
Counting in Team Semantics
Erich Grädel1 and Stefan Hegselmann2

1 Mathematical Foundations of Computer Science, RWTH Aachen University,
Aachen, Germany
graedel@logic.rwth-aachen.de

2 Mathematical Foundations of Computer Science, RWTH Aachen University,
Aachen, Germany
hegselmann@logic.rwth-aachen.de

Abstract
We explore several counting constructs for logics with team semantics. Counting is an import-
ant task in numerous applications, but with a somewhat delicate relationship to logic. Team
semantics on the other side is the mathematical basis of modern logics of dependence and inde-
pendence, in which formulae are evaluated not for a single assignment of values to variables, but
for a set of such assignments. It is therefore interesting to ask what kind of counting constructs
are adequate in this context, and how such constructs influence the expressive power, and the
model-theoretic and algorithmic properties of logics with team semantics. Due to the second-
order features of team semantics there is a rich variety of potential counting constructs. Here we
study variations of two main ideas: forking atoms and counting quantifiers.

Forking counts how many different values for a tuple w occur in assignments with coinciding
values for v. We call this the forking degree of v with respect to w. Forking is powerful enough to
capture many of the previously studied atomic dependency properties. In particular we exhibit
logics with forking atoms that have, respectively, precisely the power of dependence logic and
independence logic.

Our second approach uses counting quantifiers ∃≥µ of a similar kind as used in logics with
Tarski semantics. The difference is that these quantifiers are now applied to teams of assignments
that may give different values to µ. We show that, on finite structures, there is an intimate
connection between inclusion logic with counting quantifiers and FPC, fixed-point logic with
counting, which is a logic of fundamental importance for descriptive complexity theory. For
sentences, the two logics have the same expressive power. Our analysis is based on a new variant
of model-checking games, called threshold safety games, on a trap condition for such games, and
on game interpretations.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases logics with counting, team semantics, fixed-point logic with counting

Digital Object Identifier 10.4230/LIPIcs.CSL.2016.35

1 Introduction

Ravens, so we read, can only count up to seven. They can’t tell the difference between two
numbers greater than or equal to eight. First-order logic is much the same as ravens, except
that the cutoff point is rather higher: it’s ω instead of 8. Wilfrid Hodges

Logic and counting. Counting the number of elements satisfying a certain property is
a basic task of fundamental importance that arises in many applications. While this is
computationally easy (if the underlying property is decidable in a simple way) it is problematic

© Erich Grädel and Stefan Hegselmann;
licensed under Creative Commons License CC-BY

25th EACSL Annual Conference on Computer Science Logic (CSL 2016).
Editors: Jean-Marc Talbot and Laurent Regnier; Article No. 35; pp. 35:1–35:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2 Counting in Team Semantics

for many classical logical systems. The quotation by Hodges [9] only shows the tip of the
iceberg. If we do not look at first-order theories but at single sentences, then the cutoff
point (depending on vocabulary and quantifier-rank) may be much lower, and the inability
to count persists for logics that are much stronger than first-order logic, such as for instance
fixed-point logics. In particular, the computationally trivial query of determining whether a
given finite structure has an even or odd number of elements is not definable by any formula
from first-order logic (FO), fixed-point logic (LFP), or even from Lω∞ω, the infinitary logic
with a bounded number of variables.

In finite model theory, a lot of attention has therefore been given to logics that incorporate
counting in some way or another, for instance by counting quantifiers or counting terms, or
by generalized quantifiers for cardinality comparison such as Rescher or Härtig quantifiers.
The simplest way to add counting is in terms of quantifiers of form ∃≥ixϕ for fixed i ∈ N,
saying that there exist at least i distinct values for x satisfying ϕ. While such counting
quantifiers do not add anything to the expressive power of full first-order logic or fixed-point
logic, they are relevant for the study of logics with a bounded number of variables, such as
Ck or Ck∞ω. A more powerful variant of counting is obtained with counting terms of form
#ϕ(x) or counting quantifiers ∃≥µ or ∃≤µ where µ is a variable, and the values assumed by
µ or by counting terms are natural numbers (that are kept separate from the elements of the
structure). Thus, logics with this kind of counting are evaluated on two-sorted structures
A∗ = A ∪ (ω,<,+, ·, 0, e), i.e., finite structures expanded by a disjoint ordered numeric sort
(here the natural numbers with arithmetic but there are other possible choices). The most
important counting logic, at least in finite model theory, is fixed-point logic with counting
(FPC). It has first been proposed, somewhat informally, by Immerman, later a more formal
definition based on two-sorted structures, counting terms, and inflationary fixed-points of
relations ranging over both sorts has been adopted. Meanwhile FPC has become the logic
of reference in the search for a logic for Ptime. Although it has been known since the
1990s, by a fundamental construction due to Cai, Fürer, and Immerman, that FPC fails to
express all polynomial-time queries, it comes rather close to being a logic for polynomial
time. It is strong enough to express most of the fundamental algorithmic techniques leading
to polynomial-time procedures and it captures Ptime on many interesting classes of finite
structures, including trees, planar graphs, structures of bounded tree width, and actually all
classes of graphs with an excluded minor. For a survey on FPC, and for references, see [1].

Logics with team semantics. In this paper, we study counting constructs for team se-
mantics. The idea of team semantics goes back to a paper by Hodges [10] where he provided
a model-theoretic, compositional, semantics for the independence-friendly logic IF, as an
alternative to the semantics based on games of imperfect information or on Skolem functions.
In team semantics a formula ϕ(x1, . . . xk) is evaluated, on a given structure A, not for a single
assignment s : {x1, . . . , xk} → A but for a set of such assignments, and, following [15], a set
of assignments with a common (finite) domain of variables is called a team. Personally we
find that the invention of team semantics by Wilfrid Hodges is really a major innovation in
logic. Combined with Väänänen’s proposal [15] to treat dependencies as atomic statements,
and not as annotations of quantifiers, it has lead to a genuinely new area in logic, with an
interdisciplinary motivation of providing logical systems for reasoning about the fundamental
notions of dependence and independence that permeate many scientific disciplines. Methods
from several areas of computer science, including finite model theory, database theory, and
the algorithmic analysis of games have turned out as highly relevant for this area.

Notice that statements about dependence or independence, such as “z is functionally
dependent on x and y” or “x and y are independent” do not make much sense for a single

E. Grädel and S. Hegselmann 35:3

assignment to the variables, but require larger amounts of data, as given by a table or relation,
or by a team of assignments. Team semantics is therefore the natural mathematical basis for
the modern logics of dependence and independence in which dependency or independency
statements are basic atomic building blocks, similar to equality statements. The best
studied logic with team semantics is dependence logic, which extends first-order logic by
dependency atoms of form =(x, y), saying that the variables y are functionally dependent on
(i.e. completely determined by) the variables x, but there are many other atomic dependence
properties that give rise to interesting logics based on team semantics. In [7] we have
discussed the notion of independence (which is a much more delicate but also more powerful
notion than dependence) and introduced independence logics, and Galliani [4] and Engström
[3] have studied several logics with team properties based on notions originating in database
dependency theory. Of particular interest for us is inclusion logic FO(⊆) which extends
first-order logic by atomic inclusion dependencies (x ⊆ y), which are true in a team X if
every value for x in X also occurs as a value for y in X. There is also a dual notion, exclusion
logic, based on exclusion statements (x | y), saying that x and y have disjoint sets of values
in the team X. Exclusion logic has turned out to be equivalent to dependence logic [4].

