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Abstract
Homotopy type theory is a recent research area connecting type theory with homotopy theory
by interpreting types as spaces. In particular, one can prove and mechanize type-theoretic ana-
logues of homotopy-theoretic theorems, yielding “synthetic homotopy theory”. Here we consider
the Seifert–van Kampen theorem, which characterizes the loop structure of spaces obtained by
gluing. This is useful in homotopy theory because many spaces are constructed by gluing, and
the loop structure helps distinguish distinct spaces. The synthetic proof showcases many new
characteristics of synthetic homotopy theory, such as the “encode-decode” method, enforced
homotopy-invariance, and lack of underlying sets.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases homotopy type theory, fundamental group, homotopy pushout, mechan-
ized reasoning

Digital Object Identifier 10.4230/LIPIcs.CSL.2016.22

1 Introduction

Homotopy type theory is an emerging research area which draws ideas from type theory,
homotopy theory and category theory [18, 20, 2, 19, 10, 8, 7]. Most of the current research
has focused on an extension of Martin-Löf type theory by Voevodsky’s univalence axiom and
higher inductive types [18], interpreting types as “spaces up to homotopy”, and Martin-Löf’s
identification type as a space of “homotopical paths”. One of the more intriguing applications
of this theory is synthetic homotopy theory: proving and mechanizing type-theoretic versions
of theorems in classical homotopy theory [18, 15, 12, 14, 13, 9]. Upon translation through
the homotopy-theoretic semantics of type theory [10], these yield proofs of the corresponding
classical results, sometimes involving significant new insights [17].
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Input:

Homotopy pushout:

Figure 1 A homotopy pushout.

In this paper we advance the program of synthetic homotopy theory by proving and
mechanizing the Seifert–van Kampen theorem, which computes the fundamental group of
a homotopy pushout. The fundamental group π1(X) is a homotopy-theoretic invariant
of a space X that measures intuitively “how many loops” it contains. For instance, the
fundamental group of a circle is the integers Z, because one can loop around the circle any
number of times (in either direction); while the fundamental group of a torus (the surface of
a donut) is Z× Z, because one can either loop around the outer edge or through the hole
(any number of times each).

A homotopy pushout is a way of gluing two spaces together to produce a new one, by
specifying an inclusion of a common subspace that should be glued together. For instance,
given two circles and a specified point on each, we can glue the two points together with
a “bridge”, producing a “barbell” shape; see Figure 1. Many of the spaces of interest to
homotopy theory can be obtained by gluing together intervals, discs, and higher-dimensional
discs (such gluings are called cell complexes); thus it is obviously of interest to calculate
invariants of such gluings, such as the fundamental group.

The Seifert–van Kampen theorem tells us how to compute the fundamental group of
a homotopy pushout; that is, it tells us how many loops there are in a glued space. In
the example of Figure 1, a loop in the homotopy pushout can go around one circle any
number of times (in either direction), then around the other circle any number of times,
then back around the first circle some other number of times, and so on. More precisely,
the fundamental group of the figure-eight or barbell is the free product of the fundamental
groups of the two circles (Z and Z), which is the coproduct in the category of groups. More
generally, the Seifert–van Kampen theorem says that if we glue two spaces B and C together
along a connected space A,1 then the fundamental group π1(B tA C) is the amalgamated
free product (the pushout in the category of groups) of π1(B) and π1(C) over π1(A).

In fact, the full Seifert–van Kampen theorem applies also in the case when A is not
connected. This requires replacing fundamental groups π1(X) by fundamental groupoids
Π1X, which keep track of loops at different basepoints. If a space is not connected, such as
the disjoint union of a circle with a point, then different numbers of loops may be possible
depending on where we start. The fundamental groupoid actually records all paths between
points, thus including loops starting at all points and also the information about which pairs
of points are connected. The full SvKT says that the functor Π1 takes homotopy pushouts
to pushouts of groupoids.

Stating and proving this theorem in homotopy type theory is a bit subtle for several
reasons. According to the homotopy-theoretic interpretation of type theory, types act like
∞-groupoids, and ordinary groupoids can be identified with the “1-truncated” types. Under

1 The theorem is traditionally stated for a topological space X which is the union of two open subspaces
U and V , but in homotopy-theoretic terms this is just a convenient way of ensuring that X is the
homotopy pushout of U and V over U ∩ V .
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this interpretation, the Π1 is represented by a type constructor called the 1-truncation, which
is a left adjoint to the inclusion of 1-truncated types into all types. Since left adjoints preserve
pushouts, the SvKT appears to follow trivially.

However, this form of SvKT is not actually particularly useful. We were originally
interested in the fundamental group π1(X), which is a hom-set in the fundamental groupoid
Π1X. If Π1X is represented by a 1-truncated type, then its “hom-sets” are its path spaces
(Martin-Löf’s identity types), and so to find π1(X) when X is a pushout, we must compute
the path space of a pushout. But computing the path space of a pushout is what the SvKT
was supposed to do for us! So this version of the theorem has really just shifted the burden
of calculation elsewhere.

