
Context-Free Graph Properties via Definable
Decompositions
Michael Elberfeld

RWTH Aachen University, Aachen, Germany
elberfeld@informatik.rwth-aachen.de

Abstract
Monadic-second order logic (mso-logic) is successfully applied in both language theory and al-
gorithm design. In the former, properties definable by mso-formulas are exactly the regular
properties on many structures like, most prominently, strings. In the latter, solving a problem
for structures of bounded tree width is routinely done by defining it in terms of an mso-formula
and applying general formula-evaluation procedures like Courcelle’s. The present paper furthers
the study of second-order logics with close connections to language theory and algorithm design
beyond mso-logic.

We introduce a logic that allows to expand a given structure with an existentially quantified
tree decomposition of bounded width and test an mso-definable property for the resulting ex-
panded structure. It is proposed as a candidate for capturing the notion of “context-free graph
properties” since it corresponds to the context-free languages on strings, has the same closure
properties, and an alternative definition similar to the one of Chomsky and Schützenberger for
context-free languages. Besides studying its language-theoretic aspects, we consider its expressive
power as well as the algorithmics of its satisfiability and evaluation problems.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.4.1 Mathematical
Logic

Keywords and phrases finite model theory, monadic second-order logic, tree decomposition,
context-free languages, expressive power

Digital Object Identifier 10.4230/LIPIcs.CSL.2016.17

1 Introduction

The properties that are definable by formulas from monadic second-order logic (mso-logic)
correspond to the notion of regularity for many classes of structures. Most prominently,
the mso-definable properties of strings correspond to the regular languages [3, 8, 19] and
this also holds for regular languages of trees [18, 6]. Moreover, a recent work [2] generalizes
this connection to the mso-definable properties of every class of structures with bounded
tree width (that means, a class of structures that have tree decompositions whose width is
bounded by a class-dependent constant).

Besides its application to study regular languages of various classes of tree-width-bounded
structures, mso-logic is frequently used to design algorithms for solving problems on these
structures. Every mso-definable property can be decided in polynomial time on every class
of structures of bounded tree width, even if we are looking out for an algorithm that runs
in linear time [4] or has a logarithmic memory footprint [7]. The usefulness of these results
lies in the fact that, in order to prove that a certain concrete problem is decidable in, say,
linear time on a class of structures of bounded tree width, we only need to show that it is
mso-definable. That means, writing down a defining mso-formula for it. Then the linear
time bound for solving the problem follows from the general result of [4].

© Michael Elberfeld;
licensed under Creative Commons License CC-BY

25th EACSL Annual Conference on Computer Science Logic (CSL 2016).
Editors: Jean-Marc Talbot and Laurent Regnier; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2016.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Context-Free Graph Properties via Definable Decompositions

Besides mso-definable problems, there are many problems of both practical and theoretical
interest that are not mso-definable. In order to define them, we need second-order formulas,
which have the ability to establish new relations. Prominent examples of such properties
are the context-free languages of strings. Since there are context-free languages that are
not regular, they are not definable in terms of mso-formulas. Lautemann, Schwentick, and
Thérien [14] addressed this issue by presenting a logic for the context-free languages of
strings. It extends mso-logic with the ability to establish a binary relation, called a matching
relation, that puts a string of well-formed nested brackets on top of a given string. While
this logic generalizes the connection between formal languages and predicate logics from
regular languages to context-free languages, it does not apply to more general structures
like trees and graphs of bounded tree width. In particular, it does not provide us with a
logic that helps to further the application of logics as a descriptive tool in algorithm design.
Motivated by the comment of Lautemann et al. that “We are convinced that a more general
study of these logics will prove worthwhile in the context of general finite structures, instead
of strings”, the present paper remedies this situation by presenting an extension of mso-logic
that is equivalent to the context-free languages of strings, and also generalizes to every class
of structures of bounded tree width.

Contributions. We introduce a logic that generalizes mso on bounded tree width graphs by
(1) allowing to existentially guess a tree decomposition of some bounded width w for a given
graph, and (2) test an mso-definable property for a structure that encodes both the given
graph and the guessed tree decomposition. That means, the logic still defines a property of
graphs, but the defined property is based on cycling through candidate tree decompositions
of them. We call the newly proposed logic mso-logic with quantified tree decompositions
(dmso-logic). The main purpose of the present paper is to propose this logic as a candidate
for capturing the notion of “context-free properties of graphs” with strong connections to
both formal languages and algorithm design.

In order to tighten the connection of dmso-logic with formal languages, we prove that its
definable properties of strings are exactly the context-free languages while already a slight
modification of the decompositions that we use leads to a logic that also defines properties
that are not context-free. Moreover, we study the closure of dmso-definable properties under
set operations and show that they are similar to the closure properties of the context-free
languages. Our logic also allows for an alternative characterization similar to the Theorem of
Chomsky and Schützenberger, which characterizes context-free languages in terms of words
containing well-nested brackets and a regular property of these words.

For establishing a connection between dmso-logic and algorithm design, we study the
complexity of its satisfiability and formula-evaluation problems. Its satisfiability problem
turns out to be decidable. Deciding whether a given structure is a model of a dmso-formula
turns out to be polynomial-time computable for every fixed formula. In order to obtain
the polynomial-time upper bound, we need to work with mso-properties of candidate tree
decompositions without constructing them explicitly. We work with logical types and
develop an inductive approach that computes the types of substructures and their candidate
decompositions. In order to understand the range of applications of our logic, we also
study its expressive power. Since mso-logic on structures of bounded tree width is well
studied, we concentrate on the main distinguishing feature of dmso-logic: the quantified
tree decompositions. We study how a varying width of the quantified tree decomposition
influences the expressive power of the logic. Again, using logical types to reasoning about
candidate decompositions plays an important role for proving the expressivity results.

M. Elberfeld 17:3

Organization. After introducing the necessary background on mso-logic in Section 2, we
define dmso-logic in Section 3. Sections 4, 5, and 6 present results related to the language-
theoretic, model-theoretic, and algorithmic aspects of dmso-logic, respectively. Section 7
concludes with a discussion of the presented results and directions for future work.

2 Background on Monadic Second-Order Logic

A vocabulary τ is a finite set of relational symbols where an arity ar(R) ≥ 1 is assigned
to each symbol R ∈ τ . A structure A over τ (also called τ -structure) consists of a finite
set U(A), its universe, and a relation R(A) ⊆ U(A)ar(R) for every R ∈ τ . The tuples of A
are all (a1, . . . , aar(R)) ∈ R(A) for some R ∈ τ . The substructure of A that is induced by a
set of elements U ′ ⊆ U(A) is denoted by A[U ′]; it has universe U ′ and consists of all tuples
from A whose elements are in U ′. We view a graph G as a structures over the vocabulary
τgraphs := {E2}; in addition to the above notation we denote its universe also by V (G) and
call its elements vertices, and call the tuples in E(G) edges. A graph is undirected if E(G) is
symmetric.

