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Abstract
We study the Flight Planning Problem for a single aircraft, which deals with finding a path of
minimal travel time in an airway network. Flight time along arcs is affected by wind speed and
direction, which are functions of time. We consider three variants of the problem, which can be
modeled as, respectively, a classical shortest path problem in a metric space, a time-dependent
shortest path problem with piecewise linear travel time functions, and a time-dependent shortest
path problem with piecewise differentiable travel time functions.

The shortest path problem and its time-dependent variant have been extensively studied,
in particular, for road networks. Airway networks, however, have different characteristics: the
average node degree is higher and shortest paths usually have only few arcs.

We propose A* algorithms for each of the problem variants. In particular, for the third
problem, we introduce an application-specific “super-optimal wind” potential function that over-
estimates optimal wind conditions on each arc, and establish a linear error bound. We compare
the performance of our methods with the standard Dijkstra algorithm and the Contraction Hier-
archies (CHs) algorithm. Our computational results on real world instances show that CHs do
not perform as well as on road networks. On the other hand, A* guided by our potentials yields
very good results. In particular, for the case of piecewise linear travel time functions, we achieve
query times about 15 times shorter than CHs.
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1 Introduction

We consider the Flight Planning Problem (FPP), which seeks to compute a cost-minimal
flight trajectory on an airway network, given origin and destination airports, a departure time,
an aircraft, and weather prognoses. Some of the factors that need to be taken into account
are overflight costs, weight-dependent fuel consumption functions, avoidance of hazardous
areas, and restrictions to prevent overcrowding of airspaces, such as those published by
EUROCONTROL in the Route Availability Document [9]. A comprehensive discussion of the
FPP can be found in the survey [13]. However, to the best of our knowledge, the algorithmic
treatment of flight planning problems on the complete airway network has not yet been
considered in the literature. Existing approaches to the FPP, such as [5] or [6], consider only
small regions of the airway network or artificial networks.

In this paper, we will focus on the Horizontal Flight Planning Problem (HFPP), a variant
that seeks to minimize total flight time (in this case equivalent to total fuel consumption)
while flying at constant altitude. This variant is very important because it is often used in
practice as a subroutine in sequential approaches for computing 4-dimensional routes (with
speed as the fourth dimension) [13]. Furthermore, it can be argued that the cruise phase is
more important in terms of potential savings than the climb and descent phases, in particular
for long-haul flights. Flight time between any two points is highly dependent on weather
conditions, which are given as a function of time. For this reason, we model the HFPP as a
Time-Dependent Shortest Path Problem (TDSPP).

The classical Shortest Path Problem (SPP) and the TDSPP have been extensively
studied in the literature, with particular emphasis on routing in road networks. The past
decades have seen a significant development of preprocessing techniques for both the SPP
and the TDSPP, which yield astounding speedups compared to Dijkstra’s algorithm, see [2],
[8] for comprehensive surveys. Some of the most prominent state-of-the-art approaches are
the following:

The A∗ algorithm was first introduced in [12]. It is based on finding a potential function
that, for each node, underestimates the length of an optimal path which uses it. The main
ingredient for designing a potential function is thus an underestimator of the distance from
each node to the target. In road networks, an obvious choice for such an underestimator is
the great circle distance (GCD) to the target node. However, this method usually provides
very loose underestimators (and thus very small speedups), due to the fact that subpaths
of the optimal route often deviate substantially from the great circle connecting their
endpoints. This can be explained by the grid-like topology of most road networks and the
existence of obstacles such as rivers or mountain ranges. Therefore, more sophisticated
potential functions have been developed, such as ALT, see the next item.
A∗ with Landmarks and Triangle-inequality (ALT) [11] is a variant of the A∗ algorithm,
which can also be extended to the time-dependent case [14]. The main idea is to identify
a set of “important” nodes, known as landmarks, for which a one-to-all (or all-to-one)
shortest path tree is computed. The potential of each node is then computed by using
these stored distances and the triangle inequality. The main challenge is defining the
landmarks, which should ideally lie on a large number of shortest paths, or close to them.

http://dx.doi.org/10.4230/OASIcs.ATMOS.2016.12
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Figure 1 The exact travel time function T (a, τ) in red and the approximated piecewise linear
function in blue, for some arc a.

The ALT algorithm can be further improved by combining it with other preprocessing
techniques, see [4].
Contraction Hierarchies (CHs) [10], as well as its time-dependent counterpart, Time-
dependent Contraction Hierarchies (TCHs) [3], is one of the leading techniques in shortest
paths computation. Even though TCHs have the disadvantage of large space requirements,
they are considered one of the (if not the) best algorithms for the TDSPP in road networks
[8], due to their lower preprocessing times. To the best of our knowledge, computational
results on the performance of CHs and TCHs have been published only for road networks
and public transportation networks [2].
Approaches based on Hierarchical Hub Labeling [1] have been shown to be effective not
only on road networks but on a large variety of input graphs [7], such as social networks
or computer game networks. However, the nature of this approach seems to make it
unsuitable for extension to the time-dependent case.