Expressive power of logics with team semantics. If we study the expressive power of such
logics, for instance by comparison to classical logics, we have to keep in mind the different
nature of team semantics and Tarski semantics. For a formula with team semantics, we
write A |=X ϕ to denote that ϕ is true in the structure A for the team X, and for classical
Tarski semantics we write A |=s ϕ to denote that ϕ is true in A for the assignment s. A
direct comparison is possible in the case of sentences. For any sentence ψ from a logic with
team semantics, we write A |= ψ if A |={∅} ψ, i.e. if ψ is true for the team X = {∅} that
consists just of the empty assignment1. For formulae with free variables the translation from
a logic with team semantics into one with Tarski semantics requires that we represent the
team in some way. The standard way to do this is by identifying a team X of assignments
s : {x1, . . . xk} → A with the relation {s(x) ∈ Ak : s ∈ X} ⊆ Ak which, by slight abuse of
notation, we also denote by X. One then translates formulae ϕ(x1, . . . , xk) of vocabulary τ
into sentences ϕ∗ of the expanded vocabulary τ ∪ {X} such that for every structure A and
every team X we have that

A |=X ϕ(x1, . . . , xk) ⇐⇒ (A, X) |= ϕ∗.

In all logics with team semantics that extend first-order logic (or a fragment thereof)
by atomic dependency statements that are themselves first-order definable, and which do
not make use of additional connectives beyond ∧,∨ and atomic negation, such a translation
will always produce sentences in (a fragment of) existential second-order logic, denoted Σ1

1.
Understanding the expressive power of a logic L with team semantics thus means to identify
the fragment of Σ1

1 to which L is equivalent in the sense just described. The following is
known in this context:
1. Dependence logic is equivalent to the fragment of all Σ1

1-sentences ψ(X) in which the
predicate X describing the team appears only negatively [12].

2. Independence logic and inclusion-exclusion logic are equivalent with full Σ1
1 (and thus

can describe all NP-properties of teams) [4].

1 Notice that we cannot replace this by the empty team X = ∅. The common logics with teams semantics
have the empty team property which means that the empty team satisfies all formulae.

CSL 2016

35:4 Counting in Team Semantics

3. The extension of FO by inclusion and exclusion atoms of single variables only (not tuples
of variables) is equivalent to monadic Σ1

1 [14].
4. First-order logic without any dependence atoms has the so-called flatness property:

A |=X ϕ ⇐⇒ A |={s} ϕ for all s ∈ X. It thus corresponds to a very small fragment of
Σ1

1, namely FO-sentences of form ∀x(Xx→ ϕ(x)) where ϕ(x) does not contain X.

For our study the most interesting result of this kind concerns the relationship of inclusion
logic FO(⊆) with posGFP, the fragment of LFP that uses only (non-negated) greatest
fixed points. Since a greatest fixed-point formula [gfpRx .ψ(R, x)](y) readily translates into
(∃R)((∀x(Rx→ ψ(R, x)) ∧Ry)), posGFP can be viewed as a fragment of Σ1

1. Galliani and
Hella [5] established translations between inclusion logic and posGFP that extend the list of
equivalences between logics with team semantics and fragments of Σ1

1 by
5. Inclusion logic is equivalent to the set of sentences of form ∀x(Xx → ψ(X,x)), where

ψ(X,x) is a formula in posGFP in which X occurs only positively. In particular, on any
finite structure, the maximal team satisfying a formula ϕ(x) of inclusion logic coincides
with the greatest fixed point of (the operator defined by) the posGFP-formula ψ(X,x).

A different proof for this result, based on safety games and game interpretations, has
been presented in [6]. Notice that for sentences, inclusion logic and posGFP have the same
expressive power. It is known that, on finite structures, the full logic LFP collapses to its
posGFP-fragment [11]. Hence every property of finite structures that is LFP-definable is
also definable in inclusion logic, and vice versa. It follows by the Immerman-Vardi-Theorem
that, on ordered finite structures, inclusion logic captures polynomial time.

Counting constructs for team semantics. The relevance of logics with counting for finite
model theory, and the known connections between logics with team semantics (such as
inclusion logic) and logics that are important in finite model theory (such as LFP), raise the
question of counting constructs for logics with team semantics, and how these enhance the
expressive power of such logics. The second-order nature of team semantics in fact leads to a
rich variety of potential counting constructs for logics with team semantics, because there
are several different objects that one may wish to count.

We illustrate this variability with the well-known majority quantifier M . In Tarski
semantics a formulaMyϕ(x, y) expresses, on a finite structure A and an assignment s : x 7→ a,
that A |= ϕ(a, b) for at least half of the possible values b for y. In particular, MyExy is
true for a graph G = (V,E) and an assignment s : x 7→ v if v is adjacent to at least half
of the nodes in G. There are several possibilities to define the team semantics of MyExy.
A team X of assignments to x describes a subset U := X[x] ⊆ V . We may define that
G |=X MyExy if every node in U is adjacent to at least half of the nodes in V . We shall see
that this corresponds to defining majority via counting quantifiers. But we could also define
that G |=X MyExy if U as a set is adjacent to at least half of the nodes in G, or, that at
least half of the nodes in G are adjacent to all elements of U . These two possibilities are
related to a different kind of counting that we call forking.

In all three cases, this amounts to a general definition of the team semantics of the
majority quantifier, saying that A |=X Myϕ(v, y) if, and only if, A |=X[y 7→F] ϕ for some
appropriate function F : X → P(A), but the requirements for F are different. In the first case
we demand that |F (s)| ≥ |A|/2 for all s ∈ X, in the second case that |

⋃
s∈X F (s)| ≥ |A|/2,

and in the third case that F (s) = B for all s ∈ X and some fixed set B ⊆ A with |B| ≥ |A|/2.

In the sequel, we shall focus on variations of two main ideas: forking and counting
quantifiers. Forking counts, for variables v and w, how many different values for w occur in

E. Grädel and S. Hegselmann 35:5

assignments with coinciding values for v. We call this the forking degree of v with respect to
w. Notice that a forking degree of one is equivalent to functional dependence, so forking can
be seen as a generalization of dependence. We shall introduce a counting mechanism for the
forking degree by means of forking atoms over teams. We examine closure properties and
expressive power of different extensions of first-order logic with forking atoms.

Our second approach uses counting quantifiers ∃≥µ of a similar kind as used in, say,
fixed-point logic with counting. The difference is that these quantifiers are now applied
to teams of assignments that may give different values to µ. A counting quantifier ∃≥µx
thus requires a witness that extends a given team X by adding to each s ∈ X a set of at
least s(µ) many distinct values for x. A formal definition will be given in Sect. 4. It is not
hard to see that in logics that have the full power of Σ1

1 (or come close to it) this form
of counting is definable, even without a second numeric sort. Thus counting quantifiers
are interesting mainly for logics with team semantics that are strictly weaker than Σ1

1, in
particular for inclusion logic. We shall analyse the power of logics with counting by an
appropriate variant of games that we call threshold safety games. Our main result will indeed
give an equivalence, in the sense described above, between inclusion logic with counting,
FO(⊆,∃≥µ), and fixed-point logic with counting, FPC.

2 Preliminaries

Two-sorted structures. With every finite relational structure A, we associate the two-sorted
structure A∗ = A ∪ (ω,<,+, ·, 0, e), where A (the universe of A) and ω (the set of natural
numbers) are assumed to be disjoint. Let A∗ := A ∪ ω. We call A the point sort, and
(ω,<,+, ·, 0, e) the numeric sort. The numeric constant e stands for |A|, the cardinality of
the point sort. All variables are typed: we use Latin letters x, y, z, . . . for variables over the
point sort, and Greek letters µ, ν, λ, . . . for variables over the numeric sort. Whenever the
sort of a variable is irrelevant and not clear from context, we shall use the variable symbols v
or w. For some applications, it is relevant to generalize such structures to expansions (A∗, F)
with a set F of functions f : Ak → ω.

Quantifiers over the numeric sort must be bounded, of the form (∀µ < t) or (∃µ < t),
where t is a closed numeric term (but for ease of notation we shall suppress this in cases where
the bounds are irrelevant or clear from context). Such bounds could be avoided altogether,
if one would use a finite numeric sort, such as ({0, . . . , |A|}, <, 0, e) instead of the natural
numbers. Both approaches have their advantages, but here we use an infinite numeric sort to
make the counting of tuples of elements simpler. We write ω<t for the set of natural numbers
smaller than (the value of) t.