To define the syntax of second-order logic (so-logic), we use element variables (also
called first-order variables) xi for i ∈ N and relation variables (also called second-order
variables) Xi for i ∈ N that have an arity ar(Xi) ≥ 1. Formulas of so-logic (so-formulas)
over a vocabulary τ are inductively defined as follows: Atomic formulas are all xi = xj ,
(xi1 , . . . , xir

) ∈ Xj with r = ar(Xj), and (xi1 , . . . , xir
) ∈ R for R ∈ τ with r = ar(R).

Given so-formulas ϕ1 and ϕ2, composed formulas are build from element quantifiers via
∃xi (ϕ1) and relation quantifiers via ∃Xi (ϕ1) as well as Boolean connectives ϕ1 ∧ ϕ2 and
¬ (ϕ1). The set of free variables of an so-formula ϕ, denoted by free(ϕ), contains the
variables of ϕ that are not used as part of a quantification. By renaming a formula’s
variables, we can always assume free(ϕ) = {x1, . . . , xk, X1, . . . , X`} for some k, ` ∈ N; we
write ϕ(x1, . . . , xk, X1, . . . , X`) to indicate that the free variables of ϕ are exactly x1 to
xk and X1 to X`. An so-sentence is an so-formula without free variables; we use the
term sentence in a similar way for other formulas from other logics as well. Regarding the
semantics of so-logic, we write A |= ϕ(a1, . . . , ak, A1, . . . , A`) to indicate that an so-formula
ϕ(x1, . . . , xk, X1, . . . , X`) evaluates to true for a structure A over the same vocabulary and
an assignment (a1, . . . , ak, A1, . . . , A`) ∈ Uk × pow(Uar(X1))× · · · × pow(Uar(X`)) to ϕ’s free
variables, where pow(B) denotes the power set of a set B.

Monadic second-order logic (mso-logic) is defined by taking all so-formulas without
second-order variables (neither free nor bound) of arity 2 and higher along with the semantics
of so-logic; we call the second-order variables just set variables when working with mso-logic.
Modulo-counting monadic second-order logic (cmso-logic) is an extension of mso-logic that
also allows to use modulo-counting atomic formulas modm(X) for every m ∈ N and set
variable X. We write A |= modm(A1) for a set A1 ⊆ U(A) exactly if the number of elements
in A1 is a multiple of m.

A set of τ -structures P that is closed under taking isomorphic structures is also called a
property of τ -structures. It is so-definable if there is an so-formula ϕ over τ with A |= ϕ for
τ -structures A ∈ P and A 6|= ϕ for τ -structures A /∈ P. Given a second set of structures C,
we say that P is so-definable on C if P ∩ C is so-definable. Note that this definition does not
consider membership in C as a promise, which all given structures meet by assumption. We
use the notion of definable and definable on also for other logics like, for example, mso-logic
and cmso-logic.

CSL 2016

17:4 Context-Free Graph Properties via Definable Decompositions

3 Monadic Second-Order Logic with Quantified Tree Decompositions

The present section introduces a logic that we propose as an accessible framework for
capturing the notion of context-free properties of graphs and, more general, structures. It is
based on guessing a constant-width tree decomposition for a given structure and checking a
property for the decomposition and the structure that is mso-definable. In order to introduce
the logic, we review the notion of tree decompositions and how they can be encoded as part
of structures in Section 3.1. Based on this concept, we define our logic in Section 3.2.

3.1 Structures Expanded by Tree Decompositions
A directed tree T is a tree whose edges are oriented away from a unique root r(T) ∈ V (T);
we call is vertices nodes and edges arcs. A tree decomposition D = (T, β) of a structure A
is a directed tree T together with a labeling function β : V (T)→ pow(U(A)) satisfying the
below connectedness, covering, and strictness conditions. For every t ∈ V (T), the set β(t) is
the bag of t. The width of D is maxt∈V (T) |β(t)| − 1.

(Connectedness) For every element a ∈ U(A), the induced substructure T
[
{t ∈ V (T) |

a ∈ β(t)}
]
is a nonempty directed tree.

(Covering) For every tuple (a1, . . . , ar) of A, there is a t ∈ V (T) with {a1, . . . , ar} ⊆ β(t).
In order to state the strictness condition, we introduce some terminology partly adapted
from [11]. The root of D = (T, β) is r(D) := r(T). The separator of t is σ(t) := β(u) ∩ β(t)
if it has a parent u and σ(t) := ∅ if t = r(T). For every t ∈ V (T), Tt is the subtree of T
rooted at t. Then γ(t), called the cone of t, is the union of all bags β(u) for u ∈ V (Tt).
The component of t is α(t) := γ(t) \ σ(t). Besides the two conditions above, we require
the following third condition that is commonly met by the tree decompositions used in the
literature, but normally not made explicit as part of the definition.

(Strictness) For every (u, t) ∈ E(T), we have γ(u)) γ(t) or α(u)) α(t).

The Gaifman graph G(A) of a structure A has vertex set V (G(A)) := U(A) and there
is an edge (u, v) ∈ E(G(A)) exactly if u and v are part of a common tuple t of A; thus,
G(A) is undirected. Instead of directly working with tree decompositions for structures,
we sometimes use the following folklore fact (see [10] for a formal proof) to consider tree
decompositions for their Gaifman graphs.

I Fact 1. Every tree decomposition of a structure A is also a tree decomposition of its
Gaifman graph G(A), and vice versa.

Let A be a structure over some vocabulary τ and D = (T, β) a tree decomposition for
it. In order to have a single structure that encodes both A and D, we define the expansion
(A,D) of A by D as follows: Its universe is the disjoint union of U(A) and V (T). It contains
all relations of A along with the unary relation nodes := V (T), which is used to distinguish
between nodes from the tree decomposition and elements from the structure, the binary
relation arcs := E(T), to encode the directed tree underlying the tree decomposition, and
bags := {(t, a) ∈ V (T)×U(A) | a ∈ β(t)}, to encode the assignment of elements to the bags.
Thus, (A,D) is a structure over the vocabulary τ? := τ ∪ {nodes,arcs,bags} where we
assume that the relation symbols nodes, arcs, and bags are not part of τ . If we move from
an expansion (A,D) back to A, we speak of reducing (A,D). Courcelle and Engelfriet [5,
Example 5.2] discuss other ways of how to encode a graph along with a tree decomposition
as a single relational structure. The definition in the present paper follows the work of Adler
et al. [1].

M. Elberfeld 17:5

The tree width tw(A) of a structure A is the minimum width among all its tree decom-
positions. The following lemma implies that the tree width of a structure only grows by
a constant additive factor if we expand it with a tree decomposition of minimum possible
width. The lemma without a proof can also be found in [1].

I Lemma 2. Let A be a structure with a tree decomposition D = (T, β) of width w. Then
the tree width of (A,D) is at most w + 2.