To obtain a more calculationally useful version of SvKT, we represent groupoids more
“analytically” with a type of objects and dependent types of morphisms. For Π1X, the type
of objects is X itself, and the hom-set between x, y : X is the 0-truncation (set of connected
components) of the path-space from x to y. (The connection between the two fundamental
groupoids is that in the language of [18, Chapter 9], the latter Π1X is a “pregroupoid” whose
“Rezk completion” [1] has the 1-truncation of X as its type of objects. Informally, this means
that we force the type family Π1X to coincide with the identity type.)

Now our goal is to calculate this truncated path space, given an expression of X as a
homotopy pushout. For this we use the “encode-decode method” [15, 18]. The idea of this
method is to define a type family code indexed by pairs of elements of X, using the recursion
principle of X coming from its expression as a homotopy pushout; and then show (using the
analogous induction principle of X, along with path induction) that this family of “codes for
paths” is equivalent to the actual family of truncated path spaces.

We will do this in Section 3, after a brief review of homotopy type theory in Section 2.
However, there is one further valuable refinement. The description of code in Section 3 is not
maximally explicit in all cases, because it incorporates π1(X) through “homotopical magic”.
To rectify this, in Section 4 we prove an improved version of SvKT where X is equipped
with an arbitrary type of “base points”. Some example applications can be found at the ends
of Section 3 and Section 4.

All the theorems of the paper have been mechanized in the proof assistant Agda [16];
the code can be found at https://github.com/HoTT/HoTT-Agda/blob/1.0/Homotopy/
VanKampen.agda. We end in Section 5 with some remarks on the mechanization and
how it differs from the informal treatment.

Note that most of this paper appeared previously in [18]; the relevant section §8.7 therein
was in fact written by the present authors. However, since that book was self-published and
never peer-reviewed, it should be regarded as a thesis or a preliminary report rather than a
publication.

2 Homotopy Type Theory

As in [18], we will work in Martin-Löf type theory extended with Voevodsky’s univalence
axiom and some higher inductive types. For a type A and elements x, y : A, we write the
identification type as x =A y or just x = y, and often refer to its elements as paths. The
defining feature of homotopy type theory is that x = y might have more than one element.

The induction principle for x = y, which we refer to as Id-induction or path induction,
says that if D :

∏
(x,y:A)(x = y) → U , then to define d :

∏
(x,y:A)

∏
(p:x=y) D(x, y, p) it

suffices to define r :
∏

(x:A) D(x, x, reflx). From this we can construct all the operations
of a higher groupoid on A; for instance, given p : x = y and q : y = z we have their
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concatenation p � q : x = z (identification is transitive), and for any p : x = y we have its
inverse or opposite p−1 : y = x (identification is symmetric). We also have the operation
of transport (a.k.a. substitution): given C : A → U and u : C(x), for any p : x =A y we
have transportC(p, u) : C(y). Finally, for any f : A → B and p : x =A y, we can define
apf (p) : f(x) =B f(y) (functions respect identifications).

A type A is called a mere proposition (or simply a proposition) if it has at most one
element, i.e.

∏
x,y:A x = y. It is called a set if it satisfies Uniqueness of Identity Proofs, i.e. if∏

x,y:A
∏
p,q:x=y p = q; or equivalently if each type x = y is a proposition. Propositions and

sets are the first two rungs on an infinite ladder of “n-types” [18, Chapter 7], and as such
are also called (−1)-types and 0-types respectively.

If we have two types A and B and functions f : A → B and g : B → A such that∏
a:A g(f(a)) = a and

∏
b:B f(g(b)) = b, then A and B are equivalent, written A ' B. (This

is not the definition of “equivalence” — see [18, Chapter 4] for that — but it is how we
generally produce equivalences.) Since types are elements of a universe type, we also have
the path type A = B, with a canonical map (A = B)→ (A ' B) since identified types are
equivalent; the univalence axiom says that this canonical map is itself an equivalence, so that
equivalent types are identified.

Higher inductive types (HITs) are a generalization of inductive types that allow construct-
ors which generate new identifications (paths) in addition to elements. For instance, the
circle S1 is a HIT generated by a point b : S1 and a path l : b = b. Note that the path l
is “new” and not identified with reflb (at least, not a priori — proving that it is definitely
unequal to reflb is a significant theorem [15]).

The central HIT for us will be the pushout B tA C of two functions f : A → B and
g : A→ C, which is generated by the following constructors:

i : B → B tA C,
j : C → B tA C, and
for all x : A, a path h(x) : i(f(x)) = j(g(x)).

As in Fig. 1, the paths h(x) form the “glue”, or the “handle” of the barbell. We thus have a
commutative diagram

A C

B B tA C

f

g

i

j

that is universal, in the category-theoretic sense. This follows from the type-theoretic
induction principle of B tA C, which says (slightly informally) that given a family D :
B tA C → U , to define d :

∏
(p:BtAC) D(p) it suffices to define m :

∏
(b:B) D(i(b)) and

n :
∏

(c:C) D(j(c)) which “agree over h(x)” for all x : A. Details can be found in [18, Chapter
6]. In particular, the “recursion principle” (the case where D is non-dependent) says that to
define a map d : B tA C → D, it suffices to give maps m : B → D and n : C → D and a
path mf = ng; this is the “existence” part of the universal property of a pushout.

