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Abstract
We introduce a new framework for a descriptive complexity approach to arithmetic computations.
We define a hierarchy of classes based on the idea of counting assignments to free function
variables in first-order formulae. We completely determine the inclusion structure and show
that #P and #AC0 appear as classes of this hierarchy. In this way, we unconditionally place
#AC0 properly in a strict hierarchy of arithmetic classes within #P. We compare our classes
with a hierarchy within #P defined in a model-theoretic way by Saluja et al. We argue that
our approach is better suited to study arithmetic circuit classes such as #AC0 which can be
descriptively characterized as a class in our framework.
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1 Introduction

The complexity of arithmetic computations is a current focal topic in complexity theory. Most
prominent is Valiant’s class #P of all functions that count accepting paths of nondeterministic
polynomial-time Turing machines. This class has interesting complete problems like counting
the number of satisfying assignments of propositional formulae or counting the number of
perfect matchings of bipartite graphs (the so-called permanent [15]).

The class #P has been characterized in a model-theoretic way by Saluja, Subrahmanyam
and Thakur in [13]. Their characterization is a natural generalization of Fagin’s Theorem:
Given a first-order formula with a free relational variable, instead of asking if there exists
an assignment to this variable that makes the formula true (NP = ESO), we now ask to
count how many such assignments there are. In this way, the class #P is characterized:
#P = #FOrel. We use the superscript rel to denote that we are counting assignments to
relational variables.
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20:2 Descriptive Complexity of #AC0 Functions

From another point of view, the class #P can be seen as the class of those functions
that can be computed by arithmetic circuits of polynomial size, i.e., circuits with plus and
times gates instead of the usual Boolean gates (cf., e.g., [16]). This is why here we speak of
arithmetic computations. In the following, all circuit complexity classes we are referring to
will be FO-uniform classes, which means that there are FO-formulae describing the circuits
for all input lengths (a formal definition will be given).

It is very natural to restrict the resource bounds of such arithmetic circuits. An important
class defined in this way is the class #AC0 of all functions computed by polynomial-size
bounded-depth arithmetic circuits. It is interesting to note that #AC0 and all analogous
classes defined by arithmetic circuits, i.e., plus-times circuits, can also be defined making
use of a suitable counting process: A witness that a Boolean circuit accepts its input is a
so-called proof tree of the circuit, i.e., a minimal subtree of the circuit unwound into a tree,
in which all gates evaluate to 1. Then the arithmetic class #AC0, restricted to binary inputs,
can be characterized as the counting class of all functions that count proof trees of (Boolean)
AC0 circuits. The correspondence between arithmetic computations and counting classes is
explored in [3]. In this paper, we are mainly interested in these counting classes, and without
further mention we use the notation #AC0 in this vein.

There was no model-theoretic characterization of #AC0, until it was recently shown
in [10] that #AC0 = #Πsk

1 , where #Πsk
1 means counting of possible Skolem functions for

FO-formulae.
The aim of this paper is to compare the above two model-theoretic characterizations

in order to get a unified view for both arithmetic circuit classes, #AC0 and #P. This is
done by noticing that the number of Skolem functions of an FO-formula can be counted as
satisfying assignments to free function variables in a Π1-formula. This gives rise to the idea
to restate the result by Saluja et al counting functions instead of relations. We call our class
where we count assignments to function variables #FO, in contrast to Saluja et al.’s #FOrel.
In this setting, we get #P = #FO = #Π1, which places both classes within #Π1.

Furthermore, we show that #AC0 actually corresponds to a syntactic fragment #Πprefix
1 of

#Π1 and, considering further syntactic subclasses of #FO defined by quantifier alternations,
we get the inclusions

#Σ0
( #AC0 = #Πprefix

1 (
( #Σ1 (

#Π1 = #FO = #P (1)

Thus we establish (unconditionally, i.e., under no complexity theoretic assumptions) the
complete structure of the alternation hierarchy within #FO and show where #AC0 is located
in this hierarchy.

Once we know that only universal quantifiers suffice to obtain the full class, i.e., #Π1 = #P,
it is a natural question to ask how many universal quantifiers are needed to express certain
functions. We obtain the result that the hierarchy based on the number of universal variables
is infinite; however, a possible connection to the depth hierarchy within #AC0 remains open.

We see that counting assignments to free function variables instead of relation variables
in first-order formulae leads us to a hierarchy of arithmetic classes suitable for a study of
the power and complexity of the class #AC0. The hierarchy introduced by Saluja et al. [13]
does not seem suitable for such a goal.

This paper is organized as follows: In the next section, we introduce relevant concepts
from finite model theory. Here, we also introduce the Saluja et al. hierarchy, and we explain
the model-theoretic characterization of #AC0. In Sect. 3 we introduce our new framework
and the class #FO and its subclasses. In Sect. 4 we determine the full structure of the
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alternation hierarchy within #FO and place #AC0 in this hierarchy, while in Sect. 5 we
study the hierarchy defined by the number of universal variables in the #Π1-fragment. In
Sect. 6 we turn to the hierarchy defined by Saluja et al. and show that the arithmetic class
#AC0 is incomparable to all except the level-0 class and the full class of this hierarchy.
Finally, we conclude in Sect. 7 with some open questions.

Our proofs make use of a number of different results and techniques, some stemming
from computational complexity theory (such as separation of Boolen circuit classes or the
time hierarchy theorem for nondeterministic RAMs), some from model theory (like closure of
certain fragments of first-order logic under extensions or taking substructures) or descriptive
complexity (correspondence between time-bounded NRAMs and fragments of existential
second-order logic). Most techniques have to be adapted to work in our very low complexity
setting (new counting reductions, use of the right set of built-in relations, etc.). Our paper
sits right in the intersection of finite model theory and computational complexity theory.