Team semantics. From the start, we adapt the notion of teams from [15] to two-sorted
structures A∗. For a set V of (typed) variables, an assignment into A∗ is a map s : V → A∗

that respects the types of the variables. Given such an assignment s, a tuple v = (v1, . . . , vk)
of distinct variables, and elements c1, . . . , ck ∈ A∗ (with types corresponding to those of
v) we write s[v 7→ c] for the assignment with domain V ∪ {v1, . . . , vk} that updates s by
mapping vi to ci, for i = 1, . . . , k.

I Definition 1. A team is a set of assignments with the same domain into a structure A∗.
For a tuple of variables v = (v1, ..., vn), let s(v) := (s(v1), ..., s(vn)) and let X[v] := {s(v) :
s ∈ X} denote the set of values for v in X. For a team X, a k-tuple v, and a function
F : X → P((A∗)k), we write X[v 7→ F] for the set of all assignments s[v 7→ c] with s ∈ X
and c ∈ F (s).

CSL 2016

35:6 Counting in Team Semantics

Team semantics, for a logic L, defines whether a formula ψ ∈ L is satisfied by a team X

in a structure A∗, written A∗ |=X ψ. We always assume formulae to be in negation normal
form and require that X is correctly typed, with a domain that contains all free variables of
ψ. Following the approach by Väänänen [15], modern logics of dependence and independence
are based on atomic dependency properties of teams. The most important ones, for this
paper, are
Dependence: A dependence atom has the form =(v, w). It is true in a team X if, and only

if, s(w) = s′(w) for all assignments s, s′ ∈ X with s(v) = s′(v).
Constancy: A special case of a dependence atom is the constancy atom =(v), saying that v

assumes only one value in X.
Independence: A (pure) independence atom2 has the form v⊥w. It holds in a team X if,

and only if, for all s, s′ ∈ X there is a third assignment s′′ ∈ X such that s′′(v) = s(v)
and s′′(w) = s′(w).

Inclusion: An inclusion atom has the form (v ⊆ w), for tuples v, w of the same length and
type. It is true in a team X if, and only if, X[v] ⊆ X[w], i.e. if every value that occurs
for v in X also occurs as a value for w.

In the logics with team semantics that we consider, atomic dependency properties are
used only positively. Thus, negation is applied only to first-order atoms. A first-order literal
α(v) is defined to be true for a team X in the structure A∗ if it is true, in the sense of
classical Tarski semantics, for all individual assignments s ∈ X, i.e.

A∗ |=X α(v) ⇐⇒ A∗ |=s α(v) for all s ∈ X.

The common logics of dependence and independence extend first-order literals and atomic
dependency properties by the usual first-order connectives and quantifiers ∨,∧,∃,∀ to obtain
full-fledged logics for reasoning about dependency properties. The semantic rules for these,
in the context of two-sorted structures, are the following:

A∗ |=X (ϕ ∧ ϑ) if, and only if, A∗ |=X ϕ and A∗ |=X ϑ.
A∗ |=X (ϕ∨ϑ) if, and only if, there exist teams Y,Z with X = Y ∪Z such that A∗ |=Y ϕ

and A∗ |=Z ϑ.
A∗ |=X ∃yϕ if, and only if, there is a map F : X → (P(A)\{∅}) such that A∗ |=X[y 7→F] ϕ.
A∗ |=X ∀yϕ if, and only if, A∗ |=X[y 7→A] ϕ where X[y 7→ A] := {s[y 7→ a] : s ∈ X, a ∈ A}.
A∗ |=X (∃µ < t)ϕ if, and only if, there is a map F : X → (P(ω<t) \ {∅}) such that
A |=X[µ7→F] ϕ.
A∗ |=X (∀µ < t)ϕ if, and only if, A |=X[µ7→ω<t] ϕ where X[µ 7→ ω<t] := {s[µ 7→ m] : s ∈
X,m < t}.

First-order logic extended with dependence atoms, constancy atoms, inclusion atoms,
and independence atoms, are, respectively called dependence logic FO(dep), constancy logic
FO(const), independence logic FO(indep), and inclusion logic FO(⊆).

The locality principle. In our definitions we shall always make sure that the locality
principle holds, saying that the meaning of a formula can only depend on the variables
actually occurring in it. More precisely, if Y = X � free(ψ) is the restriction of the team X

to the free variables of ψ then A |=X ψ if, and only if, A |=Y ψ. As obvious as it seems, the

2 There is also a more general variant of independence atoms, but it is known that these are expressible
by means of pure independence atoms.

E. Grädel and S. Hegselmann 35:7

locality principle is not trivial, and it it easy to violate it by choosing ‘wrong’ definitions.
Consider for instance the seemingly more natural semantics (called strict semantics) for
existential quantifiers, that defines a formula ∃yϕ to hold for a team X if, and only if, there
exists a function F : X → A such that ϕ holds for the team of all assignments s[y 7→ F (s)]
with s ∈ X. While such a choice of a single witness, rather than a non-empty set of
witnesses, for an existentially quantified variable would make no difference for downwards
closed logics such as pure first-order logic or dependence logic, it would lead to a violation of
the locality principle when combined with, say, inclusion atoms. Indeed, even the simple
formula ∃x(y ⊆ x ∧ z ⊆ x), which trivially holds for all teams under the semantics given
above, may depend under strict semantics on the presence of additional variables in the
domain of the team.

More importantly for us, the locality principle may be violated by certain forms of
counting, such as counting quantifiers of form ∃≤µx. Thus the locality principle provides a
kind of sanity check for the definition of logical operators in team semantics, and we shall
make sure that all our proposals pass this check.

Closure properties. One way to study the properties and power of logics with team semantics
is based on the operations on teams that preserve the truth of their formulae. For instance,
an important property of dependence logic is downwards closure: whenever a formula of
FO(dep) is true for a team X, then it is also true for all subteams Y ⊆ X. Inclusion logic,
on the other side, is not downwards closed, but closed under arbitrary unions of teams: If a
formula of FO(⊆) is true for each team in a finite or infinite collection {Xi : i ∈ I}, then the
formula also holds for its union

⋃
i∈I Xi. First-order logic (without dependency atoms) is

both downwards closed and closed under union of teams, and thus has the flatness property:
A |=X ψ if, and only if, A |={s} ψ for all s ∈ X. Finally, independence logic is neither closed
under unions of teams, nor downwards closed. For the counting constructs that we propose,
we shall investigate whether or not they preserve such closure properties.

We will now introduce two methods for counting in team semantics that proved most
fruitful during our work. After giving a formal definition, we will ensure that they fulfill the
locality property and state their closure properties. Then, we will examine their expressive
power in relation to other logics with team semantics, and fragments of Σ1

1.

3 Forking

The forking degree, for two variable tuples v and w, is defined as the number of different
values assigned to w by all assignments with coinciding values for v. A forking degree of
one is equivalent to functional dependence so we can consider forking as a generalization of
dependence. Note that this definition results in a separate forking degree for each group of
assignments with the same value of v. We introduce a counting mechanism based on forking
atoms which, just as counting quantifiers, relate the counting result to a numeric variable.

I Definition 2. Forking atoms have the form v^≤µw and v^≥µw, with the following
semantics:

A |=X v^≤µw ⇐⇒ for all s ∈ X, |{s′(w) : s′ ∈ X, s′(v) = s(v)}| ≤ s(µ).

The definition for v^≥µw is analogous. When we extend a logic with both kinds of
forking atoms, we can use the atom v^=µw instead. Indeed, v^=µw ≡ v^≤µw ∧ v^≥µw
and, conversely, together with the ordering relation over numerals, we can simulate the two
variants with v^=µw. We denote the extensions of FO by forking atoms of these forms

CSL 2016

35:8 Counting in Team Semantics

by FO(fork≤), FO(fork≥), and FO(fork=). Since forking atoms only depend on values of
explicitly mentioned variables, they trivally have the locality property, and this is preserved
by all first-order operations.

I Proposition 3. All extensions of FO by forking atoms satisfy the locality property.

