Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

High-Quality Synthesis Against Stochastic
Environments”®

Shaull Almagorf! and Orna Kupferman?

1 School of Computer Science and Engineering, The Hebrew University,
Jerusalem, Israel

2 School of Computer Science and Engineering, The Hebrew University,
Jerusalem, Israel

—— Abstract

In the classical synthesis problem, we are given a linear temporal logic (LTL) formula) over sets
of input and output signals, and we synthesize a transducer that realizes y: with every sequence
of input signals, the transducer associates a sequence of output signals so that the generated
computation satisfies 1. One weakness of automated synthesis in practice is that it pays no
attention to the quality of the synthesized system. Indeed, the classical setting is Boolean: a
computation satisfies a specification or does not satisfy it. Accordingly, while the synthesized
system is correct, there is no guarantee about its quality. In recent years, researchers have
considered extensions of the classical Boolean setting to a quantitative one. The logic LTL[F]
is a multi-valued logic that augments LTL with quality operators. The satisfaction value of an
LTL[F] formula is a real value in [0, 1], where the higher the value is, the higher is the quality in
which the computation satisfies the specification.

Decision problems for LTL become search or optimization problems for LTL[F]. In particular,
in the synthesis problem, the goal is to generate a transducer that satisfies the specification in
the highest possible quality. Previous work considered the worst-case setting, where the goal is
to maximize the quality of the computation with the minimal quality. We introduce and solve
the stochastic setting, where the goal is to generate a transducer that maximizes the expected
quality of a computation, subject to a given distribution of the input signals. Thus, rather
than being hostile, the environment is assumed to be probabilistic, which corresponds to many
realistic settings. We show that the problem is 2EXPTIME-complete, like classical LTL synthesis.
The complexity stays 2EXPTIME also in two extensions we consider: one that maximizes the
expected quality while guaranteeing that the minimal quality is, with probability 1, above a given
threshold, and one that allows assumptions on the environment.

1998 ACM Subject Classification F.4.3 Formal Languages, B.8.2 Performance Analysis and
Design Aids, F.1.1 Models of Computation

Keywords and phrases Stochastic and Quantitative Synthesis, Markov Decision Process

Digital Object Identifier 10.4230/LIPIcs.CSL.2016.28

* A full version of the paper is available at http://arxiv.org/abs/1608.06567.

T The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no
278410, from the Israel Science Foundation (grant no. 1229/10), and from the US-Israel Binational
Science Foundation (grant no. 2010431).

© Shaull Almagor and Orna Kupferman;

37 licensed under Creative Commons License CC-BY
25th EACSL Annual Conference on Computer Science Logic (CSL 2016).
Editors: Jean-Marc Talbot and Laurent Regnier; Article No. 28; pp. 28:1-28:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/62922634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.28
http://arxiv.org/abs/1608.06567
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2

High-Quality Synthesis Against Stochastic Environments

1 Introduction

Synthesis is the automated construction of a system from its specification: given a linear
temporal logic (LTL) formula v over sets I and O of input and output signals, we synthesize
a finite-state system that realizes ¢ [11, 19]. At each moment in time, the system reads a
truth assignment, generated by the environment, to the signals in I, and it generates a truth
assignment to the signals in O. Thus, with every sequence of inputs, the system associates a
sequence of outputs. The system realizes 9 if all the computations that are generated by the
interaction satisfy 1.

One weakness of automated synthesis in practice is that it pays no attention to the quality
of the synthesized system. Indeed, the classical setting is Boolean: a computation satisfies a
specification or does not satisfy it. Accordingly, while the synthesized system is correct, there
is no guarantee about its quality. This is a crucial drawback, as designers would be willing to
give up manual design only if automated-synthesis algorithms return systems of comparable
quality. In recent years, researchers have considered several extensions and variants of the
classical setting of synthesis. One class of extensions stays in the Boolean setting. For
example, in practice we can often make assumptions on the behavior of the environment. An
assumption may be direct, say given by an LTL formula that restricts the set of possible
sequences of inputs [7], or conceptual, say rationality from the side of the environment, which
may have its own objectives [15], or a bound on the size of the environment and/or the
generated system [21, 16]. Another class of extensions moves to a quantitative setting, where
a specification may have different satisfaction values in different systems. For example, in [3],
the input to the synthesis problem includes also Mealy machines that grade different realizing
systems. As another example, in [20], the specification formalism is the multi-valued logic
LTL[F], which augments LTL with quality operators. The satisfaction value of an LTL[F]
formula is a real value in [0, 1], where the higher the value is, the higher is the quality in
which the computation satisfies the specification. The synthesis algorithm then seeks systems
of the highest possible quality. A quantitative approach can be taken also with Boolean
specifications and involves a probabilistic view: the environment is assumed to generate
input sequences according to some probability distribution. Then, instead of requiring the
system to satisfy the specification in all computations generated by the environment, we
measure the probability with which this happens [17].

Combining the multi-valued approach with the probabilistic one has led to the use of
Markov Decision Processes (MDPs). Indeed, MDPs are a clean mathematical model that
allows the analysis of quantitative objectives in a probabilistic environment. The intricacy
of MDPs has led, in turn, to a plethora of works on synthesis with various constraints and
reward models (e.g. [2, 6, 8, 10, 12, 1]). The starting point of these works is the MDPs. This
is puzzling, as while MDPs offer a very clean framework for the analysis, they do not serve as
a specification formalism. Thus, the crucial step of actually obtaining the MDPs is missing.

In this work, we consider stochastic high-quality synthesis, which combines the multi-
valued approach with the probabilistic one. We build on known techniques for MDPs, and
still keep the specification formalism accessible to designers. The specification is given by
an LTL[F] formula, the environment is assumed to be probabilistic, and we seek a system
that maximizes the expected satisfaction value. To explain the setting better, let us first
review shortly LTL[F]. The linear temporal logic LTL[F] extends LTL with an arbitrary
set F of functions over [0, 1]. Using the functions in F, a specifier can formally and easily
prioritize the different ways of satisfaction. The logic LTL[F] is really a family of logics,
each parameterized by a set F C {f : [0,1]¥ — [0,1] | K € N} of functions (of arbitrary arity)

S. Almagor and O. Kupferman

over [0,1]. For example, as in earlier work on multi-valued extensions of LTL (c.f., [13]), the
set F may contain the min {x, y}, max {z,y}, and 1 — 2 functions, which are the standard
quantitative analogues of the A, V, and — operators. The novelty of LTL[F] is the ability
to manipulate values by arbitrary functions. For example, F may contain the quantitative
operator Vy, for A € [0, 1], which tunes down the quality of a sub-specification. Formally, the
satisfaction value of the specification V¢ is the multiplication of the satisfaction value of ¢
by A. Another useful operator is the weighted-average function ®,. There, the satisfaction
value of the formula ¢ @) 1) is the weighted (according to \) average between the satisfaction
values of ¢ and 1. This enables the quality of the system to be an interpolation of different
aspects of it. As an example, consider the LTL[F] formula ¢ = G(req — (grant ® z Xgrant)).
The formula specifies the fact that we want requests to be granted immediately and the grant
to hold for two transactions. When this always holds, the satisfaction value is % + % =1.
We are quite okay with grants that are given immediately and last for only one transaction,
in which case the satisfaction value is %, and less content when grants arrive with a delay, in
which case the satisfaction value is %

Consider a system that receives requests and generates grants and consider a specification
1 that has ¢ as defined above as a sub-formula. Other sub-formulas of 1 may require the
system to generate as few grants as possible, say with ¢’ = (FG(—req)) — (G—(grantAXgrant)).
That is, if requests eventually stop arriving, then there cannot be two successive grants. The
specification ¥ cannot be realized with satisfaction value 1, as the system does not know in
advance whether requests eventually stops arriving. Therefore, in order to get a satisfaction
value above 0 in the subformula ¢’, the system must not generate two successive grants,
bounding the satisfaction value of the subformula ¢ by % If, however, the input signals are
distributed so that req may hold with a positive probability at each moment in time, then
the probability that an input sequence satisfies FG(—req) is 0, causing ¢’ to be satisfied (that
is, to have satisfaction value 1) with probability 1. Accordingly, under this assumption, a
system that grants requests immediately and for two transactions has expected satisfaction
value 1.