2 Definitions and Preliminaries

In this paper we consider finite σ-structures where σ is a finite vocabulary consisting of
relation and constant symbols. For a structure A, dom(A) denotes its universe. We will
always use structures with universe {0, 1, . . . , n− 1} for some n ∈ N \ {0}. Sometimes we will
assume that our structures contain certain built-in relations and constants, e.g., ≤2, SUCC2,
BIT2 and min. In the following, we will always make it clear what built-in relations we allow.
The interpretations of built-in symbols are fixed for any size of the universe as follows: ≤2

is the ≤-relation on N, min is 0, SUCC(i, j) is true, iff i + 1 = j, and BIT(i, j) is true, iff
the i’th bit of the binary represention of j is 1. We will generally write encσ(A) for the
binary encoding of a σ-structure A. For this we assume the standard encoding (see e.g. [12]):
Relations are encoded row by row by listing their truth values as 0’s and 1’s. Constants are
encoded by the binary representation of their value and thus a string of length dlog2(n)e.
A whole structure is encoded by the concatenation of the encodings of its relations and
constants except for the built-in numerical predicates and constants: These are not encoded,
because they are fixed for any input length.

Since we want to talk about languages accepted by Boolean circuits, we will need the
vocabulary

τstring = (≤2, S1)

of binary strings. A binary string is represented as a structure over this vocabulary as follows:
Let w ∈ {0, 1}∗ with |w| = n. Then the structure representing this string is the structure
with universe {0, . . . , n− 1}, ≤2 interpreted as the ≤-relation on the natural numbers and
x ∈ S, iff the x’th bit of w is 1. The structure corresponding to string w is denoted by Aw.

For any k, the fragments Σk and Πk of FO are the classes of all formulae in prenex normal
form with a quantifier prefix with k alternations starting with an existential or an universal
quantifier, respectively.

In order to define uniformity of circuit families we need FO-interpretations, which are
mappings between structures over different vocabularies.

I Definition 1. Let σ, τ be vocabularies, τ = (Ra1
1 , . . . , Rar

r ). A first-order interpretation
(or FO-interpretation)

I : STRUC[σ]→ STRUC[τ ]

CSL 2016



20:4 Descriptive Complexity of #AC0 Functions

is given by a tuple of FO-formulae ϕ0, ϕ1, . . . , ϕr over the vocabulary σ. For some k, ϕ0 has k
free variables and ϕi has k · ai free variables for all i ≥ 1. For each structure A ∈ STRUC[σ],
these formulae define the structure

I(A) = 〈|I(A)|, RI(A)
1 , . . . , RI(A)

r 〉 ∈ STRUC[τ ],

where the universe is defined by ϕ0 and the relations by ϕ1, . . . , ϕr in the following way:

|I(A)| = {〈b1, . . . , bk〉 | A � ϕ0(b1, . . . , bk)}

R
I(A)
i = {(〈b11, . . . , bk1〉, . . . , 〈b1ai

, . . . , bkai
〉) ∈ |I(A)|ai | A � ϕi(b11, . . . , bkai

)}

We will now define the class #P and a model-theoretic framework in which the class can
be characterized. Here, we follow [13] only changing the name slightly to emphasize that we
are counting relations in this setting.

I Definition 2. A function f : {0, 1}∗ → N is in #P, if there is a non-deterministic Turing-
machine M such that for all inputs x ∈ {0, 1}∗,

f(x) = number of accepting computation paths of M on input x.

I Definition 3. A function f : {0, 1}∗ → N is in #FOrel, if there is a vocabulary σ including
built-in linear order ≤, and an FO-formula ϕ(R1, . . . , Rk, x1, . . . , x`) over σ with free relation
variables R1, . . . , Rk and free individual variables x1, . . . , x` such that for all A ∈ STRUC[σ],

f(encσ(A)) = |{(S1, . . . , Sk, c1, . . . , c`) | A � ϕ(S1, . . . , Sk, c1, . . . , c`}|.

If the input of f is not of this form, we assume f takes the value 0.

In the same fashion we define counting classes using fragments of FO, such as #Σrel
i and

#Πrel
i for arbitrary i. In [13] the following was shown for these classes (assuming order as

the only built-in relation):

I Theorem 4. #Σrel
0 = #Πrel

0 ⊂ #Σrel
1 ⊂ #Πrel

1 ⊂ #Σrel
2 ⊂ #Πrel

2 = #FOrel = #P.

Besides this theorem, it was also shown that the functions in #Σrel
0 can be computed in

polynomial time.
To illustrate the definition just given, we repeat an example from Saluja et al. [13] that

will also be important for us later.