Other important HITs are the propositional truncation and the set-truncation. The
propositional truncation of a type A is a type ‖A‖−1 that is a proposition, together with a
map |– |−1 : A→ ‖A‖−1 that is universal among maps from A to propositions. Informally,
‖A‖−1 is “0 if A is empty and 1 if A is inhabited”. Similarly, the set-truncation of A is a type
‖A‖0 that is a set, together with a map |– |0 : A→ ‖A‖0 that is universal among maps from
A to sets; we think of it as “the set of connected components of A”. See [18, Chapter 7] for
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how to construct these truncations as HITs, as well as a generalization to the n-truncation
(the 1-truncation was mentioned in the introduction).

Given a function f : A → B and a point b : B, the fiber of f over b is fibf (b) :≡∑
(a:A) f(a) = b. We say f is an embedding if fibf (b) is a proposition for all b : B, and

0-truncated if fibf (b) is a set for all b : B. Dually, we say f is surjective if each ‖fibf (b)‖−1 is
contractible (equivalent to 1), and connected (or 0-connected for emphasis) if each ‖fibf (b)‖0
is contractible. In particular, a type A is connected if the unique function A→ 1 is connected,
which is equivalent to saying that ‖A‖0 is contractible — that is, A has exactly one connected
component.

The set-truncation is also how we define the fundamental group and the fundamental
groupoid. Given a type A and a point a : A, we write π1(A, a) :≡ ‖a = a‖0. (Often one
writes simply π1(A), since many types have canonical “basepoints” a. Moreover, if A is
connected, we have ‖a = b‖−1 for all a, b : A, and hence ‖π1(A, a) ' π1(A, b)‖−1 as well; so
up to “propositional equivalence” the choice of a doesn’t matter.) And given just a type
A, for any points x, y : A we write Π1A(x, y) :≡ ‖x = y‖0; this defines the “hom-sets” of a
groupoid with A as its type of objects. Note that we have induced groupoid operations

(– � –) : Π1X(x, y)→ Π1X(y, z)→ Π1X(x, z)

(–)−1 : Π1X(x, y)→ Π1X(y, x)
reflx : Π1X(x, x)
apf : Π1X(x, y)→ Π1Y (f(x), f(y))

for which we use the same notation as the corresponding operations on paths.
The set-truncation also allows us to define quotients of equivalence relations on sets. If A

is a set and R : A→ A→ U is an equivalence relation, then its “homotopy coequalizer” is
the HIT generated by

A quotient map q : A→ Q, and
For each a, b : A such that R(a, b), a path q(a) = q(b).

In general, Q will not be a set; we define the set-quotient of R to be its set-truncation ‖Q‖0.
This has the usual universal property of a quotient with respect to other sets [18, §6.10].

In fact, the definition of the set-quotient makes sense even when A is not a set and when R
is not an equivalence relation. That is, for any type A and any type family R : A→ A→ U ,
we can define its homotopy coequalizer and then set-truncate it; we still call the result the
set-quotient of A by R. This can be identified with a more usual sort of quotient in the
following way:
1. (−1)-truncate the types R(x, y), so that the resulting type family ‖R‖−1 lands in the

type of propositions;
2. Since the type of propositions is a set (by univalence), we can factor ‖R‖−1 through ‖A‖0

to obtain a binary relation on the set ‖A‖0;
3. Now consider the quotient of ‖A‖0 by the equivalence relation generated by this relation,

i.e. its closure under reflexivity, symmetry, and transitivity.
This procedure is fairly complicated, which means on the one hand that it is convenient to
have a simpler construction of the set-quotient, but on the other hand that it can be difficult
to describe and calculate concretely. This will become relevant in Section 4.

2.1 Encode-decode Proof Style
Many theorems in homotopy type theory, including the Seifert–van Kampen, can be phrased
as an equivalence between an abstract, general description X we wish to understand (often a
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Figure 2 A zigzagging path in the pushout P :≡ B tA C.

family of path-spaces or truncated path-spaces), and a concrete, combinatorial description,
which we call code. Recall that an equivalence, as mentioned above involves two functions
with the proof of their mutual invertibility. We call the function from X to code “encode”,
and the other “decode”. The encode-decode proof style essentially fills in the components of
an equivalence one by one:
1. Define the code that will be equivalent to the X we wish to understand. If X is a family

of (truncated) path-spaces in some higher inductive type P , then code is usually a type
family over P defined using the recursion principle of P .

2. Define a encode function from X to code, and a decode function from code to X. Generally
the encode function is immediate from path induction, while decode requires a further
induction over the base space P .

3. Show encode and decode are inverse to each other. Again, one direction of this is usually
easy, while the other requires an induction.

For the rest of the paper we will follow this recipe.

3 Naive Seifert–van Kampen Theorem

Let f : A → B and g : A → C be given functions, and let P :≡ B tA C be their pushout.
In Section 3.1 we will define the family code : P → P → U , and in Section 3.2 we will
prove that it characterizes the truncated path spaces. In Section 3.3 we will apply this
result to calculate some fundamental groups, thereby explaining why it can be regarded as a
Seifert–van Kampen theorem.

