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Abstract
In this paper, we focus on revising a given program so that the average recovery time in the
presence of an adversarial scheduler is bounded by a given threshold λ. Specifically, we consider
the scenario where the fault (or other unexpected action) perturbs the program to a state that
is outside its set of legitimate states. Starting from this state, the program executes its action-
s/transitions to recover to legitimate states. However, the adversarial scheduler can force the
program to reach one illegitimate state that requires a longer recovery time.

To ensure that the average recovery time is less than λ, we need to remove certain trans-
itions/behaviors. We show that achieving this average response time while removing minimum
transitions is NP-hard. In other words, there is a tradeoff between the time taken to synthesize
the program and the transitions preserved to reduce the average convergence time. We present
six different heuristics and evaluate this tradeoff with case studies. Finally, we note that the
average convergence time considered here requires formalization of hyperproperties. Hence, this
work also demonstrates feasibility of adding (certain) hyperproperties to an existing program.
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1 Introduction

The problem of model repair focuses on revising a given program so that it satisfies new
properties while preserving its existing properties. Such model repair is highly desirable
when program requirements change (especially when new requirements are added) or bugs
are identified in an existing program. The problem of model repair has been studied in the
context of revising a program to add safety properties (e.g., to ensure that program never
reaches an undesired state), liveness properties (e.g., if the program reaches a state where
predicate X is true, then it will reach a state where some predicate Y is true), fault-tolerance
properties (e.g., ensuring that safety and/or liveness is preserved in the presence of faults),
and timing constraints [7, 12, 19, 6, 14, 18, 20, 22, 16, 13, 15].

All of the properties considered in [7, 12, 19, 6, 14, 18, 20, 22, 16, 13, 15] are expressed
in terms of the framework in [2] that shows that any specification can be decomposed into a
safety specification and a liveness specification. An important characteristic of the properties
in [2] is that Whether a program computation satisfies the specification is independent of
other computations produced by that program. So, if we consider a safety requirement of the
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23:2 Ensuring Average Recovery with Adversarial Scheduler

form: the value of a variable x is never 0 then we can evaluate a given program computation
to decide whether x ever reaches 0. If yes, it implies that the computation violates the
specification. It does not depend upon all other computations that the program can produce.
Likewise, if the specification requires that: if the program reaches a state where X is true then
it will reach a state where predicate Y is true and the given program computation satisfies
this requirement then this observation remains true irrespective of other computations
produced by that program. This implies that if we want to verify whether a given program
is correct, we can evaluate each of its computations separately to determine if it satisfies
the specification. If all of them satisfy the specification, we can identify that the program
satisfies the specification. Otherwise, the program violates the specification.

Certain requirements however do not satisfy this constraint. Examples of this include some
security properties (e.g., information flow [4], noninterference [17]) and some performance
properties (e.g., average response time). To illustrate this, consider the requirement if the
program reaches a state where X is true then the average number of transitions required to
reach a state in Y is 5 or less. If a program has a computation where the response time (i.e.,
the number of steps required from X to Y ) is 6 that does not imply that the specification is
violated. In particular, if the program has several other computations with response time
of 4 or less, then including the computation with response time of 6 is perfectly acceptable.
In other words, properties such as average response time require analysis of all program
computations simultaneously to decide whether program satisfies the specification or not. In
[9], authors have introduced the notion of hyperproperties to characterize such requirements.
They have also shown that hyperproperties are strictly more general than the (simpler)
properties identified in [2].

Existing work in [7, 12, 19, 6, 14, 18, 20, 22, 16, 13, 15] is designed for addition of
properties from [2] and does not address performing model repair to add hyperproperties.
With this motivation, in this paper, we focus on developing complexity results and algorithms
for the addition of one type of hyperproperty, namely average response time.

To motivate the requirement considered in this paper, consider a typical requirement in
the context of fault-tolerant and/or stabilizing programs: In these programs, it is required
that after faults stop occurring, the program recovers to a legitimate state. An important
attribute for this recovery is the time taken for it. There are several ways –worst case, average
case etc – to compute the recovery time. The recovery time is also affected by assumptions
made about any non-deterministic choices the program may face. In our work, we consider
the following approach to compute the average time for recovery (convergence). We focus
on the case where the fault perturbs the program to an illegitimate state and the program
recovers from there to a legitimate state. Since faults are typically random in nature, there
is a probability distribution associated with illegitimate states. (For sake of simplicity, in our
case studies, we assume that all illegitimate states are reached equally likely. However, our
approach can handle any probability distribution.) Subsequently, during program recovery,
there is often a non-deterministic choice given to the program. When faced with such a
choice, we consider the case where we use adversarial scheduler that attempts to force the
program down on a path that increases the convergence time. This enables one to account
for an implementation where the designer considers the non-deterministic choices in any
arbitrary order.

Based on the choices considered above, we focus on ensuring that the average recovery
time in the presence of an adversarial scheduler (denoted as average convergence time for
brevity) is less than λe. Furthermore, during this repair, we want to preserve existing safety
and liveness properties. Hence, during repair, we focus on removing existing behaviors so
that the average convergence time is less than λe.
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Contributions of the paper. The main contributions of the paper are as follows:
Since repair for satisfying the average response time constraint requires removal of
behaviors/transitions that are responsible for increasing the convergence time, we evaluate
the complexity of revision for satisfying the average convergence time requirement while
removing a minimum number of transitions. We show that this problem is NP-hard.
We also show that if we omit the requirement about removing only a minimum transitions
then the problem can be solved in P . We present an approach (denoted as SCP) to
evaluate this approach. While it is very fast, we find that it removes a large number of
transitions (in some cases > 99%).
To overcome the limitations of SCP and the NP-hardness of maximizing the number of
transitions, we present five additional heuristics namely ELP, KBP, RIA, RIAD and SSP.
Of these, RIA and RIAD take into account possible distribution constraints that prevent
a process from reading or writing all program variables. We show that these approaches
provide a tradeoff between the time required to find the desired program and the number
of transitions that are removed to guarantee average convergence time.

