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Abstract
The height of a piecewise-testable language L is the maximum length of the words needed to
define L by excluding and requiring given subwords. The height of L is an important descriptive
complexity measure that has not yet been investigated in a systematic way. This paper develops
a series of new techniques for bounding the height of finite languages and of languages obtained
by taking closures by subwords, superwords and related operations.

As an application of these results, we show that FO2
pA˚,Ďq, the two-variable fragment of

the first-order logic of sequences with the subword ordering, can only express piecewise-testable
properties and has elementary complexity.
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1 Introduction

For two words u and v and some n P N, we write u „n v when u and v have the same
(scattered) subwords1 of length at most n. A language L Ď A˚ is n-piecewise-testable (or
just “n-PT”) if it is closed under „n, or, equivalently, if it can be obtained as a boolean
combination of principal filters of the form A˚a1A

˚a2A
˚ ¨ ¨ ¨ a`A

˚ with ` ď n, and where
a1, . . . , a` are letters from A. For example, with A “ ta, b, cu, the language a`b˚ is 2-PT
since it can be obtained as A˚aA˚ X A˚cA˚ X A˚bA˚aA˚. Thus a`b˚ can be described
as “all words that have a but neither c nor ba as a subword”. Finally, we say that L is
piecewise-testable if it is n-piecewise-testable for some n and the smallest such n is called the
piecewise-testability height of L, denoted hpLq in this paper. We write PT for the class of
piecewise-testable languages (over some alphabet A) and PTn for the languages with height
at most n, so that PT0 Ď PT1 Ď ¨ ¨ ¨PTn Ď ¨ ¨ ¨PT form a cumulative hierarchy of varieties
of regular languages.

Piecewise-testable (PT) languages were introduced more than forty years ago in Simon’s
doctoral thesis (see [29, 27]) and have played an important role in the algebraic and logical
theory of first-order definable languages, see [25, 4, 15] and the references therein. They
also constitute an important class of simple regular languages with applications in learning
theory [17], databases [2], linguistics [26], etc. The concept of PT languages has been
extended to encompass trees [2], infinite words [24], pictures [23], etc.

∗ This work was partially supported by ANR grant ANR-14-CE28-0002 PACS.
1 Or “subsequences”, not to be confused with “factors”.
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37:2 The Height of Piecewise-Testable Languages with Applications in Logical Complexity

The height of piecewise-testable languages is a natural measure of descriptive complexity.
Indeed, hpLq coincides with the number of variables needed in a BΣ1 formula that defines L [4].
In this paper, the main question we address is “how can one bound the height of PT languages
obtained by natural language-theoretic operations?” Since the height of these languages is a
more robust measure than, say, their state complexity, it can be used advantageously in the
complexity analysis of problems where PT languages are prominent. As a matter of fact, our
results apply to open problems in the logic of subwords, see section 7.

Related work. The height of PT languages has been used to measure the difference between
separable languages, see e.g. [9]. However the literature is quite poor on the question of
estimating the height of PT languages. Algorithms that decide whether a regular language
L (given e.g. by its canonical DFA AL) is PT usually provide a bound on hpLq in terms of
AL: recently Klíma and Polák showed that hpLq is bounded by the depth of AL [16]. The
currently best bounds on hpLq based on automata for L have been obtained by Masopust
and Thomazo [22, 21].

When L is obtained by operations on other languages, very little is known about PT
heights. It is clear that hpA˚rLq “ hpLq and that hpLYL1q ď maxphpLq, hpL1qq but beyond
boolean operations, quotients, and inverse morphisms, there are very few known ways of
obtaining PT languages (see Appendix A).

Our contribution. We provide upper bounds on the PT height of finite languages and on
PT-languages obtained by downward-closure (collecting all subwords of all words from some
L), upward-closure, and some related operations (collecting words in L that are minimal
wrt the subword ordering, etc.) We also show that the incomparability relation preserves
piecewise-testability and bound the PT heights of the resulting languages. Crucially, we show
that these bounds are polynomial when expressed in terms of the PT height of the arguments.
One important tool is a small-subword theorem that shows how any long word u contains a
short subword u1 that is „n-equivalent. Reasoning about subwords involves ad hoc techniques
and leveraging the small-subword theorem to analyse downward-closures or incomparability
languages turns out to be non-trivial. Subsequently, all the above results are used to prove
that FO2

pA˚,Ďq, the two-variable logic of subwords, has elementary complexity. For this
logic, the decidability proof in [14] did not come with an elementary complexity upper bound
because the usual measures of complexity for regular languages can grow exponentially with
each Boolean combination of upward and downward closures, and this is what prompted our
investigation of PT heights.

Outline of the paper. Section 2 recalls the basic notions (subwords, „n, . . . ) and gives
some first bounds relating PT heights and canonical automata. Section 3 focuses on finite
languages and develops our main tool: the small-subword theorem. Sections 4 and 5 give
bounds for the height of PT languages obtained by upward and downward closures, while
Section 6 considers the incomparability relation and the resulting PT heights. Finally, in
Section 7 we apply these results to the complexity of FO2

pA˚,Ďq. Several proofs have been
relegated to the Appendix, usually when the underlying techniques are not used in later
developments.

2 Basic notions

We consider finite words u, v, . . . over a given finite alphabet A of letters like a, b, . . .. Con-
catenation of words is written multiplicatively, with the empty word ε as unit. We freely use
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regular expressions like pabq˚ ` pbaq˚ to denote regular languages.
The length of a word u is written |u| while, for a letter a P A, |u|a denotes the number of

occurrences of a in u. The set of all words over A is written A˚ and for ` P N we use A“`
and Aď` to denote the subsets of all words of length ` and of length at most ` respectively.

A word v is a factor of u if there exist words u1 and u2 such that u “ u1vu2. If
furthermore u1 “ ε then v is a prefix of u and we write v´1u to denote the residual u2. If
u2 “ ε then v is a suffix and u v´1 is the residual.

Subwords. We say that a word u is a subword (i.e., a subsequence) of v, written u Ď v,
when u is some a1 ¨ ¨ ¨ an and v can be written as v0a1v1 ¨ ¨ ¨ anvn for some v0, v1, . . . , vn P A

˚,
e.g., ε Ď bba Ď ababa. We write u Ă v for the associated strict ordering, where u ‰ v. Two
words u and v are incomparable (with respect to the subword relation), denoted u K v, if
u Ď v and v Ď u. Factors are a special case of subwords.

With any u P A˚ we associate the upward and downward closures, Òu and Óu, given by2

Òu
def
“ tv P A˚ | u Ď vu , Óu

def
“ tv P A˚ | v Ď uu .

For example, Óab “ tab, a, b, εu and Òab “ A˚aA˚bA˚. We also consider the strict superwords
and subwords, with Òău

def
“ tv | u Ă vu and Óău

def
“ tv | v Ă uu. This is generalised to

the closures of whole languages, via e.g. ÒL “
Ť

uPL Òu and ÓăL “
Ť

uPL Óău. We say that
a language L is upward-closed if L “ ÒL, and downward-closed if L “ ÓL. Note that a
language is upward-closed if, and only if, its complement is downward-closed. It is known
that upward-closed and downward-closed languages are regular (Haines Theorem [6], also a
corollary of Higman’s Lemma [8]) so ÒL, ÓL, ÒăL and ÓăL are regular for any L. Finally we
further define

IpLq
def
“ tu P A˚ | Dv P L : u K vu .

Thus IpLq collects all words that are incomparable with some word in L.

Simon’s congruence and piecewise-testable languages. For n P N and u, v P A˚, we let

u „n v
def
ðñ ÓuXAďn “ Óv XAďn . u Àn v

def
ðñ u „n v ^ u Ď v . (1)

Note that Àn is stronger than „n. Both relations are (pre)congruences: u „n v and u1 „n v1
imply uu1 „n vv1, while u Àn v and u1 Àn v1 imply uu1 Àn vv1. The equivalence „n is called
Simon’s congruence of order n. We write rusn for the equivalence class of u P A˚ under „n.
Note that each „n, for n “ 1, 2, . . ., has finite index.

There exist several characterisations of piecewise-testable languages: in the introduction
we said that L Ď A˚ is n-piecewise-testable (or “n-PT”) if it is a boolean combination of
principal filters A˚a1A

˚a2A
˚ ¨ ¨ ¨ a`A

˚ (i.e., of closures Òa1a2 ¨ ¨ ¨ a`) with ` ď n. Equivalently,
L is n-PT if it is a union ru1sn Y ¨ ¨ ¨ Y rumsn of „n-classes. The first definition is convenient
when we want to show that L is n-PT: we describe it in terms of required and excluded
subwords and check the length of these subwords, as when we showed that a`b˚ is 2-PT.
The second characterisation is convenient when we want to show that L is not n-PT: by
exhibiting two words u „n v such that u P L and v R L, one proves that L is not saturated
by „n. E.g., a`b˚ is not 1-PT since ab „1 ba while only ab is in a`b˚.