Formally, one can measure the quality of a system S with respect to an LTL[F] specifica-
tion taking three approaches. In the worst-case approach, the environment is assumed to
be hostile and we care for the minimal satisfaction value of some computation of S. In the
almost-sure approach, the environment is assumed to be stochastic and we care for the max-
imal satisfaction value that is generated with probability 1. Then, in the stochastic approach,
the environment is assumed to be stochastic and we care for the expected satisfaction value
of the computations of S, assuming some given distribution on the inputs sequences.

» Example 1. Consider a battery-replacement controller for a certain hardware. A compu-
tation of the hardware lasts k steps. Some steps during the execution are stations, in which
the battery can be replaced. For example, the hardware may be an electric car whose battery
can only be replaced at charging stations. The controller should decide at which stations it
replaces the battery. On the one hand, it is wasteful to replace the battery early. On the
other hand, the occurrence of stations is random, and the controller does not know whether
stations are going to be encountered in the future.

Since it is wasteful to replace the battery early, the specification states that replacing it
in step 1 <t < k lowers the satisfaction value to ¢/k. Missing, however, all stations incurs
satisfaction value 0. We assume that each step is a station with probability p € [0, 1].

Formally, the specification for the controller is over the sets I = {station} and O =
{replace}, and is a conjunction @1 A @2 A 3 of three LTL[F] formulas (the abbreviation X’
stands for a sequence of i nested X (next) operators):

28:3

CSL 2016

28:4

High-Quality Synthesis Against Stochastic Environments

1 = G(replace — station), which requires that we only replace the battery in stations,
0o = (V) <scp XEstation) — (V| <;<p XFreplace), which states that the requirement to
replace the battery needs to be satisfied only if at least one station has been encountered.
p3 = /\1§t§k Xt(=replace V V%replace), which lowers the satisfaction value to %, for the
minimal step 1 <ty < k in which the battery is replaced.

In order to ensure a positive satisfaction value in the worst case, a transducer must replace
the battery on the first station it encounters. Such a transducer guarantees a satisfaction
value of %7 but has expected satisfaction value of (1 — p)*(1 — %) + %, which tends to 0 as k
increases.

Trading-off the satisfaction value in the worst case for a higher expected satisfaction
value, a controller may also replace the battery in later stations. For example, a transducer
that replaces the battery only in the k-th step (if it is a station) has expected satisfaction
value (1 — p)¥ + p. However, its satisfaction value in the worst case, in fact in (1 — p) of the
computations, is 0.

In the full version we analyze the expected satisfaction value of a transducer that replaces
the battery in the first station after position ¢, for 1 <t < k, and show, for example, that a
transducer that replaces the battery starting in position g has an expected satisfaction value
that tends to 3 as k — oo, for every fixed p € (0, 1). |

The worst case approach has been studied in [20], where it is shown how to synthesize,
given ¢, a system with a maximal worst-case satisfaction value. In this paper, we consider
the two other approaches. We model a reactive system with sets I and O of input and
output signals, respectively, by an I/O-transducer: a finite-state machine whose transitions
are labeled by truth assignments to the signals in I and whose states are labeled by truth
assignments to the signals in O. We define and solve the stochastic high-quality synthesis
problem (SHQSyn, for short). The input to the problem is an LTL[F] formula ¢ over
TUO, and we seek an I/O-transducer that maximizes the expected satisfaction value of a
computation, under a given distribution of the inputs. We show that the maximal expected
satisfaction value is always attained by a finite-state transducer, and that computing such a
transducer takes time that is doubly-exponential in ¢, thus the problem is not more complex
than the synthesis problem for LTL.

We continue to study two extensions of the SHQSyn problem. In the first extension, we
add a lower bound on the satisfaction value that should be attained almost surely. Formally,
the input to the SHQSyn with threshold problem is an LTL[F] formula ¢ and a threshold
t € [0,1], and we seek a transducer that maximizes the expected satisfaction value of ¢, but
such that the satisfaction value of ¢ in all its computations is at least ¢ with probability
1. As we show, adding this restriction may lower the expected value. Also, our solution to
the SHQSyn with threshold problem generalizes high-quality synthesis in the almost-sure
approach, which we solve too. This approach has been studied for MDPs in [10, 12]. We show
that while we can readily apply the existing solutions, the fact that our original specification
is an LTL[F] formula allows us to obtain slightly better solutions, with simpler analysis.

The second extension is the quantitative analogue of synthesis with environment assump-
tions. As discussed above, adding assumptions on the environment is a useful extension in
the Boolean setting [7, 18]. In the SHQSyn with environment assumption problem we get
as input an LTL[F] formula ¢ and an environment assumption 1, given by means of an
LTL formula, and we seek a transducer that maximizes the expected satisfaction value of
© in computations that satisfy ¥». We note that the ability to reason about the quality of
satisfaction in the presence of environment assumptions suggests a quantitative solution to

S. Almagor and O. Kupferman

challenges that appear already in the Boolean setting. For example, in [4], the authors study
the annoying phenomenon of systems realizing a specification by causing the assumption to
fail. They suggest a synthesis algorithm that increases the cooperation between the system
and its environment. Using LTL[F], we can associate such a cooperation with high quality.
We show that both extensions, of threshold and assumptions, as well as their combination,
do not increase the complexity of the synthesis problem.

From a technical perspective, solving the Boolean synthesis problem amounts to translating
an LTL formula to a deterministic parity automaton (DPW), viewing this automaton as a
two-player parity game in which the system plays against the environment, and finding a
winning strategy for the system. When the environment is assumed to be stochastic, the
two-player game becomes a Markov decision process (MDP) with a parity objective. Such
MDPs were extensively studied in [6, 8]. In order to handle the quantitative satisfaction
values of LTL[F], we translate an LTL[F] formula ¢ to a set of DPWs associated with
the different possible satisfaction values of ¢. From the latter we obtain a mean-payoff
MDP. We show that a transducer that attains the maximal expected satisfaction value is
embodied in this MDP, and can be found in polynomial time. The analysis of the MDP is
based on a search for controllably win recurrent states [8]. Adding a threshold ¢ € [0, 1], the
strategies of the MDP are restricted to those that guarantee that the computation reaches,
with probability 1, end components that correspond to accepting runs of DPWs associated
with satisfaction values above ¢.