We will consider the real-world airway network. Its characteristics are very different from
those of road networks. As of 2016, the complete horizontal network has approximately 53000
nodes and 330000 arcs after some preprocessing (i.e., contracting a large set of nodes with
in-degree and out-degree equal to one). The average node degree of over six is higher than in
road networks (usually between two and three), but still significantly smaller than in typical
social networks (often in the two-digit range, see [7]). An advantage of flight planning over
routing in road networks is that the number of possible OD-pairs is small. In fact, only about
1300 airports worldwide are used by commercial airlines1. Also, flight paths are typically
short, usually involving below one hundred nodes, and do not deviate much from the great
circle connection. It turns out that shortest path computation in airway networks is heavily
influenced by these characteristics, and that the relative performance of the algorithms is
different than in road networks.

In this paper, we investigate three variants of the HFPP.

The static case is a particular shortest path problem, where the nodes belong to a metric
space and arc costs are given by the corresponding distance (i.e., the GCD in our case).

1 According to data from www.flightradar24.com
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12:4 Solving Time Dependent SPPs on Airway Networks Using Super-Optimal Wind

We will denote this problem as SPP. We present an A∗ algorithm in which the lower
bounds for the potential function are given by the GCD from any node to the target node.
This makes it possible to avoid the preprocessing step completely. Our computational
results show that the speedup is comparable to that of CHs.
The exact dynamic case is a Time Dependent Shortest Path Problem. In contrast to
the literature standard, the time-dependent travel time functions (TTFs) on the arcs are
not piecewise linear. In fact, in our application, the TTFs depend on wind forecasts and
model the exact arc travel time. We refer to this problem as TDSPP-E. We present a
super-optimal wind algorithm that underestimates the minimal travel time on each arc
using the Newton method and establish a strong a priori error bound. The super-optimal
wind bounds and the fact that the set of targets is known in advance, allow us to design
an A∗ algorithm that yields a speedup of approximately 20 w.r.t. Dijkstra. Due to the
non-linearity of the TTFs, this problem can not be solved by state-of-the-art TDSPP
algorithms, in particular TCHs.
Finally, in the approximate dynamic case, we consider a standard Time Dependent
Shortest Path Problem. To this purpose, we approximate all TTFs by piecewise linear
functions. Figure 1 shows an exact TTF and its approximate counterpart. We denote
the resulting problem as TDSPP-PWL and present an A∗ algorithm similar to the one
for TDSPP-E. Our computations show that the average speedup is approximately 25
with respect to Dijkstra, and 15 with respect to TCHs.

In Section 2, we describe the problems that we will study. In particular, we give a detailed
description of the TTFs used in the exact dynamic case, to model the time-dependent
influence of the wind on the travel time. Section 3 presents the super-optimal wind algorithm
and the corresponding potential functions for the A∗ algorithm in the exact dynamic case.
Finally, Section 4 presents computational results computed on real world data.

2 The Horizontal Flight Planning Problem

The HFPP can be modeled in terms of the Time-Dependent Shortest Path Problem, which
is defined as follows: Given are a directed graph D = (V,A) (In our application, nodes
represent waypoints in the airway network and arcs stand for airway segments) and, for each
a ∈ A, a travel time function (TTF) T (a, ·) : [0,∞)→ [0,∞) that depends on the entering
time. The travel time along a path (v0, v1, . . . , vk) departing at time τ is defined as

T ((v0, . . . , vk), τ) =
{
T ((v0, v1), τ) k = 1
T ((v0, . . . , vk−1), τ) + T ((vk−1, vk), T ((v0, . . . , vk−1), τ) + τ) k > 1.

Given a pair of nodes s, t ∈ V and a departure time τ ≥ 0, the objective is to find an
s, t-path P in D such that the total travel time T (P, τ) is minimized.

The literature on the TDSPP usually considers piecewise linear (PWL) TTFs. We will
denote this special (approximate) case of the dynamic problem as TDSPP-PWL.

The exact version of the dynamic problem, which we denote as TDSPP-E, assumes
functions T (a, ·) as described subsequently in Subsection 2.1. Finally, when T (a, ·) is constant
for every a ∈ A, we obtain the classical shortest path problem, denoted simply as SPP.

A standard assumption on TTFs is that they satisfy the First-In-First-Out (FIFO)
property, which states that overtaking on arcs is not possible. That is, T (a, τ1) ≤ (τ2− τ1) +
T (a, τ2) for every a ∈ A, 0 ≤ τ1 ≤ τ2. It is well known that the FIFO property guarantees
correctness of the Dijkstra and A∗ algorithms, while the TDSPP is NP-hard in the general
case. In the remainder of this paper, we assume that the FIFO property is always satisfied.
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Figure 2 Crosswind and tailwind components.

2.1 Wind-Dependent Travel Time Functions
In this subsection, we define the travel time functions T (a, ·) for the exact dynamic HFPP.
We first recall some aeronautics terminology.