Organization of the paper. The rest of the paper is organized as follows: In Section 2, we
define the notion of programs and average convergence time. In Section 3, we define the
problem of adding average convergence time. The complexity analysis of this problem is
discussed in Section 4. In Section 5, we present our six approaches that identify the tradeoff
between the time for repair and the non-determinism preserved in the repaired program. We
discuss our experimental results for two case studies in Section 6. Finally, we discuss related
work in Section 7 and conclude in Section 8.

2 Preliminaries

In this section, we formally introduce the notions of program and other related definitions.
Our definitions are based on those given by Arora and Gouda [3].

I Definition 1 (Program). A program P is a tuple 〈SP , δP〉, where:
SP is the (finite) state space, i.e., the set of all states of P.
δP is a set of transitions. Specifically, δP ⊆ SP × SP .

For simplicity of presentation, we assume that there is at least one outgoing transition of
P from each state. If there is no transition from state s, we can simply add transition (s, s).
We would like to note that this is not a restriction in any sense. However, it avoids having to
consider terminating states in subsequent definitions.

I Definition 2 (State Predicate). Given a program P (〈SP , δP〉), a state predicate P is a
subset of SP .

I Definition 3 (Computation). A computation of P is an infinite sequence of states, ρ =
〈s0, s1, . . . 〉, where
∀j, j > 0: (sj−1, sj) ∈ δP .

I Definition 4 (Distance of a state predicate in a computation). Let ρ = 〈s0, s1, . . . 〉 be a
computation of P. Let S be a state predicate of P. We say that the distance of ρ to S
(denoted by compdist(P, ρ, S)) is w iff ∀j : (j < w)⇒ sj 6∈ S and sw ∈ S.

In the above definition, if ρ does not contain a state in S, we say that compdist(P, ρ, S) =
∞. Next, we overload the definition of distance to define the notion of a distance of a state
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23:4 Ensuring Average Recovery with Adversarial Scheduler

predicate from a given state, say s. There may be several computations that start from s.
Since we focus on an adversarial scheduler, distance of a state s from state predicate S is
described by considering the maximum number of steps required from s in some computation
of P. In other words, this definition captures the maximum distance from state s to state
predicate S.

I Definition 5 (Distance of a state predicate from a state). Distance of state s to a state
predicate S in program P, denoted by statedist(P, s, S), is max(compdist(P, ρ, S)|ρ is a
computation of P that starts in s).

Using the above definition, we can define the notion of average time to recover from some
state predicate T to another state predicate S as follows:

I Definition 6 (Distance between two state predicates). Let S and T be state predicates of
P . The average convergence time from T to S in program P , denoted by predist(P, T, S) is
average(statedist(P, s, S)|s ∈ T − S).

For sake of simplicity, we define predist(P, S, S) to be 0.

I Definition 7 (Average convergence time). Let S and T be state predicates of P. Let λ be
a real number. We say that T converges to S within λ iff

predist(P, T, S) ≤ λ.

Observe that if some computation of P starts from a state in T and never reaches a state
in S then predist(P, T, S) ≥ λ from any number λ.

3 Problem Formulation

In this section, we formally state our program repair problem with respect to average
convergence time requirements. The goal of this problem is to revise a given program P
to P ′ that uses a subset of behaviors of P to reduce the convergence time to the set of
legitimate states. Since P ′ only uses a subset of behaviors of P, it follows that if P satisfied
any safety or liveness property (that is described using the framework [2]) then P ′ satisfies
that property as well.

The input to the repair program consists of program P with state space SP and transitions
δP . It also includes the state predicate denoting the legitimate states, S. Finally, it includes
the desired average convergence time λ. The goal of the program is to identify program P ′
that uses the behaviors of P , and provides convergence to S with average time λ. Thus, the
problem statement is as follows:

I Definition 8 (The Program Repair Problem). Given a program P = 〈SP , δP〉, the set of
legitimate states S, and the required average convergence time λ, identify P ′ = 〈SP′ , δP′〉
such that

SP′ ⊆ SP
δP′ ⊆ δP
P ′ converges to S from SP′ within λ′, λ′ ≤ λ.

In order to characterize the complexity of the above problem, we identify a corresponding
decision problem. The first attempt to find this decision problem is as follows:

I Definition 9 (The Decision Problem (Attempt 1) (Dec1).). Given a program P = 〈SP , δP〉,
the set of legitimate states S, and the required average convergence time λ: Does there exist
a program P ′ = 〈SP′ , δP′〉 that satisfies the requirements specified for the program repair
problem in Definition 8.
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The decision problem Dec1 can be trivially answered by setting SP′ to S. In this case, it
is straightforward that P converges to S from S within 0. To avoid such trivial answer, we
require that recovery from all states in SP be preserved. Hence, we require that SP′ = SP .
Hence, the second attempt at defining the decision problem is as follows:

I Definition 10 (The Decision Problem (Attempt 2) (Dec2)). Given a program P = 〈SP , δP〉,
the set of legitimate states S, and the required average convergence time λ: Does there exist
a program P ′ = 〈SP′ , δP′〉, such that SP′ = SP and P ′ satisfies the requirements specified
for the program repair problem in Definition 8.

The decision problem Dec2 can also be solved in P (in the state space of the program)
as follows: We start with P ′ that contains no transitions in SP − S. Then, from each state
in SP − S, we add the shortest path (least recovery in terms of number of transitions) to
some state in S. If there are several shortest paths, we can choose any one of them. We
argue (in Section 4) that the resulting program guarantees that starting from any state
in SP , the program reaches a state in S. Also, the resulting program provides the least
average convergence time. Hence, if the average convergence time is larger than λ then it is
impossible to find P ′ that satisfies the problem statement Dec2.