I Example 5. We will show that #3DNF, the problem of counting the number of satisfying
assignments of a propositional formula in disjunctive normal-form with at most 3 literals per
disjunct, is in the class #Σrel

1 . To do so, we use the vocabulary σ#3DNF = (D0, D1, D2, D3).
Given a 3DNF-formula ϕ over variables V , we construct a corresponding σ-structure Aϕ with
universe V such that for any x1, x2, x3 ∈ V , Di(x1, x2, x3) holds iff

∧
1≤j≤i ¬xi ∧

∧
i<j≤3 xi

appears as a disjunct. Now consider the following σ-formula with free relational variable T :

Φ#3DNF(T ) = ∃x∃y∃z
( (

D0(x, y, z) ∧ T (x) ∧ T (y) ∧ T (z)
)

∨
(
D1(x, y, z) ∧ ¬T (x) ∧ T (y) ∧ T (z)

)
∨
(
D2(x, y, z) ∧ ¬T (x) ∧ ¬T (y) ∧ T (z)

)
∨
(
D3(x, y, z) ∧ ¬T (x) ∧ ¬T (y) ∧ ¬T (z)

))
Observe that Φ#3DNF is a Σ1-formula. Evaluated on an input structure Aϕ, it expresses that
an assignment to T defines a satisfying assignment of ϕ. Hence, the number of assignments
T such that Aϕ |= Φ#3DNF(T) is equal to the number of satisfying assignments of ϕ.
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We will next recall the definition of Boolean circuits and counting classes defined using
them. A circuit is a directed acyclic graph (dag), whose nodes (also called gates) are marked
with either a Boolean function (in our case ∧ or ∨), a constant (0 or 1), or a (possibly
negated) bit of the input. Also, one gate is marked as the output gate. On any input, a
circuit computes a Boolean function by evaluating all gates according to what they are
marked with. The value of the output gate then is the function value for that input.

When we want circuits to work on different input lengths, we have to consider families of
circuits: A family contains a circuit for any input length n ∈ N. Families of circuits allow us
to talk about languages being accepted by circuits: A circuit family C = (Cn)n∈N is said to
accept (or decide) the language L, if it computes its characteristic function cL:

C|x|(x) = cL(x) for all x.

The complexity classes in circuit complexity are classes of languages that can be decided
by circuit families with certain restrictions to their depth and size. The depth here is the
length of a longest path from any input gate to the output gate of a circuit and the size is
the number of non-input gates in a circuit. Depth and size of a circuit family are defined as
functions accordingly.
Above, we have not restricted the computability of the circuit C|x| from x in any way. This
is called non-uniformity, which allows such circuit families to even compute non-recursive
functions. Since we want to stay within #P, we need some notion of uniformity. For this, we
first define the vocabulary for Boolean circuits as FO-structures:

τcirc = (E2, G1
∧, G

1
∨, B

1, r1),

where the relations are interpreted as follows:
E(x, y): y is a child of x
G∧(x): gate x is an and-gate
G∨(x): gate x is an or-gate
B(x): gate x is a true leaf of the circuit
r(x): x is the root of the circuit

We will now define FO-uniformity of Boolean circuits in general and the class AC0.

I Definition 6. A circuit family C = (Cn)n∈N is said to be first-order uniform (FO-uniform)
if there is an FO-interpretation

I : STRUC[τstring ∪ (BIT2)]→ STRUC[τcirc]

mapping any structure Aw over τstring to the circuit C|w| given as a structure over the
vocabulary τcirc.

Note that by [4] this uniformity coincides with the maybe better known DLOGTIME-
uniformity for many familiar circuit classes (and in particular for all classes studied in this
paper).

I Definition 7. A language L ⊆ {0, 1}∗ is in AC0, if there is an FO-uniform circuit family
with constant depth and polynomial size accepting L.

It is known that the just given class coincides with the class FO of all languages definable
in first-order logic [5, 12], i.e., informally: AC0 = FO. This identity holds if our logical
language includes the built-in relations of linear order and BIT. Though it is known that

CSL 2016



20:6 Descriptive Complexity of #AC0 Functions

linear order can be defined using BIT, we require that both are present in our language,
because we consider very restricted quantifier prefixes where ≤ cannot be defined with BIT.

We will next define counting classes corresponding to Boolean circuit families. For a
nondeterministic Turing machine, the witnesses we want to count are the accepting paths of
the machine on a given input. Considering polynomial time computations, this concept gives
rise to the class #P. A witness that a Boolean circuit accepts its input is a so-called proof
tree, a minimal subtree of the circuit showing that it evaluates to true for a given input. For
this, we first unfold the given circuit into tree shape, and we further require that it is in
negation normal form (meaning that negations only occur directly in front of literals). A
proof tree then is a subtree we get by choosing for any ∨-gate exactly one child and for any
∧-gate all children, such that every leaf which we reach in this way is a true literal. This
allows us to define the class #AC0 as follows:

I Definition 8. A function f : {0, 1}∗ → N is in #AC0, if there is an FO-uniform circuit
family C = (Cn)n∈N such that for all w ∈ {0, 1}∗,

f(w) = number of proof trees of C|w|(w).

As was shown in [10], there is a model-theoretic characterization of #AC0. For this, let us
define the Skolemization of an FO-formula ϕ in prenex normal form by removing all existential
quantifiers and replacing each existentially quantified variable in the quantifier-free part of ϕ
by a term consisting of a function application to those variables quantified universally to the
left of the original existential quantifier. In other words, every existential variable is replaced
by its so-called Skolem function. Now, #AC0 contains exactly those functions that can be
given as the number of Skolem functions for a given FO-formula.

I Definition 9. A function f : {0, 1}∗ → N is in the class #Πsk
1 if there is a vocabulary σ

including built-in ≤, BIT and min and a first-order sentence ϕ over σ in prenex normal form

ϕ , ∃y1∀z1∃y2∀z2 . . . ∃yk−1∀zk−1∃yk ψ(y, z),

where ψ is quantifier-free such that for all A ∈ STRUC[σ], f(encσ(A)) is equal to the number
of tuples (f1, . . . , fk) of functions such that

A � ∀z1 . . . ∀zk−1 ψ(f1, f2(z1), . . . , fk(z1, . . . , zk−1), z1, . . . , zk−1).