Let a = (u, v) ∈ A and τ ≥ 0. For the next definitions, assume that the aircraft is located
at u at time τ and then proceeds to traverse a. The ground distance dG(a) is defined as the
GCD between u and v, and is thus independent of τ . The airspeed vA is the speed relative
to the air mass surrounding the aircraft. In our application, we assume that vA is constant.
Finally, the ground speed vG(a, τ) is the aircraft’s speed relative to the ground at the moment
in which the aircraft enters arc a. The ground speed can be described in terms of a wind
vector w acting on a at time τ as follows:

vG(a, τ) =
√

(vA)2 − wC(a, τ)2 + wT (a, τ).

Here, wC(a, τ) represents the crosswind component and wT (a, τ) the tailwind component
affecting arc a at time τ ; these are the components of the wind vector with angles π

2 and 0
with respect to a’s direction, respectively, see Figure 2. Since an aircraft’s airspeed is always
much larger than wind speed, we can assume that vG is always well-defined and positive.

Consider a wind vector w(a, τ) =
(
ra(τ), θa(τ)

)
acting on a at time τ , where ra(τ) is the

wind speed, i.e., the wind vector’s magnitude; and θa(τ) is the wind direction, i.e., the angle
with respect to the arc’s direction. Then, the crosswind and tailwind components can be
computed as follows:

wC(a, τ) = ra(τ) sin(θa(τ)) and wT (a, τ) = ra(τ) cos(θa(τ)).

A weather prognosis set provides wind information for a finite number of time points
t0 < t1 < · · · < tN . Without loss of generality, we will assume t0 = 0. Furthermore, in
practice, prognosis sets are used to plan flights taking off after time t0 and landing well
before time tN . For that reason, in the rest of the paper, we will assume that we are only
interested in evaluating TTFs for τ ∈ [t0, tN ].

If ti < τ < ti+1 for i ∈ {0, . . . , N − 1}, the wind vector is interpolated. More precisely,
given two wind vectors wi and wi+1 for arc a at times ti and ti+1, defined by wind speeds
ria, r

i+1
a and directions θia, θi+1

a , then for τ = λti + (i−λ)ti+1 with λ ∈ (0, 1), the wind vector
at time τ is defined by

ra(τ) = λria + (1− λ)ri+1
a and θa(τ) = λθia + (1− λ)θi+1

a .

ATMOS 2016
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Therefore the resulting crosswind and tailwind components at time τ are

wC(a, τ) =
(
λria + (1− λ)ri+1

a

)
sin
(
λθia + (1− λ)θi+1

a

)
wT (a, τ) =

(
λria + (1− λ)ri+1

a

)
cos
(
λθia + (1− λ)θi+1

a

)
.

In this paper, we assume that wC(a, τ) and wT (a, τ) remain constant during the traversal of
a and define the travel time T (a, τ) across arc a entering at time τ as

T (a, τ) = dG(a)
vG(a, τ) = dG(a)√

(vA)2 − wC(a, τ)2 + wT (a, τ)
. (1)

One can argue that the functions T (a, ·) in (1) satisfy the FIFO property for realistic weather
conditions. They represent the industrial state-of-the-art in aeronautical computations.

3 A* algorithms for the HFPP

For each of the three problem variants described in Section 2, we design an A∗ algorithm.
Such an algorithm is based on a potential function π : V → R that, for every v ∈ V ,
underestimates the cost of the shortest (v, t)-path. The potential is used to define the reduced
cost of an arc (u, v) at time τ as follows:

T ′((u, v), τ) := T ((u, v), τ)− π(u) + π(v).

If T ′((u, v), τ) ≥ 0 for every (u, v) ∈ A, τ ≥ 0, we say that π is feasible. Given this condition,
the A∗ algorithm is equivalent to running Dijkstra on D using the reduced costs T ′. In the
following, we will introduce potential functions for each of the three problem variants.

3.1 Potential in the Static Case
In the static case, i.e., for SPP, a potential function for A∗ can be computed by simply
considering the great-circle-distance between any node and the target node. That is, given
v ∈ V and a target node t ∈ V , we define

π(v) := dG(v, t),

where dG : V × V → R+ is the GCD-function. The advantage of this approach is that π can
be computed on-the-fly during the query, and so no preprocessing step is necessary.

3.2 Potential in the Approximate Dynamic Case
For TDSPP-PWL, we make use of the fact that, in our application, there exists a small
number of possible targets (which correspond to airports). Thus, we compute a lower bound
on the minimum travel time from each node to each airport. For this, we first seek a
value T (a) that, for each arc a, lower-bounds all possible travel times on the arc. That is,
T (a) ≤ T (a, τ) for each τ ∈ [t0, tN ]. Since T (a, ·) is a piecewise linear function, this bound
can be found in linear time. Then, we compute all-to-one shortest path trees towards all
airport nodes using T as arc costs and set

πt(v) = min
{∑
a∈P

T (a)|P is a (v, t)-path
}

(2)

for every node v and every possible target node t. Given an OD-pair s, t, we choose πt(·)
as a potential function. We remark that this is equivalent to choosing all airport nodes as
landmarks in the ALT algorithm.
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Figure 3 Super-optimal wind and component functions for wind vectors w1 and w2, corresponding
to time points τ1 and τ2.