In both decision problems Dec1 and Dec2, we require that δP′ ⊆ δP . Requiring δP′ = δP
is meaningless since it would require P and P ′ to be identical. However, we can focus on
finding P ′ that preserves the maximum behavior of P . Having P ′ with more non-determinism
is desirable, as it provides the designer with a maximum choice in terms of implementation.
It is also known to increase the ability to add new properties in the future. Thus, we define
the decision problem as follows:

I Definition 11 (The Decision Problem (Final) (Dec3)). Given a program P = 〈SP , δP〉, the
set of legitimate states S, the required average convergence time λ, and integer k: Does
there exist a program P ′ = 〈SP′ , δP′〉, such that SP′ = SP , |δP′ | ≥ k, and P ′ satisfies the
requirements specified for the program repair problem in Definition 8.

In Section 4, we show that Dec3 is NP-complete in the state space SP . Given that Dec2 is
in P but Dec3 is NP-complete, it follows that there is a tradeoff between the time required to
find P ′ and the fraction of transitions/behaviors removed by P ′. In particular, it is efficient
to find P ′ that preserves only a small subset of behaviors. However, it is significantly more
complex to design P ′ that designs the maximum possible behaviors.

4 Complexity Analysis

In this section, we show that Dec2 can be solved in polynomial time in the state space of the
program, using a straightforward approach, but Dec3 is NP-complete.

Regarding Dec2, we construct transitions of Pminpath as follows: For each state, s 6∈ S,
we include the transitions corresponding to the path Ls which is the shortest path from s to
some state in S. Next, in Lemmas 12 and 13, we show that the resulting program provides
the least average convergence time for any program that solves the problem in Definition 8.
Hence, if this program does not provide the desired average recovery time then the answer
to Dec2 is false.

I Lemma 12. Pminpath guarantees that starting from any state in Sp, the program reaches
a state in S.

I Lemma 13. Pminpath provides the least average recovery time for any program that solves
the problem in Definition 8.
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I Theorem 14. Dec2 can be solved in polynomial time in the state space of the input
program P.

Regarding Dec3, we can reduce the problem of adding liveness constraints in [5] to Dec3.
Specifically, in [5], it is shown that the following problem is NP-complete.

Given a program P, two state predicates S and T and a positive integer k, does there
exist a P ′ such that SP′ = SP , δP′ ⊆ δP , every computation of P ′ that starts in a state
predicate T reaches a state in state predicate S and δP′ ≥ k.

Showing that Dec3 is in NP is straightforward. To reduce the above problem to an
instance of Dec3, we essentially need to set the value of λ, the average convergence time of
P ′ to |SP |. It is straightforward to observe that if every computation of P ′ reaches the state
predicate S then the average convergence time is less than |SP |. Thus, we have

I Theorem 15. Dec3 is NP-complete in the state space of the input program P.

5 Repair Approaches

In this section, we consider the problem of repairing a given program P to meet the average
convergence time λ requirement. As shown in Theorem 15, this problem is NP-hard under the
constraint that the revised program must preserve a given number of transitions. By contrast,
if we solve this problem minimally (Dec2) without the above constraint, then the problem
can be solved in P (cf. Theorem 14). However, the solution for this approach (discussed in
Section 5.1) is likely to include only a small number of transitions in the repaired program.
In other words, there is a tradeoff between the time required to design the repaired program
and the level of non-determinism (choices) available to that repaired program. Hence, we
evaluate this tradeoff with several heuristics. At one extreme, we consider the approach that
is expected to be the fastest but provides least non-determinism. This approach is based on
the algorithm that solves Dec2. The other extreme, i.e., the solution with maximum choices,
requires exponential time (unless P = NP ) and, hence, is infeasible. We also consider several
intermediate heuristics as well.

We develop the following six approaches. Of these, the first approach, Shortest Convergence
Path (SCP), focuses on adding those transitions which lead to the shortest convergence paths.
The second approach, Eliminate Longest Path (ELP), focuses on removing offending behaviors
that cause an increase in the delay of convergence. The third approach, Keep Best Path
(KBP), repairs the given program by only preserving transitions that lead to the shortest
convergence paths when several outgoing transitions are available for states.

These first three approaches view the program purely in terms of its transitions. They
ignore the structure of the program. In the next two heuristics, we focus on the structure of
the program in terms of guarded commands [11]. Specifically, the forth approach, Restrict
Individual Actions (RIA), uses the guarded commands of the input program P and constructs
P ′ whose guards are a combination of guards involved in P. The fifth approach, Restrict
Individual Actions with Distribution Restrictions (RIAD), extends RIA to deal with restrictions
imposed by distributed systems. In particular, it restricts the actions whose guards can be
combined. This allows one to ensure that the repaired program can be implemented in low
atomicity where each process can read or write only a subset of variables. Hence, RIAD
provides a mechanism to guarantee average convergence time to distributed systems where
each process can read/write only a subset of program variables.

Finally, the sixth approach, Solve Similar Problem (SSP) partitions the problem into two
subproblems. Of these, in the first step, we focus on guaranteeing worst case convergence
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time with value that is larger than the desired average convergence time. And, in the second
step, we apply ELP on the resulting program.

In all these approaches, our algorithm takes as input the program P , its set of legitimate
states S and the desired average convergence time λe. The algorithm returns the desired
program P ′ if a solution is found that solves the problem in Definition 8. Otherwise, it
returns φ.