2 The definition of Òu involves an implicit alphabet A that will always be clear from the context.
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37:4 The Height of Piecewise-Testable Languages with Applications in Logical Complexity

When we abstract away from n, we said that a language L Ď A˚ is piecewise-testable (or
PT) if it is n-PT for some n. Other characterisations are: L is PT iff its syntactic monoid is
J -trivial (Simon’s Theorem), iff it is definable in the BΣ1 fragment of the first-order logic
over words [4], iff its canonical DFA is acyclic and locally confluent [16].

Note that if L is n-PT, it is also m-PT for any m ą n. We write hpLq for the smallest n –
called the “height of L” – such that L is n-PT, letting hpLq “ 8 when L is not PT.

The following properties will be useful:

I Lemma 2.1. For all u, v P A˚ and a P A:
(1) If u Àn v then u „n w for all w P A˚ such that u Ď w Ď v.
(2) If u „n v then there exists w P A˚ such that u Àn w and v Àn w.
(3) If uv „n uav then uv „n ua`v for all ` P N.
(4) Every equivalence class of „n is a singleton or is infinite.

Proof. (1) is by combining Eq. (1) and Óu Ď Ów Ď Óv; (2) is Lemma 6 from [29]; (3) is in
the proof of [27, Coro. 2.8]; (4) follows from (1), (2) and (3). J

Constructing PT languages. Recall that PT languages constitute a subvariety of the dot-
depth 1 languages, themselves a subvariety of the star-free languages, themselves a subvariety
of the regular languages [4]. As such, all classes PTn for n P N, as well as PT, are closed
under union, intersection, complementation, inverse morphisms and quotients (left and right
residuals). These properties lead to (in)equations like

hpLY L1q ď maxphpLq, hpL1qq , hp Lq “ hpLq , (2)
hpu´1Lq ď hpLq , hpLv´1q ď hpLq , (3)

hpρ´1pLqq ď hpLq when ρ : A˚ Ñ B˚ is a morphism, (4)

that can be used to bound the height of the PT languages we construct. See Appendix B for
a proof of Eq. (4).

Relating PT height and state complexity. For regular languages, a standard measure of
descriptive complexity is state complexity, denoted scpLq, and defined as the number of states
of the canonical DFA for L.

The bounds we just listed let us contrast the height of a PT language with its state
complexity. For PT languages, hpLq is smaller than or equal to scpLq (equality occurs e.g.
when L “ ta`u) since scpLq bounds the depth of the automaton, i.e., the maximum length of
a simple path from the initial to some final state, which in turns bounds hpLq [16, 22].

In the other direction, we can prove:

I Theorem 2.2. Let A be an alphabet of size k with k ą 1. Suppose L Ď A˚ is n-PT. Then
the canonical DFA for L has at most m states,3 where

logm “ k

ˆ

n` 2k ´ 3
k ´ 1

˙k´1
logn log k .

Here log means log to the base 2. Thus, for fixed k, scpLq is in 2Opnk´1 lognq, where n “ hpLq.

3 It is shown in [22] that the depth (not the size) of the canonical DFA is bounded by
`n`k

n

˘

´ 1.
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Proof. We build a DFA for L which remembers the equivalence class under „n of the word
it has read so far. This is possible because for all w P A˚ and a P A, the class rwasn of wa is
determined by rwsn and a. The initial state is rεsn, and the final states are all the classes
rusn which are a subset of L. In [11] we showed that the number of equivalence classes of
„n is bounded by m. J

The general situation is that hpLq can be much smaller than scpLq as we see in the
following sections. More importantly, hpLq is more robust than scpLq and, for example,
state complexity will usually increase (sometimes exponentially) when constructing a regular
language with boolean combinations of simpler languages4 while PT height will not increase.5

More constructions for PT languages. Two simple but important constructions that
provide PT languages are the closures by subwords and superwords, ÒL and ÓL, defined
above. Every upward-closed language is PT since it is the union of finitely many languages
of the form Òu (by Higman’s Lemma [18]). Every downward-closed language is PT too since
its complement is upward-closed. Analysing the height of these PT languages is the topic of
Sections 4 and 5.

We are not aware of more piecewise-testability preserving operations on languages in
the literature. Let us recall that PT languages are not closed under concatenation (even
just L ÞÑ a.L), Kleene star, shuffle product, conjugacy, and simple operations like renamings
(length-preserving morphisms) or the erasing of one letter, see Appendix A for details.

In view of this, it was a good surprise to discover that IpLq is PT when L is. Bounding
its height requires a non-trivial ad hoc proof and is the topic of Section 6.

3 PT height of words and the small-subword theorem

Our starting point is an analysis of the PT height of single words. It is clear that any
singleton language tuu is PT since tuu “ Òur

Ť

vPtuu�A Òv, which entails hptuuq ď |u| ` 1.
Here tuu� A is a shuffle product, collecting all the shuffles of u with a letter from A. In
other words, tuu� A “ tv : u Ď v ^ |v| “ |u| ` 1u. Below we often omit set-theoretical
parentheses when denoting singletons, writing e.g. “hpuq” or “u�A”.

The PT height of a singleton language can be computed in time Opp|u| ` |A|q ¨ |u| ¨ |A|q,
see Appendix C. This can be used to compute the PT height of finite languages: for such
languages, the inequality in Eq. (2) becomes

hptu1, . . . , umuq “ maxthpu1q, . . . , hpumqu . (5)

Indeed, hptu1, . . . , umuq “ n implies ruisn Ď tu1, . . . , umu for any i. Thus ruisn is a singleton
in view of Lemma 2.1.4. Hence ruisn “ tuiu and hpuiq ď n.

The |u| ` 1 upper bound for hpuq is reached for u “ a` (to see that hpa`q ą `, one notes
that ta`u is not closed under „` since a` „` a``1). However, words on more than one letter
can generally be described within some PT height lower than their length. For example

taabbu “ pÒaaX Òbbqr pÒbaY ÒaaaY Òbbbq ,

4 Such combinatorial explosions also occur when restricting to piecewise-testable languages [12].
5 This robustness is not restricted to boolean operations: write revpuq for the reversal of u, e.g., revpabcq “

cba and extend to languages. It is clear that revpLq is n-PT when L is – indeed revpÒuq “ Òrevpuq,
revpLY L1q “ revpLq Y revpL1q, and revpA˚ r Lq “ A˚ r revpLq – but scprevpLqq cannot be bounded by
a polynomial of scpLq, even in the case of finite, hence PT, languages [28].
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37:6 The Height of Piecewise-Testable Languages with Applications in Logical Complexity

showing hpaabbq ď 3. (Note that hpaabbq ą 2 since aabbb „2 aabb.) It turns out that the PT
height of words can be much lower than their length as we now show.

Words with low PT height. We now introduce a family of words with “low PT height”
that will be used repeatedly in later sections. Let Ak “ ta1, . . . , aku be a k-letter alphabet.
We define a word Uk P A˚k by induction on k and parameterized by a parameter η P N. We
let U0

def
“ ε and, for k ą 0, Uk

def
“ pUk´1akq

ηUk´1. For example, for η “ 3 and k “ 2, one has
U2 “ a1a1a1a2a1a1a1a2a1a1a1a2a1a1a1.

I Proposition 3.1. For k ě 0, |Uk| “ pη ` 1qk ´ 1 and hpUkq “ kη ` 1.

Proof sketch. An easy induction on k shows that |Uk| “ pη`1qk´1. To show hpUkq “ kη`1
we use auxiliary languages Pk, Nk Ď A˚k defined inductively by:

P0 “ tεu, N0 “ H,

and, for k ą 0,
Pk “ ta

i
kva

η´i
k | 0 ď i ď η ^ v P Pk´1u,

Nk “ ta
η`1
k u Y taikwa

η´i
k | 0 ď i ď η ^ w P Nk´1u.

We now claim that for any k P N and u P A˚k :
`

ľ

vPPk

v Ď u
˘

^
`

ľ

wPNk

w Ď u
˘

ðñ u “ Uk. (6)

(See Appendix D for a proof.) Thus hpUkq ď kη ` 1 since the words in Pk have length kη
and the words in Nk have length at most kη ` 1.

It remains to show that hpUkq ą kη, i.e., that tUku is not closed under „kη: for this it is
enough to note that Uk „kη Uka1 using [29, Lemma 3]. J

For later use we also record the following bounds (see Appendix E):

hpÓUkq “ ηpη ` 1qk´1 ` 1 . (7)

Rich words and rich factorizations. Assume a fixed k-letter alphabet A. We say that a
word u is rich if all the k letters of A occur in it, and that it is poor otherwise. For ` P N, we
further say that u is `-rich if it can be written as a concatenation u “ u1 ¨ ¨ ¨u`u

1 where the `
factors u1, . . . , u` are rich.