3.3 Potential in the Exact Dynamic Case Using Super-Optimal Wind
For TDSPP-E, we also compute lower bounds T on the TTFs and then define π accord-
ing to (2). As opposed to the approximate case, finding good lower bounds T (a) is not
straightforward. This section is dedicated to the solution of this problem.

It is clear from (1) that an upper bound on the ground speed directly leads to a lower
bound on the travel time. Thus, to find a good lower bound on T ∗(a) := minτ∈[t0,tN ] T (a, τ),
we will concentrate on finding a good upper bound on vG∗ (a) := maxτ∈[t0,tN ] v

G(a, τ).
We assume that the length of the weather prognosis intervals is constant, i.e., ti − ti−1 ≡

L > 0 for i = 1, . . . , N . Our first step is to discretize the time interval [t0, tN ] into smaller
intervals of length ∆ > 0. That is, we define τ0, . . . , τK such that t0 = τ0 < τ1 < · · · < τK =
tN , ∆ = τk − τk−1 for k = 1, 2, . . . ,K; and N divides K. This condition guarantees that
every two consecutive time points τk−1 and τk belong to an interval [ti−1, ti] for some index
i. Define

wkC(a) := min
τ∈[τk−1,τk]

|wC(a, τ)|,

w̄kT (a) := max
τ∈[τk−1,τk]

wT (a, τ),

v̄Gk (a) :=
√

(vA)2 − wkC(a)2 + w̄kT (a),

v̄G(a) := max
k∈{1,...,K}

v̄Gk (a),

and T (a) := dG(a)
v̄G(a) .

By definition, we know that on any time interval, the ground speed increases as the tailwind
increases, and decreases as the crosswind increases. Thus, (wkC(a), w̄kT (a)) corresponds to an
imaginary super-optimal wind vector whose corresponding ground speed v̄Gk (a) overestimates
the ground speed in the time interval [τk−1, τk].

ATMOS 2016



12:8 Solving Time Dependent SPPs on Airway Networks Using Super-Optimal Wind

For an example, see Figure 3. On the right side, we see a typical behavior of the tail- and
crosswind functions on an arc in a given time interval [τ1, τ2], the minimum and maximum
of interest are marked. On the left side, we see the super-optimal wind vector that results
from the combination of both components. This vector yields a larger ground speed than
all wind vectors in the gray rectangle, and thus larger than all wind vectors in the interval
[τ1, τ2], represented by the dashed curve.

From this overestimation property and the definition of v̄G(a), it follows that, for each arc,
the maximum of the ground speed overestimators on all discretization intervals overestimates
the ground speed at any time, while the resulting travel time is a global underestimator:

I Lemma 1. For every a ∈ A and τ ∈ [t0, tN ], we have

v̄G(a) ≥ vG∗ (a) ≥ vG(a, τ) and T (a) ≤ T ∗(a) ≤ T (a, τ).

Thus, all we need to obtain the bounds v̄G(a) and T (a) is to compute wkC(a) and w̄kT (a) for
every a ∈ A, k = 1, . . . ,K. We will describe that step in Subsection 3.4. In the remainder
of this subsection, we will prove that the absolute overestimation/underestimation error is
linear with respect to the discretization step. Assuming that the aircraft is always at least
twice as fast as the wind (which is always the case in practice), we can bound the constant
in terms of the airspeed and the length of the weather prognosis intervals.

I Theorem 2. For every a ∈ A, assume that vA ≥ 2r∗a. Then, there exists a constant Cv > 0
such that the ground speed error is bounded as follows:

0 ≤ v̄G(a)− vG∗ (a) ≤ Cv∆.

Proof. The left inequality follows from Lemma 1. For the right one we only have to prove
that there exists Cv > 0 s.t.

max
τ∈[τk−1,τk]

(
v̄Gk (a)− vG(a, τ)

)
≤ Cv∆ for every k = 1, 2, . . . ,K. (3)

To bound the ground speed error, we first bound the error on tailwind and crosswind. W.l.o.g
assume k = 1 and define I = [τ0, τ1]. Let ρ1, ρ2 ∈ I ⊆ [t0, t1] and λ1, λ2 ∈ [0, 1] satisfy
ρi = λit0 + (1− λi)t1, i = 1, 2. We have

|wT (a, ρ1)− wT (a, ρ2)| ≤ |ρ1 − ρ2|max
ρ∈I
|w′T (a, ρ)|

= |ρ1 − ρ2|max
ρ∈I

∣∣∣r′a(ρ) cos
(
θa(ρ)

)
− ra(ρ) sin

(
θa(ρ)

)
θ′a(ρ)

∣∣∣
≤ ∆

(
max
ρ∈I
|r′a(ρ)|+ r∗a max

ρ∈I
|θ′a(ρ)|

)
, (4)

where r∗a = maxρ∈[t0,tN ] ra(ρ). Since wind speed and direction are interpolated linearly in
[t0, t1], we have

r′a(ρ) = r1
a − r0

a

t1 − t0
and θ′a(ρ) = θ1

a − θ0
a

t1 − t0
. (5)

From (4) and (5), it follows that

|wT (a, ρ1)− wT (a, ρ2)| ≤ ∆ |r
1
a − r0

a|+ r∗a|θ1
a − θ0

a|
t1 − t0

≤ ∆r∗a(1 + 2π)
t1 − t0

.
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Similarly, we can prove that

|wC(a, ρ1)− wC(a, ρ2)| ≤ ∆r∗a(1 + 2π)
t1 − t0

.