5.1 Approach 1 (SCP): A Refinement Procedure via Including Shortest
Convergence Paths

In this section, we present SCP (Shortest Convergence Path) – a fast heuristic that focuses on
reducing convergence time without considering the number of preserved transitions. Based
on the idea of Dec2, SCP repairs a given program by preserving only those transitions that
lead a program to shortest convergence paths. This reduces/eliminates choices that the
scheduler can play. However, it is anticipated that it would eliminate a large number of
transitions/behaviors. To identify transitions that lead to the shortest convergence path, our
approach SCP performs a backward computation from legitimate states.

Figure 1 gives pseudocode for the overall refinement algorithm of SCP. We initialize
the revised program to ∅ and set the current reachable state set to the set of legitimate
states. In each iteration of the RepairBySCP loop, starting from current reachable states, we
perform a backward computation to identify transitions that lead to the shortest convergence
path. Based on such one-step backward search per iteration, we identify newly reachable
state Snext (Line 8) and calculate the transitions that lead program from Snext, Scurrent

(Line 9). Then, we update the current reachable state set in Line 10. In this step, our
implementation simply performs Scurrent ∪ Snext. Now, we use the transitions computed in
Line 9 to update the current revised program (Line 11). In particular, our implementation
simply performs δcurrent ∪ δtmp. Based on the updated program transitions, we re-calculate
the average convergence time of Pc. There are two scenarios for our algorithm to stop
the while loop. One is that if we reach a program Pc whose average convergence time is
larger than λe, the loop will stop. As in Line 7, P ′ records the revised program that fits
the average convergence time requirement. The other one is that our refinement procedure
has included all the transitions in the shortest convergence path and the generated program
fits the average convergence time requirement, that is, λr < λe. In this case, our refinement
process will break the loop.

Hence, after executing such an iterative refinement procedure, our refinement algorithm
generates a program P ′ that holds the maximum λP′ and λP′ ≤ λe.

5.2 Approach 2 (ELP): A Refinement Procedure via Eliminating
Maximal Transitions

In this section, we present ELP (Eliminate Maximal Path) –a heuristic that focuses on
reducing convergence time while preserving maximum non-determinism.

The key idea of ELP is to find the set Smax, the set of states from where the (worst case)
convergence path is the longest. Let λworst be this worst case convergence path. Let Snext

be the set of states from where the worst case convergence path is λworst − 1. After finding
Smax and Snext, we remove transitions {(s1, s2)|s1 ∈ Smax ∧ s2 ∈ Snext}. This process is
repeated until we find the desired program or conclude that realizing such a program is
impossible. As an illustration, consider the Figure 3. This figure shows four states s1, s2, s3
and s4. Assume that the worst case convergence path from s2, s3 and s4 are 10, 7 and 5
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RepairBySCP(P , λe):
Input λe: the expected average convergence time.

P : transitions δP and invariant SP .
Output P ′: λP′ ≤ λe

1 Scurrent = invariant;
2 δcurrent = empty;
3 P ′ = ∅;
4 Pc = ∅;
5 do
6 {
7 P ′ = Pc;
8 Snext ← BackwardOneStepCompute(Scurrent);
9 δtmp ← CalculateTransition(Snext, Scurrent);
10 Scurrent ← UpdateCurrentState(Scurrent, Snext);
11 Pc ← RefineProgramTransitions(δcurrent, δtmp);
12 λr ← CalculateAvgConvTime(Pc);
13 if (Pc = ∅)
14 break ;
15 }
16 while (λr > λe);// λr is the current average convergence time after refinement.
17 Return P ′;

Figure 1 SCP: program repair by preserving shortest convergence path.

RepairByELP(P , λe):
Input λe: the expected average convergence time.

P : transitions δP and invariant SP .
Output P ′: λP′ ≤ λe

1 P ′ = P ;
2 do
3 {
4 Smax ← CalculateMaximalState(P ′);
5 Snext ← CalculateNextMaxState(P ′);
6 δmaxGroup ← CalculateMaxTrans(Smax, Snext);
7 P ′ ← RefineProgramTransitions(Pc, δmaxGroup);
8 λr ← CalculateAvgConvTime(Pc);
9 if (P ′ = ∅)
10 break ;
11 }
12 while (λr > λe);// λr is the current average convergence time after refinement.
13 Return P ′

Figure 2 ELP: A Refinement Procedure via Eliminating Maximal Transitions.

respectively. In that case, worst case path from s1 is 11. Also, assume that s1 ∈ Smax. In
this case, we remove the transition (s1, s2).

Figure 2 gives the pseudo code for the overall refinement algorithm. The procedure
RepairByELP repairs the given program P top-down, starting with original program transition
δP . In each iteration, we calculate the maximal state set Smax (Line 4) and the next-maximal
state set Snext (Line 5) for the current revised program P ′. With Smax and Snext, we calculate
a group of maximal transitions. As in Line 6, we calculate maximal transitions (denoted
as δmaxGroup). Then in Line 7, we repair program by eliminating δmaxGroup from current
program transitions set. Line 8 calculates the current average (maximal) convergence time for
P ′. Line 9 describes a possible case where our algorithm reaches an empty program. If this
case occurs, Line 10 would break the computation loop. Otherwise, the whole RepairByELP
loop will stop when it reaches a point where current average convergence time is less than λe.
The resulting program P ′ fits the average convergence time requirement, that is λP′ ≤ λe.
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Figure 3 Four states s1, s2, s3 and s4.

RepairByKBP(P , λe):
Input λe: the expected average convergence time.

P : transitions δP and invariant SP .
Output P ′: λP′ ≤ λe

1 P ′ = P ;
2 do
3 {
4 Smax ← CalculateMaxState(P ′);
5 δnonMin ← CalculateNotMinTrans(Smax);
6 P ′ ← RefineProgram(P ′, δnonMin);
7 λr ← CalculateAvgConvTime(P ′);
8 if (Pc = ∅)
9 break ;
10 }
11 while (λr > λe);// λr is the current average convergence time after refinement.
12 Return P ′;

Figure 4 KBP: A Refinement Procedure via Removing NonMinimum Transitions.