If the input of f is not of this form, we assume f takes the value 0.

This means that #Πsk
1 contains those functions that, for a fixed FO-formula ϕ over some

vocabulary σ, map an input w to the number of Skolem functions for ϕ on A = enc−1
σ (w).

I Theorem 10. #AC0 = #Πsk
1 .

The above mentioned result FO = AC0 [5, 12] requires built-in order and BIT; hence it
is no surprise that also for the theorem just given these relations are needed, and this is the
reason why they also appear in Def. 9.

3 Connecting the Characterizations of #AC0 and #P

We will now establish a unified view on the model-theoretic characterizations of both #AC0

and #P. This will be done by viewing #AC0 as a syntactic subclass of #FO. In Theorem
10 we characterized #AC0 by a process of counting assignments to function variables in
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FO-formulae, but only in a very restricted setting. It is natural to define the process of
counting functions in a more general way, similar to the framework of [13], repeated here in
Def. 3, where Saluja et al. count assignments to free relation variables in FO-formulae to
obtain their characterization of #P.

I Definition 11. #FO is the class of all functions f : {0, 1}∗ → N for which there is a
vocabulary σ, including built-in ≤, BIT and min, and an FO-formula ϕ(F1, . . . , Fk, x1, . . . , x`)
over σ with free function variables F1, . . . , Fk and free individual variables x1, . . . , x` such
that for all A ∈ STRUC[σ],

f(encσ(A)) =
∣∣{(f1, . . . , fk, c1, . . . , c`)

∣∣ A � ϕ(f1, . . . , fk, c1, . . . , c`
}∣∣.

If the input of f is not of this form, we assume f takes the value 0.

In the same fashion we define counting classes using fragments of FO, such as #Σi and
#Πi for arbitrary i. Note, that the free individual variables could also be seen as free function
variables of arity 0.

We stress that our signatures in the above definition include symbols ≤, BIT, and min
with their standard interpretations; as argued already several times, these built-ins are
necessary in order to obtain a close correspondence between standard circuit classes like
AC0, TC0 and first-order logic (but cf. results that consider weaker logics and relate them
to presumably smaller non-standard complexity classes [6]). In contrast to our definition,
Saluja et al. (see Def. 3) only use built-in order. Still, we will now see that both concepts,
counting relations and counting function, are in fact equivalent as long as we use all of FO,
even with different sets of built-in relations.

I Theorem 12. #FOrel = #FO = #P.

Proof. The inclusion #FOrel ⊆ #FO is shown as follows: Let f ∈ #FOrel via the formula ϕ
containing free relation variables R1, . . . , Rk. We can replace Ri by a function variable Fi
of the same arity for all i. We then add a conjunct to the formula ensuring that for these
functions only min and the element x > min with ∀y(y < x → y = min) are allowed as
function values. Then each occurrence of Ri(z) can be replaced by Fi(z) = min.

The inclusion #FO ⊆ #P is straightforward. The inclusion #P ⊆ #FOrel was shown
in [13]. J

Note that #AC0 = #Πsk
1 does not directly arise from this definition by choosing an

appropriate fragment of FO because of the restricted usage of the second-order variables in
Def. 9. Still, we will characterize #AC0 as a syntactic subclass of #FO as follows.

I Definition 13. Let #Πprefix
1 be the class of all functions f for which there is a Π1-formula

ϕ(G, x) = ∀y1 . . . ∀ykψ(G, x, y1, . . . , yk) over some vocabulary σ, where ψ is quantifier-free
and in which all arity-a functions G (for any a) occur in ψ only as G(y1, . . . , ya) such that
for all A ∈ STRUC[σ]

f(encσ(A)) = |{(g, c) | A � ϕ(g, c)}|.

If the input of f is not of this form, we assume f takes the value 0.

I Lemma 14. #AC0 = #Πprefix
1 .

Proof. By Theorem 10 it suffices to show #Πsk
1 = #Πprefix

1 . We consider first the inclusion
#Πsk

1 ⊆ #Πprefix
1 . Let g ∈ #Πsk

1 via a formula ϕ as in Def. 9. Then we can simply replace

CSL 2016



20:8 Descriptive Complexity of #AC0 Functions

the occurrences of variables yi in ψ by the corresponding function terms. The resulting
formula is prefix-restricted as needed and directly shows g ∈ #Πprefix

1 .
For #Πprefix

1 ⊆ #Πsk
1 , let g ∈ #Πprefix

1 via a formula ϕ. Since all function symbols
occurring in ϕ are only applied to a unique prefix of the universally quantified variables,
they can be seen as Skolem functions of suitable existentially quantified variables. Thus, we
can replace the occurrences of the function symbols by new variables that are existentially
quantified at adequate positions between the universally quantified variables. If for example,
the input for a function was x1, . . . , x`, then the new variable is quantified after the part
∀x1 . . . ∀x` of the quantifier prefix. Strict alternations in the quantifier-prefix, as required for
#Πsk

1 , can be achieved by adequately adding dummy-variables in between and forcing them
to be equal to min. This yields a formula ϕ′ that shows g ∈ #Πsk

1 . J

4 An Alternation Hierarchy in #FO

In this section we study a hierarchy within #FO based on quantifier alternations. Interestingly,
our approach allows us to locate #AC0 in this hierarchy. First we note that the whole
hierarchy collapses to a quite low class.

I Theorem 15. #FO = #Π1 .