The richness of u is the largest ` P N such that u is `-rich. Note that having |u|a ě ` for
all letters a P A does not imply that u is `-rich.

I Lemma 3.2 (See Appendix F). If u1 and u2 are respectively `1-rich and `2-rich, then
v „n v

1 implies u1vu2 „`1`n``2 u1v
1u2.

The rich factorization of u P A˚ is the decomposition u “ u1a1 ¨ ¨ ¨umamv defined by
induction in the following way: if u is poor, we let m “ 0 and v “ u; otherwise u is rich, we
let u1a1 (with a1 P A) be the shortest prefix of u that is rich and let u2a2 ¨ ¨ ¨umamv be the
rich factorization of the remaining suffix pu1a1q

´1u. By construction m is the richness of u.
E.g., assuming k “ 3 and A “ ta, b, cu, the following is a rich factorization with m “ 2:

u
hkkkkkkkkkkkikkkkkkkkkkkj

bbaaabbccccaabbbaa “

u1
hkkkikkkj

bbaaabb ¨ c ¨

u2
hkkikkj

cccaa ¨ b ¨

v
hkkikkj

bbaa

Note that, by construction, u1, . . . , um and v are poor.



P. Karandikar and Ph. Schnoebelen 37:7

I Lemma 3.3 (See Appendix F). Consider two words u, u1 of richness m and with rich
factorizations u “ u1a1 ¨ ¨ ¨umamv and u1 “ u11a1 ¨ ¨ ¨u

1
mamv

1. Suppose that v „n v1 and that
ui „n`1 u

1
i for all i “ 1, . . . ,m. Then u „n`m u1.

The small-subword theorem. Our next result is used to prove lower bounds on the PT
height of long words. It will be used repeatedly in the course of this paper.

For k “ 1, 2, . . . define fk : NÑ N by induction on k with

f1pnq “ n , (8)
fk`1pnq “ max

0ďmďn
mfkpn` 1´mq `m` fkpn´mq . (9)

The definition of fk is only used in the proof of Theorem 3.4. In the rest of the paper, we
simplify things by relying on the following upper bound (proved in [13, Prop. 4.4]):

fkpnq ď
´n` 2k ´ 1

k

¯k

´ 1 ă
´n

k
` 2

¯k

. (10)

I Theorem 3.4 (Small-subword Theorem). Let k “ |A|. For all u P A˚ and n P N there
exists some v P A˚ with v Àn u and such that |v| ď fkpnq.

Proof. By induction on k, the size of the alphabet.
With the base case, k “ 1, we consider a unary alphabet A “ tau and u is a|u|. Now

a` „n u iff ` “ |u| ă n or ` ě n ď |u|. So taking v “ a` for ` “ minpn, |u|q proves the claim.
When k ą 1 we consider the rich factorization u “ u1a1u2a2 ¨ ¨ ¨umamu

1 of u. Let
n1 “ maxpn` 1´m, 1q. Every ui is a word on the subalphabet Ar taiu. Hence by induction
hypothesis there exists vi Ď ui with |vi| ď fk´1pn

1q and vi „n1 ui, entailing uiai „n1 viai.
Similarly, the induction hypothesis entails the existence of some v1 Ď u1 with v1 „n1´1 u

1 and
|v1| ď fk´1pn

1 ´ 1q. Note that in these inductive steps we use a length bound obtained with
fk´1 by using the fact that u1, . . . , um and u1, being poor, use at most k ´ 1 letters from A.

We now consider two cases. If m ď n ´ 1, we let v “ v1a1 ¨ ¨ ¨ vmamv
1, so that v Ď u

and |v| ď mfk´1pn
1q `m ` fk´1pn

1 ´ 1q. We deduce |v| ď fkpnq using Eq. (9) and since
n1 “ n` 1´m. That v „n u, hence v Àn u, is an application of Lemma 3.3: v1a1 ¨ ¨ ¨ vmamv

1

is indeed the rich decomposition of v since n1 ě 2, v1 „n1´1 u
1, and vi „n1 ui for i “ 1, . . . ,m.

If m ě n, then u is n-rich and its subwords include all words of length at most n. It is
easy to extract some n-rich subword v of u that only uses kn letters. Now v „n u since both
u and v are n-rich, entailing v Àn u. One also checks that |v| “ kn ď fkpnq. J

Note that the bound fkpnq in Theorem 3.4 does not depend on u.

We can already apply the small-subword theorem to the case of finite languages.

I Proposition 3.5 (Finite languages). Suppose L Ď A˚ is finite and nonempty with |A| “ k.
Let ` be the length of the longest word in L. Then 1` kp`1{k ´ 2q ă hpLq ď `` 1.

Proof. Thanks to Eq. (5), it is enough to consider the case where L “ tuu is a singleton. So
assume hpLq “ hpuq “ n and |u| “ `. The small-subword theorem says that u „n v for some
short v but necessarily v “ u since rusn is a singleton, hence ` ď fkpnq. Using Eq. (10) one
gets ` ď fkpnq ă

`

n`2k´1
k

˘k. This gives n ą 1` kp`1{k ´ 2q. The upper bound hpLq ď `` 1
was observed earlier. J

We already noted that the upper bound is tight. The lower bound is quite good: for Uk seen
above, ` “ pη ` 1qk ´ 1, so that ` ď

`

n`2k´1
k

˘k
´ 1 gives n “ hpUkq ě kη ´ k ` 1 while we

know hpUkq “ kη ` 1.

CSL 2016
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4 Upward closures

It is known that ÒL is PT for any L. Related languages are ÒăL (used in Section 7) and
minpLq def

“ tu P L | @v P L : v Ă uu. This section provides bounds on the PT height of
languages obtained by such constructions.

We first note that, in the special case of singletons, the PT height of ÒL and IpLq always
coincide with word length:6

I Proposition 4.1. For any u P A˚

hpÒuq “ |u| , hpIpuqq “ hpÒuY Óuq “
#

|u| if |A| ě 2,
0 otherwise.

(11)

Proof. Let ` “ |u|. Obviously hpÒuq ď ` and the point is to prove hpÒuq ą `´ 1. For this we
assume ` ą 0 and write u “ a1 ¨ ¨ ¨ a`. With a letter a P A we associate a word πa of length
|A| that lists all the letters of A exactly once and ends with a. E.g. πb “ acdb works when
A “ ta, b, c, du. Let now v “ πa1πa2 ¨ ¨ ¨πa`´1 and v1 “ v ¨ a`. Then v „`´1 v

1 since v has all
subwords of length `´ 1. However u Ď v and u Ď v1 hence Òu is not closed under „`´1.

Now for Ipuq: we note that in the case of singletons we can write Ipuq “ A˚r pÒuYÓăuq,
from which hpIpuqq ď ` follows since all the finitely many words in Óău have length at most
` ´ 1. To show hpIpuqq ą ` ´ 1 when |A| ě 2, we assume ` ą 1 and use v and v1 again:
v1 R Ipuq while v P Ipuq hence Ipuq is not closed under „`´1. Finally, when |A| ă 2 or ` “ 0,
Ipuq “ H, while when ` “ 1 and |A| ě 2, Ipuq is neither H nor A˚. J

I Corollary 4.2. For any L Ď A˚ and m P N, if all words in minpLq have length bounded by
m, then ÒL is m-PT while ÒăL and minpLq are pm` 1q-PT.

Proof. Recall that minpLq is finite by Higman’s Lemma. Then note that ÒL “ ÒminpLq and
that ÒăL “ pÒLqr minpLq. Use hpuq ď |u| ` 1 from Section 3. J

This can be immediately applied to languages given by automata or grammars.

I Theorem 4.3 (Upward closures of regular and context-free languages).
(1) If L is accepted by a nondeterministic automaton (a NFA) having depth m, then ÒL is

m-PT while ÒăL and minpLq are pm` 1q-PT.
(2) The same holds if L is accepted by a context-free grammar (a CFG) when we let m “ `N

where N is the number of nonterminal symbols and ` is the maximum length for the
right-hand side of production rules.

Proof sketch. (1) A word accepted by the NFA is minimal wrt Ď only if it is accepted along
an acyclic path. (2) A word generated by the CFG is minimal wrt Ď only if any nonterminal
appears at most once along any branch of its derivation tree. J

The bounds in Theorem 4.3 can be reached, e.g., for L a singleton of the form tamu.
For our applications, we are interested in expressing hpÒLq in terms of hpLq, assuming

that L is PT.

I Theorem 4.4 (Upward closures of PT languages). Suppose L Ď A˚ is n-PT and |A| “ k.
Let m “ fkpnq. Then ÒL is m-PT, while ÒăL and minpLq are pm` 1q-PT.