We are now ready to establish a bound on the ground speed error. Let ρ∗, ρ̄, ρ ∈ I satisfy
ρ∗ ∈ argmaxτ∈IvG(a, τ), wT (a, ρ̄) = w̄1

T (a), and wC(a, ρ) = w1
C(a). The absolute ground

speed error in interval I is thus

v̄G1 (a)− vG(a, ρ∗) =
√

(vA)2 − wC(a, ρ)2 + wT (a, ρ̄)−
√

(vA)2 − wC(a, ρ∗)2 − wT (a, ρ∗)

=
wC(a, ρ∗)2 − wC(a, ρ)2√

(vA)2 − wC(a, ρ)2 +
√

(vA)2 − wC(a, ρ∗)2
+ wT (a, ρ̄)− wT (a, ρ∗)

≤
|wC(a, ρ∗)− wC(a, ρ)||wC(a, ρ∗) + wC(a, ρ)|√

(vA)2 − ra(ρ)2 +
√

(vA)2 − ra(ρ∗)2
+ ∆r∗a(1 + 2π)

t1 − t0

≤ ∆r∗a(1 + 2π)
t1 − t0

(
ra(ρ∗) + ra(ρ)
2
√

(vA)2 − r∗a2
+ 1
)

≤ ∆r∗a(1 + 2π)
t1 − t0

(
r∗a√

(vA)2 − r∗a2
+ 1
)
.

By assumption, the wind speed r∗a is always smaller than half of the airspeed vA, so we have

r∗a

(
r∗a√

(vA)2 − r∗a2
+ 1
)
≤ vA

2 (1 + 1) = vA.

In practice, r∗a (wind speed) is usually much smaller than vA

2 (flight speed), hence we can

choose Cv := vA(1 + 2π)
L

. J

Using T (a)v̄G(a) = dG(a) = T ∗(a)vG∗ (a) and Theorem 2, the main result of this section
follows:

I Corollary 3. For every a ∈ A, assume that vA ≥ 2r∗a. Then, there exists a constant CT
s.t.

0 ≤ T ∗(a)− T (a) ≤ CT∆.

That is, assuming reasonable wind conditions, the additive gap between the presented TTF
underestimators and the corresponding minima is linearly bounded by the discretization
step.

3.4 Minimization of Crosswind and Maximization of Tailwind
In the previous subsection, we used the minimum-magnitude crosswind in an interval in order
to compute the super-optimal wind vector that is needed to define T (a). In this subsection,
our objective is to show how this minimization can be done. We recall

|wC(a, τ)| = |
(
λrk−1 + (1− λ)rk

)
sin
(
(λθk−1 + (1− λ)θk

)
|,

ATMOS 2016
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(c) Function f in case 1.

Figure 4 Cases considered for crosswind minimization.

where λ := τ2−τ
τ2−τ1

and τ ∈ [τk−1, τk] for some k = 1, . . . ,K. W.l.o.g., assume k = 2 for ease of
notation. It suffices to consider the case wC(a, τ) ≥ 0 for all τ ∈ [τ1, τ2]. Indeed, if wC(a, τ)
takes both positive and negative values in [τ1, τ2], by continuity the minimum absolute value
must be 0, thus making the solution trivial. The case where wC(a, τ) ≤ 0 for all τ ∈ [τ1, τ2]
is analogous by symmetry. Thus, we can ignore the absolute values.

We can also assume that θ1 < θ2 and r1 6= r2, as the other cases are either simple or can
be reduced to this case. W.l.o.g. we will further assume that θ1 and θ2 belong to the same
quadrant, since otherwise (see e.g. Figure 4b) we can compute the minimal value in each
quadrant and take the overall minimum. Define

wC(a, τ) =
(
λr1 + (1− λ)r2

)
sin
(
(λθ1 + (1− λ)θ2

)
= (aλ+ b) sin(αλ+ β) =: f(λ)

with a = r1 − r2, b = r2 > 0, α = θ1 − θ2 < 0 and β = θ2. Its derivatives are then

f ′(λ) = a sin(αλ+ β) + (aλ+ b)α cos(αλ+ β),
f ′′(λ) = 2aα cos(αλ+ β)− α2(aλ+ b) sin(αλ+ β),
f ′′′(λ) = −3aα2 sin(αλ+ β)− α3(aλ+ b) cos(αλ+ β).

We make the following case distinction:
1. θ1, θ2 ∈ [0, π2 ]: We have λ ∈ [0, 1], sin(αλ+ β), cos(αλ+ β) ≥ 0. Consider the following

two subcases (see Figures 4a and 4c):
1.1. a > 0, i.e., r1 > r2: As (aλ+b) > 0 and since α < 0 we have f ′′(λ) < 0 for all λ ∈ [0, 1].