Finally, in order to handle environment assumptions, we need to maximize the conditional
expected satisfaction value, given the assumption. Maximizing conditional expectation is
notoriously difficult, as, unlike unconditional expectation, it is not a linear objective. Thus,
it is not susceptible to linear optimization techniques, which are the standard approach to
find maximizing strategies in MDPs. In our solution, we compose the MDP with the DPW
for the assumption, which enables us to adopt techniques used in the context of conditional
probabilities in MDPs [2]. Intuitively, we add to the MDP transitions that “redistribute” the
probability of computations that do not satisfy the assumption. In both cases, the size of
the analyzed MDP stays doubly exponential in ¢ (and the assumption, in the latter case),
and the required transducer is embodied in it.

Due to lack of space, some proofs are omitted and can be found in the full version, in the
authors’ home pages.

2 Preliminaries

2.1 Automata and Transducers

A (deterministic) pre-automaton is a tuple (X, Q, qo,d), where ¥ is a finite alphabet, Q is
a finite set of states, ¢op € @ is an initial state, and 6 : Q X ¥ - @ is a (partial) transition
function. A run of the pre-automaton on a word w = o1 - 09 - - - € X% is a sequence of states
90,91, G2, - - . such that ¢; 41 = 6(gj,0;41) for all j > 0. Note that since ¢ is deterministic, the
pre-automaton has at most one run on each word.

A deterministic parity automaton (DPW, for short) is A = (2,Q,qo,d,), where
(3,Q,qo,9) is a pre-automaton, ¢ is a total function, and o : @ — {1,...,d} is an ac-
ceptance condition that maps states to ranks. The maximal rank d is the index of A. For
arun r = qo,q1,q2,--- of A, let inf(r) be the set of states that occur in r infinitely often.
Formally, inf(r) = {¢ : ¢; = ¢ for infinitely many j > 0}. The run r is accepting if the
maximal rank of a state in inf(r) is even. Formally, max,cin¢ry{c(q)} is even. A word
w € ¥ is accepted by A if the run of A on w is accepting. The language of A, denoted

28:5

CSL 2016

28:6

High-Quality Synthesis Against Stochastic Environments

L(A), is the set of words that A accepts.

For finite sets I and O of input and output signals, respectively, an I/O transducer
is T = (I,0,Q,q,9, 1), where (2!, Q,qo,9) is a pre-automaton, and u : Q — 29 is a
labeling function on the states. Intuitively, 7 models the interaction of an environment
that generates at each moment in time a letter in 27 with a system that responds with
letters in 2°. Consider an input word w = ig -4y --- € (2/)* and let qo, q1,. .. be the run of
T on w. The output of T on w is then o1, 09,... € (2°)*, where 0j = p(g;) for all j > 1.
Note that the first output assignment is that of ¢, thus u(qo) is ignored. This reflects the
fact that the environment initiates the interaction. The computation of T on w is then
T(w) = io @] Ol,il U 02,... € (2IUO)w.

2.2 Markov Chains and Markov Decision Processes

A Markov chain (MC, for short) M = (S, s, P) consists of a finite or countably-infinite state
space S, an initial state sg € S, and a stochastic transition function P : S x S — [0, 1]. That
is, for all s € S, we have), ¢ P(s,s) = 1. Intuitively, when a run of M is in state s, then
it moves to state s’ with probability P(s,s’). A run of M is a finite or infinite sequence
S0, S1, S2, ... of states that starts in sg. The MC M induces a probability space on finite
runs. Consider a finite run r = sg, s1, ..., 5g. We define Pr(r) = Hf;ll P(s;, 8i+1). Thus, the
probability of a finite run is the product of the probabilities of its transitions. Let Cone(r)
be the set of all infinite runs that start with . The MC M induces a probability space over
the set of infinite runs of M that are generated by the cylinder sets Cone(r), for finite runs
r. Formally, for every r € S*, we have Pr(Cone(r)) = Pr(r).

An ergodic component of M is a strongly connected component of M from which no
other component is reachable. Formally, it is a set C' C .S such that for every s,t € C there
exist a path si, 82, ..., s of states in C such that sy = s, s = ¢, and P(s;,s;41) > 0 for
every 1 < j < k. In addition, for every s € C and t ¢ C, it holds that P(s,t) = 0. Let C be
the set of maximal (w.r.t. containment) ergodic components of M. We associate with M an
ergodic reachability probability p : C — [0, 1] such that p(C) is the probability that a run of
M reaches (and therefore remains forever in) C.

A Markov decision process (MDP) is M = (S, so, (As)ses, P,), where S is a finite set of
states, sp € S is an initial state, and A, is a finite set of actions that are available in state
s€S. Let A=|J,cqAs. Then, P: S x Ax S - [0,1] is a (partial) stochastic transition
function: for every two states s,s’ € S and action a € A, we have that P(s,a,s’) is the
probability of moving from s to s’ when action a is taken. Accordingly, for every s € S and
a € Ag, we have), o P(s,a,s") = 1. Finally, v: S — R is a reward function on the states.

An MDP can be thought of as a game between a player, who chooses the action to be
taken in each state, and nature, which stochastically chooses the next state according to the
transition probabilities. The goal of the player is to maximize the average reward along the
generated run in the MDP. We now formalize this intuition.

A strategy for the player in an MDP M (a strategy for M, in short) is a function
f: ST — A that suggests to the player an action to be taken given the history of the game
so far. The strategy should suggest an available action, thus f(so,...,sn) € As,. A strategy
is memoryless if it depends only on the current state. We can describe a memoryless strategy
by f:S — A, where again, f(s) € As.

Given a strategy f, we can obtain from M the MC My = (S*,so, Pf) in which the
choice of actions is resolved according to f. Formally, if u,u’ € ST are such that there are
te S*and s,s’ € Ssuchthat u=1¢-sand v/ =t-s-¢, then Pr(u,u’) = P(s, f(t-s),s).
Otherwise, Pr(u,u’) = 0. Note that M has an infinite state space. If f is memoryless, we

S. Almagor and O. Kupferman

can simplify the construction, and define My = (S, so, Py) with Ps(s,s") = P(s, f(s), s').

An end component in an MDP M is a set C' C S such that there exist action sets (Bs)ses
with By C A, for every s € S, and for every s,t € C, there exists a path sy, sa, ..., s of states
in C such that s; = s, s =t and there exist actions a1, ..., ax—1 such that P(s;,a;, sj41) >0
and a; € By, for every 1 < j < k. In addition, for every s € C and a € B, it holds that
> iec P(s,a,t) = 1. Intuitively, an end component is a strongly-connected component in the
MDP graph that nature cannot force to leave. Equivalently, M has a strategy to stay forever
in C. Indeed, it is not hard to see that C is an end component iff there is some strategy f
for M such that C' is an ergodic component of M.

The value valpg(f) (we omit the subscript when M is clear from context) of a strategy
f for M is the expected average reward of an infinite run in M. Formally, for a run
r = So,51,82,... of My, we define v(r) = liminf,, o = Z;"ZO v(s;), where for a state
s € ST of My, the cost y(s) is induced by the last state of M in s. In the stochastic setting,
we view each sequence of inputs, and hence also each run r and the reward on r, as a random
variable. The expected value of a random variable is, intuitively, its average value, weighted

by probabilities. Let R,y be the random variable whose value is the reward on runs in M.