3.1 Definition of code
To explain the underlying idea of code, first note that that a path from b : B to c : C in the
pushout P can be obtained by going first from b to f(a) for some a : A, which according to
the pushout glue can be identified with g(a), then going from g(a) to c. However, this is not
the only way to get from b to c; we might do this to get from a b to a c′ : C, and then go
back from c′ to a b′ : B in the opposite way (using a different a′ : A), then back from b′ to
c : C using a third a′′ : A; and we could have arbitrarily many such zigzags. See Figure 2.
Moreover, this even gives us new ways to get from a point b : B to another point b′ : B, by
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going across to C and back any number of times. And when comparing two such zigzags, we
have to compare paths in B and C, but we might also relate the intermediate points in A.

To see how this is related to the classical Seifert–van Kampen theorem, consider the case
of paths from f(a0) to f(a0) for some fixed a0 : A. These will consist of zigzags of paths
passing through B and C, connected to each other through A. If A is connected (as it usually
is in classical algebraic topology), then the other points a : A occurring in these zigzags can
be identified with a0 along some path, and so the paths in B and C reduce essentially to
loops at f(a0) and g(a0) respectively. Thus, such a zigzag is a “word” obtained by “freely
concatenating” loops in B and C; but it turns out that loops in A at a0 can be shifted back
and forth. This describes essentially the “amalgamated free product” π1(B) ∗π1(A) π1(C)
appearing in the classical Seifert–van Kampen theorem. However, in order to prove this
theorem using the encode-decode method, we need to generalize it to characterize all the
paths, not just the loops at the base points.

Formally, we define the combinatorial description code : P → P → U by double recursion
on P . In other words, we first apply the recursion principle to the first P in the type of code,
concluding that it suffices to define maps codeB : B → P → U and codeC : C → P → U that
agree on A. Then we apply the recursion principle again for each b : B and each c : C, so
that to define codeB it suffices to define maps B → B → U and B → C → U that agree in
B → A→ U , and similarly for codeC . The definition of these maps is where we actually put
in the zigzags. Finally, we apply the induction principle to each a : A to determine what it
means for codeB and codeC to agree on A. When this is all reduced out using the theorems
of [18, Chapter 2] (which use function extensionality and the univalence axiom), it suffices
for us to give the following.2

code(i(b), i(b′)) is a set-quotient of the type of sequences

(b, p0, x1, q1, y1, p1, x2, q2, y2, p2, . . . , yn, pn, b
′)

where
n : N
xk : A and yk : A for 0 < k ≤ n
p0 : Π1B(b, f(x1)) and pn : Π1B(f(yn), b′) for n > 0, and p0 : Π1B(b, b′) for n = 0
pk : Π1B(f(yk), f(xk+1)) for 1 ≤ k < n

qk : Π1C(g(xk), g(yk)) for 1 ≤ k ≤ n
The quotient is generated by the following identifications:

(. . . , qk, yk, reflf(yk), yk, qk+1, . . . ) = (. . . , qk � qk+1, . . . )
(. . . , pk, xk, reflg(xk), xk, pk+1, . . . ) = (. . . , pk � pk+1, . . . )

(see Remark 1 below). Note that the type of such sequences is a little subtle to define
precisely, since the types of pk and qk depend on xk and yk; the reader may undertake it
as an exercise, or refer to the Agda mechanization.
code(j(c), j(c′)) is identical, with the roles of B and C reversed. We likewise notationally
reverse the roles of x and y, and of p and q.
code(i(b), j(c)) and code(j(c), i(b)) are similar, with the parity changed so that they start
in one type and end in the other.

2 Since code is a “curried” function of two variables and we are using standard mathematical function
application notation, we ought technically to write code(a)(b); but as in [18] we will instead write this
as code(a, b).

CSL 2016
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For a : A and b : B, we require an equivalence

code(i(b), i(f(a))) ' code(i(b), j(g(a))). (1)

We define this to consist of the two functions defined on sequences by

(. . . , yn, pn, f(a)) 7→ (. . . , yn, pn, a, reflg(a), g(a)),
(. . . , xn, pn, a, reflf(a), f(a))← [ (. . . , xn, pn, g(a)).

Both of these functions are easily seen to respect the equivalence relations, and hence to
define functions on the types of codes. The left-to-right-to-left composite is

(. . . , yn, pn, f(a)) 7→ (. . . , yn, pn, a, reflg(a), a, reflf(a), f(a))

which is equal to the identity by a generating path of the quotient. The other composite
is analogous. Thus we have defined an equivalence (1).
Similarly, we require equivalences

code(j(c), i(f(a))) ' code(j(c), j(g(a)))
code(i(f(a)), i(b)) ' code(j(g(a)), i(b))
code(i(f(a)), j(c)) ' code(j(g(a)), j(c))

all of which are defined in exactly the same way (the second two by adding reflexivity
terms on the beginning rather than the end).
Finally, we need to know that for a, a′ : A, the following diagram commutes:

code(i(f(a)), i(f(a′))) //

��

code(i(f(a)), j(g(a′)))

��
code(j(g(a)), i(f(a′))) // code(j(g(a)), j(g(a′)))

(2)

This amounts to saying that if we add something to the beginning and then something to
the end of a sequence, we might as well have done it in the other order.