5.3 Approach 3 (KBP): A Refinement Procedure via Eliminating
NonMinimum Transitions

In this section, we present KBP (Keep Best Path) – a heuristic that focuses on reducing
convergence time with considering preservation of least non-determinism for those maximal
states. Similar to the approach ELP, during the refinement procedure, our approach KBP
iteratively removes a group of transitions from current program transition set until we reach
a point where the revised program fits the average convergence time requirement. The
difference between KBP and ELP is that we remove not only the maximal transitions from
Smax but also other transitions except those that provide the best recovery time.

Once again, consider the transitions in Figure 3. In this figure, assuming that s1 ∈ Smax,
we keep the transition (s1, s4) and remove (s1, s2) and (s1, s3). Observe that in this case,
we are removing more transitions while making a bigger impact on the average convergence
time. Compared with ELP, we expect that KBP will reduce the time for repair but it will
result in more transitions being removed.

The procedure RepairByKBP in Figure 4 repairs the given program top-down, starting
with original transitions. Specifically, we calculate Smax in Line 4 and corresponding
nonminimum transition set δnonmin for each state in Smax. Then, we repair program by
eliminating δnonmin from current program transitions (Line 6). Line 7 calculates the current
average (maximal) convergence time for P ′. Line 8 describes a possible case where our
algorithm reaches an empty program. If this case occurs, Line 9 would break the computation
loop. The resulting program P ′ is one solution that fits the average convergence time
requirement, that is, λP′ ≤ λe.
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5.4 Approach 4 (RIA): A Refinement Procedure via Revising Maximal
Actions with Minimal Actions

While the previous three approaches focused on repair at transition level, in this approach,
we focus on additional structure in the given program to perform the repair. This allows
one to take into consideration problems that arise in distributed systems as well as possible
limitations on how programs are evaluated.

Before we describe our approach, we consider the case where the state space is more
compactly represented by variables and program transitions are compactly represented using
guarded commands of the form g −→ st. In particular, in this case, the state space is obtained
by assigning each variable value from its respective domain. And, transitions corresponding
to an action g −→ st, where g is a Boolean expression involving program variables and st
is a statement that updates those program variables, are represented by the set {(s0, s1)|g
evaluates to true in s0 and s1 is obtained by updating those variables as prescribed by s1} 1

Specifically, in this approach, we focus on revising the given program so that the guards
and statements in the repaired program are comparable to that in the original program.
To illustrate our approach, consider Figure 3. In this figure, let the transition (s1, sa) be
executed by the action ga −→ sta, where 2 ≤ a ≤ 4. In this figure, in approach ELP, we
removed the transition (s1, s2). In RIA, we achieve the same by restricting the corresponding
action g2 −→ st2 to be executed only if the action corresponding to (s1, s4) is not enabled.
In other words, we change the action to g2 ∧ (¬g4) −→ st2. Observe that this change causes
removal of additional transitions that start from a state where g2 is true and g4 is false.
This approach is based on the heuristic that this overall change will result in reduction in
the average convergence time. Observe that with this change, the guards involved in the
repaired program are a combination of the guards involved in the original program. And,
the statements in the repaired program are same as that in the original program. Since the
guards of the original program represent predicates that could be checked in the original
program, this allows the user to control the types of actions that can appear in the repaired
program.

Figure 5 gives the pseudo code for the overall refinement algorithm. Specifically, Line
4 computes Smax, the state set in which each state has a possibility to reach maximal
convergence path. Line 5 calculate the maximal actions for each state in Smax. Line 6
calculate the minimal actions for each state in Smax. Line 7 revise the maximal actions for
each state in Smax using the corresponding minimal actions. Then Line 8 refines program by
repairing those maximal actions from current program transition set. Line 9 calculates the
current average (maximal) convergence time for P ′. Line 10 describes a possible case where
our algorithm reaches an empty program. If this situation occurs, Line 11 would break the
computation loop. Otherwise, the resulting program P ′ satisfies the average convergence
time, that is λP′ ≤ λe.

After executing such an interatively refinement procedure, our refinement algorithm
either reaches an empty program or returns a program that fits the average convergence time
requirement.

1 As an illustration, if the program had two variables x and y with domain {0, 1} and {0, 1, 2} respectively
then the state space contains 6 possible states 00, 01, 02, 10, 11 and 12 where the first value denotes
the value of x and the second denotes the value of y. And, action x = y −→ x = 0 corresponds to
transitions (00, 00), (11, 01).
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RepairByRIA(P , λe):
Input λe: the expected average convergence time.

P : transitions δP and invariant SP .
Output P ′: λP′ ≤ λe

1 P ′ = P ;
2 do
3 {
4 Smax ← CalculateMaxState(P ′);
5 actmax ← CalculateMaxAct(Smax,P ′);
6 actmin ← CalculateMinAct(Smin,P ′);
7 act′max ← RepairActions(actmax, actmin);
8 P ′ ← RefineProgram(act′max,P ′);
9 λr ← CalculateAvgConTime(P ′);
10 if (P ′ = ∅)
11 break ;
12 }
13 while (λr > λe);// λr is the actual average convergence time of P .
14 Return P ′;

Figure 5 RIA: A Refinement Procedure via Revising Maximal Actions with Minimal Actions.

5.5 Approach 5 (RIAD): A Refinement Procedure via Revising
Maximal Actions with Distribution Consideration

In this section, we extend RIA to take into account what guards could be used in repairing a
given action. In turn, this allows to fully capture the requirements of a distributed system.
To illustrate this, consider the case where the nature of distributed systems prevents a process
from accessing all program variables. Rather, each process is only allowed to read and write
a subset of variables.