We define vala(f) = E[Raq,f]. The value val(M) of an MDP M is the maximal value of a
strategy in M. It is well known (see e.g. [14]) that val(M) can be attained by a memoryless
strategy, which can be computed in polynomial time.

For technical reasons, we sometimes use variants of MDPs. A pre-MDP is an MDP
with no reward function. A parity MDP is a pre-MDP with a parity acceptance condition
a:S —{1,..,d}. In a parity MDP, the goal of the player is to maximize the probability
that the generated run satisfies the parity condition. Parity-MDPs were extensively studied
in e.g. [9].

2.3 The logic LTL[F]

The logic LTL[F] is a multi-valued logic that extends the linear temporal logic LTL with
an arbitrary set of functions F C {f : [0,1]¥ — [0,1] : k € N} called quality operators. For
example, F may contain the maximum or minimum between the satisfaction values of
subformulas, their product, and their average. This enables the specifier to refine the Boolean
correctness notion and associate different possible ways of satisfaction with different truth
values [20].

Let AP be a set of Boolean atomic propositions and let F be a set of function as described
above. An LTL[F] formula is one of the following:

True, False, or p, for p € AP.

flo1, s 0k), X1, or ©1Ueps, for LTL[F] formulas ¢1, ..., ¢ and a function f € F.
The semantics of LTL[F] formulas is defined with respect to infinite computations over 279C.
For a computation 7 = my,my,... € (ZIUO)W and position j > 0, we use m/ to denote the
suffix 7, m;41,.... The semantics maps a computation 7 and an LTL[F] formula ¢ to the
satisfaction value of ¢ in 7, denoted [, ¢]. The satisfaction value is in [0,1] and is defined
inductively as described in Table 1 below.

The logic LTL can be viewed as LTL[F] for F that models the usual Boolean operators.
For simplicity, we use the common such functions as abbreviation, as described below. In
addition, we introduce notations for two useful quality operators, namely factoring and
weighted average. Let x,y, A € [0,1]. Then,

r=1—-z

xVy =max{z,y}

x Ay =min{z,y}

28:7

CSL 2016

28:8

High-Quality Synthesis Against Stochastic Environments

Table 1 The semantics of LTL[F].

’ Formula ‘ Satisfaction value H Formula ‘ Satisfaction value ‘
[, True] 1 [, fle1, s pi)] f(m, e, -, [y 0k])
[, False] 0 [, Xe1] [7', 1]
1 if p € mo . i . j
[, p] 0 ifpém [, 1Up2] Og;gfﬂ{mm{[[ﬂ ,sozﬂ,orél;gi[h 1]t}

x—y=max{l —z,y}
Vaxr=A T
r@ry=A-xz+(1-X) -y

» Example 2. Consider a scheduler that receives requests and generates grants and consider
the LTL[F] formula ¢ = @1 A @2, with ¢1 = G(req — X(grant SH! Xgrant)) and o =
-(v 3 G—req). The satisfaction value of the formula g is 1 if every request is granted in the
next cycle and the grant lasts for two consecutive cycles. If the grant lasts for only one cycle,
then the satisfaction value is reduced to % if it is the cycle right after the request, and to
% if it is the next one. In addition, the conjunction with @5 implies that if there are no
requests, then the satisfaction value is at most . The example demonstrates how LTL[F]
can conveniently prioritize different scenarios, as well as embody vacuity considerations in
the formula. |

For an LTL[F] formula ¢, let V(¢) = {[7,¢] : 7 € (247)*}. That is, V(p) is the set of
possible satisfaction values of ¢ in arbitrary computations.

» Theorem 3 ([20]). Consider an LTL[F] formula .
V(p)l < 2191,
For every predicate 8 C [0,1], there exists a DPW Ay g such that L(Ag) = {7 : [7,¢] €

20(¢D)

0}. Furthermore, Ay g has at most 2 states and its index is at most 2!l

3 High-Quality Synthesis

Consider an I/O-transducer 7 and an LTL[F] formula ¢ over I UO. Each computation of
T may have a different satisfaction value for ¢. We can measure the quality of T taking
three approaches:
Worst-case approach: The environment is assumed to be hostile and we care for the
minimal satisfaction value of some computation of 7. Formally, [T, ¢], = min{[T (w), ¢] :
w € (21)“}. Note that no matter what the input sequence is, the specification ¢ is satisfied
with value at least [T, @] .
Almost-sure approach: The environment is assumed to be stochastic and we care for the
maximal satisfaction value that is generated with probability 1. Formally, given a distribu-
tion v of (27), we define [T, ¢]% = max{v : there is W with v(W) =1 and [T (w),] >
v for every w € W}. Note that the specification ¢ is satisfied almost surely with value at
least [T,]%.
Stochastic approach: The environment is assumed to be stochastic and we care for the
expected satisfaction value of the computations of 7, assuming some given distribution
on the inputs sequences. Formally, let X7, : (2/)¥ — R be a random variable that
assigns to each sequence w € (27)* of input signals the value [T (w), ¢]. Then, given a
distribution v of (21)¥, we define [T, ¢]% = E[X71], when the sequences in (21)* are
sampled according to v.

S. Almagor and O. Kupferman

The worst case approach has been studied in [20], where it is shown how to find [T, ¢],, and
how to synthesize, given ¢, a transducer with a maximal worst-case satisfaction value. In
this paper, we consider the stochastic approach. For simplicity, we consider environments
with a uniform distribution on the input signals. That is, v is such that at each moment in
time, each input signal holds with probability %, thus the probability of each letter in 27
is 577 (see Remark 4). Since v is fixed, we omit it from the notation and use [T, ¢], and

[7, ¢l

» Remark 4 (On the choice of a uniform distribution). Recall that we consider a uniform
distribution on the letters in 27. In practice, the distribution on the truth assignments to the
input signals may be richer. In the general case, such a distribution can be given by an MDP.

Adjusting our setting and algorithms to handle such distributions involves only a small
technical elaboration, orthogonal to the technical challenges that exist already in the setting of
a uniform distribution. Accordingly, throughout the paper we assume a uniform distribution.
In Section 7.2, we describe how our setting and algorithms are extended to the general case.

<

» Example 5. Consider a hard-drive writing protocol that needs to finalize a write operation
through some connection. The connection needs to be closed as soon as possible, to allow
access to the drive. However, data may still arrive in the first two cycles, and if the connection
is closed in the first cycle, then the data that arrives in the second cycle gets lost. The
issue is that the decision as to whether to close the connection is made during the first
cycle, before the protocol knows whether data is going to arrive in the second cycle. The
specification that formulates the above scenario is over I = {data} and O = {close} and is
¢ = ((Xdata) — —~close) A ((—Xdata) — close) V V 1 Xclose).

That is, if data arrives in the second cycle, then we should not close the connection in
the first cycle. In addition, if data does not arrive in the second cycle, we should close the
connection in the first cycle — this would give us satisfaction value 1 in the second conjunct,
but we may also close the connection only in the second cycle, which would guarantee a
satisfaction value of 1 in the first conjunct, but would reduce the satisfaction value of the
second conjunct to % in cases data does not arrive in the second cycle.