Proof. Let h ∈ #FO via an FO-formula ϕ(f, x) in prenex normal form. We show how to
transform ϕ to a Π1-formula also defining h. As a first step, we change ϕ in such a way
that for each existential variable instead of “there is an x” we say “there is a smallest x”.
Formally, this can be done with the following transformation:

∃xθ(x) ∃x(θ(x) ∧ ∀z(¬θ(z) ∨ x < z ∨ x = z))

applied recursively to all existential quantifiers in ϕ. Note that now for every satisfied
∃-quantifier there is exactly one witness.

For the sake of argument, suppose that after the above transformation and re-conversion
to prenex normal form the formula ϕ(f, x) corresponds to

ϕ′(f, x) = ∃z1∀y1∃z2 . . . ∀y`−1∃z`ψ(f, x, z1, . . . , z`, y1, . . . , y`−1)

where ψ is quantifier-free. Looking at the Skolemization of ϕ′, our transformation ensures
that every existentially quantified variable has a unique Skolem function. Thus,

ϕ′′(f, x, g1, . . . , g`) = ∀y1 . . . ∀y`−1ψ(f, x, g1, g2(y1), . . . , g`(y1, . . . , y`−1), y1, . . . , y`−1)

shows h ∈ #Π1. J

Next we look at the lowest class in our hierarchy and separate it from #AC0.

I Theorem 16. #Σ0 ( #AC0 .

Proof. We start by showing the inclusion. Certain observations in that proof will then
almost directly yield the strictness. Let f ∈ #Σ0 via the quantifier-free FO-formula
ϕ(F1, . . . , Fk, x1, . . . , x`) over some vocabulary σ, where F1, . . . , Fk are free function variables
and x1, . . . , x` are free individual variables, that is,

f(encσ(A)) = |{(f1, . . . , fk, c1, . . . , c`) | A � ϕ(f1, . . . , fk, c1, . . . , c`)}|.

Without loss of generality we can assume that in ϕ no nesting of functions occurs. If there
is an occurrence of a function G as an argument for function H, then we can replace the
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occurrence of G by a new free variable and force this variable to be equal to the function
value. This ensures that there is only one unique assignment to this new free variable.

Let A := dom(A). For all i, let ai be the arity of Fi and let mi be the number of syntactic-
ally different terms that occur as inputs to Fi within ϕ. Let ei1, . . . , eimi be those terms in
the order of their occurrence within ϕ and let ϕ′(y11, . . . , y1m1 , . . . , yk1, . . . , ykmk

, x1, . . . , x`)
be ϕ after replacing for all i, j all occurrences of Fi(eij) by the new free variable yij . Let
m :=

∑
imi.

Considering a fixed assignment to the variables x1, . . . , x`, each eij has a fixed value.
Thus, we can use free individual variables in order to count the number of assignments to
all terms Fi(eij) for all (i, j). After that, all fi have to be chosen in accordance with those
choices to get the correct number of functions that satisfy the formula. Formally, this is done
as follows:

f(encσ(A)) =
∑
c∈A`

∑
(f1,...,fk)∈

AAa1×···×AAak

[A � ϕ(f1, . . . , fk, c1, . . . , c`)]

=
∑
c∈A`

∑
d∈Am

∑
(f1,...,fk)∈G

[A � ϕ′(d, c)],

where G := {(f1, . . . , fk) ∈ AAa1 × · · · ×AAak | ∀(i, j) : A � dij = fi(eij)}.
Since [A � ϕ′(d, c)] does not depend on (f1, . . . , fk), we can multiply by the cardinality

of G instead of summing:

f(encσ(A)) =
∑
c∈A`,

d∈Am

[A � ϕ′(d, c)] · |G|

Now we are in a position to show f ∈ #AC0.
The sum only has polynomially many summands and thus is obviously possible in #AC0.
For [A � ϕ′(d, c)], the circuit only has to evaluate a quantifier-free formula depending on

an assignment that is given by the path from the root to the current gate. This is similar to
the corresponding part of the proof of FO = AC0 and thus can be done in AC0 ⊆ #AC0.

For |G| we first note that the total number of possible assignments for f is

|AA
a1 × · · · ×AA

ak | = |A|
∑

i
|A|ai

.

The definition of G fixes for each function fi the function value on at most mi inputs to be
equal to some dij . This means, that the function value on at least |A|ai −mi inputs is not
determined by the definition of G and can thus be freely chosen.

If for some (i, j), eij is semantically equal to eij′ for some j′ < j, it has to hold that
dij = dij′ . Additionally, this reduces the amount of function values that are fixed by the dij
by 1. To make this formal we define for any (i, j)

Sij = {j′ | j′ < j and A � eij = eij′}.

From the above considerations we get

|G| = [
∧
(i,j)

∧
j′

(j′ ∈ Sij)→ dij = dij′ ] · |A|
∑

i
|A|ai−

∑
i
mi · |A|

∑
ij

[Sij 6=∅].

Since the ai and mi are constants and Sij is FO-definable, |G| can be computed in #AC0.
This concludes the proof for #Σ0 ⊆ #AC0.
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Note that for any #Σ0-function f defined using a Σ0-formula without free second-order
variables, f(w) is bounded polynomially in |w| for all inputs w. On the other hand, the above
proof shows that for any #Σ0-function f defined using a Σ0-formula with at least one free
second-order variable, there are constants ci > 0 such that f(w) divisible by |w|

∑
i
|w|ci− const

for all inputs w. Thus, the function f(w) = |w|d|w|/2e ∈ #AC0 is not in #Σ0 which means
#Σ0 6= #AC0. J

I Theorem 17. #Πsk
1 ( #Π1 .