6 This phenomenon does not extend to the other operations nor to finite sets.
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Proof. By the small-subword theorem, and since L is closed under „n, the minimal elements
of L have length bounded by m. Then Corollary 4.2 applies. J

I Remark 4.5. The upper bound in Theorem 4.4 is quite good: for any k, η ě 1, the
language L “ tUku has hpUkq “ n “ kη ` 1 so that Theorem 4.4 with Eq. (10) give
hpÒUkq ď fkpnq ă pη ` 2qk. On the other hand we know that hpÒUkq “ pη ` 1qk ´ 1 by
Proposition 4.1.

5 Downward closures

We now move to downward closures. It is known that, for any L Ď A˚, ÓL and ÓăL are PT
since they are the complement of upward-closed languages. Our strategy for bounding hpÓLq
is to approximate L by finitely many D-products.

A D-product is a regular expression P of the form E1 ¨ E2 ¨ ¨ ¨E` where every Ei is either
of the form B˚ for a subalphabet B Ď A (B˚ is called a star factor of P ), or a single letter
a P A (a letter factor). We say that ` is the length of P .

I Proposition 5.1. If P is a D-product of length `, hpÓP q ď `` 1 and hpÓăP q ď `` 1.

Proof. Let P 1 be the regular expression obtained from P by replacing any letter factor a by
pa` εq so that P 1 “ ÓP . Now any residual w´1P 1 of P 1 is either the empty language H, or
corresponds to a suffix P 2 of P 1. This is shown by induction on the length of suffixes, using

b´1“pa` εqP 2
‰

“

"

P 2 if b “ a,

b´1P 2 otherwise, b´1“B˚P 2
‰

“

"

B˚P 2 if b P B,
b´1P 2 otherwise,

and a´1ε “ H for the last suffix, i.e., the empty product. (Note that the correctness of
the first equality when b “ a, and of the second equality when b P B, rely on b´1P 2 Ď P 2:
this holds because P 2 is downward-closed.) Thus P 1 has at most `` 1 distinct non-empty
residuals, i.e., the canonical DFA for P 1 has at most `` 1 productive states, hence has depth
at most `` 1. We now apply Theorems 1 and 2 from [16] and conclude that hpÓP q ď `` 1.

For ÓăP very little need to be changed. If P contains at least one star factor then ÓăP
and ÓP coincide. If P only contains letter factors then P denotes a singleton tuu with |u| “ `.
Then ÓăP is a finite set of words of length at most `´ 1, entailing hpÓăP q ď `. J

The bounds in Proposition 5.1 can be reached, e.g., for P “ a ¨ ¨ ¨ a.

I Corollary 5.2. If L Ď
Ť

i Pi Ď ÓL for a family pPiqi of D-products of length at most `,
then hpÓLq ď `` 1 and hpÓăLq ď `` 1.

Proof. Obviously ÓL “
Ť

i ÓPi and the union is finite since there are only finitely many
D-products of bounded length. J

This can be immediately applied to languages given by automata or grammars.

I Theorem 5.3 (Downward-closures of regular and context-free languages).
(1) If L is accepted by a nondeterministic automaton (a NFA) having depth m, then ÓL and

ÓăL are `-PT for ` “ 2m` 2.
(2) The same holds if L is accepted by a CFG in quadratic normal form (a QNF, see [1])

with N nonterminals and ` “ 4 ¨ 3N´1 ` 2.
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Proof sketch. (1) For a word u P L we consider the cycles in an accepting path on u.
This leads to a factoring u “ u0a1u1a2 ¨ ¨ ¨ apup of u such that the accepting path is some
q0

u0
ÝÑ q0

a1
ÝÑ q1

u1
ÝÑ q1

a2
ÝÑ q2 ¨ ¨ ¨ qp´1

ap
ÝÑ qp

up
ÝÑ qp with q0, q1, . . . , qp all different. Then p ď m. Let

now Bi Ď A be the set of letters occurring in ui and define Pu
def
“ B˚0 a1B

˚
1 a2 . . . B

˚
p´1apB

˚
p .

Then u P Pu and Pu Ď ÓL. Finally, L Ď
Ť

uPL Pu Ď ÓL and each Pu has length ď 2m` 1.
(2) Bachmeier et al. showed that there is an NFA for ÓL having 2 ¨ 3N´1 states [1]. J

For our applications, we are interested in bounding hpÓLq in terms of hpLq when L is PT.

I Theorem 5.4 (Downward closures of PT languages). Suppose L Ď A˚ is n-PT and |A| “ k.
Let m “ fkpnq. Then ÓL and ÓăL are pk ` 1qpm` 1q-PT.

The rest of this section is devoted to the proof of Theorem 5.4. Our strategy is to approximate
L by D-products, this time relying on the fact that L is closed under „n.

Recall Lemma 2.1.3 stating that, given two words u, v and a letter a P A, uv „n uav
entails uv „n ua`v for all ` P N. We express this as “uav P ruvsn implies ua˚v Ď ruvsn” and
call it a pumping property of PT classes. We now establish more general pumping properties.

I Lemma 5.5. If uB˚C˚B˚v Ď ruvsn, where B,C Ď A are subalphabets, then upBYCq˚v Ď
ruvsn.

Proof idea. We prove that for any m P N, for any w P B˚pC˚B˚qm, for any s P Aďn,
s Ď uwv implies s Ď uv. The proof is by induction on m, knowing that the claim holds by
assumption for m ď 1. See Appendix G for details. J

Going on we can show that uab1b2 ¨ ¨ ¨ bmav „n uv entails uwv „n uv for all w P

pa` b1q
˚pa` b2q

˚ ¨ ¨ ¨ pa` bmq
˚, hence the two surrounding a’s can join any surrounded letter.

I Lemma 5.6 (See Appendix G). Suppose L1B
˚
1B

˚
2 ¨ ¨ ¨B

˚
` L2 Ď rusn for some languages

L1, L2 Ď A˚ and subalphabets B1, B2, . . . , B` Ď A with ` ě 3. If a P B1 X B` then, letting
B1i “ Bi Y tau, L1B

1˚

1B
1˚

2 ¨ ¨ ¨B
1˚

`L2 Ď rusn.

There remains to bound the products that cannot be simplified by the above Lemmas.

I Lemma 5.7. Suppose A is a finite set and E1, E2, . . . , E` are ` ą 1 subsets of A such that
the following hold:

for all 1 ď i ă `, Ei Ę Ei`1 and Ei`1 Ę Ei ;
for all a P A and 1 ď i ă j ď `, if a P Ei X Ej, then a P Ek for all i ď k ď j.

Then ` ď |A|.

Proof. Note that by the first condition, each Ei is nonempty. Define E0 “ E``1 “ H. For
0 ď i ď `, define Fi “ Ei4Ei`1, where 4 denotes symmetric difference. Now F0 and F` have
size at least 1, and by the first condition, every other Fi has size at least 2. Thus

ř

i |Fi| ě 2`.
By the second condition, any a P A occurs in at most two Fi’s, thus

ř

i |Fi| ď 2|A|. So we
conclude 2` ď 2|A|. J

I Lemma 5.8. Let L Ď A˚ be n-PT. Let k “ |A| and m “ fkpnq. For every u P L there is
a D-product Pu of length ` ď mk `m` k such that u P Pu Ď L.

Proof idea. A formal proof is given in Appendix G and we just outline it here: Assume
u P L. By the small-subword theorem there exists a subword v “ a1 ¨ ¨ ¨ a` of u with v „n u
and ` “ |v| ď m. So u is v plus some added letters. By Lemma 2.1.3, all these added
(occurrences of) letters can be pumped, yielding a D-product with u P P Ď rusn. Applying
Lemma 5.6 and further simplifications yields a shorter D-product with P Ď Pu Ď rusn. Since
Pu cannot be further simplified, Lemma 5.7 can be used to bound its size. J
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We may now conclude:

Proof of Theorem 5.4. With Lemma 5.8 we obtain L “
Ť

uPL Pu where each Pu has length
bounded by km` k `m. We can then apply Proposition 5.1. J

I Remark 5.9. The upper bound in Theorem 5.4 is quite good: for any k, η ě 1, the
language L “ tUku from Proposition 3.1 has hpUkq “ n “ kη ` 1 so that Theorem 5.4 gives
hpÓUkq ă pk ` 1qpη ` 2qk. On the other hand we know that hpÓUkq “ ηpη ` 1qk´1 ` 1 by
Eq. (7).

6 Piecewise-testability and PT height for IpLq

Recall that IpLq is the set of words which are incomparable (under Ď) with some word in L.
In this section we prove the following result.