Whenever functional dependence is accessible in a logic, it is possible to define a bijection
between a tuple w and a fresh numeric variable, so that we can reduce the forking atoms
to a simpler form, with a single variable w on the right side rather than a tuple. We write
FO(fork≤1) for this restriction of FO(fork≤), and similarly for ≥ and =. Particularly, since a
forking degree of one is equivalent to functional dependence, we can easily express dependence
with the forking atom v^≤µw and hence FO(fork≤) ≡ FO(fork≤1).

I Example 4. Regularity of graphs is definable in FO(fork=
1), and even in FO(fork≥1), by

∃µ∃ν(µ + ν = e ∧ ∀x∀y((Exy ∧ x^≥µy) ∨ (¬Exy ∧ x^≥νy))). Recall the e is a numeric
constant for the cardinality of the point sort.

Analogously to restricting dependence to constancy logic, there also is the special case of
constant forking (abbreviated cfork), where the tuple v is of arity zero. The constant forking
atoms ^≤µw and ^≥µw compare the number of different values of w with the value of µ.

I Example 5 (Majority via constant forking). One of the three possibilities, described in the
introduction, for defining the team semantics of the majority quantifier was that A |=X

Myϕ(v, y) if A |=X[y 7→F] ϕ for some function F : X → P(A) with |
⋃
s∈X F (s)| ≥ |A|/2.

This can equivalently be defined in FO(cfork≥) by the formula

v = v ∨ (∃µ(µ+ µ ≥ e ∧ ∃y(ϕ(v, y) ∧ ^≥µy)).

To explain this, notice that the function F : X → P(A) defines a split X = Y ∪ Z where
Y = {s ∈ X : F (s) = ∅} and Z = {s ∈ X : F (s) 6= ∅}, so that X[y 7→ F] = Z[y 7→ F]. Hence
A |=X[y 7→F] ϕ means that A |=Z[y 7→F] ϕ, and hence A |=Z ∃yϕ. Further |

⋃
s∈X F (s)| =

|
⋃
s∈Z F (s)|. The displayed formula is a disjunction, and thus also imposes a split X = Y ∪Z,

without any further restriction on Y (hence the disjunct v = v), and with the appropriate
condition on Z. Notice the forking atom ^≥µy implies in particular that Z is not empty.

One can also easily express in FO(fork=
1) that two finite equivalence relations are iso-

morphic by saying that they have the same number of equivalence classes of any given size.
Thus forking adds quite some expressiveness to first-order logic. It is easy to see, on the other
side, that forking does not take us out of existential second-order logic (and NP). To examine
the expressive power of forking more precisely it is useful to study the closure properties of
forking logics.

I Proposition 6. Forking atoms v^≤µw are downwards closed, but not under unions of
teams, whereas atoms v^≥µw are closed under unions of teams but not downwards. Hence
atoms v^=µw are neither downwards closed nor closed under unions.

As a direct consequence of the closure properties we obtain insights into the relationship
between logics with forking and logics based on dependence atoms. Indeed, since dependence
logic FO(dep) corresponds exactly to the downwards closed fragment of existential second-
order logic [12] it must also contain FO(fork≤). By a more direct argument, we can, for
two-sorted structures, directly translate a forking atom v^≤µw into ∃λ(λ < µ ∧=(vλ,w)).
The idea of this formula is to extend the variables v with at most µ additional degrees of
freedom and then demand a functional dependency between the extended tuple vλ and w.

E. Grädel and S. Hegselmann 35:9

I Theorem 7. FO(dep) is equivalent to FO(fork≤), and incomparable to FO(fork≥). Finally,
FO(fork=) is strictly stronger than FO(dep).

FO(fork≥) is incomparable with FO(dep), having the same closure properties as inclusion
logic. However, FO(fork≥) is not equivalent with inclusion logic. For instance, by a simple
Ehrenfeucht-Fraïssé argument one can show that regularity of graphs is not expressible in
LFP, and hence neither in inclusion logic, but we have seen above that it is definable in
FO(fork≥). We conjecture that FO(fork≥) and FO(⊆) are incomparable.

It remains to determine the expressive power of the strongest forking logic FO(fork=). It
turns out that, even when restricted to constant forking, it has the full power of independence
logic, and thus of existential second-order logic and NP.

I Theorem 8. On two-sorted structures, FO(cfork=) ≡ FO(fork=) ≡ FO(indep).

Proof. Since FO(indep) has the full power of Σ1
1, we just have to prove that any independence

atom is equivalent to a formula in FO(cfork=). We claim that

v⊥w ≡ ∃µ∃ν(^=µv ∧ ^=νw) ∧ ^µνvw.

Indeed, it is not difficult to verify that the two formulae are just two different ways to
express that X[vw] = X[v]×X[w]. There is an alternative way to express independence by
non-constant forking, but with just one counting variable. Indeed,

v⊥w ≡ ∃µ(^=µw ∧ v^=µw).

For any team X, let Y := X[µ 7→ m] for m = |X[w]|. Assume that |=X v⊥w. Clearly, |=Y

^=µw. To prove that also v^=µw holds in Y we have to show that any value a ∈ Y [v] = X[v]
forks to all values b ∈ Y [w] = X[w]. Fix s, s′ ∈ X with s(v) = a and s′(w) = b. By v⊥w
there exists an assignment s′′ ∈ X with s′′(v) = a and s′′(w) = b. Thus t′′ = s′′[µ 7→ m] ∈ Y
witnesses the forking of a to b.

Conversely, assume that |=X ∃µ(^=µw∧v^=µw), which implies that |=Y v^=µw. Choose
two assignment s, s′ ∈ X. Since s(v) forks in Y to all values in Y [w], it forks in particular
to s′(w), so there exists an assignment t′′ ∈ Y with t′′(v) = s(v) and t′′(w) = s′(w). The
restriction of t′′ to the domain of X thus witnesses the truth of v⊥w. J

Forking atoms thus provide a lot of power. Compared to the familiar logics with team
semantics such as dependence and independence logic, which are able to express NP-complete
problems but usually in a somewhat roundabout way that is rather hard to find and to read,
forking atoms often lead to more direct and natural definitions. Further, the two-sorted
framework makes it much easier to deal with problems that include numeric parameters,
such as bounds on the size of solutions or structures with weights. To illustrate this, we
consider some familiar NP-complete problems.

I Example 9 (Dominating Set, Vertex Cover, and Clique). The dominating set problem can
be expressed in FO(cfork≤). Indeed, a graph G = (V,E) admits a dominating set of size k if,
and only if, (G, k) |= ∀y∃x(Exy ∧ ^≤kx). A similar idea works for Vertex Cover and Clique.
A graph G has a vertex cover of size ≤ k if (G, k) |= ∀x∀y(¬Exy∨∃z((z = x∨z = y)∧^≤kz),
and it has a clique of size ≥ k if (G, k) |= ∀x∀y(Exy ∨ ∃z((z = x ∨ z = y) ∧ ^≤e−kz). These
examples also separate FO(cfork≤) from FO(const), since for sentences the latter collapses
to FO.

CSL 2016

35:10 Counting in Team Semantics

I Example 10 (TSP). A more ambitious challenge for the use of forking atoms is a present-
ation of the TSP. An instance D of the TSP, with distances dij ∈ N, for i, j ∈ {0, . . . , n− 1}
with i 6= j, can be represented as a team X(D) consisting of the n(n − 1) assignments
sij : (x, y, λ) 7→ (i, j, dij) into A∗, for A = {a0, . . . , an−1}. We construct a formula
ψ(x, y, λ, k) ∈ FO(fork≤) such that, for all such A, X(D) and all k ∈ ω,

(A, k) |=X(D) ψ ⇐⇒ D admits a TSP-tour of length ≤ k.

