log(bn + 1))-bit registers. Let x` · · ·x0 and y` · · · y0 be the binary representations
of i− 1 and j − 1, respectively. If i > 2`, then x` = y` = 1 and 0x`−1 · · ·x0 and 0y`−1 · · · y0
are the binary representations of (i− 2`)− 1 and (j − 2`)− 1. In this case, it follows that

T`+1(i, j) = T`(i− 2`, j − 2`) + 1 = 1 + ` + 2((j − 2`)− (i− 2`))−
`−1∑
d=0

(xd − yd) + 1

= 1 + (` + 1) + 2(j − i)−
∑̀
d=0

(xd − yd) .

If j ≤ 2`, then x` = y` = 0 and 0xk−1 . . . x0 and 0yk−1 · · · y0 are the binary representations
of i− 1 and j − 1, respectively. In this case, it follows that

T`+1(i, j) = T`(i, j) + 1 = 1 + ` + 2(j − i)−
`−1∑
d=0

(yd − xd) + 1

= 1 + (` + 1) + 2(j − i) +
∑̀
d=0

(yd − xd) .

OPODIS 2015

17:14 Atomic Snapshots from Small Registers

Otherwise, if i ≤ 2` and j > 2`, then x` = 0 and y` = 1 and 0x`−1 . . . x0 and 0y`−1 . . . y0
are the binary representations of i− 1 and (j − 2`)− 1, respectively. Note that the binary
representation of 2` − 1 is 01 · · · 1 (one zero followed by `− 1 ones). In this case, it follows
that

T`+1(i, j) = T`(i, 2`) + T`(1, j − 2`) + 1

=
[

1 + ` + 2(2` − i)−
`−1∑
d=0

(1− xd)
]

+
[

1 + ` + 2(j − 2` − 1)−
`−1∑
d=0

yd

]
+ 1

= 1 + (` + 1) + 2(j − i)−
∑̀
d=0

(yd − xd) .

In all 3 cases, there are j − i + 1 reads on w-bit registers. J

Inductively constructing implicit snapshots from implicit snapshots on a smaller number
of components via Lemma 16, we obtain the following:

I Theorem 17. There is an implementation of a b-limited-use m-component implicit snapshot
from w-bit registers, Θ(log(bn + 1))-bit registers, and 1-bit registers. The implementation
satisfies the following:
1. The ISCAN operation consists of O((log(bn + 1))2) reads and writes on 1-bit registers

and a write to a Θ(log(bn + 1))-bit register.
2. The UPDATE operation consists of O((log(bn + 1))2 log m) reads and writes on 1-bit

registers, log m writes to Θ(log(bn + 1))-bit registers, and a write to a w-bit register.
3. The VIEW operation on an index returned by an ISCAN operation and a range (i, j) of

components consists of at most 1 + 2(log m + j − i) reads on Θ(log(bn + 1))-bit registers
and j − i + 1 reads on w-bit registers.

Algorithm 3 A faster b-limited-use m-component implicit snapshot object.
1: procedure UPDATE(c, v)
2: old.update(c, v)
3: index.write-max(old.iscan())
4: procedure ISCAN()
5: return index.read-max()
6: procedure VIEW(t, i, j, V)
7: old.view(t, i, j, V)

We can reduce the step complexity of ISCAN to O(log(bn+1)) reads on Θ(log(bn+1))-bit
registers. The idea is to use the old implicit snapshot implementation from Theorem 17
and use a (bn + 1)-bounded max register index, as in Algorithm 1, to store the most recent
index. An UPDATE operation performs old.update to handle the actual update and then
performs index.write-max(old.iscan()) to store the most recent index. An ISCAN simply
returns the result of index.read-max. A VIEW operation calls old.view. See Algorithm 3 for
the pseudocode.

Since old is linearizable, we can assume that the embedded old.update and old.iscan
operations are atomic. UPDATEs which write t to index are linearized at the first point that
index has value at least t. Ties are broken in order of the embedded old.update operations.
ISCANs are linearized when they perform index.read-max.