I Theorem 6.1. Suppose L Ď A˚ is n-PT and |A| “ k. Let m “ fkpnq. Then IpLq is
pm`1q-PT.

It is not too difficult to show the regularity of IpLq when L is regular, and this can be
done using standard automata-theoretical techniques. Indeed, it can be shown that the
incomparability relation K is a rational relation [14].

Showing that I also preserves piecewise-testability requires more work. For such questions,
I does not behave as simply as the other pre-images we considered before. In particular, we
observe that IpLq is not necessarily PT when L is regular. For example, taking A “ ta, b, cu
and letting

L “ pabcq˚pε` a` abq “ tε, a, ab, abc, abca, abcab, . . .u

gives a language that is totally ordered by Ď and contains one word of each length, so that
IpLq “ A˚ r L, which is not PT since L is not.

Similarly, IpLq is not necessarily regular when L is not. For example, taking A “ ta, bu
and

L “ ta`b`pε` bq | ` P Nu “ tε, b, ab, abb, aabb, a2b3, a3b3, . . .u .

Again L is totally ordered by Ď and contains one word of each length. Hence IpLq “ A˚rL,
which is not regular.

The above examples illustrate our strategy for proving Theorem 6.1: if a language L is
totally ordered by Ď then IpLq X L “ H, or equivalently IpLq Ď A˚ r L. Similarly, if L
contains at least two words having same length ` then IpLq contains all words of length `.

We now proceed with a more formal proof. For technical convenience we introduce a dual
construct:

CpLq
def
“ tu P A˚ | L Ď ÒuY Óuu .

Note that CpLq coincides with A˚ r IpLq and that CpLY L1q “ CpLq X CpL1q. We find it
easier to analyse CpLq instead of IpLq, but these two languages have the same PT height.

As we just hinted at, it is useful to think of the “layers” L X A“` “ tw P L : |w| “ `u

of L, and check whether they contain 0, 1 or more words (we say that the layer is empty,
singular, or populous). Observe that if LXA“` is populous then CpLq XA“` is empty.

For the rest of this section, we consider a fixed n ě 1 and let m “ fkpnq. We start with
a technical lemma: write u À1

n v when u Àn v and |v| “ |u| ` 1, i.e., v is u with one letter
added in a way that is compatible with „n. Note that Àn is the transitive closure of À1

n.
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I Lemma 6.2. Let u, v, w P A˚ such that u À1
n w and v À1

n w with u ‰ v. Then there exists
w1 P A˚ with |w1| “ |w|, w1 ‰ w, and w „n w1.

Proof idea. Since |u| “ |v| “ |w| ´ 1, w must be some w0a1w1a2w2 with a1, a2 P A such
that u “ w0a1w1w2 and v “ w0w1a2w2. We claim that w1 def“ w0w1a2a2w2 witnesses the
lemma. Since u ‰ v, we have a1w1 ‰ w1a2, and thus w ‰ w1. There remains to show that
w „n w

1: this is done by a standard case analysis, see Appendix H. J

In the rest of this section, we consider some „n-class T Ď A˚. The populous layers of T
propagate upwards:

I Lemma 6.3. If T XA“p is populous, then T XA“p`1 is populous too.

Proof. Suppose that T contains two distinct words u and v of length p. Then there is some w
with u Àn w Án v (Lemma 2.1.2) hence some u1, v1 with u À1

n u
1 and v À1

n v
1 (Lemma 2.1.1).

If u1 “ v1 we are done since |u1| “ |v1| “ p` 1. If u1 “ v1 then u À1
n u

1 Á1
n v and Lemma 6.2

shows that T contains at least two words of length p` 1. J

Populous layers also propagate downwards in the following sense:

I Lemma 6.4. Let p be the length of the shortest word in T and suppose that T X A“q is
populous, for some q ą p. Then T XA“p`1 is populous.

Proof. Let q be the smallest layer such that T XA“q is populous. If q “ p` 1 we are done,
and similarly if q “ p (Lemma 6.3). So assume q ě p` 2. For all ` with p ď ` ă q, the layers
T X A“` are nonempty (by Lemma 2.1) hence singular. Further, Lemma 2.1 tells us the
form of the words in these layers: T X Aăq “ tuv, uav, . . . , uaq´p´1vu for some u, v P A˚
and a P A.

We now turn to T X A“q. This populous layer contains some word w ‰ uaq´pv. By
Theorem 6.2.9 of [27], all minimal (with respect to Ď) words of T have the same length,
hence w is not minimal in T , and is obtained by inserting a single letter in uaq´p´1v. Define
a word s as follows, depending on w:

If w “ u1aq´p´1v with u1 Ě u and |u1| “ |u| ` 1, then s “ u1v.
If w “ u1a`baq´p´1´`v with b ‰ a, then s “ ubv.
If w “ uaq´p´1v1 with v1 Ě v and |v1| “ |v| ` 1, then s “ uv1.

The idea is that s is obtained by adding a letter to uv “exactly like” w is obtained from
uaq´p´1v. Since w ‰ uaq´pv, it is easy to see that s ‰ uav. Since uv Ď s Ď w and uv „n w,
we have uv „n s „n w. Thus T has at least two words of length p ` 1, namely uav and
s. J

We now handle a special case:

I Lemma 6.5. If T is not linearly ordered by Ď, then CpT q is finite, and is in fact a subset
of Aďm.

Proof. Assume T is not linearly ordered by Ď and pick u, v P T with u Ď v and |u| ď |v|. Let
q
def
“ |v|. By Lemma 2.1, there exists w P T such that u Àn w and v Àn w. By Lemma 2.1.2,

there exists a v1 P A“q with u Àn v
1 Àn w. Furthermore, v1 ‰ v since u Ď v and u Ď v1.

Thus T XA“q is populous. Since by the small-subword theorem the shortest word in T has
length at most m, we conclude by Lemmas 6.4 and 6.3 that T XA“p is populous for every
p ą m. Thus CpT q Ď Aďm. J

We now consider the general case:
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I Lemma 6.6. IpT q is pm` 1q-PT.

Proof. Recall that T is a singleton or is infinite (Lemma 2.1.4). We consider three cases.
Suppose T is a singleton, T “ tuu. By the small-subword theorem, |u| ď m. Then Òu is
m-PT, and Óu is pm` 1q-PT. Thus Ipuq “ A˚ r pÒuY Óuq is pm` 1q-PT.
Suppose T is not a total order under Ď. Then by Lemma 6.5, CpT q Ď Aďm, so CpT q is
pm` 1q-PT, and so is IpT q.
Suppose T is infinite and a total order under Ď. Let p be the length of the shortest word
in T . By the small-subword theorem, p ď m. Since T is infinite, and by Lemma 2.1.2,
T X A“q is nonempty for every q ě p. Since T is a total order under Ď, none of these
TXA“q is populous, hence they are all singular. Therefore CpT qXAěp “ T . It remains to
describe CpT qXAďp, and this is Óu0, where u0 is the unique word of length p in T . Thus
CpT q “ T Y Óu0 is pp` 1q-PT, hence also pm` 1q-PT, and IpT q too is pm` 1q-PT. J

We may now conclude:

Proof of Theorem 6.1. Being n-PT, L is a finite union T1 Y ¨ ¨ ¨ Y T` of equivalence classes
of „n, so that IpLq “ IpT1q Y ¨ ¨ ¨ Y IpT`q. Now each IpTiq is pm` 1q-PT by Lemma 6.6 so
that IpLq is too. J

I Remark 6.7. The upper bound in Theorem 6.1 is quite good: for any k, η ě 1, the language
L “ tUku from Proposition 3.1 has hpUkq “ n “ kη`1 so that Theorem 6.1 gives hpIpUkqq ď
pη ` 2qk. On the other hand we know by Eq. (11) that hpIpUkqq “ |Uk| “ pη ` 1qk ´ 1 when
k ą 1.

7 Deciding the two-variable logic of subwords

We assume familiarity with basic notions of first-order logic as exposed in, e.g., [7]: bound
and free occurrences of variables, quantifier depth of formulae, and fragments FOn where at
most n different variables (free or bound) are used.

The signature of the FOpA˚,Ďq logic consists of only one predicate symbol “Ď”, denoting
the subword relation. Terms are variables taken from a countable set X “ tx, y, z, . . .u and all
words u P A˚ as constant symbols (denoting themselves). For example, with A “ ta, b, c, . . .u,
Dx

`

ab Ď x^ bc Ď x^ pabc Ď xq
˘

is a true sentence as witnessed by x ÞÑ bcab.

On motivations. Logics of sequences usually do not include the subsequence predicate and
rather consider the prefix ordering, and/or functions for taking contiguous subsequences or
computing the length of sequences, see, e.g., [5, 10]. However, in automated deduction, and
specifically in ordered constraints solving, the decidability of logics of simplification orderings
on strings and trees – FOpA˚,Ďq being a special case – is a key issue [3, 19]. These works
often limit their scope to Σ1 or similar fragments since decidability is elusive in this area.