I Remark 1. One might expect to see in the definition of code some additional generating
equations for the set-quotient, such as

(. . . , pk−1 � apf (w), x′k, qk, . . . ) = (. . . , pk−1, xk, apg(w) � qk, . . . ) (for w : Π1A(xk, x′k))
(. . . , qk � apg(w), y′k, pk, . . . ) = (. . . , qk, yk, apf (w) � pk, . . . ). (for w : Π1A(yk, y′k))

However, these are not necessary! In fact, they follow automatically by path induction on w.
This is the main difference between the “naive” Seifert–van Kampen theorem and the more
refined one we will consider in Section 4.

3.2 The Encode-decode Proof
Before beginning the encode-decode proof proper, we characterize transports in the fibration
code:

For p : b =B b′ and u : P , we have

transportb7→code(u,i(b))(p, (. . . , yn, pn, b)) = (. . . , yn, pn � p, b′).
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For q : c =C c′ and u : P , we have

transportc7→code(u,j(c))(q, (. . . , xn, qn, c)) = (. . . , xn, qn � q, c′).

Here we are abusing notation by using the same name for a path in X and its image in Π1X.
Note that transport in Π1X is also given by concatenation with (the image of) a path. From
this we can prove the above statements by induction on u. We also have:

For a : A and u : P ,

transportv 7→code(u,v)(h(a), (. . . , yn, pn, f(a))) = (. . . , yn, pn, a, reflg(a), g(a)).

This follows essentially from the definition of code.
Now, as is often the case, the function encode will be defined by transporting a “reflexivity

code” along a path. The reflexivity code r :
∏

(u:P ) code(u, u) is defined by induction on u as
follows:

r(i(b)) :≡ (b, reflb, b)
r(j(c)) :≡ (c, reflc, c)

and for r(h(a)) we take the composite path

(h(a), h(a))∗(f(a), reflf(a), f(a)) = (g(a), reflg(a), a, reflf(a), a, reflg(a), g(a))
= (g(a), reflg(a), g(a))

where the first path is by the observation above about transporting in code, and the second
is an instance of the set quotient relation used to define code.

I Theorem 2 (Naive Seifert–van Kampen theorem). For all u, v : P there is an equivalence

Π1P (u, v) ' code(u, v).

Proof. To define a function encode : Π1P (u, v)→ code(u, v) it suffices to define a function
(u =P v)→ code(u, v), since code(u, v) is a set. We do this by transport:

encode(p) :≡ transportv 7→code(u,v)(p, r(u)).

Now to define decode : code(u, v)→ Π1P (u, v) we proceed as usual by induction on u, v : P .
In each case for u and v, we apply i or j to all the paths pk and qk as appropriate and
concatenate the results in P , using h to identify the endpoints. For instance, when u ≡ i(b)
and v ≡ i(b′), we define

decode(b, p0, x1, q1, y1, p1, . . . , yn, pn, b
′)

:≡ (p0) � h(x1) � apj(q1) � h(y1)−1 � api(p1) � · · · � h(yn)−1 � api(pn). (3)

This respects the set-quotient equivalence relation and the equivalences such as (1), by the
naturality and functoriality of paths [18, Chapter 2].

As usual with the encode-decode method, to show that the composite

Π1P (u, v) encode−−−−→ code(u, v) decode−−−−→ Π1P (u, v)

is the identity, we first peel off the 0-truncation (since the codomain is a set) and then apply
path induction. The input reflu goes to r(u), which then goes back to reflu (applying a
further induction on u to decompose decode(r(u))).
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Finally, consider the composite

code(u, v) decode−−−−→ Π1P (u, v) encode−−−−→ code(u, v).

We proceed by induction on u, v : P . When u ≡ i(b) and v ≡ i(b′), this composite is

(b, p0, x1, q1, y1, p1, . . . , yn, pn, b
′) 7→

(
api(p0) � h(x1) � apj(q1) � h(y1)−1 � api(p1)�

· · · � h(yn)−1 � api(pn)
)
∗
(r(i(b)))

= api(pn)∗ · · · apj(q1)∗h(x1)∗api(p0)∗(b, reflb, b)
= api(pn)∗ · · · apj(q1)∗h(x1)∗(b, p0, i(f(x1)))
= api(pn)∗ · · · apj(q1)∗(b, p0, x1, reflg(x1), j(g(x1)))
= api(pn)∗ · · · (b, p0, x1, q1, j(g(y1)))

=
...

= (b, p0, x1, q1, y1, p1, . . . , yn, pn, b
′).

i.e., the identity function. (To be precise, there is an implicit inductive argument needed
here.) The other three point cases are analogous, and the path cases are trivial since all the
types are sets. J

3.3 Examples
Theorem 2 allows us to calculate the fundamental groups of many types, provided A is a set,
for in that case, each code(u, v) is, by definition, a set-quotient of a set by a relation. (This
is because all of its ingredients belong to sets: the intermediate points xk : A and yk : A
and the elements of truncated path spaces Π1B and Π1C. We did notate b and b′ in the
definition of code(i(b), i(b′)) in order to “anchor” the list on both sides, and B may not be a
set; but for fixed endpoints u = i(b), v = i(b′) these points are not allowed to vary, so they
do not prevent code(u, v) from being a set.)