We first notice that for every formula ϕ such that (A, k) |=X(D) x^≤e−2y ∨ (y^≤1x ∧ ϕ) it
follows that ϕmust hold in some subteam Z ⊆ X(D) that coversA by a disjoint union of cycles.
More precisely, this means that the directed graph (A,EZ) with EZ = {(ai, aj) : dij ∈ Z}
consists of disjoint cycles, and every ai occurs in precisely one of these cycles. Indeed the
formula requires a split X(D) = Y ∪ Z, such that Y contains, for every i, at most n − 2
assignment sij . Thus, for each i there remains at least one assignment sij that must be in Z,
but on the other side, by the forking atom y^≤1x at most one sij can be in Z for each j.
The only way to satisfy these contraints is that EZ defines a bijection (and thus a covering
by disjoint cycles). It remains to construct ϕ so that it enforces, for such a subteam Z, that
it in fact consists of just one cycle, and that the length of this cycle does not exceed k. This
is achieved by

ϕ := ∃c(^≤1c ∧ ∃µ∃ν∀x′∃µ′∃ν′(x^≤1µ ∧ x′^≤1µ′ ∧ x^≤1ν ∧ x′^≤1ν′∧
(x = x′ → µ = µ′ ∧ ν = ν′) ∧ (x = c→ µ = 0 ∧ ν = 1)∧
(x′ = y 6= c→ µ′ = µ+ λ ∧ ν′ = ν + 1) ∧ (x′ = y = c→ µ+ λ ≤ k ∧ ν = e)))

Recall that in the team Z we have for every i precisely one assigment sij ∈ Z. The quantifiers
and the first two lines of the formula thus imply that there is a node c and functions ai 7→ µi
and ai 7→ νi assigning to each node two numbers. Viewing c as the beginning of the tour,
and ai as a node on the same cycle as c, it follows by induction on the path from c to ai that
ϕ imposes that the value of µi is the length of the path from c to ai, and that the value of νi
is the number of nodes on that path. Finally for the closing of the cycle at c, the formula
says that the cycle has length ≤ k and contains all nodes. Thus, the subteam Z must indeed
be a TSP tour of length at most k.

Since constant forking is a restriction of general forking, it inherits all locality and closure
properties. Furthermore, also the relationship between functional dependence and forking
can be readily translated to constancy logic and constant forking. However, in contrast to the
equivalence between FO(dep) and FO(fork≤) it is possible to separate the constant variant
FO(cfork≤) from FO(const). See Figure 1, at the end of this paper, for an illustration and
summary of such results.

4 Counting Quantifiers

Counting quantifiers of form ∃≥µx provide a well-known and powerful way to add counting
to logics with Tarski semantics, such as first-order logic or fixed-point logic. We adapt them
to team semantics, and investigate the properties and expressive power of the resulting
extensions. In fact, we propose a rather general variant of such quantifiers which admits not
only the counting of single elements (over the point sort) but counting of arbitrary tuples,
even of mixed type.

I Definition 11. Counting quantifiers for teams permit to build, for every formula ϕ, every
numeric variable µ, every closed numeric term t, and every tuple v of variables of mixed type,

E. Grädel and S. Hegselmann 35:11

the new formula ∃≥µv<tϕ. For any structure A∗ and every team X whose domain includes
µ and all variables in free(ϕ) \ {v}, we have that A∗ |=X ∃≥µv<tϕ if, and only if, there is a
function F that maps every s ∈ X to a set F (s) of at least s(µ) many, appropriately typed,
tuples over A ∪ ω, whose numeric components are bounded by t, such that A∗ |=X[v 7→F] ϕ.

I Example 12 (Majority via counting quantifiers). If we define the team semantics of the
majority quantifier so that A |=X Myϕ(v, y) if A |=X[y 7→F] ϕ for a function F : X 7→ P(A)
with |F (s)| ≥ |A|/2 for all s ∈ X, then this is equivalent to ∃µ(µ + µ ≥ e ∧ ∃≥µyϕ(v, y)).
If we require instead that F (s) = B for some fixed set B with |B| ≥ |A|/2, then we need a
combination of counting quantifiers and forking atoms, namely ∃µ(µ+µ ≥ e∧∃≥µy(ϕ(v, y)∧
^≤µy)).

I Proposition 13. Counting quantifiers preserve the locality property.

Notice instead that counting quantifiers of form ∃≤µy or ∃=µy that are in common use
in logics with Tarski semantics, are unsafe for team semantics since they may violate the
locality principle. Indeed, even the quantifiers ∃≤1y or ∃=1y can be used to simulate the
strict semantics for common existential quantifiers, and we have already seen that this is in
conflict with the locality principle. Observe that, in contrast to forking, counting quantifiers
do not express any dependency between assignments.

I Proposition 14. Counting quantifiers preserve downwards closure and closure under unions.
As a consequence, FO with counting quantifiers, but without any dependence atoms, is flat.

Nevertheless, FO with counting is more expressive than without counting. It can express
for instance even cardinality or regularity of graphs. We already mentioned in the introduction
that counting is definable in logics whose expressive power comes sufficiently close to Σ1

1. In
particular, this is the case for dependence logic (but not, for instance, for inclusion logic).
In fact dependence statements can be seen as a particular form of weak counting, and we
show that these suffice, over two-sorted structures, to express counting quantifiers in a rather
simple way.

I Proposition 15. Counting quantifiers are expressible by means of dependence atoms.

Proof. A formula ψ := ∃≥µyϕ is equivalent to ∀λ(λ ≥ µ ∨ ∃y(=(free(ψ)y, λ) ∧ ϕ)). This
construction readily extends to more general counting quantifiers. J

5 Inclusion Logic with Counting Quantifiers

We now study the logic FO(⊆,∃≥µ) that extends inclusion logic with counting quantifiers,
and show that it is equivalent, in the sense described in the introduction, with fixed-point
logic with counting (FPC). Recall that for all two-sorted structures A∗ we always require the
point sort A to be a finite structure.

5.1 Fixed-point logic with counting with only greatest fixed-points
As already mentioned, FPC is usually defined as the extension of first-order logic over two-
sorted structures by counting terms and inflationary fixed-points. However, this definition
is not really adequate for proving an equivalence with a logic with team semantics, for two
reasons: Counting terms may violate the locality principle, and inflationary fixed-points

CSL 2016

35:12 Counting in Team Semantics

have no direct translation into logics with team semantics (or into Σ1
1, for that matter)3.

We therefore work with a different definition of FPC, that is based on greatest fixed-point
operators, used only positively, and on counting quantifiers of form ∃≥µv. Of course, we have
to convince ourselves that this syntactically restricted variant is semantically equivalent, i.e.
that we do not lose expressive power. While this is not trivial, it can be proved by combining
some well-understood techniques.

First of all, counting terms #xϕ(x) can readily be replaced by formulae with counting
quantifiers of the form ∃=µxϕ, and these can be rewritten by ∃≥µxϕ(x) ∧ ∃ν(µ + ν =
e∧∃≥νx¬ϕ(x)). However, this introduces negation, which poses a problem with monotonicity,
and this is one of the reasons why one normally prefers inflationary fixed-points rather than
least and greatest ones.

In the absence of counting it is known that, by means of the Stage Comparison Theorem,
one can eliminate inflationary fixed points and prove that the logics LFP and IFP are
semantically equivalent [8, 13]. On finite structures, one can even go an important step
further and prove (again based on the Stage Comparison Theorem) that the negation of a
greatest fixed point is equivalent to a formula using greatest fixed points only positively [11].

It is straightforward (but a bit lengthy) to verify that the proof of the Stage Comparison
Theorem, and also its applications, go through for the case of two-sorted structures and in
the presence of counting quantifiers. Thus we can indeed, without loss of generality, assume
that all formulae in FPC are written in this restricted form. In particular, this has the
advantage that we have a relatively simple description of model-checking games for FPC, as
so-called threshold safety games.

5.2 Threshold games
A threshold game is a two-player game on a finite (or at least finitely branching) directed
graph G = (V,E) equipped with a threshold function θ : V → ω. Let vE = {w : (v, w) ∈ E}
and let δ(v) := |vE| denote the out-degree of v. We assume that θ(v) ≤ δ(v) + 1 for all v.

At any given node v in a play, Player 0 selects a set X ⊆ vE of θ(v) successors of v,
then Player 1 choses a node w ∈ X and the play proceeds from w. When a player cannot
move, she loses. This means that Player 0 wins at all nodes in T0 := {v ∈ V : θ(v) = 0}, and
Player 1 wins at nodes in T1 := {v ∈ V : δ(v) < θ(v)}.