Proof. We show how to build a width-(w + 2) tree decomposition D′ = (T ′, β′) for (A,D),
which proves the lemma. As the underlying tree T ′, we use a copy of T and rename each node
t ∈ V (T) into t′. We set β′(t′) := {u, t}∪β(t) if t has a parent u in T and β′(t′) := {t}∪β(t)
if t = r(T). Since D is already a tree decomposition for A, this construction satisfies the
connectedness condition for all elements from U(A) and the cover condition for all tuples
from A. A node u from V (T) only appears in the bag of u′ and the bag of each t′ where t
is a child of u in T . Thus, the connectedness condition holds for the elements from V (T).
Moreover, the construction puts every edge (u, t) ∈ E(T) into the bag β′(t′). Strictness is
inherited from D and the width bound w + 2 follows from the construction. J

3.2 Quantified Tree Decompositions
For the definition of the logic, we use tree decompositions D = (T, β) for structures A that
are normalized in the sense of satisfying the following condition.

(Normal) For every t ∈ V (T), G[α(t)] is connected, where G = G(A).
This condition, which is commonly met by tree decompositions that are constructed via
recursive separator-based approaches, is a necessary ingredient for proving the equivalence
to the context-free languages of our logic on strings. This can be seen by comparing the tree
decompositions used in Theorem 6, which are normal, with the tree decompositions used in
Lemma 10, which are not normal in general.

Compared to mso-logic, the following logic allows to establish new relations beyond just
sets, but the relations encode a tree decomposition of bounded width. Definition 4 uses the
mso-sentences from the following proposition, which can be written down by formulating the
above conditions for tree decompositions in terms of subformulas.

I Proposition 3. For every vocabulary τ and w ∈ N, there is an mso-sentence ϕtw-w-dec
over τ? that defines the τ -structures that are expanded by normal tree decompositions of width
at most w.

I Definition 4. We define the syntax and semantics of mso-logic with quantified tree
decompositions (dmso-logic) as follows:

(Syntax) A dmso-formula over some vocabulary τ has the form ψ = ∃D [ϕtw-w-dec ∧ ϕ]
where ϕtw-w-dec is from Proposition 3 and ϕ is an mso-sentence over τ?.
(Semantics) For a τ -structure A and a dmso-formula ψ = ∃D [ϕtw-w-dec ∧ ϕ], we write
A |= ψ exactly if there is a tree decomposition D with (A,D) |= ϕtw-w-dec ∧ ϕ.

Similar to how cmso-logic extends mso-logic, we extend dmso-logic to a modulo-counting
variant by allowing ϕ to be a cmso-sentence instead of just an mso-sentence. The resulting
logic is called cmso-logic with quantified tree decompositions (dcmso-logic).

While dmso-logic implicitly guesses a tree decomposition, which includes establishing
new elements, it can, equivalently, be defined as a syntactic fragment of so-logic. In this
case, we use higher-ary tuples to encode elements of the tree decomposition. In order to have

CSL 2016

17:6 Context-Free Graph Properties via Definable Decompositions

a clean presentation, we use the definition given above, but keep in mind that dmso-logic
can be defined as a syntactic fragment of so-logic.

The property defined by the mso-subformula ϕ in Definition 4 can, possibly, depend
on the shape of the tree decomposition that is guessed by the decomposition quantifier. A
variant of this definition would be to allow an existentially guessed tree decomposition, but
restrict the property of ϕ to be invariant with respect to the chosen tree decomposition. In
this case, the guessed tree decomposition supports the formula ϕ in defining a property of the
given structure rather than ϕ defining a property of the structure and the tree decomposition.
Interestingly, this invariant use of a width-bounded tree decomposition corresponds to the
notion of recognizable properties of graphs of bounded tree width as studied in [2].

4 Language-Theoretic Aspects

The present section shows that the dmso-definable properties of strings are exactly the
context-free languages (Section 4.1). Moreover, we show that modifying dmso-logic in terms
of using decompositions that are not normal leads to a more expressive logic (Section 4.2).

4.1 DMSO-Definability on Strings Equals the Context-Free Languages
In order to move back and forth between formal languages and logic, we encode strings by
structures that have the shape of a path with unary relations to encode symbols. For an
alphabet Σ = {S1, . . . , Sm}, we consider the vocabulary τΣ := {S1

1 , . . . , S
1
m}. A Σ-path is a

structure P over the vocabulary τΣ-paths := succ2 ∪ τΣ where succ(P) is the edge relation
of a directed path and the unary relations S1(P) to Sm(P) partition U(P). Strings over an
alphabet Σ translate into Σ-paths and back if we use succ(P) to encode the concatenation
and the Si(P) to encode symbols. Given a language L ⊆ Σ∗ for some alphabet Σ, we denote
by P(L) the set of Σ-paths that encode strings from L.

Based on this notation, we are able to state the equivalence of the regular languages and
the mso-definable string properties of Büchi, Elgot, and Trakhtenbrot [3, 8, 19].

I Fact 5. Let L ⊆ Σ∗ for an alphabet Σ. Then L is regular if, and only if, P(L) is
mso-definable.

Similar to this fact, during the course of the present section, we prove the following
connection between the dmso-definable properties of strings and the context-free languages.

I Theorem 6. Let L ⊆ Σ∗ for an alphabet Σ. Then L is context-free if, and only if, P(L) is
dmso-definable.

The theorem follows from Lemmas 8 and 9, which show how to move from context-free
languages to dmso-definable string properties and back, respectively. Moreover, the lemmas
imply that, in order to capture the context-free languages, we only need tree decompositions
of width at most 3. By Lemma 9, we do not leave the context-free languages if we use tree
decompositions with a width bound that is larger than 3, but we can always go down to
width 3 by applying Lemma 8 to the result of Lemma 9.

Besides using a context-free grammar or a pushdown automaton, a context-free language
can be defined as the set of strings that are the yields of trees of a regular tree language;
meaning that a string is generated by taking a binary tree with distinguished left and
right children and reading the symbols at the leaves from left to right with respect to the
ordering induced by the inner nodes of the tree. Since regular tree languages are exactly
the mso-definable properties of trees, this gives rise to a descriptive characterization of the

M. Elberfeld 17:7

context-free languages in terms of trees and mso-logic. We review this connection between
context-free languages and mso-definable trees in order to prove Lemmas 8 and 9.

A Σ-tree is a structure T over the vocabulary τΣ-trees := {left2,right2} ∪ τΣ where
relations left(T) and right(T) encode a directed binary tree whose edges are partitioned
into left successors left(T) and right successors right(T). The unary relations partition
the nodes of the tree (in fact, for the application to a characterization of the context-free
languages, we only need that they partition the leaves of the tree). A Σ-tree yields a Σ-path
as follows: Starting at T ’s root r(T), we traverse the tree based on the depth-first search that
walks to left successors with higher priority and to right successors with lower priority. This
walk induces a total ordering on the leaves of the tree. In turn, it gives rise to a Σ-path P
whose nodes are the leaves of T ; this path is the yield of T .

We get the following fact from combining [16] with [18, 6] (see also its application in [14]).

I Fact 7. Let L ⊆ Σ∗ for an alphabet Σ. Then L is context-free if, and only if, there is an
mso-definable property of Σ-trees T that yield exactly the Σ-paths P(L).