Let p € [0,1] be the probability that data arrives in the second cycle. Consider a
transducer 77 that closes the connection in the first cycle. With probability p, we have that
Xdata holds, in which case ¢ has satisfaction value 0. Also, with probability 1 — p, we have
that Xdata does not hold and the satisfaction value of ¢ is 1. Thus, the satisfaction value of
@ is 0 in the worst case, and this is also the highest satisfaction value that 7; achieves with
probability 1. On the other hand, the expected satisfaction value of ¢ in a computation of
Tiisp-0+(1—p)-1=1—p. Thus, [T1,¢]w = [T1,¢]a = 0, whereas [T1,¢]s =1 —p.

Consider now a transducer 73 that closes the connection only on the second cycle. With
probability p, we have that Xdata holds, in which case the satisfaction value of ¢ is 1. Also,
with probability 1 — p, we have that Xdata does not hold, in which case the satisfaction
value of ¢ is % Thus, now the satisfaction value of ¢ is % in the worst case, and this is also
the highest satisfaction value that 75 achieves with probability 1. On the other hand, the
expected satisfaction value of ¢ in a computation of 7o is p-1+4 (1 —p) - % = %(1 + p). Thus,

[T2,€]a = [T2: ¢lw = %, whereas [T3, ¢]s = 2(1 +p).

To conclude, when p > %, in which case %(1 +p) > 1 —p, then T3 is superior to 77 in all

the three approaches. When, however, p < %, then a designer that cares for the expected
satisfaction value should prefer 7;. <

28:9

CSL 2016

28:10

High-Quality Synthesis Against Stochastic Environments

3.1 The Achievability MDP of an LTL[F] formula

In this section we develop the technical tool we are going to use for solving the high-quality
synthesis problem in the stochastic approach.

Consider an LTL[F] formula ¢. Let V() = {v1,...,v,}, with v1 < ... < v, € [0,1]. By
Theorem 3, we have that n < olel, Also, for every 1 < i < n, there is a DPW A; such
that L(A;) = {w: [w,¢] = v;}. Let A; = (21°9 Q. ¢4, 5%, a?). We construct the product
pre-automaton A = A; X ... x A, that subsumes the joint behavior of the DPWs. Formally,
A = (21Y9 S 50, 1), where S = Q! x ... x Q", the initial state is so = (q(, ..., ¢}'), and for
every state s = (g1, ..., qn) and o € 2199 we have pu(s,0) = (6*(q1,0), ..., 6™ (qn, 0)).

Every pre-automaton B = (2/Y° Q, qo,d) induces a pre-MDP Mz = (Q, qo,2°,P) in
— [ie2l8(g,ib0)=q'}|

2111
That is, choosing action o € 29 in state ¢, the MDP samples the possible inputs i € 27

uniformly and moves to state §(¢,i U o). Consider a memoryless strategy f : Q — 2° for
Mp. The strategy f induces an I/O-transducer T[Mg, f] = (1,0, Q, qo,d’, p) in which for
every state ¢ € QQ, we have u(q) = f(q), and for all i € 27 we have §'(q,4) = §(i U u(q)).
Thus, the transducer has the same state space as B, it lets f fix the labels of the states, and
uses this label to complete the 27 component of the alphabet to a letter in 279,

which for every two states ¢, ¢’ € S and action o € 2, we have P(q, 0, ¢)

Consider a parity acceptance condition « on the state space @ of B. Using the notations
of [9], a state ¢ € Q in Mg is controllably win recurrent (c.w.r., for short) if there exists an
end component U C @ such that ¢ € U, a(q) = maxpey {a(p)}, and a(q) is even. That is,
q has the maximal rank in U, and this rank is even. The end component U is referred to
as a witness for g being c.w.r. Intuitively, a parity-MDP with a parity objective o has a
strategy to win with probability 1 from all c.w.r. states. Moreover, if U is a witness for some
c.w.r. state, then there exists a strategy to win with probability 1 from every state in U. If,
however, a run of Mg reaches, and stays forever, in an end component that does not have a
c.w.r. state, then it is winning with probability 0.

Once we have defined the product pre-automaton A, we construct an MDP M 4 =
(S, 50,29, P,), with the following reward function. For a state s = (g, ...,) of M4, we
say that a value v; € V() is achievable from s if there exists a c.w.r. state in M 4, with a
witness U; for which ¢; € U;. Then, v(s) = max{v; : v; is achievable from s}. Note that the
way we have defined A guarantees that every state that is a part of some end component has
at least one value v; that is achievable from s. For states that are not in end components,
we define the reward to be 0. Intuitively, v(s) is the highest satisfaction value that can be
guaranteed with probability 1 from s. We refer to M 4 as the achievability MDP for .

This completes the construction of M 4. Note that every end component U consists of
states with the same value vy. Thus, every infinite run r of M eventually gets trapped in
some end component U, implying that v(r) = vy. Indeed, the rewards along the states in
the finite prefix of r that leads to U are averaged out. For an end-component U of M 4, let
U|; be the projection of U on Q. Note that U|; is an end component in A;.

4 Synthesis Against a Stochastic Environment

In the stochastic high-quality synthesis problem (SHQSyn, for short), we get as input an
LTL[F] formula ¢ over sets I and O of input and output signals, and we seek an I/O-
transducer that maximizes the expected value of a computation (under a uniform distribution
of the inputs). Formally, we want to compute maxy {E[[T, ¢]s]} and return the witness

S. Almagor and O. Kupferman

transducer.!

We solve the SHQSyn problem by reasoning on the achievable MDP M 4. Consider a
strategy f for M 4. Let T be the transducer induced from f, that is T = T[M4, f]. Recall
the random variable X7, : (27)¥ — R that maps w € (27)* to [T (w), ¢]. We define the
random variables Y7, : (2/)* — R as follows. For every w € (27)“, we let Y7 ,(w) be the
mean-payoff of the values along the run of A on 7 (w). Formally, let r be the run of A on
T (w). Then, Y7 ,(w) = ~(r), where is the reward function of M 4. By definition, we have
that [T, ¢]s = E[X7,]. Since M 4 is obtained by assuming a uniform distribution on the
inputs, we have that E[Y7 ,] = valy, (f).

» Theorem 6. Consider an LTL[F] formula ¢. Let M 4 be the achievability MDP for .
For every value v € [0,1], there exists a strategy f in M4 such that valp , (f) > v iff there
exists an I/O-transducer T such that [T, ¢]s > v. Moreover, we can find in time polynomial
in M4 a memoryless strategy f such that [T[M 4, f], ¢]s mazimizes {E[[T, ¢]s]}

Proof. We start by proving that if there exists a transducer T such that [T, ¢]s > v, then
there exists a strategy f such that vala, (f) > v. For this, we prove, in the full version,
that E[X7] < E[Y7). This is indeed sufficient, as we can then take f to be the strategy
induced by T.

For the converse implication, consider a strategy f in M 4 such that valag, (f) > v. By

[14], we can assume that f is memoryless. Let T = T[M 4, f] be the transducer induced by f.

In the full version, we show that there exists a transducer 7' such that E[X7 ,] = E[Y7],
thus concluding the claim. <

We now proceed to show how to solve the SHQSyn problem.