I Example 3. Let A :≡ 2 be the 2-element type (the booleans), and let B :≡ 1 and C :≡ 1
be the 1-element type. Then P is equivalent to the circle S1. Inspecting the definition of, say,
code(i(?), i(?)), we see that the paths all may as well be trivial, so the only information is in
the sequence of elements x1, y1, . . . , xn, yn : 2. Moreover, if we have xk = yk or yk = xk+1 for
any k, then the set-quotient relations allow us to excise both of those elements. Thus, every
such sequence is identified with a canonical reduced one in which no two adjacent elements
are equal. Clearly such a reduced sequence is uniquely determined by its length (a natural
number n) together with, if n > 1, the information of whether x1 is 02 or 12, since that
determines the rest of the sequence uniquely. And these data can, of course, be identified
with an integer, where n is the absolute value and x1 encodes the sign. Thus we recover
π1(S1) ∼= Z [15].

Since Theorem 2 asserts only a bijection of families of sets, this isomorphism π1(S1) ∼= Z
is likewise only a bijection of sets. We could, however, define a concatenation operation on
code (by concatenating sequences) and show that encode and decode form an isomorphism
respecting this structure (i.e. an equivalence of groupoids, or “pregroupoids”). We leave the
details to the reader.

I Example 4. Let A :≡ 1 and B and C be arbitrary, so that f and g simply equip B and
C with basepoints b and c, say. Then P is the wedge B ∨ C of B and C (the coproduct in
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the category of based spaces). In this case, it is the elements xk and yk which are trivial,
so that the only information is a sequence of loops (p0, q1, p1, . . . , pn) with pk : π1(B, b) and
qk : π1(C, c). Such sequences, modulo the equivalence relation we have imposed, are easily
identified with the usual explicit description of the free product of the groups π1(B, b) and
π1(C, c). Thus, π1(B ∨ C) is isomorphic to this free product π1(B) ∗ π1(C).

Theorem 2 is also applicable to some cases when A is not a set, such as the following
generalization of Example 3:

I Example 5. Let B :≡ 1 and C :≡ 1 but A be arbitrary; then P is, by definition, the
suspension ΣA of A. Then once again the paths pk and qk are trivial, so that the only
information in a path code is a sequence of elements x1, y1, . . . , xn, yn : A. The first two
generating paths say that adjacent equal elements can be canceled, so it makes sense to
think of this sequence as a word of the form x1y

−1
1 x2y

−1
2 · · ·xny−1

n in a group. Indeed, it
looks similar to the free group on A (or equivalently on ‖A‖0), but we are considering only
words that start with a non-inverted element, alternate between inverted and non-inverted
elements, and end with an inverted one. This effectively reduces the size of the generating
set by one. For instance, if A has a point a : A, then we can identify π1(ΣA) with the group
presented by ‖A‖0 as generators with the relation |a|0 = e.

In particular, if A is connected (that is, ‖A‖0 is contractible), it follows that π1(ΣA) is
trivial. Since the higher spheres can be defined as Sn+1 :≡ ΣSn, and S1 is easily seen to be
connected, it follows that π1(Sn) = 1 for all n > 1.

However, Theorem 2 stops just short of being the full classical Seifert–van Kampen
theorem, which we recall states that

π1(B tA C) ∼= π1(B) ∗π1(A) π1(C) (4)

(with base point coming from A). Specifically, when A is not a set, the paths in A should
be able to “move back and forth” between the images of B and C in the pushout; but the
definition of code, and hence the conclusion of Theorem 2, says nothing at all about π1(A)!
This “moving back and forth” still happens, of course, but it happens quietly by way of
type dependency and transport: the paths such as pk and qk in code(u, v) depend on the
intermediate points xk, yk : A, and hence can be transported forwards and backwards along
paths in A. These transported paths then get collapsed in the set-quotient that defines
code(u, v). So the quotienting involved in the “amalgamated free product” (4) still happens,
but it happens in an “automatic” type-theoretic way that, while easier to define, makes it
hard to extract explicit information. For this reason, we now consider a better version of the
Seifert–van Kampen theorem.

4 Improvement with an Indexing Space

The improvement of Seifert–van Kampen we present now is closely analogous to a similar
improvement in classical algebraic topology, where A is equipped with a set S of base points.
In fact, it turns out to be unnecessary for our proof to assume that the “set of basepoints”
is a set — it might just as well be an arbitrary type. The utility of assuming S is a set
arises later, when applying the theorem to obtain computations. What is important is that
S contains at least one point in each connected component of A. We state this in type
theory by saying that we have a type S and a function κ : S → A which is surjective, i.e.
(−1)-connected. If S ≡ A and κ is the identity function, then we will recover Theorem 2.
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Another example to keep in mind is when A is pointed and (0-)connected, with κ : 1→ A the
point: by [18, Lemmas 7.5.2 and 7.5.11] this map is surjective just when A is 0-connected.

Let A,B,C, f, g, P, i, j, h be as in the previous section. We now define, given our surjective
map κ : S → A, an auxiliary type which improves the connectedness of κ. Let T be the
higher inductive type generated by

A function ` : S → T , and
For each s, s′ : S, a function m : (κ(s) =A κ(s′))→ (`(s) =T `(s′)).

There is an obvious induced function κ : T → A such that κ ◦ ` = κ, and any p : κ(s) = κ(s′)
is identified with the composite κ(s) = κ(`(s)) κ(m(p))= κ(`(s′)) = κ(s′).