Hence, f is concave and must attain its minimum at either 0 or 1.
1.2. a < 0: Since f ′′′(λ) > 0, f ′′(λ) is increasing. Evaluating f ′′ at λ = 1 results in two

possibilities: If f ′′(1) < 0, we have that f is concave in [0, 1], and hence its minimum
must be attained at one of the boundary points. If f ′′(1) > 0, we further need to
distinguish whether f ′′(0) > 0 (which means f is convex, see below) or f ′′(0) < 0.
In the latter case, we perform a Newton procedure for finding the inflection point
(f ′′(λ) = 0), and subdivide [0, 1] into its convex and its concave part. Having done so,
we know that the minimum in the concave part is attained at one of the end points.
When f is convex, we apply Newton’s method to find a root of f ′(λ). In case the
minimum is found outside of [0, 1], we simply take the λ ∈ {0, 1} closest to it.
Comparing the values from the concave and convex parts yields the minimum.

2. θ1, θ2 ∈ [π2 , π]: We have sin(αλ + β) ≥ 0 and cos(αλ + β) ≤ 0, and again distinguish
between two subcases:



M. Blanco et al. 12:11

Table 1 Algorithm nomenclature used in the result tables.

Algorithm
Problem SPP TDSPP-PWL TDSPP-E

Dijkstra Dijk DijkP W L DijkE

A∗ A∗ A∗
P W L A∗

E

Contraction Hierarchies CH TCH −

2.1. a > 0: Analogous to 1.2.
2.2. a < 0: Since f ′′(λ) < 0, analogous to 1.1.

3. θ1, θ2 ∈ [π, 3π
2 ]: Analogous to 2 by symmetry.

4. θ1, θ2 ∈ [ 3π
2 , 2π]: Analogous to 1 by symmetry.

Applying a very similar procedure to the function g(λ) defined below yields the maximum
of the tailwind component wT (a, τ):

wT (a, τ) =
(
λr1
a + (1− λ)r2

a

)
cos
(
λθ1
a + (1− λ)θ2

a

)
= (aλ+ b) cos(αλ+ β) =: g(λ).

3.5 Validation of Super-Optimal Wind Quality
To assess the quality of the super-optimal wind bounding procedure, we ran it on all arcs in
nine instances, corresponding to the three graphs and three weather prognoses described
below, in Section 4. Our weather prognoses satisfy L = ti+1 − ti equal to three hours
for i = 1, . . . , n. That, is, precise prognoses are given at three hour intervals and wind is
interpolated for times in between. Thus, an obvious candidate for the discretization step ∆
is at most three hours. Computational results show that our algorithm with ∆ = L = 3h
already provides excellent results. To validate our lower bounds, we also used a brute force
approach which computes the maximal ground speed on each segment and each time interval
through enumeration. The average relative error between our lower bounds and the brute
force results is only 0.434 · 10−3. Also, the average time it takes to process an arc is less than
one millisecond; the average run time measured for the complete calculation is 5.61 seconds,
running the code on 20 threads on the computer described in Section 4. Another interesting
fact is that, in almost one third of the cases, the estimated result coincided with the exact
result.

4 Computational Results

In this section, we present the results of extensive computations measuring the performance
of our algorithms on airway networks.

For each of the considered problem variants (SPP, TDSPP-PWL, and TDSPP-E),
we implemented a Dijkstra algorithm and an A∗ algorithm, using the potential functions
described in Section 3. To test CHs and TCHs on our instances, we used the tools Contraction
Hierarchies and KaTCH, both released by the Karlsruhe Institute of Technology (KIT) [15].

All algorithms (including the Contraction Hierarchies tools) were implemented in C++
and compiled with GCC, and all our computations were performed on computers with 132
GB of RAM and an Intel(R) Xeon(R) CPU E5-2660 v3 processor with 2.60GHz and 25.6
MB cache. All preprocessing steps were carried out in parallel using 20 threads, except for
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Table 2 Graph instances corresponding to three common flight altitudes.

Instance Nodes Arcs Avg. degree Flight altitude
I-29 52719 329442 6.249 29000ft
I-34 52691 329736 6.258 34000ft
I-39 52662 329580 6.258 39000ft

Table 3 Comparison of CH and A∗ in the static case.

Dijk CH A∗

Instance query
(ms)

prep
(s)

query
(ms)

speedup
×

prep
(s)

query
(ms)

speedup
×

I-29 2.01 1260 0.37 5.45 0 0.34 5.86
I-34 2.00 1233 0.38 5.24 0 0.33 6.12
I-39 1.94 1309 0.39 5.01 0 0.32 6.00

that of static Contraction Hierarchies, whose code does not offer the option of parallelization.
All other computations were carried out in single-thread mode.

We use the notation introduced in Table 1 to refer to the different algorithms. In all
subsequent tables, we use the abbreviations “prep” for preprocessing time, “query” for query
time (given an OD pair) and “speedup” for the ratio between the given algorithm’s query
times and Dijkstra’s query times.

4.1 Instances
All instances used in our computations correspond to real-world data, provided to us either
by Lufthansa Systems GmbH & Co. KG (graphs and weather prognoses) or obtained from
the flight tracking portal www.flightradar24.com (list of OD pairs).