» Theorem 7. Solving the SHQSyn problem for LTL[F] can be done in doubly-exponential
time. The corresponding decision problem is 2EXPTIME complete.

Proof. Consider an LTL[F] formula ¢. We want to find a transducer 7 that maximizes
[T,¢]s. Let M4 be the achievability MDP for ¢. By Theorem 6, we can find in time

polynomial in M 4 a memoryless strategy f such that [T[M 4, f], ¢]s maximizes {E[[T, ¢]s]}

Below we analyze the size of M 4. Let |p| = k. By Theorem 3, we have that n < 2% and each
A; is of size at most 220", Thus, the size of M 4 is at most (220(k))2k = 22O(k), implying
the doubly exponential upper bound.

A matching lower bound for the respective decision problem follows from the 2EXPTIME
hardness of standard LTL synthesis. Note that in our setting one considers satisfaction with
probability 1. Still, since the hardness proof for LTL synthesis considers the interaction
between a system and its environment along a finite prefix of a computation (one that models
the computation of a Turing machine that halts), it applies also for the stochastic setting. <

5 Adding an Almost-Sure Threshold

In this section we combine the stochastic and the almost-sure approaches. The SHQSyn
problem with a threshold includes both an LTL[F] formula ¢ and a threshold ¢ € [0,1]. The
goal then is to maximize the expected satisfaction value of ¢ while guaranteeing that it is
almost surely above t. Formally, given ¢ and ¢, we seek a transducer T that maximizes

{7 ¢l : [T, ¢la > 1

1 A-priori, it is not clear that the maximum is attained. As we prove, however, this is in fact the case.

28:11

CSL 2016

28:12

High-Quality Synthesis Against Stochastic Environments

Note that there need not be a transducer T for which [T,], > ¢, in which case the set is
empty and we return no transducer. This is the multi-valued analogue of an unrealizable
Boolean specification (except that here the user may want to try to reduce t). Note also that
this sub-problem, of deciding whether the set is empty, amounts to solving the high-quality
synthesis problem in the almost-sure approach. Finally, if the set is not empty, then we have
to show, as in Section 4, that its maximum is indeed attained.

» Example 8. Consider a server sending messages over a noisy channel. At each cycle, the
server sends a message and needs to decide whether to encode it so that error-correction can
retrieve it in case the channel is noisy, or take a risk and send the message with no encoding.
Encoding a message has some cost. We formulate the quality of each cycle by the specification
¥ over I = {noise} and O = {encode}, where 1) = (—noise A mencode) V Vs encode. Thus,
each cycle has satisfaction value 1 if a message that is not encoded is sent over a non-noisy
channel, and satisfaction value % if a message is encoded. Note that otherwise (that is, when
a message that is not encoded is sent over a noisy channel), the satisfaction value is 0. The
factor % in the LTL[F] specification reflects the priorities of the designer as induced by the
actual cost of encoding and of losing messages.

Recall that ¢ specifies the quality of a single cycle. The quality of a full computation
refers to its different cycles, and a natural thing to do is to take the average over the cycles
we want to consider. Assume that a channel may be noisy only during the first four cycles.
Then, the quality of a computation is ¢ = (¢ &1 X¢) &1 (XXep @1 XXX¢)).

Assume that the probability of a channel to be noisy in each of the first four cycles is p.
Consider a transducer 77 that does not encode any message. The expected satisfaction value
of ¢ in each of the four cycles is then (1 —p)-1+p-0=1—p, hence [T;,¢]s =1 —p. On the
other hand, the satisfaction value of ¢ in a noisy cycle is 0, hence [T1, ¢]w = [T1, ¢]a = 0.
Thus, if one does not care for a lower bound on the satisfaction value in the worst case, then
by using 77 he gets an expected satisfaction value of 1 — p.

Suppose now that we want the satisfaction value to be above % in the worst case. This
can be achieved by a transducer 75 that encodes messages in two of the four cycles. Indeed,
for the cycles in which a message is encoded, we get satisfaction value %, which is averaged
with 0, namely the worst-case satisfaction value in the cycles in which a message is not
encoded. Hence, [T2,¢]w = [T2, ¢l = 3 ©10= 3 > 1. The expected satisfaction value of
Ta is then [Tz, ¢]s = § @1 (1—p) = £ - &.

Finally, if we want to ensure satisfaction value % in the worst case, then we can design
a transducer T3 that encodes all the messages in the first four cycles. Now, [T3,¢]w =
[[7?’)790]]11 = [[75790]]5 = %

It follows that for a small p, adding a threshold on the satisfaction value in the worst
case reduces the expected satisfaction value. Indeed, when p < i, then 1 —p > % - g > %.
When, however, p > i, then 73 is superior in the three approaches. <

In order to solve the SHQSyn problem with a threshold, we modify our solution from
Section 3.1 as follows. We start by deciding whether there exists a transducer 7 such that
[T, ¢la > t. For this, we construct, per Theorem 3, a DPW As, = (2190, Q>*, ¢5*, 62, a=")
such that L(A>;) = {w:[w,¢] >t}. Let M>; be the parity-MDP induced from As,.
By [9], we can find the set of almost-sure winning states of M>;. If qOZt is winning, then
the required transducer exists, and in fact M>; embodies all candidate transducers. We
obtain a pre-automaton A%, from As, by restricting A>, to winning states, and removing
transitions from state ¢ € Q=" for every action o € 2° such that there exists i € 2! for which
§2%(q,i U 0) is not a winning state.

S. Almagor and O. Kupferman

We proceed by constructing a product pre-automaton A that is similar to the one
constructed in Section 3.1, except that takes ¢ and AL, into account, as follows.

Let ¢ = argmin; {v; : v; >t} be the minimal index such that v; > t. We define A =
Ag x ... x A, x AL, That is, the product, defined as in Section 3.1, now contains only
DPWs A; for which v; > t and also contains AL,. We obtain the MDP M 4 and set the
reward function as in Section 3.1, taking into account only c.w.r. states from the automata
Ay, ..., An. The component AL, is only used to restrict the actions of the MDP M 4. We
refer to M 4 as the t-achievability MDP for .

We present an analogue to Theorem 6. The proof appears in the full version.

» Theorem 9. Consider an LTL[F] formula ¢ and a threshold t € [0,1]. Let M 4 be the
t-achievability MDP for ¢. For every value v € [0,1], there exists a strategy f in My
such that valp , (f) > v iff there exists an I/O-transducer T such that [T,¢le > t and
[T, ¢]s > v. Moreover, we can find in time polynomial in M 4 a memoryless strategy f such

that [TM a, f], ¢]s mazimizes {E[[T, ¢ls] : [T, ¢la >t}

Since, by Theorem 3, the size of A>; is doubly exponential in ¢, then, by following
considerations similar to those specified in the proof of Theorem 7, we conclude with the
following.

» Theorem 10. Solving the SHQSyn problem with a threshold for LTL[F] can be done in
doubly-exponential time. The corresponding decision problem is 2EXPTIME-complete.