I Lemma 6. κ is 0-connected.

Proof. We must show that for all a : A, the 0-truncation of the type
∑

(t:T )(κ(t) = a) is
contractible. Since contractibility is a mere proposition and κ is (−1)-connected, we may
assume that a = κ(s) for some s : S. Now we can take the center of contraction to be
|(`(s), q)|0 where q is the path κ(`(s)) = κ(s).

It remains to show that for any φ :
∥∥∥∑(t:T )(κ(t) = κ(s))

∥∥∥
0
we have φ = |(`(s), q)|0. Since

the latter is a mere proposition, and in particular a set, we may assume that φ = |(t, p)|0 for
t : T and p : κ(t) = κ(s).

Now we can do induction on t : T . If t ≡ `(s′), then κ(s′) = κ(`(s′)) p= κ(s) yields via
m a path `(s) = `(s′). Hence by definition of κ and of identification in homotopy fibers,
we obtain a path (κ(s′), p) = (κ(s), q), and thus |(κ(s′), p)|0 = |(κ(s), q)|0. Next we must
show that as t varies along m these paths agree. But they are paths in a set (namely∥∥∥∑(t:T )(κ(t) = κ(s))

∥∥∥
0
), and hence this is automatic. J

I Remark 7. T can be regarded as the (homotopy) coequalizer of the “kernel pair” of κ. If
S and A were sets, then the (−1)-connectivity of κ would imply that A is the 0-truncation
of this coequalizer (this is a standard fact about exact categories, proven in our context in
[18, Chapter 10]). For general types, higher topos theory suggests that (−1)-connectivity of
κ will imply instead that A is the colimit (a.k.a. “geometric realization”) of the “simplicial
kernel” of κ. The type T is the colimit of the “1-skeleton” of this simplicial kernel, so it
makes sense that it improves the connectivity of κ by 1. More generally, we might expect
the colimit of the n-skeleton to improve connectivity by n.

4.1 New code
Now we define code : P → P → U by double induction as follows.

code(i(b), i(b′)) is now a set-quotient of the type of sequences

(b, p0, x1, q1, y1, p1, x2, q2, y2, p2, . . . , yn, pn, b
′)

where
n : N,
xk : S and yk : S for 0 < k ≤ n,
p0 : Π1B(b, f(κ(x1))) and pn : Π1B(f(κ(yn)), b′) for n > 0, and p0 : Π1B(b, b′) for
n = 0,
pk : Π1B(f(κ(yk)), f(κ(xk+1))) for 1 ≤ k < n,
qk : Π1C(g(κ(xk)), g(κ(yk))) for 1 ≤ k ≤ n.
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The quotient is generated by the following paths, as before:

(. . . , qk, yk, reflf(yk), yk, qk+1, . . . ) = (. . . , qk � qk+1, . . . )
(. . . , pk, xk, reflg(xk), xk, pk+1, . . . ) = (. . . , pk � pk+1, . . . )

and also the following new paths (see Remark 1):

(. . . , pk−1 � apf (w), x′k, qk, . . . ) = (. . . , pk−1, xk, apg(w) � qk, . . . ) (for w : Π1A(κ(xk), κ(x′k)))
(. . . , qk � apg(w), y′k, pk, . . . ) = (. . . , qk, yk, apf (w) � pk, . . . ) (for w : Π1A(κ(yk), κ(y′k))).

We will need below the definition of the case of decode on such a sequence, which as before
concatenates all the paths pk and qk together with instances of h to give an element of
Π1P (i(f(b)), i(f(b′))), cf. (3). As before, the other three point cases are nearly identical.
For a : A and b : B, we require an equivalence

code(i(b), i(f(a))) ' code(i(b), j(g(a))). (5)

Since code is set-valued, by Theorem 6 we may assume that a = κ(t) for some t : T . Next,
we can do induction on t. If t ≡ `(s) for s : S, then we define (5) as in Section 3:

(. . . , yn, pn, f(κ(s))) 7→ (. . . , yn, pn, s, reflg(κ(s)), g(κ(s)))
(. . . , xn, pn, s, reflf(κ(s)), f(κ(s)))←[ (. . . , xn, pn, g(κ(s))).

These respect the equivalence relations, and define quasi-inverses just as before. Now
suppose t varies along apms,s′ (w) for some w : κ(s) = κ(s′); we must show that (5)
respects transporting along apκ(apm(w)). By definition of κ, this essentially boils down
to transporting along w itself. By the characterization of transport in path types, what
we need to show is that

w∗(. . . , yn, pn, f(κ(s))) = (. . . , yn, pn � apf (w), f(κ(s′)))

is mapped by (5) to

w∗(. . . , yn, pn, s, reflg(κ(s)), g(κ(s))) = (. . . , yn, pn, s, reflg(κ(s)) � apg(w), g(κ(s′))).

But this follows directly from the new generators we have imposed on the set-quotient
relation defining code.
The other three requisite equivalences are defined similarly.
Finally, since the commutativity (2) is a mere proposition, by (−1)-connectedness of κ
we may assume that a = κ(s) and a′ = κ(s′), in which case it follows exactly as before.