We consider three directed graphs, corresponding to horizontal layers of the airway
network at altitudes 29000 feet, 34000 feet, and 39000 feet, respectively. We chose these
particular three because they are all common cruise altitudes distant enough from each other
that the weather conditions are substantially different. While the graphs are topologically
very similar, there exist several arcs which may be used only at certain altitudes. The
characteristics of the three graphs and the notation we will use to refer to them are presented
in Table 2.

Furthermore, we consider three different sets of weather prognoses. Each contains weather
information for a period ranging from 30 to 45 hours, with prognoses available at intervals of
3 hours. We identify them by the names Dec, Feb and Mar, based on the dates in which the
prognoses were made.

To construct instances for TDSPP-PWL, we approximated the TTFs with piecewise
linear functions by discretizing the time horizon into time intervals of length one/three hours.
Three hours is an obvious choice, since each prognosis set makes predictions for time points
at three hours intervals. All TTFs thus obtained satisfy the FIFO property.

For all algorithms, we ran queries on a fixed set of 18644 OD pairs, corresponding to all
flights recorded by www.flightradar24.com in June, 2015.

We use the following notation to identify our instances. For SPP, instances are given
by the altitude (e.g. I-29). For TDSPP-E, instances are defined by the altitude and the
weather prognosis set (e.g. I-29-Feb). Finally, for TDSPP-PWL, we identify instances by
the altitude, prognosis, and discretization size (e.g. I-29-Feb-3).
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Table 4 Comparison of TCHs and A∗
P W L for TDSPP-PWL.

DijkP W L TCH A∗
P W L

Instance query
(ms)

prep
(min)

query
(ms)

speedup
×

prep
(s)

query
(ms)

speedup
×

I-29-Dec-1 4.91 380.48 4.08 1.20 1.82 0.22 21.51
I-34-Dec-1 4.91 451.82 4.27 1.15 1.83 0.24 20.24
I-39-Dec-1 4.93 195.75 3.23 1.53 1.81 0.16 30.15
I-29-Feb-1 4.90 414.78 3.94 1.25 1.87 0.21 22.96
I-34-Feb-1 4.86 466.95 3.96 1.23 1.72 0.21 22.23
I-39-Feb-1 4.92 184.20 3.01 1.63 1.72 0.15 31.50
I-29-Mar-1 4.55 216.57 2.82 1.61 1.50 0.16 27.27
I-34-Mar-1 4.55 189.18 2.92 1.55 1.56 0.18 24.38
I-39-Mar-1 4.58 127.38 2.52 1.81 1.54 0.15 29.45
I-29-Dec-3 4.36 312.40 2.67 1.63 1.54 0.19 22.03
I-34-Dec-3 4.38 351.70 2.80 1.56 1.54 0.21 20.85
I-39-Dec-3 4.38 160.20 2.30 1.90 1.54 0.14 30.87
I-29-Feb-3 4.31 328.47 2.66 1.62 1.51 0.18 23.09
I-34-Feb-3 4.28 372.15 2.92 1.47 1.60 0.19 21.68
I-39-Feb-3 4.33 155.07 2.20 1.97 1.52 0.13 31.94
I-29-Mar-3 4.22 179.45 2.31 1.82 1.34 0.14 28.39
I-34-Mar-3 4.26 146.52 2.33 1.83 1.37 0.16 26.68
I-39-Mar-3 4.26 96.80 2.03 2.10 1.35 0.13 31.02

Summary
Average 4.55 262.77 2.94 1.60 1.59 0.18 25.90
Minimum 4.22 96.8 2.03 1.15 1.34 0.13 20.24
Maximum 4.93 466.95 4.27 2.10 1.87 0.24 31.94

4.2 Static Case
The results for SPP can be found in Table 3. The speedup obtained by A∗ is slightly better
than that of CHs, but not significantly. What is remarkable is that, since the potential for
A∗ is computed on-the-fly during query time, no preprocessing is necessary. This results in a
distinct advantage over CHs, which require over 20 min. preprocessing time. However, this
is also the reason why the query times of A∗ are longer than in the time-dependent version
(see Table 4). In fact, the computation of the potential functions accounts for over half the
CPU time needed for the queries. The good performance of A∗ in this case is likely due
to the fact that airway networks allow for minimum-distance paths to lie close to the great
circle, as opposed to road networks.

4.3 Approximate Dynamic Case
In Table 4, we compare the results for the solution of TDSPP-PWL: A∗PWL is the clear
winner. We can see that the preprocessing time of TCHs is much longer than that of A∗,
and is in fact too long to be of use in practical applications. Furthermore, the query times
of A∗PWL yield an approximate speedup of 25 w.r.t. Dijkstra and 15 w.r.t. TCHs. Recall
that A∗PWL can exploit the fact that the set of possible target nodes is small and known in
advance, while TCHs have no such advantage. This partially explains the former algorithm’s
superiority.

4.4 Exact Dynamic Case
Finally, in Table 5, we compare our versions of A∗ implemented for TDSPP-E and TDSPP-
PWL. While A∗PWL1

and A∗PWL3
refer to the same algorithm, we use the indices 1 and 3 to

distinguish between the instances with corresponding discretization steps. The preprocessing
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Table 5 Comparison of A∗
E and A∗

P W L in the time-dependent case.