» Remark 11. In [10, 12], the authors solve the problem of deciding, given an MDP M and
two thresholds v and ¢, whether there is a strategy f for M that guarantees value ¢ almost
surely, and has expected cost at least v. The solution can be directly applied to our setting.
However, note that this solution only guarantees an expected cost of v, whereas our approach
finds the optimal expected cost. <

» Remark 12. In the SHQSyn problem with a threshold, we use the formula ¢ both for the
expectation maximization, and for the almost-sure threshold. Sometimes, it is desirable to
decompose the specification into one part — 1, which is a hard constraints and needs to be
satisfied almost-surely above the threshold ¢, and another part — ¢, which specifies a utility
function with respect to which we would like to optimize [5, 12].

Our solution can be easily adapted to handle this setting. Indeed, in the construction of
the t-achievability MDP, we replace As;, with B>, where L(B>;) = {w : [w,¢] > t}, and
proceed with the described construction and the proofs. |

6 Adding Environment Assumptions

A common paradigm in Boolean synthesis is synthesis with environment assumptions [7, 18],
where the input to the synthesis problem consists of a specification ¢ and an assumption
1, and we seek a transducer that realizes ¢ under the assumption that the environment
satisfies ¢. In this section we consider an analogue variant of the SHQSyn problem, where
we are given an LTL[F] specification ¢ and an LTL assumption 1, and we seek a transducer
that maximizes the expected satisfaction value of ¢ given that the environment satisfies the
assumption 1. Note that while the specification is quantitative, the assumption is Boolean.

» Example 13. Recall the message-sending server in Example 8, and assume that the channel
can change its status (noisy/non-noisy) only every second cycle. We use this assumption in
order to design improved transducers. Formally, the assumption is given by the LTL formula
1 = (noise <> Xnoise) A XX(noise <> Xnoise).

28:13

CSL 2016

28:14

High-Quality Synthesis Against Stochastic Environments

The transducer T; does not encode the first message, but checks whether the channel was
noisy. If it was, the second message is encoded. We get that the expected satisfaction value
of ¢ in T4 under the assumption is (1 —p+p- % +(1-p)-1/2=1- %p, which is higher than
1—p=1[T1,¢]s for every p > 0. In addition, under the assumption we are guaranteed that
the worst-case satisfaction value of 7y is at least %, unlike 77 (in case the channel is noisy, so
only the second and fourth messages are encoded). Thus 74 is superior to T; described in
Example 8 in the three approaches (under the assumption).

Next, as in Example 8, if we want to ensure satisfaction value % in the worst case, we
can design a transducer T5 that works like 74, except that it always encodes the first and
third messages. The expected satisfaction value of 75 under the assumption is (% +p- % +
(1-p)-1)/2 =% — &, which is higher than 3 = [T3, ¢],, for every p € [0,1].

Thus, under the assumption, it is possible to design transducers that increase the expected
satisfaction value as well as the lower bound. <

Formally, in the SHQSyn problem with environment assumptions, we get as input an
LTL[F] formula ¢ over I U O, and an environment assumption 1, which is an LTL formula
over I such that Pr(¢) > 0. That is, the probability of the event {w : w = ¥} C (21)¥ is
strictly positive. Recall that X7 , is a random variable such that X7 ,(w) = [T (w), ¢]. We
seek a transducer 7 that maximizes E[X7 ,|w =).

We start by citing a folklore lemma, whose proof can be found in the full version.

» Lemma 14. Consider a random variable X. Let A, B be events such that Pr(A) > 0 and
Pr(B) =0. Then, E[X|AU B] = E[X]A4].

Before proceeding, we note that if Pr(¢)) = 1, then we can proceed by dropping the
assumption entirely. Indeed, it holds that Pr(—¢) = 0, and by Lemma 14, we have that
E[X7plw = v] = E[Xr,l(w =) U (w £)] = E[X7,|(21)*] = E[X7.,]. Thus, we
henceforth assume that 0 < Pr(¢) < 1.

As mentioned in Section 1, maximizing the conditional expectation directly is notoriously
problematic, as, unlike unconditional expectation, it is not a linear objective. Thus, it is
not susceptible to linear optimization techniques, which are the standard approach to find
maximizing strategies in MDPs. Our solution is a modification of the construction from
Section 3.1 in which we, intuitively, “redistribute” the probability of the input sequences that
do not satisfy the assumption. We start by constructing a DPW A,, that accepts a word
w € (27) iff w |= 9. Note that the alphabet of A is 2/. We think of this alphabet as 27V
where transitions simply ignore the 2© component. In particular, the MDP M 4 ., is in fact
an MC. We say that an ergodic component of M4, is rejecting if the maximal rank that
appears in it is odd. It is easy to see that a run in a rejecting ergodic component is accepting
w.p. 0.

We then consider the automaton A4 = Ay x A; x ... x A,, and obtain the MDP
Mg = (S, 50,29,P,7) as described in Section 3.1. In particular, the reward function is as
there, and the only change is the addition of the A, component, which provides information
about satisfaction of 1. We refer to M 4 as the conditional achievability MDP for ¢ given 1.
Recall that for a strategy f, we have defined R, s as a random variable whose value is the
reward on runs in M 4 with strategy f. Following the proof of Theorem 6, we then get the
following.

» Theorem 15. Consider an LTL[F] formula ¢ and an environment assumption 1. Let
M4 be the conditional achievability MDP for ¢ given . For every value v € [0, 1], there
exists a strategy f in M4 such that E[Rpy , rlw = ¢] > v iff there exists an I/O-transducer

S. Almagor and O. Kupferman

T such that B[X7 ,|w = 1] > v. Moreover, if f is memoryless, then we can find in time
polynomial in M4 a memoryless strategy f such that E[Xa, f1,0lw F 9] > v.

Theorem 15 enables us to reason about M 4, but we are still left with conditional expectations.
To handle the latter, we follow a technique suggested in [2] and obtain from M 4 a new
MDP M, = (S, 59, A,P’,7) as follows. A state s = (¢, q1, ...,) of M4 is called a rejecting
ergodic state if its state q of Ay belongs to a rejecting ergodic component of M 4,. Let
Z = {s : s is a rejecting ergodic state}.

For every state s € % we set P'(s,a,s0) = 1. That is, whenever a rejecting ergodic
component of Ay is reached, the MDP M’ deterministically resets back to so.

Intuitively, when a rejecting ergodic component of Ay, is reached, then the probability of
1) being satisfied is 0. Thus, resetting “redistributes” the probability of i) not being satisfied
evenly. Below we formalize this intuition. The proofs can be found in the full version.

» Lemma 16. Let v € R, and consider a memoryless strategy g in M’y such that valM/A(g) >
v. There exists a memoryless strategy f in M such that E[Ra, flw =] > v. Moreover,
f can be computed from g in polynomial time.

» Lemma 17. Let v € R, and consider a strategy f in M 4 such that E[Raq, slw = Y] > v.
There exists a strategy g in My such that E[Ray, o] > v.

Finally, using Theorem 15, and the fact that 4, is doubly exponential in 1), we can use
the same reasoning as in the proof of Theorem 7 and conclude with the following. The proof
can be found in the full version.

» Theorem 18. Solving the SHQSyn problem with environment assumptions can be done in
doubly-exponential time. The corresponding decision problem is 2EXPTIME-complete.

7 Extensions

In this section we describe two extensions to the setting. The first combines the threshold
and assumption extensions presented in Sections 5 and 6. The second shows how to handle a
non-uniform probability distribution.