Proof. From the above we know that the left class is equal to #AC0 and the right class is
equal to #P. Strict inclusion now follows immediately from the following considerations: Let
F be a class of functions {0, 1}∗ → N. Then the class C · F is the class of all languages L for
which there are f, g ∈ F such that for all x ∈ {0, 1}∗, x ∈ L ⇔ f(x) > g(x). In [1] it was
shown that TC0 = C ·#AC0. Also, it is well known that PP = C ·#P. Allender’s separation
TC0 6= PP [2] now directly yields #AC0 6= #P. J

So far we have identified the following hierarchy:

#Σ0 ( #Πsk
1 = #AC0 ( #Π1 = #P. (2)

Next we turn to the class #Σ1 and show that it forms a different branch between #Σ0
and #Π1.

I Lemma 18. There exists a function F which is in #Πsk
1 but not in #Σ1.

Proof. Let τ = {E, c, d,≤,BIT,min} where E is a binary relation symbol and c, d are
constant symbols. Let us consider the function F defined by the number of Skolem functions
of variable z in the formula ϕ = ∀x∀y∃z ψ(x, y, z) with

ψ = (E(x, y)→ z = c ∨ z = d) ∧ (¬E(x, y)→ z = c).

For a given τ -structure A with cA 6= dA, it is clear that:

F (encτ (A)) = |{f | A |= ∀x∀y ψ(x, y, f(x, y))}| = 2|E
A|,

since each edge gives rise to two possible values for z = f(x, y) and each non edge to only
one value. Thus, F ∈ #Πsk

1 .
Suppose now that F ∈ #Σ1 i.e. that there exists φ(g, x) ∈ Σ1 such that for all τ -structures

G,

F (encτ (G)) = |{(g0, a) | G |= φ(g0, a)}|

and in particular for A as above,

2|E
A| = F (encτ (A)) = |{(g0, a) | A |= φ(g0, a)}|.

Now consider the following structure A′ defined simply by extending dom(A) = {0, ..., n− 1}
by two new elements, i.e., dom(A′) = {0, ..., n + 1}. Note that EA = EA

′ , hence the two
structures have the same number of edges. To make the presentation simpler, suppose g = g

and that the arity of g is one. Any given g0 : dom(A) −→ dom(A), can be extended in
several ways on the domain dom(A′) in particular as g1 and g2 below:

g1(x) = g0(x) for all x ∈ dom(A) and g1(n) = c, g1(n+ 1) = d.
g2(x) = g0(x) for all x ∈ dom(A) and g2(n) = d, g2(n+ 1) = c.
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Formulas in Σ1 are stable under extension of models so if a and g0 are such that
A |= φ(g0, a) then A′ |= φ(g1, a) and A′ |= φ(g2, a). Hence,

|{(g′, a) | A′ |= φ(g′, a)}| > |{(g0, a) | A |= φ(g0, a)}|.

On the other hand, F (encτ (A)) = F (encτ (A′)) holds, hence our assumpion that φ(g, x) ∈ Σ1
defines F has led to a contradiction. J

For the opposite direction, we first show the following lemma.

I Lemma 19. The function #3DNF is complete for #P under AC0-Turing-reductions.

Proof. A reduction of the #P-complete problem #3CNF to #3DNF is as follows: Given
a 3CNF-formula ϕ over n variables, we first construct ϕ′ = ¬ϕ. This is a 3DNF-formula.
Obviously, the number of satisfying assignments of ϕ is equal to 2n minus the number of
satisfying assignments of ϕ′. Since this reduction can be computed by an AC0-circuit and
moreover #3CNF is #P-complete under AC0-reductions (as follows from the standard proof of
the NP-completeness of SAT), #3DNF is complete for #P under AC0-Turing-reductions. J

I Lemma 20. There exists a function F which is in #Σ1 but not in #Πsk
1 .

Proof. Using FTC0 to denote the functional version of TC0, we first note that FTC0 6= #P:
For the sake of contradiction, assume FTC0 = #P. Making use of the complexity-theoretic
operator C (see proof of Theorem 17), we obtain PP = C ·#P ⊆ C ·FTC0 = TC0, but this is
a contradiction to TC0 ( PP [2].

We now show this lemma by modifying the counting problem #3DNF to get a #P-
complete function inside of #Σ1. If the reduction we use can be computed in FTC0, the
modified version of #3DNF can not be in #Πsk

1 ⊆ FTC0, because this would contradict
FTC0 6= #P.

Consider the vocabulary σ3DNF and the formula Φ#3DNF(T ) from example 5. Let σ be
the vocabulary extending σ3DNF with built-in ≤, BIT and min. To get a function in #Σ1, we
need to use a free function variable instead of the free relation variable T . Since we cannot
use universal quantifiers, relations cannot be represented uniquely as functions of the same
arity. In order to still get a #P-complete problem, we want to make sure that compared to
#3DNF, the function value of our new counting function only differs from the one of #3DNF
by a factor depending on the input length, not on the specific satisfying assignments. To
achieve this, we encode the relation T as a function F as follows: interpret for all x an even
function value F (x) as T (x) being false and an odd function value F (x) as T (x) being true.
Thus, the number of 1’s and 0’s in a satisfying assignment do not influence the factor by
which the new counting function differs from #3DNF.

Following this idea we define for all σ-structures A

#3DNFfunc(encσ(A)) = |{f | A � Φ#3DNFfunc(f)}|,

where Φ#3DNFfunc(F ) is Φ#3DNF(T ) after replacing for all variables x subformulae of the
form T (x) by BIT(min, F (x)). By definition, #3DNFfunc ∈ #Σ1.