I Lemma 8. For every mso-sentence ϕ over τΣ-trees, there is an mso-sentence ϕ? over
τ?
Σ-paths satisfying the following for every Σ-path P : there is a Σ-tree T that yields P with
T |= ϕ if, and only if, there is a width-3 normal tree decomposition D for P with (P,D) |= ϕ?.

Proof. For the proof we use a transformation from Σ-trees that yield paths to tree decom-
positions for paths. Based on this transformation, we turn a formula ϕ over τΣ-trees into a
formula ϕ? over τ?

Σ-paths that meets the requirements of the lemma.
We start to describe how a Σ-tree T that yields a path P is turned into a tree decomposition

D = (T ′, β) for P . The tree underlying the decomposition is the tree T without distinguishing
left and right successors where we rename every node t ∈ V (T) into t′ ∈ V (T ′). That means
V (T ′) := V (T) and E(T ′) := left(T) ∪ right(T) up to renaming nodes. We view the
nodes of T ′ as being partitioned into the set of leaves, which are exactly the elements of P ,
and the inner nodes. The bags β : V (T ′) → pow(U(P)) are defined as follows: For every
t′ ∈ V (T ′), let Pt be the path that is the yield of the subtree Tt rooted at t. If t′ is a leaf,
then set β(t′) := U(Pt) = {t}. If t′ is an inner node, let l′ and r′ be its left child and right
child, respectively, in T . Then β(t′) contains 4 elements of Pt: the left-most and right-most
nodes of both Pl and Pr. Then D = (T ′, β) is a tree decomposition for P due to the following
reasons: Every unary tuple of P is already covered by the bags of the leaves. For a binary
tuple (p1, p2) ∈ succ(P), let l be the highest node in T , such that the right-most node of
Pl is p1, and let r be the highest node in the tree, such that the left-most node of Pr is
p2. The nodes l and r are children of a common parent node t and {p1, p2} ⊆ β(t′) holds.
The connectedness condition is satisfied due to the following reason: A node of P is part
of a leaf bag, stays in the bags above it while it is the left-most or right-most node of the
path that is the yield of a subtree, stays in the bags while the two subtrees are merged,
and is deleted from the bag afterwards. In particular, the bags that contain an element
from P make up a path in T ′. The width is 3 since bags have size at most 4. Moreover,
the decomposition is strict since the cones of the nodes cover ever larger subpaths due the
construction. Every component α(t) for t ∈ V (T ′) is the vertex set of a subpath of P and,
thus, induces a substructure with a connected Gaifman graph; that means, D is normal.

We want ϕ? to (1) define a tree decomposition of the shape described above, and, based
on this, (2) mimic the behavior of ϕ on T . We start with the first requirement. A first part
of the formula ϕ? ensures that the tree underlying the decomposition is binary, leaves have
singleton bags that partition the set of elements of P , and inner nodes have bags of size 4
and are constructed in the way described above—their cones are subpaths and they split

CSL 2016

17:8 Context-Free Graph Properties via Definable Decompositions

into two subpaths that are, in turn, the cones of the two child nodes. A second part of the
formula accesses the tree T ′ underlying D and reconstructs the partition of children into left
successors and right successors. This can be done by also using the successor relation of P .
In total, this reconstructs all the information we need to simulate the behavior of ϕ on T .

Correctness follows from two observations: First, every tree T whose yield is P can be
transformed into a tree decomposition D of the form described above and T |= ϕ implies
(P,D) |= ϕ?. Moreover, a tree decomposition D of the kind defined by the first part of ϕ?

can be turned back into a tree T that yields P , such that (P,D) |= ϕ? implies T |= ϕ. J

I Lemma 9. For every w ∈ N and mso-sentence ϕ? over τ?
Σ-paths, there is an mso-sentence

ϕ over τΣ-trees satisfying the following for every Σ-path P : There is a width-w normal tree
decomposition D for P with (P,D) |= ϕ? if, and only if, there is a Σ-tree T that yields P
with T |= ϕ.

Proof. We start to give a transformation of normal tree decompositions for paths into trees
that yield paths. Then we show how this transformation can be used to prove the lemma.

Let D = (T, β) be a width-w normal tree decomposition for P . Due to the normalization,
we know that every component α(t) for t ∈ V (T) is connected and, since P is a path, it
is a connected subpath Pt of P . Due to the strictness condition, the subpaths get larger
when moving from a child to its parent or the bag size grows. Consider a node t of T and its
children c1 to c`, and let Pt and P1 to P` be the paths that are induced by the respective
components. Distinct paths Pi and Pj for i, j ∈ {1, . . . , `} have distinct elements and, using
the at most w + 1 elements from β(t), they are connected to form a path Pt. In particular,
this means that ` is upper bounded in terms of w. To turn D into a tree T ′ that yields P we
start with the tree T and insert additional nodes and edges to make it binary. First of all, we
call the nodes of T decomposition nodes. Every decomposition node t is replaced by a chain
of |β(t) \ σ(t)|+ ` nodes; the chain is based on using binary relations from right(T ′). The
beginning of the chain is connected to the parent of t. Using binary relations from left(T ′),
we add edges to leaf nodes for the elements from β(t)\σ(t) and edges to the child nodes c1 to
c` to this chain. The order of adding edges is based on the order of the nodes and subpaths
on the path P . We call the newly established leaves element nodes. The resulting binary
ordered tree T ′ yields P via traversing the leaves based on the ordering that is induced by
the tree.

For turning ϕ? into ϕ, we first use subformulas that single out the decomposition and
element nodes, respectively. This enables us to reconstruct the tree decomposition D from T ′.
Thus, we have access to all of (P,D) and define the property defined by ϕ?.

Correctness follows from the fact that ϕ over Σ-trees defines exactly the Σ-trees that encode
decompositions as described above. Thus, we can move from Σ-trees to tree decompositions
and back while maintaining the answer to the model relation for ϕ? and ϕ. J

4.2 Beyond Context-Free Languages via General Decompositions
The logic dmso is based on normal tree decompositions instead of general ones. The main
reason behind this is based on the fact that, using general tree decompositions of bounded
width, it is possible for an mso-formula to define properties of strings that are not context-free.
This is formally stated by the following lemma.

I Lemma 10. Let Σ = {a, b, c} and L := {anbncn | n ∈ N}. There is an mso-formula ϕ
satisfying the following for every Σ-path P : we have P ∈ P(L) if, and only if, there is a
width-3 tree decomposition D for P with (P,D) |= ϕ.

M. Elberfeld 17:9

Proof. The tree decompositions that are used to prove the lemma have the shape of a path.
The root bag contains the left-most a-labeled node, the right-most b-labeled node and the
left-most c-labeled node. Starting from these nodes, the a-labeled, b-labeled, and c-labeled
subpaths are processed by visiting one node after the other in an alternating fashion. This
means that the a-labeled nodes are processed from left to right, the b-labeled nodes are
processed from right to left, and the c-labeled nodes are processed from left to right. In order
to move from one node to the other, we add a single node to the current bag and, in the
next step, this node replaces the prior one with the same label. The bags of the resulting
decomposition have size at most 4. The properties of the decomposition, which are described
above, are mso-definable and the alternating replacement of nodes can be utilized to test
whether the given path encodes a string anbncn for some n ∈ N. J

The language L used in the previous lemma is not context-free with respect to the classical
definition of context-free languages in terms of context-free grammars [13]. Nevertheless, other
definitions of context-freeness in the context of graph grammars turn L into a context-free
language [5].