7.1 Combining an Almost-Sure Threshold with Environment
Assumptions

Combining an almost-sure threshold with environment assumptions requires some subtlety
in the definitions. As an input for the problem, we are given an LTL[F] formula ¢ over
T'U O, an LTL environment assumption ¢ over I such that Pr(y) > 0, and a threshold
t € [0,1]. Then, we seek a a transducer 7 that maximizes E[X7 ,|w }= 9] and for which
Pr([T (w), ¢] > tlw = ¢) = 1. In particular, the threshold ¢ should be attained almost surely
only in computations that satisfy .

» Remark 19. Note that it could have also been possible to seek a transducer 7T that
maximizes E[X71 ,|lw = 4] and for which Pr([7 (w),¢] > t) = 1, namely for which the
threshold should hold almost surely regardless of the assumption. We found this approach

less appealing. Its solution, however, is a straightforward combination of our constructions.

That is, we start with the product Ay x ... x A, x AL, x Ay, as defined in Sections 5 and 6,
apply the reset modification described in Section 6, and seek a maximizing strategy in the
resulting MDP. <

28:15

CSL 2016

28:16

High-Quality Synthesis Against Stochastic Environments

We solve the problem as follows. We start by checking whether there exists a transducer
T such that Pr([T (w), ¢] > v|w = ¢) = 1, using the following lemma (see the full version
for the proof).

» Lemma 20. Let ,v, and t be as above. For every transducer T it holds that Pr([T (w), ¢]
> tlw =) = Viff Pr([T(w), ¢ = ¢] > ¢) = 1.

Using Lemma 20, we can decide the existence of a transducer 7 as we seek, by constructing
the DPW Ay_,, >; as per Theorem 3, and keeping only almost-sure winning states as done
in Section 5.
We now proceed as in the first approach, by constructing the product Ay x ... x A, X
;/H%Zt x Ay, where ‘Aib—w,zt is obtained from Ay_,, >; by keeping only almost-sure
winning states.

7.2 Handling a Non-Uniform Distribution

In order to handle a non-uniform distribution on the input signals, we first have to decide
how to model arbitrary distributions on (2/)*. The common way to do so is to assume
that the distribution is generated by a pre-MDP D = (S, 50,29, P) and a labeling function
t:S — 21 where a state s € S generates the input ¢(s). Thus, the probability of an input
signal to hold depends on the history of the interaction with the system. Formally, every
run r = 8o, S1, ... of D generates an input sequence (s1), t(s2), and the distribution on runs
induces a distribution on (27)”. 2

All our results can be adapted to handle a distribution given by D as above. We only
have to change the construction of the achievability MDP described in Section 3.1 as follows.
For a pre-automaton B = (21Y9 Q) g9, 6) and a distribution pre-MDP D = (S, 50, 29, P) with
labeling function ¢, we define the induced pre-MDP as ME = (Q x S, (qo, 50), 29, P’) where
for every two states (g, s), (¢’,s’) € Q x S and action o € 29, we have P'({g, s), 0, (¢, s')) =
P(s,0,5") if 6(q,t(s")Uo) = ¢, and 0 otherwise. It is not hard to see that all the constructions
we apply to achievability MDP M 4 can be applied to MZ, which would take the distribution
in D into account. The complexity of the algorithms is polynomial in ME. Thus, the
complexity of our algorithms remains 2EXPTIME-complete in ¢ and polynomial in D.

—— References

1 S. Almagor, O. Kupferman, and Y. Velner. Minimizing expected cost under hard boolean
constraints, with applications to quantitative synthesis. In 27th CONCUR, 2016.

2 C. Baier, J. Klein, S. Kliippelholz, and S. Méarcker. Computing conditional probabilities in
markovian models efficiently. In 20th TACAS, pages 515-530, 2014.

3 R. Bloem, K. Chatterjee, T. Henzinger, and B. Jobstmann. Better quality in synthesis
through quantitative objectives. In 21st CAV, volume 5643 of LNCS, pages 140-156, 2009.

4 R. Bloem, R. Ehlers, and R. Konighofer. Cooperative reactive synthesis. In 15th ATVA,
pages 394-410, 2015.

5 V. Bruyere, E. Filiot, M. Randour, and J-F. Raskin. Meet your expectations with guar-
antees: Beyond worst-case synthesis in quantitative games. In 31st STACS, volume 25 of
LIPIcs, pages 199-213, 2014.

6 K. Chatterjee and L. Doyen. Energy and mean-payoff parity markov decision processes. In
36th MFCS, pages 206-218, 2011.

2 Note that we do not consider the label on s, in order to allow a distribution on the initial letters.

S. Almagor and O. Kupferman

10

11

12

13

14
15

16

17

18

19

20

21

K. Chatterjee, T. Henzinger, and B. Jobstmann. Environment assumptions for synthesis.
In 19th CONCUR, volume 5201 of LNCS, pages 147-161, 2008.

K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Games with secure equilibria. In 19th
LICS, pages 160-169, 2004.

K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Quantitative stochastic parity games.
In SODA 04, pages 121-130, 2004.

K. Chatterjee, Z. Komérkova, and J. Kretinsky. Unifying two views on multiple mean-
payoff objectives in markov decision processes. In 30th LICS, pages 244-256, 2015.

A. Church. Logic, arithmetics, and automata. In Proc. Int. Congress of Mathematicians,
1962, pages 23-35. Institut Mittag-Leffler, 1963.

L. Clemente and J-F. Raskin. Multidimensional beyond worst-case and almost-sure prob-
lems for mean-payoff objectives. In 30th LICS, pages 257-268, 2015.

M. Faella, A. Legay, and M. Stoelinga. Model checking quantitative linear time logic. Electr.
Notes Theor. Comput. Sci., 220(3):61-77, 2008.

J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1996.

D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. In 16th TACAS, volume
6015 of LNCS, pages 190-204, 2010.

O. Kupferman, Y. Lustig, M.Y. Vardi, and M. Yannakakis. Temporal synthesis for bounded
systems and environments. In 28th STACS, pages 615-626, 2011.

M. Kwiatkowska and D. Parker. Automated verification and strategy synthesis for probab-
ilistic systems. In 11th ATVA, volume 8172 of LNCS, pages 5-22, 2013.

W. Li, L. Dworkin, and S. A. Seshia. Mining assumptions for synthesis. In 9th MEMO-
CODE, pages 43-50, 2011.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In 16th POPL, pages
179-190, 1989.

U. Boker S. Almagor and and O. Kupferman. Formalizing and reasoning about quality. J.
ACM, 63(3), 2016.

S. Schewe and B. Finkbeiner. Bounded synthesis. In 5th ATVA, volume 4762 of LNCS,
pages 474-488, 2007.

28:17

CSL 2016

	Introduction
	Preliminaries
	Automata and Transducers
	Markov Chains and Markov Decision Processes
	The logic LTL[F]

	High-Quality Synthesis
	The Achievability MDP of an LTL[F] formula

	Synthesis Against a Stochastic Environment
	Adding an Almost-Sure Threshold
	Adding Environment Assumptions
	Extensions
	Combining an Almost-Sure Threshold with Environment Assumptions
	Handling a Non-Uniform Distribution