DijkE A∗
E A∗

P W L1 A∗
P W L3

Instance query
(ms)

prep
(s)

query
(ms)

speedup
×

prep
(s)

av err
(%)

max err
(%)

bad paths
(#)

prep
(s)

av err
(%)

max err
(%)

bad paths
(#(%))

I-29-Dec 100.89 7.51 5.80 17.38 139.41 0.059 8.76 506 (2.71%) 46.69 0.078 8.76 740 (3.97%)
I-34-Dec 102.12 7.38 6.13 16.64 140.81 0.072 5.30 701 (3.76%) 47.88 0.093 10.92 940 (5.04%)
I-39-Dec 104.33 7.56 4.47 23.34 140.98 0.018 2.65 79 (0.42%) 47.93 0.021 2.65 94 (0.50%)
I-29-Feb 100.88 7.66 5.49 18.37 139.74 0.028 5.38 195 (1.05%) 47.03 0.035 5.38 269 (1.44%)
I-34-Feb 101.37 7.35 5.68 17.85 141.32 0.038 4.64 317 (1.70%) 48.43 0.049 4.63 431 (2.31%)
I-39-Feb 104.44 7.45 4.16 25.09 140.72 0.015 3.60 51 (0.27%) 48.45 0.019 3.60 75 (0.40%)
I-29-Mar 100.07 7.14 4.85 20.60 91.38 0.022 5.37 96 (0.51%) 31.26 0.030 5.41 183 (0.98%)
I-34-Mar 35.72 5.77 1.85 19.25 92.78 0.019 4.60 87 (0.47%) 32.34 0.022 4.60 111 (0.60%)
I-39-Mar 36.18 5.68 1.59 22.66 95.21 0.016 4.74 89 (0.48%) 33.01 0.017 4.74 93 (0.50%)

Summary
Average 87.33 7.06 4,45 20.13 124.71 0.032 5.00 235.67 (1.26%) 42.56 0.040 5.63 326.22 (1.75%)
Minimum 35.72 5.68 1,59 16.64 91.38 0.015 2.65 51.00 (0.27%) 31.26 0.017 2.65 75.00 (0.40%)
Maximum 104.44 7.66 6,13 25.09 141.32 0.072 8.76 701.00 (3.76%) 48.45 0.093 10.92 940.00 (5.04%)

times measured for A∗PWL1
and A∗PWL3

include both the construction of the piecewise linear
functions (not considered in Table 4, since in that case the procedure is needed by all
algorithms) and of the potential functions. Comparing the query times with those of A∗PWL1

and A∗PWL3
(Table 4) shows that the running time increases by a factor of over 20. This is a

disadvantage of the exact method, even though it is still very fast.
On the other hand, measuring the impact of the approximations on the final solution

reveals some outliers. To this purpose, we compare the optimal solution returned by Dijkstra
with that returned by the A∗PWL algorithms. For both solutions we compute the exact
minimal travel time and the PWL objective value. Table 5 displays the average relative
error, the maximum relative error, and the number of “bad paths”, which are defined as OD
pairs for which the relative error is larger than 0.5%. This value is interesting since, in the
flight planning industry, savings of 0.5% can justify longer running times. The number of
bad paths is not insignificant, and justifies the consideration of the exact method.

5 Conclusion

This paper shows that airway networks allow significant speedups in shortest path computa-
tions over Dijkstra’s algorithm, but with different methods than those used for road networks.
In particular, it turns out that the A∗ algorithm with problem-specific potentials performs
better than Contraction Hierarchies. We discuss three different versions of the Horizontal
Flight Planning Problem: The shortest path problem with static costs, the time-dependent
shortest path problem with piecewise-linear TTFs, and a special case of the time-dependent
shortest path problem with non-piecewise-linear (weather-dependent) TTFs.

For the first two variants, A∗ potentials based on GCDs and PWL approximations,
respectively, are faster than CHs and TCHs. In both cases, the preprocessing time needed
by A∗ is shorter than that of CHs by several orders of magnitude. In the static case, the
query times of both algorithms are comparable, while in the case of piecewise linear TTFs,
A∗ outperforms TCHs by a factor of 15. It remains an open question whether Contraction
Hierarchies can be adapted to attain a better performance on airway networks.

For the variant of non-piecewise-linear TTFs, we propose a super-optimal wind procedure
for underestimating TTFs. We present tight theoretical and empirical bounds on its approx-
imation error. The A∗ algorithm resulting from these bounds yields a speedup factor of 20
with respect to Dijkstra and very short preprocessing times. We also analyze the effect of
approximating TTFs with piecewise linear functions. This approximation approach leads to
extremely fast query times and a very small average error, but produces a few outliers. An
interesting research direction is to combine the advantages of these methods.
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Future research also includes adapting these techniques for the three-dimensional flight
planning problem. This is not straightforward since the TTFs corresponding to climb and
descent phases depend not only on the wind, but also on the current aircraft’s weight and
technical specifications.
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