We now want to reduce #3DNF to #3DNFfunc. Since the idea above only works if
the universe has even cardinality, the first step of the reduction is doubling the size of the
universe. Let A be a structure and A′ the structure that arises from A by doubling the size
of the universe. Let A = {0, . . . , n−1} and A′ = {0, . . . , 2n−1} be their respective universes.
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Each assignment for T with A � Φ#3DNF(T ) gives rise to the following set of assignments
for f with A′ � Φ#3DNFfunc(f):

ST = {f : A′ → A′ | for all x ∈ A : f(x) ≡ 1 mod 2 ⇔ T (x)}.

These sets are disjoint and by definition of Φ#3DNFfunc(f) their union is equal to {f |
A′ � Φ#3DNFfunc(f)}. For each T , the functions f in ST have n choices for f(x), if x ∈ A
and 2n choices, if x /∈ A. Thus, |ST | = |A||A| · (2 · |A|)|A|, yielding

#3DNF(encσ3DNF(A)) = #3DNFfunc(encσ(A′))
|A|2|A| · 2|A|

.

Doubling the size of the universe can be done in FTC0 by adding the adequate number
of 0-entries in the encodings of all relations.

The term |A|2|A| · 2|A| can be computed in #AC0 ⊆ FTC0 and division can be done in
FTC0 due to [11].

Since #3DNF is #P-complete under AC0-Turing-reductions by Lemma 19, this means
that #3DNFfunc is #P-complete under TC0-Turing-reductions. J

So Lemmas 18 and 20 show that #Σ1 and #Πsk
1 are incomparable, and we obtain the

inclusion chain #Σ0 ( #Σ1 ( #Π1 = #P. Together with (2) we therefore obtain

#Σ0
( #AC0 = #Πprefix

1 (
( #Σ1 (

#Π1 = #FO = #P (1)

5 Hierarchy Based on the Number of Universal Variables

In this section we study another hierarchy in #FO based on syntactic restrictions, this time
given by the number of universal variables.

Let Πk
1 denote the class of Π1 formulae of the form

∀x1 · · · ∀xmψ,

where m ≤ k and ψ is a quantifier-free formula. The function class corresponding to Πk
1 is

denoted by #Πk
1 . We will show that

#Πk
1 ( #Πk+1

1 , (3)

for all k ≥ 1. These results can be shown by applying a result of Grandjean and Olive which
we will discuss next.

I Definition 21. We denote by ESOf (k∀) the class of ESO-sentences in Skolem normal form

∃f1 . . . ∃fn∀x1 . . . ∀xrψ,

where r ≤ k, and ψ is a quantifier-free formula.

It was shown in [9] that with respect to any finite signature σ

ESOf (k∀) = NTIMERAM(nk),

where NTIMERAM(nk) denotes the family of classes of σ-structures that can be recognized
by a non-deterministic RAM in time O(nk). Note that by [8],

NTIMERAM(nk) ( NTIMERAM(nk+1).

These results can be used to show the strictness of the variables hierarchy (see (3)).
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I Theorem 22. Let k ≥ 1. Then

#Πk
1 ( #Πk+1

1 .

Proof. Let us fix σ = {<,BIT,min, P}, where P is unary. By the above there exists a
sentence ∃f1 · · · ∃fnψ ∈ ESOf (k + 1∀)[σ] defining a binary language L which cannot be
defined by any sentence χ ∈ ESOf (k∀)[σ]. We claim that the function F associated with the
formula ψ(f1, ..., fn) ∈ Πk+1

1 ,

F (encσ(A)) = |{(f1, ..., fn) | A |= ψ(f1, ..., fn)}|,

is not a member of #Πk
1 . For a contradiction, assume that F ∈ #Πk

1 . Then there exists a
formula χ(g, y) ∈ Πk

1 such that

F (encσ(A)) = |{(g, y) | A |= χ(g, y)}|

By the above, the sentence ∃g∃yχ defines the language L, and hence contradicts the assump-
tion that L cannot be defined by any ESOf (k∀)[σ]-sentence. J

It is an interesting open question to study the relationship of #AC0 with the classes
#Πk

1 .

6 #AC0 compared to the classes from Saluja et al.

In this section we study the relationship of #AC0 to the syntactic classes introduced in [13].
As in [13], these classes are defined assuming a built-in order relation only.

I Theorem 23.
#Σrel

0 ( #AC0,
Let C ∈ {#Σrel

1 ,#Πrel
1 ,#Σrel

2 }. Then the following holds: #AC0 6⊆ C and C 6⊆ #AC0.

Proof. The proof of the inclusion #Σrel
0 ( #AC0 is analogous to the proof of Theorem 16

and is thus omitted.
For the second statement recall that #Σrel

1 ⊂ #Πrel
1 ⊂ #Σrel

2 . The claim C 6⊆ #AC0

for C ∈ {#Σrel
1 ,#Πrel

1 ,#Σrel
2 } can be proven as follows: From Example 5 we know that

#3DNF ∈ C and from Lemma 19 we know that #3DNF is #P-complete under AC0-
Turing-reductions. Now suppose #3DNF ∈ #AC0. Then #P ⊆ FAC0#AC0

⊆ FTC0

[10], contradicting FTC0 6= #P, which was shown in the proof of Lemma 20. Hence
#3DNF 6∈ #AC0 and C 6⊆ #AC0.