Classical (finitely branching) graph games, where the set of nodes is partitioned into two
sets, V = V0 ∪ V1, such that Player 0 moves from nodes in V0 and Player 1 from those in V1,
can be viewed as the special case of threshold games where, for all nodes v, either θ(v) = 1
or θ(v) = δ(v). In principle, we can combine threshold games with any winning condition for
infinite plays, but in this paper we just consider threshold safety games, where Player 0 just
has to avoid the positions in T1 where she loses immediately. In particular, Player 0 wins all
infinite plays.

The winning region of a player is the set of positions from which she has a winning
strategy. The well-known linear-time algorithm for computing winning regions in classical
reachability and safety games can be adapted to threshold games.

I Proposition 16. The winning regions of a threshold safety game G = (V,E, θ : V → ω) on
a finite game graph can be computed in time O(|V |+ |E|).

3 On finite structures we have an indirect translation into Σ1
1 since fixed-point logics are in polynomial

time and Σ1
1 captures NP, but on infinite structures, LFP and IFP are on the ∆1

2-level.

E. Grädel and S. Hegselmann 35:13

Even more relevant for us is the relationship to logics with counting. We first note that
the winning region W0 for Player 0 in threshold safety games G = (V,E, θ : V → ω) is
uniformly definable by a very simple formula in fixed-point logic with counting FPC, namely
win(x) := [gfpWx .∃≥θ(x)y(Exy ∧Wy)](x). Here and in the following, ∃≥θ(x)yϕ(y) is just
an abbreviation for ∃µ(µ = θ(x) ∧ ∃≥µyϕ). Equivalently, the winning region is definable in
inclusion logic with counting, by win′(x) := ∃≥θ(x)y(Exy ∧ y ⊆ x). Then for any threshold
game graph G, the maximal team W such that G |=W win′(x) is precisely the winning region
for Player 0.

For the translation between the two logics, we shall use a specific kind of trap condition
for initial positions.

I Definition 17. Fix a set I ⊆ V of initial positions in a threshold safety game G. An I-trap
in G is a set Z ⊆ I such that Player 0 has a winning strategy from Z that, moreover, avoids
I \ Z.

Such a winning condition can simply be described by a subsetW ⊆ V such thatW∩I = Z,
and |vE ∩W | ≥ θ(v) for all v ∈W . Indeed, at any position v ∈W , Player 0 can then select
any set X ⊆ vE ∩W with |X| = θ(v) and wins since W ∩ (I \ Z) = ∅ and W ∩ T1 = ∅. A
straightforward modification of the formulae for winning regions shows that in both logics,
FPC and FO(⊆,∃≥µ), we can define also I-traps.

But the connection between threshold games and logics with counting goes much deeper.
Threshold safety games arise as the model-checking games for both inclusion logic with
counting and FPC, and moreover, the model-checking games are uniformly interpretable in
the structure in which the formulae are evaluated.

5.3 Model-checking games and game interpretations
It is known, and explained in detail in [6], how to construct classical safety games as evaluation
games for inclusion logic and for the posGFP fragment of fixed-point logic. We extend these
constructions to obtain threshold safety games as model-checking games, on finite structures,
for inclusion logic with counting and for FPC.

We first sketch the construction of a threshold safety game T (A∗, ψ) for a two-sorted
structure A∗ and a formula ψ(x, µ) of fixed-point logic with counting (which uses only
greatest fixed points). Let G(ψ) = (Sf(ψ), Eψ) be the syntax graph of ψ. Positions of the
game are pairs (ϕ, s) where ϕ ∈ Sf(ψ) is a subformula of ψ and s : free(ϕ)→ (A ∪ ω) is an
(appropriately typed) assignment on the free variables of ϕ. The immediate successors of a
position (ϕ, s), are the pairs (ϕ′, s′) where (ϕ,ϕ′) ∈ Eψ and s and s′ coincide on the common
variables. A position ([gfpZxµ<t . η(Z, x, µ)](x, µ), s) has the unique successor (η, s). For
any fixed-point atom Zyν in the scope of η, the unique successor of a position (Zyν, s) is
(η, s′) with s′(x, µ) = s(y, ν). Thresholds θ(ϕ, s) are assigned as follows:
1. In the case that ϕ is a first-order literal, we set θ(ϕ, s) := 0 if A |=s ϕ and θ(ϕ, s) := 1 if

A 6|=s ϕ.
2. We set θ(ϕ, s) := 1 in all cases where ϕ is either a fixed-point atom Zxµ, a fixed-point

formula [gfpZxµ<t . η(Z, x, µ)](x, µ), a disjunction ϕ1 ∨ϕ2, or an existentially quantified
formula (∃µ < t)ϕ′.

3. We set θ(ϕ, s) := 2 if ϕ is a conjunction ϕ1 ∧ ϕ2.
4. For formulae ϕ := (∀µ < t)ϕ′, we set θ(ϕ, s) = tA

∗ , i.e. the value of the numeric term t

in A∗

5. For formulae with counting quantifiers ϕ := ∃≥µvϕ′, we put θ(ϕ, s) = s(µ).

CSL 2016

35:14 Counting in Team Semantics

I Theorem 18. For every structure A∗, every formula ψ(x, µ) ∈ FPC, and every appro-
priately typed assignment s : free(ϕ)→ (A ∪ ω), we have that A∗ |=s ψ(x, µ) if, and only if,
Player 0 has a winning strategy for the threshold safety game T (A∗, ψ) from position (ψ, s).

For the relationship with inclusion logic we shall need a more refined result, concerning
sentences in FPC of vocabulary τ ∪ {X} of the form ψ := ∀x∀µ(Xxµ → ϕ(x, µ)), such
that X occurs only positively in ϕ. In that case, the model checking game T ((A∗, X), ψ)
is a threshold safety game with unique initial position (ψ, ∅). We modify these games
by eliminating the explicit reference to the relation X and associate the model checking
problem of whether (A, X) |= ψ with a trap condition for a modified game T #(A∗, ϕ). To
do this, we identify every position of form (Xyν, t) with the position (ϕ(x, µ), s) such that
s(x, µ) = t(y, ν); this means that every edge in the game graph to a position (Xyν, t) is
replaced by an edge to (ϕ(x, µ), s), and the node (Xyν, t) is deleted. The set I of initial
positions now consists of all pairs of form (ϕ(x, µ), s). Given any interpretation for the
relation X, let X∗ ⊆ I be the set of positions (ϕ, s) where s(x, µ) ∈ X.

I Proposition 19. (A∗, X) |= ∀x∀µ(Xxµ → ϕ(x, µ)) if, and only if, X∗ is an I-trap in
T #(A∗, ϕ).

The construction for inclusion logic with counting is similar. It extends the construction
given in [6] of safety games for FO(⊆). With every formula ψ(x, µ) in FO(⊆,∃≥µ) and every
structure A∗, we construct a threshold safety game T (A∗, ψ), played on a forest of game
trees, where again, positions are pairs (ϕ, s) where ϕ is an occurrence of a subformula in ψ
and s an assignment with domain free(ϕ). The set I of initial positions is the set of roots of
the game trees in T (A∗, ψ); it contains all pairs (ψ, s). Hence, a team X for ψ defines the
subset I(X) := {(ψ, s) : s ∈ X} of I. Instead of the regeneration of fixed-points we here have
a regeneration mechanism for inclusion atoms. The threshold game graph is set up so that,
informally, at a position ((xµ ⊆ yν), s) associated with an inclusion atom, Player 0 selects an
assignment t such that t(y, ν) = s(x, µ), moves to ((xµ ⊆ yν), t) and then Player 1 takes the
play to an ancestor of that node in the corresponding game tree. (A more formal construction
requires that we duplicate all nodes in the game, so that the moves going upwards in the
game tree actually take place in a separate copy of the tree. For details of this, in the context
of classical safety games for inclusion logic, see [6]). To win, Player 0 has to make sure that
the play remains inside those trees with a root in I(X), which means that these roots form
an I-trap.