Recall that in RIA, we restricted the guard of one action by negation of the guard of
another action. Given a guard, it is straightforward to identify the variables that it is allowed
to read. Hence, for each action, we identify neighborhood actions that can be used to restrict
it while preserving the read/write restrictions. By only selecting this subset of actions, we
can ensure that the synthesized program satisfies the read/write restrictions of the given
system. Since RIAD is similar to RIA (except for this neighborhood restriction), we do not
provide a detailed algorithm for RIAD.

5.6 Approach 6 (SSP): A Refinement Procedure via Eliminating
Maximal Transitions from a Reduced Program

In this section, we propose SSP (Solve Simpler Problem). The main idea of this algorithm
is to use the same repair technique as ELP (from Section 5.2) on a program Pr (described
next) rather than the original program P.

Let λe be the desired average convergence time. Let λworst be the worst case convergence
time of P. The goal of Pr is to ensure that the worst case convergence time is bounded by
λPr where λworst ≥ λPr ≥ λe. Subsequently, we utilize ELP to remove any behaviors from
Pr to ensure that the average convergence requirements are satisfied.

The motivation behind SSP is that each step involved could be implemented efficiently.
Specifically, the first step, which involves ensuring worst case behavior, is simpler. This is
due to the fact that worst case analysis of repaired programs is substantially easier than
average case behavior. Also, the transitions removed in the first step are good candidates for
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removal from the desired program P ′. Also, it is anticipated that Pr is close to the desired
program P ′. Hence, the amount of time involved in the second step would be small as well.

Observe that SSP provides a continuum of possible values for λPr
. At one extreme,

choosing λPr = λworst will result in SSP to be equivalent to ELP. At another extreme,
choosing λPr

= λ will result in unnecessary removal of transitions in the first step and
obviate the need for the second step. For the sake of analysis, we choose λPr to be the
average of λworst and λe. Since the construction of Pr is straightforward and the remaining
algorithm is same as ELP, we do not provide detailed algorithm for SSP.

6 Case Study & Experiment Results

We have developed a tool Rtime that implements the six approaches described previously.
Rtime takes as input the following parameters:

the input program P,
the set of legitimate states, S
the desired convergence time, λ, and
approach to be used for adding average convergence time

It identifies the program that satisfies the requirements of Problem 8. For the sake of
analysis, we allow Rtime to output a program even if it removes all transitions from some
state s ∈ SP . When this happens, the fraction of transitions that are preserved will be lower
as well. Since our goal is to compare the level of non-determinism left in the program and
the time taken for synthesis, this allows us to compare the different approaches directly.

Observe that all our approaches are sound by construction, i.e., when they output a
program, we have already validated that the average convergence time of that program is less
than the given parameter λ. Also, since these programs only use polynomial time, the number
of transitions they preserve is not necessarily maximum. Also, if any of these approaches
remove all transitions from some state s, making s be a deadlock state then they cannot
satisfy SP′ = SP . However, instead of declaring failure in this case, we report the number of
transitions still preserved in the program. This allows us to compare all approaches in all
examples. Note that the worst case is that all states outside S become deadlock states. In
this case, the fraction of preserved transitions will be 0.

We now demonstrate our approaches on a classic stabilizing algorithm, which is K-state
token ring program [10] and the Stabilizing Tree based algorithm [21] that is obtained adding
stabilization to the classic mutual exclusion algorithm by Raymond [21]. All the experiments
are performed on an Intel Core i7 machine 2.90GHz with 8GB memory. Also, the reachability
analysis required for the different approaches is performed with the BDD package [8].

6.1 K-state Token Ring Program
We give a brief description of the K-state token ring program from [10]. The program Ptk

consists of n processes, 0..(n− 1), that are arranged in a unidirectional ring. For each process
pi, it has one variable xi with domain {0, 1, . . . K-1}.

Action0 : x0 == xn−1 −→ x0 = (x0 + 1) mod K;
Action1 : xi 6= xi−1 −→ xi = xi−1;

In the above two actions, Action0 is only for process p0. When x0 == xn−1 is satisfied,
this action is enabled for execution. If chosen for execution, process 0 increments x0 by 1 in
modulo K arithmetic. Action1 is for all other processes pi, i 6= 0. When xi differs from xi−1,
Action1 is enabled for execution. When pi executes its action, it sets xi to the value of xi−1.
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Legitimate states. The legitimate states of the program are those states where only one
token is circulated along the ring. To calculate this set, we start from a state where all x
values are 0. Then, we compute all the states reached by the execution of the above program.

I Remark. In subsequent analysis, we let K = n to ensure that convergence to legitimate
states is guaranteed.

We conduct our experiments for repairing the token-ring program Ptk with different
average convergence requirements. Instead of using specific real number values for the desired
average convergence time, we use a fraction of the existing worst case convergence time. This
is due to the fact that the time required to obtain an average convergence time of 10 for 3
processes is not comparable to that for 4 processes. Hence, to obtain a valid comparison, we
first identify the average convergence time for each of the programs. Subsequently, we use
a fraction of this worst case requirement as the value of desired average convergence time.
Specifically, we use three values: λ1, λ2 and λ3, where λ1 is 70% of the original average
convergence time, λ2 is 80% of the original convergence time and λ3 is 90% of the original
convergence time. We perform our experiments for k ∈ {3, 4, 5, 6, 7}, where k is the number
of processes in the input program.