4.2 Improved Theorem
I Theorem 8 (Seifert–van Kampen with a set of basepoints). For all u, v : P there is an
equivalence Π1P (u, v) ' code(u, v) with code defined as in Section 4.1.

Proof. Basically just like before. To show that decode respects the new generators of
the quotient relation, we use the naturality of h. And to show that decode respects the
equivalences such as (5), we need to induct on κ and on T in order to decompose those
equivalences into their definitions, but then it becomes again simply functoriality of f and g.
The rest is easy. In particular, no additional argument is required for encode ◦ decode, since
the goal is to prove an equality in a set, and so the case of h is trivial. J
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4.3 Examples
Theorem 8 allows us to calculate the fundamental group of a pushout B tAC even when A is
not a set, provided S is a set, for in that case, each code(u, v) is, by definition, a set-quotient
of a set by a relation. In that respect, it is an improvement over Theorem 2.

I Example 9. Suppose S :≡ 1, so that A has a basepoint a :≡ κ(?) and is connected.
Then code for loops in the pushout can be identified with alternating sequences of loops
in π1(B, f(a)) and π1(C, g(a)), modulo an equivalence relation which allows us to slide
elements of π1(A, a) between them (after applying f and g respectively). Thus, π1(P ) can be
identified with the amalgamated free product π1(B) ∗π1(A) π1(C) (the pushout in the category
of groups). This (in the case when B and C are open subspaces of the pushout P , and A is
their intersection) is probably the most classical version of the Seifert–van Kampen theorem.

I Example 10. As a special case of Example 9, suppose additionally that C :≡ 1, so that P
is the cofiber B/A. Then every loop in C is identified with reflexivity, so the relations on
path codes allow us to collapse all sequences to a single loop in B. The additional relations
require that multiplying on the left, right, or in the middle by an element in the image of
π1(A) is the identity. We can thus identify π1(B/A) with the quotient of the group π1(B)
by the normal subgroup generated by the image of π1(A).

I Example 11. As a further special case of Example 10, let B :≡ S1 ∨ S1, let A :≡ S1, and
let f : A→ B pick out the composite loop p � q � p−1 � q−1, where p and q are the generating
loops in the two copies of S1 comprising B. Then P is a presentation of the torus T 2 [13].
Thus, π1(T 2) is the quotient of the free group on two generators (i.e., π1(B)) by the relation
p � q � p−1 � q−1 = 1. This clearly yields the free abelian group on two generators, which is
Z× Z.

I Example 12. More generally, any CW complex can be obtained by repeatedly “coning off”
spheres. That is, we start with a set X0 of points (“0-cells”), which is the “0-skeleton” of the
CW complex. We take the pushout

S1 × S0 f1 //

��

X0

��
1 // X1

for some set S1 of 1-cells and some family f1 of “attaching maps”, obtaining the “1-skeleton”
X1. Then we take the pushout

S2 × S1 f2 //

��

X1

��
1 // X2

for some set S2 of 2-cells and some family f2 of attaching maps, obtaining the 2-skeleton
X2, and so on. The fundamental group of each pushout can be calculated from the Seifert–
van Kampen theorem: we obtain the group presented by generators derived from the
1-skeleton, and relations derived from S2 and f2. The pushouts after this stage do not alter
the fundamental group, since (as noted in Example 5) π1(Sn) is trivial for n > 1.
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I Example 13. In particular, suppose given any presentation of a group G = 〈X | R〉,
with X a set of generators and R a set of words in these generators. Let B :≡

∨
X S1 and

A :≡
∨
R S1, with f : A → B sending each copy of S1 to the corresponding word in the

generating loops of B. It follows that π1(P ) ∼= G; thus we have constructed a connected type
whose fundamental group is G. Since any group G has a presentation (e.g. let X = G and R
the set of all products that equal the identity), any group is the fundamental group of some
type. If we 1-truncate such a type, we obtain a type whose only nontrivial homotopy group
is G; this is called an Eilenberg–Mac Lane space K(G, 1). (Eilenberg–Mac Lane spaces
in homotopy type theory were constructed more explicitly by [14]).

5 Mechanization

Overall, the structure of the Agda proof follows closely the informal argument, giving
evidence that homotopy type theory is suitable for mechanization. The major difference
from the informal proof is that homotopy pushouts and set quotients are simulated due to
the lack of native support. Although there is a trick due to [11], which we use, that enables
some of the computation rules to be definitional (those involving point constructors), many
computations still need to be manually carried out, resulting in 900 lines of Agda code
merely for the well-definedness of the type family code. (The entire mechanization is of
roughly 1,800 lines.)

Homotopy pushouts and set quotients can be easily defined as higher inductive types.
Unfortunately, Agda like other proof assistants such as Coq [5] was designed for a more
traditional variant of Martin-Löf type theory without the univalence axiom and higher
inductive types. Lean [6] has built-in quotients and truncations but still only computes on
point constructors. The proof assistant Cubical [3] aims to restore full computation rules
but was not mature enough at the time of this mechanization.

Finally, the cubical approach [13] is shown to be useful in handling coherence conditions
in many theorems, for example the homotopy groups of torus [13], the 3 × 3 lemma [13],
and the Mayer-Vietoris sequences [4]. This might also simplify the proof of Eq. (2) while
constructing the family code.
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