L. Zhu and F. Ellen 17:15

Finally, by using the large register simulation of Aghazadeh, Golab, and Woelfel [2], we
can obtain an implementation from k-bit registers, for k ∈ Ω(log n). Putting this all together,
we obtain the following:

I Theorem 18. For b ∈ nO(1) and k ∈ Ω(log n), there is an implementation of a b-limited-use
m-component snapshot from k-bit registers with step complexity O(w + (log n)2 log m) for
UPDATE and step complexity O(mw + log n) for SCAN, if each component of the snapshot
consists of Θ(wk) bits.

5 Conclusions

Aghazadeh, Golab, and Woelfel’s [2] large register simulation requires registers with Ω(log n)
bits. Peterson’s large register simulation works for arbitrarily small registers, but it is a
single-writer register simulation and it is unclear if the simulation can be modified to efficiently
implement interruptible reads. It would be interesting to find a large register simulation,
which works for arbitrarily small registers, that can implement efficient interruptible reads.

It is not possible to directly apply our techniques to other, more efficient, snapshots
[7, 6, 9] without significantly increasing their step complexities because they read too many
large registers and they need most of the bits they read. We would like to investigate
the possibility of modifying these snapshots to obtain a faster snapshot from Θ(log n)-bit
registers.

For b ∈ nO(1), we showed how to implement a b-limited-use m-component snapshot from
Θ(log n)-bit registers with UPDATE step complexity Θ(w + (log n)2 log m) and SCAN step
complexity Θ(mw + log n), if each component of the snapshot consists of Θ(w log n) bits.
We had to use multi-writer registers. It would be interesting to see if it is possible to obtain
similar results with only single-writer registers.

Acknowledgments. We thank Hagit Attiya and David Solymosi for helpful discussions.
This research was supported by the Natural Science and Engineering Research Council of
Canada.

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit.

Atomic snapshots of shared memory. Journal of the ACM, 40(4):873–890, 1993.
2 Zahra Aghazadeh, Wojciech Golab, and Philipp Woelfel. Making objects writable. In

Proceedings of the Thirty-Third ACM Symposium on Principles of Distributed Computing
(PODC), pages 385–395, 2014.

3 James Aspnes, Hagit Attiya, and Keren Censor-Hillel. Polylogarithmic concurrent data
structures from monotone circuits. Journal of the ACM, 59(1):2:1–2:24, 2012.

4 James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Faith Ellen. Limited-use atomic
snapshots with polylogarithmic step complexity. Journal of the ACM, 62(1):3:1–3:22, 2015.

5 Hagit Attiya, Rachid Guerraoui, and Eric Ruppert. Partial snapshot objects. In Proceedings
of the Twentieth Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 336–343, 2008.

6 Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Atomic snapshots using lattice agree-
ment. Distributed Computing, 8(3):121–132, 1995.

7 Hagit Attiya and Ophir Rachman. Atomic snapshots in O(n log n) operations. In Pro-
ceedings of the Twelfth Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 29–40, 1993.

OPODIS 2015

17:16 Atomic Snapshots from Small Registers

8 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3):463–
492, 1990.

9 Michiko Inoue, Toshimitsu Masuzawa, Wei Chen, and Nobuki Tokura. Linear-time snap-
shot using multi-writer multi-reader registers. In Proceedings of the Eighth International
Workshop on Distributed Algorithms (WDAG), pages 130–140, 1994.

10 Gary L. Peterson. Concurrent reading while writing. ACM Transactions on Programming
Languages and Systems, 5(1):46–55, 1983.

	Introduction
	Model and Preliminaries
	Unlimited-use snapshot from small registers
	Interruptible reads
	A large register simulation supporting fast interruptible reads
	Application to Afek et al.
	Other snapshots

	Limited-use snapshot from small registers
	A 1-component limited-use implicit snapshot implementation
	An m-component implicit snapshot implementation

	Conclusions