5 Model-Theoretic Aspects

The logic dmso on strings defines exactly the context-free languages as shown in the previous
section. In the present section, we further the understanding of its expressive power for
general structures. We start to show that its closure properties are similar to the ones
of the context-free languages (Section 5.1). A dmso-formula consists of a decomposition
quantifier along with an mso-formula that has access to both the structures and a tree
decomposition for it. Since the expressive power of mso-logic is well-understood (see, for
example, [15] and [5]), we concentrate on the key aspect that dmso-logic adds to mso-logic:
how the decomposition quantifier in conjunction with the built-in width bound influences
the expressive power. We show that, already on graphs of tree width 1, increasing the width
bound results in a higher expressive power (Section 5.2).

5.1 Closure of Definable Properties Under Set Operations
In the following, we develop properties that support dmso-logic in being a reasonable logic-
based generalization of the notion of context-freeness from strings to general structures.
dmso-logic has closure properties similar to the context-free languages and they exist for
similar reasons. Moreover, it has an alternative characterization that is similar to the one of
Chomsky and Schützenberger for the context-free languages.

I Lemma 11. There is a vocabulary τ and dmso-definable properties of τ -structure P, P1,
and P2, such that (complement) P and (intersection) P1 ∩ P2 are not dmso-definable.

Proof. To prove the lemma, we use τΣ-paths with Σ = {a, b, c} and sets of Σ-paths P :=
P({a`bmbn | ` 6= m or m 6= n}), P1 := P({ambncn ∈ Σ∗ | m,n ∈ N}), and P2 :=
P({ambmcn ∈ Σ∗ | m,n ∈ N}). The properties P, P1, and P2 are dmso-definable since
they are based on context-free languages and we have Theorem 6. The complement of P
restricted to Σ-paths is P ′ = P(L) with language L := {anbncn | n ∈ N}. Since L is not
context-free (see, for example, Harrison’s book [13] for a proof), Theorem 6 implies that P,
the complement property of P , is not dmso-definable. Since P1 ∩P2 = P(L), where L is the
just defined language, which is not context-free, the non-closure with respect to intersection
holds for the same reason. J

CSL 2016

17:10 Context-Free Graph Properties via Definable Decompositions

While standard closure properties of the context-free languages follow, for example, from
the link to regular tree languages, which we used in Section 4, the closure properties of
dmso-logic follow from the syntax of their formulas.

I Lemma 12. Let τ be a vocabulary, P1 and P2 dmso-definable properties of τ -structures,
and P an mso-definable property of τ -structure. Then (union) P1 ∪ P2 and (intersection
with an mso-property) P1 ∩ P are dmso-definable.

Proof. Let ψ1 = ∃D [ϕwidth-w1-td ∧ ϕ1] and ψ2 = ∃D [ϕwidth-w2-td ∧ ϕ2] be the dmso-
formulas that define P1 and P2, respectively, and ϕ be the mso-formula that defines P.

(union) Without loss of generality assume w1 ≥ w2. To define the union P1 ∪ P2, we use
the formula ψ′ := ∃D [ϕwidth-w1-td ∧ ϕ′] with ϕ′ := ϕ1 ∨ [ϕwidth-w2-td ∧ ϕ2]. That means,
the tree decomposition that we use for the inner part of the formula has width at most w1
and satisfies ϕ1 or it has a, possibly smaller, width w2 and satisfies ϕ2. This defines exactly
the union of P1 and P2.

(intersection with an mso-property) To define the intersection of P1 and P, we use the
formula ψ′ := ∃D [ϕwidth-w1-td ∧ ϕ′] with ϕ′ := ϕ1 ∧ϕrelativized. In this definition, ϕrelativized
arises from ϕ by relativizing each quantifier of the formula to only take elements from
the given structure A into account, and not elements from the added decomposition D.
Consequently, ψ′ defines P1 ∩ P since ϕrelativized only depends on A. J

dmso-logic has an alternative definition similar to a theorem of Chomsky and Schützen-
berger (see, for example, Harrison’s book [13] for background and a proof of it) about
representing a context-free language as the strings generated by (1) taking words with just
brackets that are well-formed, (2) take the words of this kind that satisfy a regular property,
and (3) the image of these words under a homomorphism. In the below proposition, the words
of brackets are replaced by structures expanded with tree decompositions, the particular
type of a bracket in combination with the regular property is replace by an mso-property,
and the homomorphism is replaced by projecting from (A,D) to A. It can be seen as moving
the interpretation of the existential decomposition quantifier into the structures defined by
an mso-formula via using a larger vocabulary.

I Proposition 13. Let ϕ? be an mso-formula over τ? for some τ that defines a property P?

of structures expanded by normal tree decompositions of a bounded width w ∈ N. Then the
property P that contains all τ -structures that arise from reducing structures in P? to the
relations in τ is dmso-definable.

5.2 Influence of the Width Parameter on Definable Properties
We denote by so the class of all properties that are so-definable and by so on C the class of
properties that are so-definable on a set C of structures. In the same way, we define classes
of properties based on mso-definability and dmso-definability. For structures of bounded
tree width, dmso-logic relates to the other logics discussed as follows.

I Theorem 14. Consider a width bound w ≥ 1 and let C be the set of all graphs (structures
over τgraphs) with tree width at most w. Then mso (dmso (so on C.

Proof. mso is separated from dmso on strings via Fact 5 and Theorem 6; that means, by
proving that languages like anbn are context-free, but not regular. dmso is separated from
so on strings via languages that are not context-free, but so-definable like anbncn. The
latter follows from Lemma 10 and the observation that the used tree decomposition can be

M. Elberfeld 17:11

represented by a relation, which can be guessed by a second-order existential quantifier. The
theorem follows from the insight that a string over characters from a fixed alphabet can be
represented by a path graph without unary relations for the characters, but with spikes of
varying length leaving the path’s nodes to encode the characters. J

In the following, we take a closer look at the expressive power of dmso-formulas and
how it varies for different kinds of formulas. Remember that a dmso-formula has the form
ψ = ∃D [ϕtw-w-dec ∧ ϕ]. Since the expressive power of the subformula ϕ, which is evaluated
for a structure of bounded tree width, can be understood from the large literature on mso’s
expressive power (see [15] and [5] for an overview), we concentrate on understanding the
influence of the width bound w on the expressive power of formulas. First of all, since the
width of the tree decomposition can also be reduced using the subformula ϕ, a higher built-in
width bound w never results in a weaker expressive power. On the other side, in the case of
strings, the equivalence to the context-free languages holds for any width bound that is at
least 3. That means, width bounds beyond 3 do not result in a higher expressivity on strings.
In the following, we show that this behavior does not translate to more general structures.
That means, in contrast to the situation on strings, some properties of structures with a
constant tree width only become dmso-definable by increasing the width bound of the used
decompositions—we cannot bound their width in terms of the width of the input structures.
Interestingly, subdivided star graphs are all we need to exhibit this behavior. They have only
tree width 1 and path width 2, which means that they admit width-2 tree decompositions
whose underlying tree is a path.