Our results are as shown in Tables 1 and 2. Specifically, Table 1 presents transition
preservation percentage of original program for the revised program generated by our
approaches. Table 2 presents revision time (in seconds) for generating the revised program
that fits the λ requirements. In particular, we run each experiment for at most one hour.
We set the running time as N/A when the experiment couldn’t return a result within one
hour. From these results, we find that SCP identifies the desired program most quickly. For
example for 7 processes when requiring λ3, SCP could find the desired program within 0.26
seconds. However, it eliminated most of the transitions. It only maintained 00.03 percentage
of the original transitions. By contrast, KBP took significantly longer time. However, it kept
81.26 percentage of transitions. Observed from these results, for token-ring program, we find
that RIAD provides the best approach for tradeoff between the time required to obtain the
desired program and the number of transitions preserved in that program.

6.2 Stabilizing Algorithm Based on Raymond’s Tree based Mutual
Exclusion Program

This program, Prt, consists of n processes, numbered 0..(n−1). These processes are arranged
in a fixed binary tree. For each process pi, it has one variable hi with domain{i,NBRi},
where NBRi denotes the neighbor processes of pi. When hi = i, then process pi has the
token. Otherwise, the holder of pi points to one of its neighbors. In particular, Prt provides
three types of convergence actions as follows.

Action0 : hi 6= NBRi ∪ {i} −→ hi = PRi|i|NBRi;
Action1 : hi 6= PRi ∧ hP Ri 6= i −→ hi = PRi;
Action2 : hi = PRi ∧ hP Ri

= i −→ hP Ri
= PRi;

In the above actions, PRi denotes the parent process of pi in the static tree and NBRi

denotes the neighbor processes of pi. Specifically, the first action Action0 ensures that the
holder of a process points to its neighbors or itself. This action is executed by all processes.
The second and third actions are exeted by all processes except the root process. Of these,
the second action ensures that the holder of pi is either PRi or holder of PRi is same as i.
And, the third action ensures that the holder relation between pi and PRi is acyclic.
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Table 1 Transition Coverage Percentage of Different Apporaches forK-state Token Ring Program.

λ # proc SCP ELP KBP RIA RIAD SSP

0.7 3 46.67% 80.00% 51.00% 60.00% 48.57% 80.00%
0.7 4 16.25% 80.00% 60.16% 70.00% 62.50% 80.00%
0.7 5 02.96% 63.62% 53.36% 55.97% 74.70% 63.62%
0.7 6 00.37% 53.96% 33.48% 64.58% 79.57% 53.96%
0.7 7 00.03% 46.91% 26.50% 53.85% 82.60% 46.91%

0.8 3 46.67% 93.33% 51.11% 60.00% 48.57% 80.00%
0.8 4 16.25% 88.75% 68.60% 92.50% 92.50% 80.00%
0.8 5 02.96% 81.84% 65.29% 77.81% 74.70% 71.53%
0.8 6 00.37% 72.76% 60.01% 64.58% 79.57% 61.00%
0.8 7 00.03% 64.85% 55.70% 70.11% 82.60% 59.27%

0.9 3 46.67% 93.33% 82.22% 94.29% 94.29% 80.00%
0.9 4 16.25% 95.63% 85.47% 92.50% 92.50% 80.00%
0.9 5 02.96% 91.11% 84.69% 99.57% 99.57% 63.62%
0.9 6 00.37% 88.16% 83.07% 99.44% 99.44% 60.99%
0.9 7 00.03% 83.93% 81.26% 84.67% 82.60% 53.76%

Table 2 Revision Time (in seconds) of Different Approaches for K-state Token Ring Program.

λ # proc SCP ELP KBP RIA RIAD SSP

0.7 3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.7 4 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.7 5 <0.01 0.06 0.20 0.07 0.06 0.07
0.7 6 0.02 3.34 9.05 0.50 0.43 3.30
0.7 7 0.26 N/A 1,134.79 4.30 2.60 N/A

0.8 3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.8 4 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.8 5 <0.01 0.04 0.16 0.05 0.06 0.06
0.8 6 0.024 1.93 6.34 0.50 0.43 2.80
0.8 7 0.26 N/A 905.66 3.83 2.58 N/A

0.9 3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.9 4 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.9 5 <0.01 0.02 0.09 0.03 0.04 0.07
0.9 6 0.02 0.95 4.13 0.29 0.34 2.71
0.9 7 0.25 206.50 580.12 2.80 2.77 N/A
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Table 3 Transition Coverage of Different Apporaches(Raymond Tree Based Mutual Exclusion
Program).

λ # proc SCP ELP KBP RIA RIAD SSP

0.7 4 3.13% 86.03% 82.91% 58.46% 58.46% 77.67 %
0.7 5 0.38% 81.25% 83.73% 43.02% 58.46% 81.25 %
0.7 6 00.03 % 85.60% 84.43% 38.97% 52.06 % 81.96%
0.7 7 <0.01% 86.22% 85.60% 33.91% 49.66% 84.40%
0.7 8 <0.01% 87.20 % 87.81 % 34.14% 39.00% 86.25%

0.8 4 3.13% 77.67% 75.83% 49.63% 53.66% 77.67 %
0.8 5 0.38% 85.66% 83.73% 55.12% 60.98% 81.25 %
0.8 6 00.03% 85.60% 87.73% 40.44% 57.35 % 81.96%
0.8 7 <0.01% 88.39% 87.37% 36.04% 52.70 % 84.18%
0.8 8 <0.01% 88.37% 89.43% 35.00% 49.90% 86.23%

0.9 4 3.13% 86.03% 91.64% 76.47% 76.47% 77.67 %
0.9 5 0.38% 91.31% 89.13% 55.12% 63.41% 78.61 %
0.9 6 0.03% 89.22% 91.89% 62.21% 58.82% 81.96%
0.9 7 <0.01% 91.42% 93.58% 61.92% 57.77% 84.18%
0.9 8 <0.01% 92.88% 91.87% 63.85% 53.94% 86.23%

Table 4 Revision Time (in seconds) of Different Approaches (Raymond Tree Based Mutual
Exclusion Program).