7.1 Decidability for FO2
pA˚, Ďq

In [14] we showed that validity and satisfiability are decidable for the FO2 fragment of the
logic of subwords (note that the FO3

X Σ2 fragment is undecidable [19, 14]). Since below
we use our results on the heights of PT languages to prove a new complexity upper bound
on the underlying algorithm, we first need to recall the main lines of the decidability proof
(see [14] for full details).

When describing the decision procedure for the FO2 fragment, it is convenient to enrich
the basic logic by allowing all regular expressions as monadic predicates (with the expected
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semantics) and we shall temporarily adopt this extension. For example, we can state that the
downward closure of pabq˚ is exactly pa`bq˚ with @x

“

x P pa`bq˚ ðñ Dypy P pabq˚^x Ď yq
‰

.
In the following we consider FO2 formulae using only x and y as variables. We consider

a variant of the logic where we use the binary relations Ă, Ą, “ and K instead of Ď. This
will be convenient later. The two variants are equivalent, even when restricting to FOm

fragments, since the new set of predicates can be defined in terms of Ď and vice versa. To
simplify notation, we sometimes use negated predicate symbols as in x Ď y or x R pabq˚ with
obvious meaning.

I Lemma 7.1. Let φpxq be an FO2
pA˚,Ďq formula with at most one free variable. Then

there exists a regular language Lφ Ď A˚ such that φpxq is equivalent to x P Lφ. Furthermore,
Lφ can be built effectively from φ and A.

Proof. By structural induction on φpxq. If φpxq is an atomic formula of the form x P L, the
result is immediate. If φpxq is an atomic formula that uses a binary predicate, the fact that
it has only one free variable means that φpxq is a trivial x “ x, x Ă x, x Ą x or x K x, so
that Lφ is A˚ or H.

For formulae of the form  φ1pxq or φ1pxq _ φ2pxq, we use the induction hypothesis and
the fact that regular languages are (effectively) closed under boolean operations.

The remaining case is when φpxq has the form Dy φ1px, yq. Using the induction hypothesis,
we replace any subformulae of φ1 having the form Dx ψpx, yq or Dy ψpx, yq with equivalent
formulae of the form y P Lψ or x P Lψ respectively, for appropriate languages Lψ. Now φ1

is quantifier-free. We further rewrite it by pushing all negations inside with the following
meaning-preserving rules:

 pψ1 _ ψ2q Ñ  ψ1 ^ ψ2 ,  pψ1 ^ ψ2q Ñ  ψ1 _ ψ2 ,   ψ Ñ ψ ,

and then eliminating negations completely with:

 pz P Lq Ñ z P pA˚ r Lq ,  pz1 R1 z2q Ñ z1 R2 z2 _ z1 R3 z2 _ z1 R4 z2 ,

where R1, R2, R3, R4 is any permutation of R def
“ t“,Ă,Ą,Ku. This last rewrite rule is

correct since the four relations form a partition of A˚ ˆA˚: for all u, v P A˚, exactly one of
u “ v, u Ă v, u Ą v, and u K v holds.

Thus, we may now assume that φ1 is a positive boolean combination of atomic formulae.
We write φ1 in disjunctive normal form, that is, as a disjunction of conjunctions of atomic
formulae. Observing that Dypφ1 _ φ2q is equivalent to Dy φ1 _ Dy φ2, we assume w.l.o.g. that
φ1 is just a conjunction of atomic formulae. Any atomic formula of the form x P L, for some
L, can be moved outside the existential quantification, since Dypx P L^ ψq is equivalent to
x P L^ Dy ψ. All atomic formulae of the form y P L can be combined into a single one, since
regular languages are closed under intersection.

Finally we may assume that φ1px, yq is a conjunction of a single atomic formula of the
form y P L (if no such formula appears, we can write y P A˚), and some combination of
atomic formulae among x Ă y, x Ą y, x “ y, and x K y. If at least two of these appear,
then their conjunction is unsatisfiable, and so φpxq is equivalent to x P H. If none of them
appear, Dypy P Lq is equivalent to x P A˚ (or to x P H if L is empty). If exactly one of them
appears, say x R y, then Dy py P L^ xRyqq is equivalent to x P Lφ for Lφ “ R´1pLq. Now
the pre-image R´1pLq is regular and effectively computable from L since all the relations in
R are rational relations.7 J

7 This is well known and easy to see for Ă and Ą. It is proved in [14] for K.
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I Corollary 7.2 ([14]). The truth problem for FO2
pA˚,Ďq is decidable.

Proof. Lemma 7.1 provides a recursive procedure for computing Lφ, the set of words that
make φpxq true. When φ is a closed formula, it is true iff Lφ is A˚. J

Complexity for FO2
pA˚, Ďq. The algorithm underlying the proof of Lemma 7.1 can be

implemented using finite-state automata to handle the regular languages Lφ that are con-
structed for each subformula. However, steps like complementation or even computing the
pre-images ÒăL and ÓăL are costly and may incur an exponential blowup, and this cannot be
avoided by using nondeterministic or alternating automata instead of standard deterministic
automata [12]. The consequence is that the only clear upper bound for the algorithm is a
tower of exponentials whose height is given by the quantifier depth of the formula at hand,
hence a nonelementary complexity. Regarding lower bounds, only PSPACE-hardness has
been established [14] and we conjecture that FO2

pA˚,Ďq can be decided with elementary
complexity.

7.2 Complexity of the FO2
pA˚, Ďq logic without regular predicates

It turns out that when regular predicates are not allowed (i.e., when we use the basic logic),
the quantifier-elimination procedure will only produce membership constraints x P L or
y P L1 involving PT languages. Furthermore, it is possible to bound the PT height of the
defined languages and deduce an elementary complexity upper bound.

I Theorem 7.3 (FO2
pA˚,Ďq has elementary complexity). If φpxq is an FO2 formula without

regular predicates, then Lφ is a piecewise-testable language with hpLφq in 22Op|φ|q .
Furthermore, computing a canonical DFA for Lφ (hence deciding the truth of φ) can be

done in 3´EXPTIME.

Proof. We mimic the proof of Lemma 7.1. In this process we can allow atomic formulae
“x P L” when L is PT, since this can be expressed as a boolean combination of atomic
formulae of the form w Ď x. The key extra ingredient is that the pre-images R´1pLq preserve
piecewise-testability and that hpR´1pLqq is in OphpLq|A|q: we invoke Theorem 4.4 for R “Ą,
Theorem 5.4 for R “Ă, and Theorem 6.1 for R “K.

Finally, when the PT height of Lφ (and of all intermediary Lψ) have been bounded in
22Op|φ|q , we obtain a bound on the size of the DFAs and the time and space needed to compute
them using Theorem 2.2. J

8 Concluding remarks

We developed several new techniques for proving upper and lower bounds on the PT height
of languages constructed by closing w.r.t. the subword ordering or its inverse. We also
considered related constructions like taking minimal elements, or taking the image by the
incomparability relation. In general, the PT height of upward closures is bounded with the
length of minimal words. For downward closures, we developed techniques for expressing
them with D-products and bounding their lengths. We illustrated these techniques with
regular and context-free languages but more classes can be considered [31]. More importantly,
the closures of PT languages have PT height bounded polynomially in terms of the PT height
of the argument. Our main tool here is the small-subword theorem that provides tight lower
bounds on the PT height of finite languages, with ad hoc developments for IpLq.
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These results are used to bound the complexity of the two-variable logic of subwords
but we believe that the PT hierarchy can be used more generally as an effective measure of
descriptive complexity. (The same can be said of the hierarchies of locally-testable languages,
or of dot-depth-one languages).

This research program raises many interesting questions, such as connecting PT height
and other measures, narrowing the gaps remaining in our Theorems 4.4, 5.4, and 6.1, and
enriching the known collection of PT-preserving operations.

These questions will probably require new insights in PT languages. For example, the
experiments we conducted suggest that hpu� vq can be bounded by hpuq ` hpvq when u, v
are words, however we do not know how to prove this. Similarly, we can prove that L� u

is PT when L is PT and u is a word, but we only have a very tedious proof. We mention
these questions since L�A is the pre-image of L by Ě1 and it seems that the decidability of
FO2

pA˚,Ďq can be extended to FO2
pA˚,Ď,Ď1q [20].
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Concatenation. apa`bq˚ is not PT: it contains pabqk but not bpabqk, however pabqk „k bpabqk
for any k. Hence the class PT is not closed under concatenation (even in the special case
of prefixing with a) since pa` bq˚ is PT.

Kleene star. PTis not closed under Kleene star (recall that PTis a subvariety of the star-free
languages): aa is finite hence PT but paaq˚ is not PT.