It remains to show #AC0 6⊆ C. We show this by an argument similar to the proof that
#HAMILTONIAN is not in #Σrel

2 , showing the separation of #Σrel
2 from #FO, see Theorem

2 in [13]. We will show that a very simple function f on encodings of τstring-structures is
not in C. Define f as follows: f(w) = 1, if |w| is even, and f(w) = 0 otherwise. Obviously
f ∈ #AC0. It now suffices to show that f 6∈ #Σrel

2 . For contradiction, assume that f ∈ #Σrel
2

via a formula φ(R, x) ∈ Σrel
2 , where

φ(R, x) = ∃u∀vθ(R, x, u, v),

and θ is a quantifier-free formula. Let s and t be the lengths of the tuples u and x, respectively.
Let n ≥ s+ t+ 1 be even and let w ∈ {0, 1}n. By the assumption, there exists R, x, u such
that

Aw |= ∀vθ(R,x,u, v).
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By the choice of n, we can find i ∈ {0, .., n− 1} such that i does not appear in the tuples u
and x. Let Aw′ denote the structure arising by removing the element i from the structure
Aw, and let R∗ denote the relations arising by removing tuples with the element i from R.
By closure under substructures of universal first-order formulae, it follows that

Aw′ |= ∀vθ(R
∗
,x,u, v),

implying that f(Aw′) ≥ 1. But |w′| is odd and hence f(Aw′) = 0 contradicting the assumption
that the formula φ(R, x) defined the function f . J

Last, we want to give another inclusion result between one of our classes and a class from
the Saluja et al. hierarchy.

I Lemma 24. There exists a function F which is in #Σrel
1 but not in #Σ1.

Proof. We prove that #3DNF is not in #Σ1 though it belongs to #Σrel
1 . As in Example 5,

we use the vocabulary σ#3DNF = (D0, D1, D2, D3) and consider the vocabulary σ extending
σ#3DNF with built-in linear order ≤, BIT and min. Suppose #3DNF is definable by a
σ-formula Φ(g, x) ∈ Σ1. To a given DNF formula, ϕ, with n ≥ 2 variables, one associates a
σ-structure Aϕ such that the number m of satisfying assignments of ϕ is equal to

m = |{(g0, a) | Aϕ |= Φ(g0, a)}|

Let {0, ..., n − 1} be the domain of Aϕ. Consider the structure B extending Aϕ with one
additional element n, correctly extending the numerical predicates. Structure B encodes a
formula ϕ′ whose number of satisfying assignments is obviously 2m. Formulas in Σ1 are
stable by extension, so for any fixed (g0, a) such that A |= Φ(g0, a), any extension g′0 of g0
on the domain {0, ..., n} of B is such that B |= Φ(g′0, a). Each g ∈ g0 of arity a ≥ 1 defined
on {0, ..., n− 1} can be extended on {0, ..., n} in at least (n+ 1)

∑a

i=1 (a
i)na−i

≥ n+ 1 ways.
Hence:

|{(g′0, a) | B |= Φ(g′0, a)}| ≥ (n+ 1)m > 2m

contradicting the assumption that Φ(g, x) ∈ Σ1 defines #3DNF. J

7 Conclusion

In this paper we have started a descriptive complexity approach to arithmetic computations.
We have introduced a new framework to define arithmetic functions by counting assignments
to free function variables of first-order formulae. Compared to a similar definition of Saluja
et al. where assignments to free relational variables are counted, we obtain a hierarchy with a
completely different structure, different properties and different problems. The main interest
in our hierarchy is that it allows the classification of arithmetic circuit classes such as #AC0,
in contrast to the one from Saluja et al.

We have only started the investigation of our framework, and many questions remain
open for future research:
1. Sipser proved a depth hierarchy within the Boolean class AC0 [14]. This hierarchy can

be transferred into the context of arithmetic circuits: There is an infinite depth hierarchy
within #AC0. Does this circuit hierarchy lead to a logical hierarchy within #Πsk

1 ? Maybe
it is possible to obtain a hierarchy defined by limiting the arity of the Skolem functions.
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2. The connection between #AC0 and the variable hierarchy studied in Sect.5 is not clear.
We think it would be interesting to study if #AC0 is fully contained in some finite level
of this hierarchy.

3. One of the main goals of Saluja et al. in their paper [13] was to identify feasible subclasses
of #P. They showed that #Σrel

0 -functions can be computed in polynomial time, but
even more interestingly, that functions from a certain higher class #RΣ2 allow a full
polynomial-time randomized approximation scheme. Are there approximation algorithms
or even schemes, maybe randomized, for some of the classes of our hierarchy?

4. The most prominent small arithmetic circuit class besides #AC0 is problably the class
#NC1 [7]. Can it be characterized in our framework or by a natural extension of it,
for example by allowing generalized quantifiers? The Boolean class NC1 is obtained by
first-order formulae with Lindström quantifiers for group word problems; i.e., we have,
very informally, that AC0 = FO and NC1 = FO + GROUP, see [5, 16].

5. In Sect. 6, we clarified the inclusion relation between the class #AC0 and all classes of
the Saluja et al. hierarchy, and we gave a small number of examples for (non-)inclusion
results between other classes from the two different settings. We consider it interesting
to extend this systematically by studying the status of all further possible inclusions
between classes from our hierarchy and classes of the Saluja et al. hierarchy.

6. We consider it interesting to study systematically the role of built-in relations. E.g.,
Saluja et al. define their classes using only linear order, and prove the hierarchy structure
given in Theorem 4. It can be shown that by adding BIT, SUCC, min and max we obtain
#Πrel

1 = #P. How does their hierarchy change when we generally introduce SUCC or
BIT?
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