λ # proc SCP ELP KBP RIA RIAD SSP

0.7 4 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.7 5 <0.01 0.01 0.03 0.03 0.02 0.01
0.7 6 0.02 0.25 1.11 1.08 0.71 0.30
0.7 7 0.15 11.87 53.52 49.80 30.53 12.67
0.7 8 0.01 17.47 1,741.98 3,249.34 2,180.22 24.73

0.8 4 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.8 5 <0.01 0.01 0.03 0.02 0.02 0.01
0.8 6 0.02 0.24 1.14 1.00 0.69 0.30
0.8 7 0.16 9.45 50.18 47.77 32.58 12.67
0.8 8 0.01 12.59 1,706.08 3,170.72 1,905.08 24.54

0.9 4 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.9 5 <0.01 <0.01 0.02 0.02 0.01 0.01
0.9 6 0.02 0.19 0.95 0.67 0.58 0.30
0.9 7 0.16 6 .35 32.63 42.37 28.80 12.67
0.9 8 0.01 5.39 1,678.03 1,845.25 1,845.94 24.54
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Tables 3 and 4 present our experiment results for Raymond Tree based mutual exclusion
program. In particular, Table 3 illustrates the transition coverage percentage of the original
program for the newly generated program with respect to our six approaches. Table 4 shows
the performance of these six approach in revision time (in seconds). Similar to previous
study, we run each experiment for at most one hour. If the revision time exceeds one hour,
we will identify it as N/A in the table.

We perform our experiments for n ∈ {4, 5, 6, 7, 8}, where n is the number of processes in
the input program. From these results, same as in the experiment for token-ring program,
SCP identifies the desired program most quickly. For example for 7 processes when λ is set
to 0.9, SCP could find the desired program within 0.25 seconds. However, it eliminated most
of the transitions. It maintained less than 0.01 percentage of the original transitions. By
contrast, SSP took significantly longer time. However, it kept 86.23 percentage of transitions.
Observed from these results, we find that KBP provide the best approach for tradeoff between
the time required to obtain the desired program and the number of transitions preserved in
that program.

7 Related Work

In this work, we focused on the problem of adding average recovery in the presence of
an adversarial scheduler. The closest comparable work to this is [1] where authors have
considered the problem of synthesizing a program with given average recovery time. In this
work, the authors omit the notion of an adversarial scheduler. Instead, they assume that
each non-deterministic choice is resolved through randomization. Hence, if the program
synthesized using these approaches is used to reduce the recovery time then its average
convergence time in the presence of an adversary can be higher. By contrast, in our work,
we have focused on the problem of guaranteeing average recovery time in the presence of an
adversary. In other words, the solution provided by our approaches will ensure that even if
the adversary puts arbitrary probabilities on different non-deterministic choices, the average
recovery constraint will be satisfied.

The work in [7, 12, 19, 6, 14, 18, 20, 22, 16, 13, 15] has focused on the topic of adding safety
properties, liveness properties and fault-tolerance properties. The properties considered in
this work are represented using the framework of safety and liveness by Alpern and Schneider
[2]. As discussed in Section 1, each program computation can be evaluated independently to
determine whether it satisfies or violates the specification. By contrast, the average response
time considered in this paper cannot be represented using the framework in [2]. It requires
a more generalized framework of hyperproperties [9]. In this framework, satisfaction of a
requirement is determined by all computations included by the program. In particular, the
average convergence time is an instance of a hyperliveness property. While the work in this
paper enables one to repair a given program to add one hyperliveness property, one future
work in this area is to generalize to other hypersafety and hyperliveness properties.

8 Conclusion

We focused on the problem of revising a given program to add average recovery time in
the presence of an adversarial scheduler who could force the program to choose the least
desirable path during recovery. Adding average recovery time requires removal of some
behaviors/transitions that cause the recovery to increase beyond acceptable limit. We showed
that ensuring that only a minimum number of transitions are removed is NP-hard. Hence,
we proposed six different heuristics.
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We find that, as expected, the first heuristic, SCP, constructs the desired program in
the least amount of time. However, it ends up removing a large number of transitions
unnecessarily. For example, in case of the token ring program with 7 processes, it found the
desired program in 0.2 seconds. However, it preserved only 00.03 percent of transitions. By
contrast, RIAD preserved 82.60% of transitions but took around 2 seconds to obtain the
desired program.

We presented the analysis of our six approaches in two case studies. Based on these case
studies, we find that RIAD and KBP provide the best approaches for tradeoff between the
time required to obtain the desired program and the number of transitions preserved in that
program. We plan to conduct more case studies in the future so that we could identify the
effect of specific program structure on program revision for the problem of average recovery
time.

In our work, we focused on the problem of average recovery time in the presence of
an adversarial scheduler. There are two aspects to the recovery in the presence of faults:
(1) state to which the program is perturbed to when faults stop occurring, and (2) the
non-deterministic choices made by the scheduler during recovery. Regarding the first aspect,
we considered the case where the state to which the program is perturbed to is chosen with
equal probability. However, it is straightforward to extend it to the case where each state is
associated with a different probability distribution. This will only change the way average
convergence time is computed. However, all our aprpaoches could still be used. Regarding
the second aspect, we assumed that the scheduler can arbitrarily choose the execution order.
Our work could also be extended to other choices of scheduler.

This work also demonstrates the feasibility of adding some hyperproperties [9]. Specifically,
the requirement of average convergence time cannot be expressed in terms of the framework
of safety and liveness by [2]. This is due to the fact that checking whether a given program
computation is acceptable or not depends upon other computations involved in the program.
A possible future work in this area is to pursue such repair for other hyperproperties.
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