Shuffle product. ab˚ and a˚ are PT but their shuffle product ab˚ � a˚ “ apa` bq˚ is not.
Conjugacy. Recall that the conjugates of u are ru

def
“ tu2u1 | u “ u1u2u, and we extend with

rL “
Ť

uPL ru. Now acpa` bq˚ is PT but Čacpa` bq˚ “ pa` bq˚acpa` bq˚ ` cpa` bq˚a is
not.

Renaming. cpa` bq˚ is PT but applying the renaming c ÞÑ a yield apa` bq˚.
Erasing one letter. This operation can be seen as the inverse of L ÞÑ L � A where an

arbitrary letter is inserted at an arbitrary position. Now acpa` bq˚ is PT but erasing
one letter yields pa` c` acqpa` bq˚ which is not PT.

B Image of PT-languages by inverse morphisms

For the sake of completeness, we give a proof of Eq. (4) from page 4:

I Lemma B.1. Let ρ : A˚ Ñ B˚ be a monoid morphism. If L Ď B˚ is n-PT then
ρ´1pLq Ď A˚ is also n-PT.

Proof. Consider a word w P B˚ of length p with p ď n. We start by showing that ρ´1pÒwq

is n-PT. Clearly ρ´1pÒwq is upward-closed and hence PT, it remains to be shown that all
minimal elements of ρ´1pÒwq are of length at most n. Let v be a minimal element of ρ´1pÒwq.
Then w Ď ρpvq. Write w “ w1 . . . wp with each wi a letter, and v as v1 . . . vq with each vj a
letter. We have w1 . . . wp Ď ρpv1q . . . ρpvqq. Further, by minimality of v, if any factor ρpvjq is
removed from the right hand side, the relation will no longer hold. Thus q ď p and so q ď n.
Since ρ´1pÒwq is a union of sets of the form Òv with |v| ď n, ρ´1pÒwq is n-PT.

Finally, note that inverse morphisms preserve boolean operations, that is, ρ´1pB˚rLq “

A˚ r ρ´1pLq, and ρ´1pL1 Y L2q “ ρ´1pL1q Y ρ´1pL2q. Every n-PT language L Ď B˚ is a
boolean combination of principal filters Òw with |w| ď n, and so the result follows. J

C A polynomial-time algorithm for the PT height of single words.

It is not too hard to compute the PT height of a singleton language as we now explain. For
words u, v P A˚, let δpu, vq “ mintn : u n vu if u ‰ v and δpu, vq “ 8 if u “ v.

Let us first describe a simple algorithm to compute δpu, vq, given u and v. Assume u ‰ v.
Then δpu, vq is the smallest length n such that some word of length n is a subword of exactly
one of u and v. For any word w, the canonical complete DFA AÓw for the set of all subwords
of w has |w| ` 2 states and is easy to build. Then δpu, vq is the length of a shortest word in
LpAÓuq4 LpAÓvq, where 4 denotes symmetric difference. Using the product construction
for DFAs, one can compute δpu, vq in time Op|u| ¨ |v| ¨ |A|q. A more involved algorithm to
compute δpu, vq in time Op|u| ` |v| ` |A|q is presented in [30].

Note that hpuq is the smallest n such that the equivalence class of u under „n is just
tuu. If rusn is not a singleton, then it has infinitely many elements (see Lemma 2.1.4), in
particular, some word of length greater than |u|, and therefore some word v such that u Ď v

and |v| “ |u| ` 1 (see Lemma 2.1.2). The number of such words v is at most p|u| ` 1q ¨ |A|,
and so computing δpu, vq for all such v allows us to compute hpuq:

hpuq “ max
vPu�A

δpu, vq .
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This gives an overall time complexity upper bound of Op|u|3 ¨ |A|2q. Using the algorithm
from [30] to compute δ, this can be improved to Opp|u| ` |A|q ¨ |u| ¨ |A|q.

D Proof that Pk and Nk characterize Uk

I Claim. For any k P N and u P A˚k :
`

ľ

vPPk

v Ď u
˘

^
`

ľ

wPNk

w Ď u
˘

ðñ u “ Uk. (6)

Proof. By induction on k. For k “ 0, A0 is empty and there is only one word in A˚0 , namely
u “ U0 “ ε. It satisfies the positive constraint U0 Ď u and there are no negative constraints
in N0.

Assume now that k ą 0 and that the claim holds for k ´ 1. We prove the left-to-right
implication: Since Pk is not empty, the Pk constraints aikva

η´i
k Ď u imply that |u|ak ě η.

However the Nk constraint aη`1
k Ď u implies that u contains exactly η occurrences of ak and

can be written u “ v0akv1ak ¨ ¨ ¨ akvη with vi P A˚k´1 for all i “ 0, . . . , η.
Consider some fixed vi: for any v P Pk´1 it holds that v Ď vi since aikva

η´i
k Ď u. Similarly

w Ď vi for any w P Nk´1 since aikwa
η´i
k Ď u. The ind. hyp. now yields vi “ Uk´1, thus

u “ Uk´1akUk´1 ¨ ¨ ¨ akUk´1 “ Uk. The right-to-left implication should now be clear and can
be left to the reader. J

E Computing hpÓUkq

Let U0 “ ε and, for k ą 0, Uk “ pUk´1akq
ηUk. Write Lk for |Uk|a1 and note that Lk “

pη ` 1qLk´1 when k ą 1.

I Claim. For any k, r P N, if x Ď Urk , then hpxq ď 1` rLk.

Proof. By induction on k. For k ď 1, Urk “ arLk1 requires x “ a`1 with ` ď rLk so
hpxq “ 1` ` ď 1` rLk.

So assume k ą 1. Let m “ |x|ak and factor x as x0akx1ak . . . akxm so that xi P A˚k´1 for
all i. Now, for any y P A˚, the following holds:

y “ x ðñ amk Ď y ^ am`1
k Ď y ^

m
ľ

i“0

ľ

uPAďhpxiq

paikua
m´i
k Ď y ðñ u Ď xiq . (12)

We deduce that hpxq ď maxpm`1,m`hpx0q, . . . ,m`hpxmqq “ m`maxp1, hpx0q, . . . , hpxmqq.
Note that xi Ď Ur

1

k´1 for r1 “ rpη ` 1q ´m, so, by induction hypothesis, hpxiq ď 1` r1Lk´1.
Assuming k ą 1, we thus have

hpxq ď m` 1` r1Lk´1 “ m` 1` rrpη ` 1q ´msLk´1

“ 1`mr1´ Lk´1s ` rpη ` 1qLk´1 ď 1` rLk .

J

I Corollary E.1. hpÓUrk q “ 1` rLk, and thus in particular, hpÓUkq “ 1` Lk.

Proof. We use Eq. (5) and note that arLk1 P ÓUrk . Hence hpÓUrk q ě hparLk1 q “ 1` rLk. J
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F Proofs for Lemmas 3.2 and 3.3

I Lemma 3.2 (restated). If u1 and u2 are respectively `1-rich and `2-rich, then v „n v
1

implies u1vu2 „`1`n``2 u1v
1u2.

Proof. A subword x of u1vu2 can be decomposed as x “ x1yx2 where x1 is the longest
prefix of x that is a subword of u1 and x2 is the longest suffix of the remaining x´1

1 x that
is a subword of u2. Thus y Ď v since x Ď u1vu2. Now, since u1 is `1-rich, |x1| ě `1 (unless
x is too short), and similarly |x2| ě `2 (unless . . . ). Finally |y| ď n when |x| ď `1 ` n` `2,
and then y Ď v1 since v „n v1, entailing x Ď u1v

1u2. A symmetrical reasoning shows that
subwords of u1v

1u2 of length ď `1 ` n` `2 are subwords of u1vu2 and we are done. J

I Lemma 3.3 (restated). Consider two words u, u1 of richness m and with rich factorizations
u “ u1a1 ¨ ¨ ¨umamy and u1 “ u11a1 ¨ ¨ ¨u

1
mamv

1. Suppose that v „n v1 and that ui „n`1 u
1
i

for all i “ 1, . . . ,m. Then u „n`m u1.

Proof. By repeatedly using Lemma 3.2, one shows

u1a1u2a2 ¨ ¨ ¨umamv „n`m u11a1u2a2 ¨ ¨ ¨umamv

„n`m u11a1u
1
2a2 ¨ ¨ ¨umamv

...
„n`m u11a1u

1
2a2 ¨ ¨ ¨u

1
mamv

„n`m u11a1u
1
2a2 ¨ ¨ ¨u

1
mamv

1 ,

using the fact that each factor uiai is rich. J

G Proofs for Theorem 5.4

I Lemma G.1. If uLv Ď ruvsn, where L Ď A˚ is any language, then upÓLqv Ď ruvsn.