I Theorem 20. For every formula ψ(x, µ) ∈ FO(⊆,∃≥µ), every structure A∗ and every
team X, we have that A∗ |=X ψ(x, µ) if, and only if, I(X) is an I-trap in T (A∗, ψ).

Proof. Suppose that A∗ |=X ψ(x, µ). Then, according to the rules defining the semantics of
ψ, we can assign to every occurrence of a subformula ϕ in ψ a team Y (ϕ) such that Y (ψ) = X

and A∗ |=Y (ϕ) ϕ for all ϕ. In particular, for ϕ = ϕ1∨ϕ2 we have that Y (ϕ) = Y (ϕ1)∪Y (ϕ2),
for ϕ = ∃≥µvη we have that Y (ϕ) = Y (η)[v 7→ F] for a function F : Y (η)→ P((A∗)k) with
|F (s)| ≥ s(µ), and so on for the other types of formulae. We define a strategy W for Player 0
in T (A∗, ψ) by

W := {(ϕ, s) : ϕ ∈ Sf(ψ), s ∈ Y (ϕ)}.

It is straightforward to verify that for any position (ϕ, s) ∈ W , there are at least θ(ϕ, s)
many successors of (ϕ, s) inside W , and if (ϕ, s) 6∈W , then none of the nodes in the subtree
rooted at (ϕ, s) belongs to W . In particular, for any inclusion atom α := (xµ ⊆ yν) and any

E. Grädel and S. Hegselmann 35:15

position of form (α, s) ∈W we infer that, since α is true in Y (α) there exist an assignment
t ∈ Y (α) with t(y, ν) = s(x, µ), so Player 0 can indeed take the game to an occurrence of
(α, t) in W . Further, since W only contains nodes in trees with a root (ψ, s) such that s ∈ X,
Player 1 can force the game, by going upwards the game trees, only to initial positions in
I(X). Thus I(X) is indeed an I-trap in T (A∗, ψ).

Conversely, suppose that W describes a strategy for Player 0 showing that I(X) is an
I-trap in T (A∗, ψ). For every node (ϕ, s) in T (A∗, ψ), let

Team(W,ϕ) := {s : (ϕ, s) ∈W}.

In particular, Team(W,ψ) = X. By induction on the syntax of ψ, one easily verifies that for
every ϕ ∈ S(ψ),

A∗ |=Team(W,ϕ) ϕ.

We just discuss the most interesting cases.
If ϕ is a first-order literal, then all nodes (ϕ, s) are terminal nodes, soW can contain (ϕ, s)
only if θ(ϕ, s) = 0 which is the case if, and only if, A∗ |=s ϕ. Thus A∗ |=Team(W,ϕ) ϕ.
Let ϕ be an inclusion atom (xµ ⊆ yν). For all s such that (ϕ, s) ∈ W , there exists
an assignment t with t(y, ν) = s(x, µ) such that also (ϕ, t) ∈ W . But this means that
Team(W,ϕ) satisfies (xµ ⊆ yν).
If ϕ = ϕ1 ∨ ϕ2, then for every node (ϕ, s) ∈ W , at least one of its two successors must
also belong to W . Let s1 and s2 be the restrictions of s to the free variables of ϕ1 and
ϕ2, respectively, and let Yi be the team of all assignments s with domain free(ϕ) such
that si ∈ Team(W,ϕi). It follows that Team(W,ϕ) = Y1 ∪ Y2. By induction hypothesis,
we have that A∗ |=Team(W,ϕi) ϕi for i = 1, 2 and, by the locality principle, also A∗ |=Yi

ϕi.
It follows that A∗ |=Team(W,ϕ) ϕ.
For ϕ = ∃≥µvη we have that θ(ϕ, s) = s(µ). Thus, if (ϕ, s) ∈ W then there exist
at least s(µ) many assignments t = s[v 7→ c] such that (η, t) ∈ W , and hence t ∈
Team(W, η). By induction hypothesis, A∗ |=Team(W,η) η which implies that there is a
function F : Team(W,ϕ) → P(A∗)k with |F (s)| ≥ s(µ) for all s ∈ Team(W,ϕ) and
A∗ |=Team(W,ϕ)[v 7→F] η. But this means that A∗ |=Team(W,ϕ) ϕ.

The remaining cases are routine. Since Team(W,ψ) = X this implies that A∗ |=X ψ. J

Observe that, for any fixed formula ψ(x, µ) in any of these logics, the construction of
the threshold safety games is done in a very uniform way. This intuition is made precise by
the notion of a game interpretation. In our case, such an interpretation is a quadruple J =
(δ, e, in, ϑ) consisting of first-order formulae δ(λ, v), e(λ, v;λ′, v′), and in(λ, v) for the nodes,
edges, and initial positions of the game graph, and a formula ϑ(λ, v, µ) for the thresholds.
Given a structure A∗, we obtain a graph whose set of nodes is δA∗ := {(i, c) : A∗ |= δ(i, c)}
and whose sets of edges eA∗ and initial positions inA∗ are defined in an analogous way.

We say that J interprets the threshold game T = (V,E, I, θ : V → ω) in A∗, if there is an
isomorphism h : (δA∗

, eA
∗
, inA∗)→ (V,E, I), such that thresholds are defined by ϑ(λ, v, µ)

as follows: For every node v ∈ V and every number t ∈ ω we have that A∗ |= ϑ(h−1(v), t) if,
and only if, θ(v) = t.

I Theorem 21. For every formula ψ(x, µ) in FO(⊆,∃≥µ) there is a first-order interpretation
J(ψ) that interprets, for any structure A∗, the game T (A∗, ψ) in A∗.

CSL 2016

35:16 Counting in Team Semantics

Proof. For simplicity, we assume that the vocabulary of ψ and A contains a constant c.
We enumerate the subformulae of ψ as ϕ0, . . . , ϕ`, with ϕ0 = ψ, and assume that v is the
tuple of all variables occurring in ψ. For every formula ϕi we extend every assignment
s : free(ϕi)→ A∗ to an assignment s∗ on all variables in v by setting s∗(y) = c and s∗(ν) = 0
for all variables y or ν that appear in v but not in free(ϕi). The interpretation J(ψ) then
represent a position (ϕi, s) of T (A∗, ψ) by the tuple (i, s∗(v)) in A∗. With this representation,
it is completely straightforward to construct quantifier-free formulae δ(λ, v), e(λ, v;λ′, v′),
in(λ, v), and ϑ(λ, v, µ) with the required properties. J

Analogous statements hold for the games for FPC.

5.4 Game-based translations between FO(⊆, ∃≥µ) and FPC
A first-order interpretation J may be seen as a function mapping a structure C to the
interpreted structure J(C), and by the coordinate map h of J , every element b ∈ J(C) is
associated with a tuple h−1(b) ∈ C. But in the other direction, J also gives a translation
from formulae ϕ(x1, . . . , xk) over J(C) to formulae ϕJ(x1, . . . , xk) over C such that

J(C) |= ϕ(b1, . . . , bk)⇐⇒ C |= ϕJ(h−1(b1), . . . , h−1(bk)).

This is called the Interpretation Lemma, which is of course a general and well-known fact
that holds (in appropriate form) for all kinds of interpretations, not just the particular form
of game interpretations that we use here.

We are now ready to prove the main theorem of this paper. We shall combine the
interpretation argument for threshold safety games and the definability of I-traps, by means
of the Interpretation Lemma, to provide effective translations between the two logics.

I Theorem 22. There exist effective translations in both directions between formulae ψ(x, µ)
in FO(⊆,∃≥µ), and formulae ϕ(X,x, µ) in FPC (with only positive occurrences of X), such
that, for every structure A∗ and every X,

A∗ |=X ψ(x, µ) ⇐⇒ (A∗, X) |= ∀x∀µ(Xxµ→ ϕ(X,x, µ)).

In particular, on every structure A∗, the maximal team satisfying ψ coincides with the greatest
fixed-point of ϕ. For sentences, FO(⊆,∃≥µ) and FPC have the same expressive power.

Proof. We first describe how to translate ψ(x, µ) ∈ FO(⊆,∃≥µ) into an appropriate formula
ϕ(X,x, µ) in FPC.