I Theorem 15. There is a set of structures C with tree width 1 and for every w ≥ 3 a dmso-
formula ψ = ∃D [ϕtw-w-dec ∧ ϕ], such that there is no dmso-formula ψ′ = ∃D [ϕtw-w′-dec ∧ ϕ′]
with w′ ≤ w − 2 where ψ and ψ′ are equivalent on C.

The proof of Theorem 15 uses types. The (quantifier) rank of an mso-formula ϕ, denoted
by qr(ϕ), is the maximum number of nested quantifiers in ϕ. The rank-q type of a structure
A over some vocabulary τ and a tuple ā ∈ U(A)k for some k ∈ N is the set of mso-formulas
ϕ(x1, . . . , xk) over τ of rank at most q with A |= ϕ(ā); we denote it by tpq(A, ā) and also
write tpq(A) for k = 0. The class of rank-q types for a vocabulary τ and k ∈ N is

tpq(τ, k) := {tpq(A, ā) | A is a τ -structure and ā ∈ U(A)k} .

A type only contains a finite number (depending on τ , q, and k) of non-equivalent formulas
and, thus, it can be represented by a finite set of formulas; one formula for each equivalence
class of formulas (see [15] for more details). Consequently, we view types as constant-size
objects and algorithmic operations on them run in constant time.

We apply the below composition theorem (Fact 16) showing how the mso-type of a
structure arises from the mso-types of substructures that are combined by identifying
elements (see the survey [12] for more details on this fact). The upcoming proof does not
use the algorithmic part of the fact’s statement, but we use it in Section 6.

I Fact 16. Consider a vocabulary τ , arities k, `,m ∈ N, and a rank bound q ∈ N. There
is an algorithm that outputs tpq(A ∪ B, w̄) on input of tpq(A, ūw̄) and tpq(B, v̄w̄) where
A and B are τ -structures with tuples ū = (u1, . . . , uk) ∈ Ak, v̄ = (v1, . . . , v`) ∈ B`, and
w̄ = (w1, . . . , wm) ∈ (A ∩B)m with A ∩B = {w1, . . . , wm}.

Proof of Theorem 15. The class C contains all subdivisions of stars. A star is a tree where
all leaves are adjacent to the root and a subdivision of it arises by replacing edges with paths;

CSL 2016

17:12 Context-Free Graph Properties via Definable Decompositions

we call them stars for sake of simplicity. They have tree width 1 and, moreover, also path
width 2. The paths that leave the root are called rays. Out of them, it will be enough to look
at stars where the number of rays is bounded by the width parameter w from the theorem’s
statement. Formally, we use the following properties of graphs: stars := {graph G |
G is a subdivided star graph}, w-stars := {graph G | G is a subdivided star with w rays}.
The separating query singles out stars with rays of equal length: stars-equ := {graph G |
G ∈ stars and all rays have the same length} and w-stars-equ := w-stars ∩ stars-equ

For w ∈ N with w ≥ 3, we claim that there is a dmso-formula ψ = ∃D [ϕtw-w-dec ∧ ϕ]
defining w-stars-equ, but no dmso-formula ψ′ = ∃D [ϕtw-w′-dec ∧ ϕ′] with w′ ≤ w − 2
defining w-stars-equ. This claim proves the theorem.

For the first part of the claim, ϕ consists of several parts combined by a conjunction;
ϕ := ϕstars ∧ϕw-leaves ∧ϕequ. The mso-formula ϕstars defines the set of all subdivided stars
while ϕw-leaves defines the set of graphs with at most w degree-1 vertices. If these properties
are satisfied, we are dealing with a subdivided star that has at most w rays. Based on this,
the formula ψequ accesses a decomposition D to single out the subdivided stars that have
rays of equal length. First of all, it restricts D to be a tree decomposition whose underlying
tree is a path (called a path decompositions), such that the left-most bag contains all leaves
of the subdivided star. Then edges of the rays are added in an alternating way until also all
edges to the root are covered. Consuming the edges in an alternating way ensures that the
rays have equal length. mso-definability of these requirements holds since w is constant.

Let ψ′ = ∃D [ϕtw-(w−2)-dec ∧ ϕ′] be a dmso-formula that, for sake of a contradiction,
defines w-stars-equ. Consider a subdivided star graph G with w rays, let D be a normal
tree decomposition of width at most w − 2, and let v be the root of the star. Let Bv be
the highest bag in D that contains v and let v1 to vw′ for w′ ≤ w − 2 be the other vertices
of G in Bv. The bag Bv is not a leaf since, otherwise, there are edges leaving v that are
not covered by the tree decompositions. Due to the same reason, there are child bags (that
means, at least one child bag) that contain v. At least two rays of the star are processed by
decompositions that are rooted at these children and that are disjoint except for, possibly,
the root bag. This follows from the normalization condition, which makes all components
defined by the tree decomposition connected. Let B1 and B2 be child bags of Bv (that may
be the same) and D1 and D2 be tree decompositions inside D of rays P1 and P2 of the star
with roots B1 and B2. We assume that D2 together with P2 is large enough, such that the
smallest structure of the same rank-qr(ϕtw-(w−2)-dec ∧ ϕ′) type over τ?

graphs covers a graph
(and, hence, a path) with fewer nodes. We replace (P2, D2) in (G,D) by this structure.
The resulting structure (G′, D′) still satisfies ϕtw-(w−2)-dec ∧ ϕ′ by the construction and the
composition theorem from Fact 16 with choosing k, `,m ∈ N appropriately, but not all rays
of G′ have the same length. Thus, ψ′ does not define w-stars-equ, a contradiction. J

6 Algorithmic Aspects

The satisfiability problem [17] and evaluation problem [4, 7] for mso-logic on tree-width-
bounded structures are well-studied. We extend this work by studying the decidability of
the satisfiability and related problems for dmso-logic (Section 6.1) and the complexity of
its formula-evaluation problem (Section 6.2). In order to do this, formulas and structures
need to be represented as strings—to be given as inputs, processed by Turing machines, and
written as outputs. A formula is encoded in a direct way by encoding its symbols individually
and a structure is encoded by extending the standard adjacency matrix encoding for graphs
to general structures (for details of this approach see, for example, [10]).

M. Elberfeld 17:13

6.1 Decidability of the Satisfiability and Related Problems
Trakhtenbrot’s Theorem (for a proof see [15]) states that it is undecidable whether a given
first-order formula is satisfied by a finite structure. Thus, this also transfers to mso-logic,
which generalizes first-order logic. On the other side, part of Seese’s Theorem [17] is saying
that the satisfiability problem for mso-formulas is decidable if there is a bound on the tree
width of the considered structures. This can be formally stated as follows.