Proof sketch. Recall that w1 „n w2 and w1 Ď w2 implies w1 „n w
1 for all w1 Ď w1 Ď w2. J

I Lemma 5.5 (restated). If uB˚C˚B˚v Ď ruvsn, where B,C Ď A are subalphabets, then
upB Y Cq˚v Ď ruvsn.

Proof. We prove that for any m P N, for any w P B˚pC˚B˚qm, for any s P Aďn, s Ď uwv

implies s Ď uv. The proof is by induction on m, knowing that the claim holds by assumption
for m ď 1.

Assume therefore thatm ě 2 and write w as w “ xyz with x P B˚C˚, y P B˚pC˚B˚qm´2,
and z P C˚B˚. If s Ď uwv “ uxyzv then s can be factored as s “ susxsyszsv with each
factor s˚ a subword of the corresponding factor of uwv. Let s1 def“ susxszsv so that s1 Ď uxzv.
Note that xz P B˚C˚B˚ hence s1 Ď uxzv entails s1 Ď uv by assumption. Thus either
susx Ď u or szsv Ď v.

In the first case, s “ susxsyszsv Ď uyzv and since yz P B˚pC˚B˚qm´1 the induction
hypothesis applies and yields s Ď uv.

In the second case a symmetrical reasoning applies. J

I Lemma G.2. If uB˚C˚LD˚B˚v Ď ruvsn, where B,C,D Ď A are subalphabets and L Ď A˚

is any language then upB Y Cq˚LpB YDq˚v Ď ruvsn.
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Proof. We assume that L ‰ H (otherwise the result holds trivially) so that uB˚C˚LD˚B˚v Ď
ruvsn entails uB˚C˚B˚v Ď ruvsn (by Lemma G.1), hence upB Y Cq˚v Ď ruvsn (by
Lemma 5.5).

We now prove that for s P Aďn and w P pB˚C˚qkLpD˚B˚q`, s Ď uwv implies s Ď uv.
The proof is by induction on k ` ` P N. Note that the Lemma’s assumption handles all cases
with k ď 1 and ` ď 1.

Let us therefore assume k ą 1 since the case where ` ą 1 is symmetrical. Assume s Ď uwv

and write w as w “ xyz with x P B˚C˚, y P pB˚C˚qk´1, and z P LpD˚B˚q`.
Since s Ď uwv “ uxyzv there is a factorization s “ susxsyszsv of s with each factor s˚

embedding in the corresponding factor of uxyzv. Let now s1
def
“ susxszsv: this word satisfies

s1 Ď uxzv and |s1| ď n. Now uxzv P uB˚C˚LpD˚B˚q`v, so that we may apply the induction
hypothesis and deduce s1 Ď uv from s1 Ď uxzv. Thus either susx Ď u or szsv Ď v.

If susx Ď u we deduce

s “ susxsyszsv Ď uyzv. (13)

Now yz P pB˚C˚qk´1LpD˚B˚q` so that we can apply the induction hypothesis and deduce
s Ď uv from Eq. (13).

If szsv Ď v we deduce

s “ susxsyszsv Ď uxyv. (14)

Now xy P pB˚C˚qk so that uxyv P ruvsn as we observed at the beginning. Thus from Eq. (14)
we deduce s Ď uv. J

We now give an application of the above lemma in a form which we will use later:

I Lemma 5.6 (restated). Suppose L1B
˚
1B

˚
2 ¨ ¨ ¨B

˚
` L2 Ď rusn for some languages L1, L2 Ď A˚

and subalphabets B1, B2, . . . , B` Ď A with ` ě 3. If a P B1 XB` then, letting B1i “ Bi Y tau,
L1B

1˚

1B
1˚

2 ¨ ¨ ¨B
1˚

`L2 Ď rusn.

Proof. By induction on `. Write L1B
˚
1B

˚
2 ¨ ¨ ¨B

˚
` L2 as

L1B
˚
1 a˚B˚2 ¨ ¨ ¨B

˚
`´1a

˚ B˚` L2 .

For every u1 P L1B
˚
1 and u2 P B

˚
` L2, we have

u1 a
˚B˚2 ¨ ¨ ¨B

˚
`´1a

˚u2 Ď rusn .

Lemma G.2 gives u1 B
1˚

2B
˚
3 ¨ ¨ ¨B

˚
`´2B

1˚

`´1 u2 Ď rusn, hence u1 B
1˚

2B
1˚

3 ¨ ¨ ¨B
1˚

`´2B
1˚

`´1 u2 Ď

rusn by the induction hypothesis. Since this applies to all u1 P L1B
˚
1 “ L1B

1˚

1 and
u2 P B

˚
2L2 “ B1

˚

2L2, we have proven the lemma. J

I Lemma 5.8 (restated). Let L Ď A˚ be n-PT. Let k “ |A| and m “ fkpnq. For every u P L
there is a D-product Pu of length ` ď mk `m` k such that u P Pu Ď rusn Ď L.

In the above statement (and below) we abuse notation and let P denote both a regular
expression and the language (a subset of A˚) it denotes.

Proof. Assume u P L. By the small-subword theorem, and since L is closed under „n, there
exists a subword v “ a1 . . . a` of u with v „n u and ` “ ` ď m. Thus u has the form

u “ b0,1 ¨ ¨ ¨ b0,p0 a1 b1,1 ¨ ¨ ¨ b1,p1 a2 ¨ ¨ ¨ a` b`,1 ¨ ¨ ¨ b`,p` .
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Here the bi,j ’s are the letters from u that do not occur in the subword v. To shorten notation,
we write u “

ś`
i“0pai

śpi
j“1 bi,jq, abusing notation by letting a0 “ ε.

By the pumping property (Lemma 2.1.3), we deduce that P def
“

ś`
i“0pai

śpi
j“1tbi,ju

˚q is
a D-product satisfying u P P Ď rusn Ď L.

We now modify this product to take advantage of the more general pumping property.
Let P 1 “

ś`
i“0pai

śpi
j“1 B

˚
i,jq where Bi,j “ tbi,ju Y ta P A | D1 ď j1 ă j ă j2 ď pi : a “

bi,j1 “ bi,j2u. That is, every subalphabet tbi,ju in P is completed with any letter that appears
both before and after bi,j in the same i-th segment B˚i,1 ¨ ¨ ¨B˚i,pi . Now Lemma 5.6 ensures
that P Ď P 1 Ď rusn Ď L (and we still have u P P 1 since P Ď P 1).

We now simplify P 1 by repeatedly replacing a factor B˚B1˚ where B Ď B1 (or B1 Ď B) by
B1˚ (or B˚). This does not change the language denoted by P 1. When no more simplifications
are possible, we let Pu

def
“

ś`
i“0pai

ś`i
j“1 C

˚
i,jq denote the simplified D-product. For any

i P t0, . . . , `u, the sequence of sets Ci,1, . . . , Ci,`i satisfies the hypothesis of Lemma 5.7, and
thus `i ď k “ |A|. This entails that Pu has length bounded by pm ` 1qpk ` 1q ´ 1 (recall
that a0 “ ε), i.e. by mk `m` k. J

H Proof that w „n w1 for Lemma 6.2

Recall that u “ w0a1w1w2, v “ w0w1a2w2, with w “ w0a1w1a2w2 and w1 “ w0w1a2a2w2.
Since w „n v Ď w1, we only have to show that any subword of length at most n of w1 is also
a subword of w.

So let s Ď w1 with |s| ď n. Factorize s as s “ v0v1s
1v2 as follows:

1. Let v0 be the longest prefix of s such that v0 Ď w0.
2. Having fixed v0, let v1 be the longest prefix of pv0q

´1s such that v1 Ď w1.
3. Having fixed v0 and v1, let v2 be the longest suffix of pv0v1q

´1s such that v2 Ď w2.
Then s1 Ď a2a2, since s Ď w1. If s1 “ ε or s1 “ a2, then s Ď v Ď w, and we are done. So
assume s1 “ a2a2. Let t “ v0a1v1a2v2. Then t Ď w and |t| “ |s| ď n, so t is a subword of
both u and v.

I Claim. v1a2v2 Ď a1w1w2.

Proof. The claim asserts that a certain suffix of t is a subword of a certain suffix of u. We
know that t Ď u, i.e., v0a1v1a2v2 Ď w0a1w1w2. Hence if v1a2v2 Ď a1w1w2, then v0a1α Ď w0
for some nonempty prefix α of v1a2v2. But this contradicts the definition of v0. J

Now since v1a2v2 Ď a1w1w2, we have v1a2 Ď a1w1 or a2v2 Ď w2. Combining this with
v1 Ď w1 and v2 Ď w2, we get v1a2a2v2 Ď a1w1a2w2. Finally, this along with v0 Ď w0 gives
s Ď w as needed.
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