Take a formula in FPC that defines I-traps in threshold games, so that in particular

(T (A∗, ψ), Z) |= ∀x(Zx→ itrap(Z, x)) ⇐⇒ Z is an I-trap in T (A∗, ψ).

The interpretation J(ψ) defines a copy of T (A∗, ψ) inside A∗ and maps formulae on the
game back to formulae on A∗. Thus, J(ψ) : itrap(Z, x) 7→ itrap∗(Y, y, ν). If Y ⊆ Ak × ω` is
the set of tuples in A∗ associated with Z ⊆ I, then (A∗, Y) |= ∀yν(Y yν → itrap∗(Y, y, ν)) if,
and only if, Z is an I-trap in T (A∗, ψ).

The tuples describing positions (ψ, s) with s ∈ X are first-order definable in (A∗, X). We
can thus massage itrap∗(Y, y, ν) into a formula ϕ(X,x, µ) ∈ FPC such that

(A∗, X) |= ∀xµ(Xxµ→ ϕ(X,x, µ)) ⇐⇒ I(X) is an I-trap in T (A∗, ψ) ⇐⇒ A |=X ψ.

An analogous construction works for the translation of FPC into FO(⊆,∃≥µ), making
use of the fact that I-traps are definable also in inclusion logic with counting. Let T #(A∗, ϕ)

E. Grädel and S. Hegselmann 35:17

FO FO(∃≥µ) FO(⊆,∃≥µ)

FO(const)

FO(⊆)

FO(cfork≤)

FO(cfork=)

FO(cfork≥)

FO(dep)

FO(fork≤)

FO(fork=)

FO(fork≥)

FO(indep)

⊂

⊂
⊂ ⊂

⊂

⊂

⊃⊂

≡

⊂
⊂

≡

⊂ ⊃
≡

Figure 1 Overview of extensions of first-order logic by counting constructs over teams.

be the game from Proposition 19 such that (A∗, X) |= ∀x∀µ(Xxµ→ ϕ(x, µ)) if, and only if,
X∗ is an I-trap in T #(A, ϕ). Further, let J(ϕ) be the interpretation, with coordinate map
h, which, for every structure A∗, interprets T #(A∗, ϕ) in A∗.

Take now a formula itrap(x) of FO(⊆,∃≥µ) such that, for all threshold games T , we
have that T |=Z itrap(x) if, and only if, Z defines an I-trap in T (see Sect. 5.2). By the
Interpretation Lemma we get a formula itrapJ(ϕ)(λ, v), also from FO(⊆,∃≥µ), which is true in
A∗ precisely for those teams Y = h−1(Z) where Z defines an I-trap of T #(A∗, ϕ). Specifically,
we can write v = (xx′, µµ′), so that for the team that defines X∗ = {(ϕ, s) : s(x, µ) ∈ X} we
get that Y (X) = h−1(X∗) is the set of all assignments (λ, xx′, µµ′) 7→ (0, ac,m0) for some
constant c and with (a,m) ∈ X. We now set

ψ(x, µ) := ∃λ∃x′∃µ′(λ = 0 ∧ x′ = c ∧ µ′ = 0 ∧ itrapJ(ϕ)(λ, xx′, µµ)).

This implies that A∗ |=X ψ(x, µ) ⇐⇒ A∗ |=Y (X) itrapJ(ϕ)(λ, xx′, µµ′). Putting everything
together, we have

(A∗, X) |=∀xµ(Xxµ→ ϕ(x, µ)) ⇐⇒ X∗ is an I-trap in T #(A∗, ϕ)

⇐⇒ T #(A∗, ϕ) |=X∗ itrap(x) ⇐⇒ A∗ |=Y (X) itrapJ(ϕ)(λ, xx′, µµ′)
⇐⇒ A∗ |=X ψ(x, µ). J

6 Conclusion

We have explored two main variants for counting constructs in team semantics: forking atoms
and counting quantifiers. We have seen that forking atoms are rather powerful, and indeed,
dependence and independence logic are equivalent to variants of logics with forking. Counting
quantifiers, on the other side, are most interesting in the context of inclusion logic, and we
have shown that the extension of inclusion logic by counting quantifiers captures, in a precise
sense, fixed-point logic with counting, which provides further interesting connections between
team semantics and descriptive complexity theory. To establish the relationship between
these two logics we have introduced a new variant of model checking games, threshold safety
games, and interpretation arguments for studying them, which we believe to be of intrinsic
interest beyond the results of this paper.

An open problem in this context concerns the relationship of different logics that all share
the property of closure under unions. Inclusion atoms are closed under arbitrary unions of
teams, and the same is true for forking atoms of type v^≥µw. Further, counting quantifiers
∃≥µ preserve closure under union. By using different combinations of inclusion atoms, forking

CSL 2016

35:18 Counting in Team Semantics

atoms, and counting quantifiers we thus obtain a number of logics, all of which are closed
under unions of teams, but whose relationship and expressive power is not really clear. We
conjecture in particular that inclusion logic and FO(fork≥) are incomparable.

We remark that, due to the second-order features of team semantics, there is a rich variety
of other potential counting constructs related to teams (some of which take the logics beyond
Σ1

1), and the research that we presented here is just a starting point. For instance, one may
count the number of subteams of the given team that satisfy a given property, or develop
an approach via generalized quantifiers. In [2] a kind of second-order majority quantifier
has been considered, which counts witness functions for extending a given team by a new
variable, and leads to a logic that captures the polynomial counting hierarchy.

Finally, one of the most important current challenges in the field of logics of dependence
and independence is the systematic development of multi-team semantics, where assignments
in teams may occur with multiplicities. This is fundamental for instance for reasoning
about statistical (rather than logical) dependence and independence. It is obvious that the
framework of two-sorted structures and counting constructs may be relevant for this project.

References
1 A. Dawar. The nature and power of fixed-point logic with counting. ACM SIGLOG News,

2(1):8–21, 2015.
2 A. Durand, J. Ebbing, J. Kontinen, and H. Vollmer. Dependence logic with a majority

quantifier. In Proceedings of FSTTCS 2011, pages 252–263, 2011.
3 F. Engström. Generalized quantifiers in dependence logic. Journal of Logic, Language, and

Information, 2012.
4 P. Galliani. Inclusion and exclusion in team semantics – on some logics of imperfect in-

formation. Annals of Pure and Applied Logic, 163:68–84, 2012.
5 P. Galliani and L. Hella. Inclusion logic and fixed-point logic. In Computer Science Logic

2013, pages 281–295, 2013.
6 E. Grädel. Games for inclusion logic and fixed-point logic. In S. Abramsky et al., editor,

Dependence Logic. Theory and Applications. Birkhäuser, 2016.
7 E. Grädel and J. Väänänen. Dependence and independence. Studia Logica, 101(2):399–410,

2013.
8 Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Annals of Pure and

Applied Logic, 32:265–280, 1986.
9 W. Hodges. Model Theory. Cambridge University Press, 1993.

10 W. Hodges. Compositional semantics for a logic of imperfect information. Logic Journal
of IGPL, 5:539–563, 1997.

11 N. Immerman. Relational queries computable in polynomial time. Information and Control,
68:86–104, 1986.

12 J. Kontinen and J. Väänänen. On definability in dependence logic. Journal of Logic,
Language, and Information, 18:317–241, 2009.

13 S. Kreutzer. Expressive equivalence of least and inflationary fixed point logic. Annals of
Pure and Applied Logic, 130:61–78, 2004.

14 R. Rönnholm. Capturing k-ary existential second-order logic with k-ary inclusion-exclusion
logic. arXiv:1502.05632v2, 2015.

15 J. Väänänen. Dependence Logic. Cambridge University Press, 2007.

	Introduction
	Preliminaries
	Forking
	Counting Quantifiers
	Inclusion Logic with Counting Quantifiers
	Fixed-point logic with counting with only greatest fixed-points
	Threshold games
	Model-checking games and game interpretations
	Game-based translations between FO(,) and FPC

	Conclusion