I Fact 17. There is a Turing machine that, given an mso-formula ϕ over a vocabulary τ
and a width w ∈ N, decides whether there is a τ -structure A with tw(A) ≤ w and A |= ϕ.

Since dmso-formulas are based on combining a tree width bound with an mso-formula,
Seese’s Theorem extends to them. In light of the connection to context-free languages, this
can be seen as generalizing the fact that the emptiness problem for context-free languages
(given a context-free grammar or a pushdown automaton) is decidable.

I Theorem 18. There is a Turing machine that, given a dmso-formula ψ over some
vocabulary τ , decides whether there is a τ -structure A with A |= ψ.

Proof. Let ψ = ∃D [ϕtw-w-dec ∧ ϕ]. As stated by Lemma 2, a structure A that is expanded
by a tree decomposition of width at most w has tree width at most w + 2. Thus, in order to
decide whether ψ is satisfied by a τ -structure, it is enough to decide whether the inner part
of the formula, which is ϕtw-w-dec ∧ ϕ, is satisfied by a τ?-structure of tree width at most
w + 2. This is possible due to Fact 17. J

Since mso-logic is closed under taking Boolean connectives, the decision procedure that
we get from Seese’s Theorem extends to the question whether any Boolean combination
of two given mso-formulas is satisfied by a structure of bounded tree width. Due to its
equivalence on strings to the context-free languages, these closure properties do not transfer
to dmso-logic. dmso-logic inherits the following undecidability results from the context-free
languages (for proofs of them see, for example, [13]).

I Proposition 19. Each of the following questions is not decidable for given dmso-formulas
ψ1 and ψ2 defining properties P1 and P2, respectively: P1 ∩ P2 = ∅? |P1 ∩ P2| = ∞?
P1 ∩ P2 ∈ dmso? P1 ⊆ P2? P1 = P2?

6.2 Computational complexity of the Evaluation Problems
The task of evaluating an mso-formula for a structure A comes in many flavors; leading to
different insights into the complexity of evaluating mso-formulas. If both the formula and
the structure are part of the input, then the problem is complete for polynomial space [20]. If
the formula is fixed (that means, we look at a problem based on an mso-definable property),
then we still have problems complete for any level of the polynomial hierarchy (see [15] for
a proof of this). The complexity of the problem drops significantly if, in addition, the tree
width of input structures is bounded by some constant: deciding A |= ϕ can be done in
polynomial time for input structures whose tree width is bounded by some constant and
even algorithms running in linear-time [4] or having a logarithmic memory footprint exist [7].
During the course of the present section, we show that deciding A |= ψ can also be done in
polynomial time for every fixed dmso-formula ψ (where we do not need to make the tree
width bound explicit since it is implicitly given as part of the formula).

I Theorem 20. For every dmso-formula ψ, there is a polynomial-time algorithm that, given
a structure A, decides A |= ψ.

CSL 2016

17:14 Context-Free Graph Properties via Definable Decompositions

Proof. We consider a dmso-formula ψ = ∃D [ϕtw-w-dec ∧ ϕ] over some vocabulary τ and set
q := qr(ϕ). While ∃D, the decomposition quantifier, ranges over all tree decompositions of a
given structure A, the mso-formula ϕtw-w-dec only evaluates to true for structures expanded
by a tree decompositions that is normal and has width w. Thus, in order to test whether
A |= ψ holds for a given τ -structure, it is enough to test whether (A,D) |= ϕ holds for some
width-w normal tree decomposition D of A. Instead of directly working with mso-formulas,
we work with types as already used in Section 5. That means, instead of testing whether
(A,D) |= ϕ holds for a width-w normal tree decompositions, we compute

tp?
q(A) := {tpq(A?) | A? = (A,D) is a τ?-structure with (A,D) |= ϕtw-w-dec},

which has constant size by definition. Then deciding A |= ψ is equivalent to testing whether
ϕ is equivalent to a formula from θ for some θ ∈ tp?

q(A). Since this is a constant-time
operation, we direct our attention to computing tp?

q(A).
We compute tp?

q(A) via an inductive approach along growing substructures. It computes
types for substructures of A by applying the type-composition theorem from Fact 16 to
the types that are already computed for smaller substructures. Since the types are based
on both the structure and a tree decomposition for it, while doing this, we enrich the
substructures of A by parts of candidate tree decompositions that expand them. Overall,
we take the mso-types of all width-w normal tree decompositions for A into account, but
without constructing decompositions explicitly; this amounts to a dynamic-programming
approach along appropriate substructures.

We use some terminology adapted from [7] to define the substructures and the types of
substructures we consider: Set G := G(A) and U := U(A). A descriptor in A is a tuple
(σi, vi) consisting of a set σi ⊆ U with |σi| ≤ w + 1, called the separator, and an element
vi ∈ U \σi, called the (component) selector. We denote by αi the vertex set of the component
of G[U \ σi] that contains vi and set γi := σi ∪ αi. For each (σi, vi) with Ai := A[γi], we
consider some (ordered) sequence σ̄i of the elements in σi and compute

tp?
q(Ai, σi) := {tpq(A?

i , σ̄
?
i) | A?

i = (Ai, Di) is a τ?-structure with
(Ai, Di) |= ϕtw-w-dec, σi ⊆ β(r(Di)) and σ̄?

i = (σ̄i, r(Di))},

which is only empty if there is no width-w normal tree decomposition of the described
kind. Since G[A] is connected (otherwise, A does not have a normal tree decomposition
by definition), we have tp?

q(A) = tp?
q(Ai0 , σ̄i0) for a descriptor (σi0 , vi0) with σi0 = ∅ and

an arbitrary, but fixed, element vi0 ∈ U . Thus, in particular, computing all tp?
q(Ai, σ̄i) for

descriptors (σi, vi) proves the theorem.
Let (σ1, v1), . . . , (σn, vn) be the sequence of all descriptors sorted by |γi|, the size of their

cones, with higher priority and by |αi|, the size of their components, with lower priority.
This sequence is computable in polynomial time since w is constant. We compute tp?

q(Ai, σ̄i)
for each (σi, vi) in the order of this sequence. If |γi| ≤ w + 1, we can compute it in constant
time; there are only a constant number of ways to turn the structure Ai into a structure
that is expanded by a width-w normal tree decomposition. If |γi| > w + 1, we consider
each βi,j ⊆ γi with σi ⊆ βi,j and |βi,j | ≤ w + 1, which are the candidate root bags of a tree
decomposition for Ai, and compute

tp?
q(Ai, σi, βi,j) := {tpq(A?

i , σ̄
?
i) | A?

i = (Ai, Di) is a τ?-structure with
(Ai, Di) |= ϕtw-w-dec, βi,j = β(r(Di)) and σ̄?

i = (σ̄i, r(Di))}.

Then tp?
q(Ai, σi) can be computed in polynomial time from all tp?

q(Ai, σi, βi,j) by cycling
through the candidate root bags βi,j of size at most w + 1.

M. Elberfeld 17:15

For each βi,j , we consider the components α′1, . . . , α′m of Ai \ βi,j and define A′m =
Ai as well as A′k = A′k+1 \ α′k+1 for all k ∈ {1, . . . ,m − 1}. With this definition, we
have tp?

q(Ai, σi, βi,j) = tp?
q(A′m, σi, βi,j). In order to compute this class, we compute the

tp?
q(A′k, σi, βi,j) along growing k. For each k with component α′k, we consider all combinations

of separators σ′i,j,k ⊆ βi,j and selector vertices v′i,j,k ∈ α′j that describe this component. Then
we use the type-composition theorem to compute the types of A′k that we get from normal
width-w tree decompositions where the intersection of the root bag βi,j and the bag below
it with component α′k is σ′i,j,k. Fact 16 can be applied since the overlap of A′k−1 and the
newly added part has constant size and this still holds if we take the two additional nodes
from the tree decomposition into account. Since the type-composition is a constant-time
operation, the algorithm runs in polynomial time. J

7 Conclusion

The present paper proposed dmso-logic for capturing the notion of context-free graph
properties. To support this, we proved results about its language-theoretic, model-theoretic,
and algorithmic aspects. Notably, it corresponds to the context-free languages on strings
and has a formula-evaluation procedure that runs in polynomial time for every fixed formula.
Moreover, we observed that the built-in width bound crucially influences expressive power.

There are a number of possible directions for future work: First of all, it would be
interesting to know how dmso-logic relates to the different notions of context-free properties
of trees [9] and, more generally, graphs [5]. Second, it would be interesting to obtain more
efficient formula-evaluation procedures. Concrete open questions are whether deciding A |= ψ

is fixed-parameter tractable when taking ψ as the parameter and whether it is in LOGCFL
(the class of problems logspace-reducible to the context-free languages) for every fixed formula.
Both are reasonable conjectures in the light of previous work on the formula-evaluation
problem for mso-logic [4, 7].

References
1 Isolde Adler, Martin Grohe, and Stephan Kreutzer. Computing excluded minors. In Pro-

ceedings of the 19th Annual ACM/SIAM Symposium on Discrete Algorithms (SODA 2008),
pages 641–650. SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.
1347153.

2 Mikołaj Bojańczyk and Michał Pilipczuk. Definability equals recognizability for graphs of
bounded tree width. In Proceedings of the 30th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS 2016). IEEE Computer Society, 2016. to appear.

3 J. Richard Büchi. Weak second-order arithmetic and finite automata. Math. Logic Quart.,
6(1–6):66–92, 1960.

4 Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Handbook of
Theoretical Computer Science, Volume B, pages 193–242. Elsevier and MIT Press, 1990.

5 Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic,
a language theoretic approach. Cambridge University Press, 2012. URL: http://hal.
archives-ouvertes.fr/hal-00646514/fr/.

6 John Doner. Tree acceptors and some of their applications. Journal of Computer and
System Sciences, 4(5):406–451, 1970. doi:10.1016/S0022-0000(70)80041-1.

7 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theo-
rems of bodlaender and courcelle. In Proceedings of the 51st Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS 2010), pages 143–152, 2010. doi:
10.1109/FOCS.2010.21.

CSL 2016

http://dl.acm.org/citation.cfm?id=1347082.1347153
http://dl.acm.org/citation.cfm?id=1347082.1347153
http://hal.archives-ouvertes.fr/hal-00646514/fr/
http://hal.archives-ouvertes.fr/hal-00646514/fr/
http://dx.doi.org/10.1016/S0022-0000(70)80041-1
http://dx.doi.org/10.1109/FOCS.2010.21
http://dx.doi.org/10.1109/FOCS.2010.21

17:16 Context-Free Graph Properties via Definable Decompositions

8 Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Trans-
actions of the American Mathematical Society, 98(1):21–51, 1961. doi:10.2307/1993511.

9 Joost Engelfriet and Erik Meineche Schmidt. IO and OI. I. Journal of Computer and
System Science, 15(3):328–353, 1977. doi:10.1016/S0022-0000(77)80034-2.

10 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006. doi:
10.1007/3-540-29953-X.

11 Martin Grohe. Fixed-point definability and polynomial time on graphs with excluded
minors. Journal of the ACM, 59(5):27:1–27:64, 2012. doi:10.1145/2371656.2371662.

12 Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems. In
Model Theoretic Methods in Finite Combinatorics, volume 558 of Contemporary Mathemat-
ics, pages 181–206. American Mathematical Society, 2011. URL: http://www.automata.
rwth-aachen.de/~grohe/pub/grokre11.pdf.

13 Michael A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.
14 Clemens Lautemann, Thomas Schwentick, and Denis Thérien. Logics for context-free lan-

guages. In Proceedings of CSL 1994, volume 933, pages 205–216. Springer, 1995.
15 Leonid Libkin. Elements Of Finite Model Theory. Springer, 2004. doi:10.1002/malq.

19600060105.
16 J. Mezei and J.B. Wright. Algebraic automata and context-free sets. Inform. and Control,

11(1–2):3–29, 1967. doi:10.1016/S0019-9958(67)90353-1.
17 D. Seese. The structure of the models of decidable monadic theories of graphs. Annals of

pure and applied logic, 53(2):169–195, 1991. doi:10.1016/0168-0072(91)90054-P.
18 J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an application to

a decision problem of second-order logic. Mathematical Systems Theory, 2(1):57–81, 1968.
doi:10.1007/BF01691346.

19 Boris Avraamovich Trakhtenbrot. Finite automata and logic of monadic predicates. Doklady
Akademii Nauk SSSR, 140:326–329, 1961. In Russian.

20 Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In
Proceedings of the 14th annual ACM symposium on Theory of computing (STOC 1982),
pages 137–146. ACM, 1982. doi:10.1145/800070.802186.

http://dx.doi.org/10.2307/1993511
http://dx.doi.org/10.1016/S0022-0000(77)80034-2
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1145/2371656.2371662
http://www.automata.rwth-aachen.de/~grohe/pub/grokre11.pdf
http://www.automata.rwth-aachen.de/~grohe/pub/grokre11.pdf
http://dx.doi.org/10.1002/malq.19600060105
http://dx.doi.org/10.1002/malq.19600060105
http://dx.doi.org/10.1016/S0019-9958(67)90353-1
http://dx.doi.org/10.1016/0168-0072(91)90054-P
http://dx.doi.org/10.1007/BF01691346
http://dx.doi.org/10.1145/800070.802186

	Introduction
	Background on Monadic Second-Order Logic
	Monadic Second-Order Logic with Quantified Tree Decompositions
	Structures Expanded by Tree Decompositions
	Quantified Tree Decompositions

	Language-Theoretic Aspects
	DMSO-Definability on Strings Equals the Context-Free Languages
	Beyond Context-Free Languages via General Decompositions

	Model-Theoretic Aspects
	Closure of Definable Properties Under Set Operations
	Influence of the Width Parameter on Definable Properties

	Algorithmic Aspects
	Decidability of the Satisfiability and Related Problems
	Computational complexity of the Evaluation Problems

	Conclusion

