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Abstract
A special case of the Time-Dependent Shortest Path Problem (TDSPP) is the itinerary planning
problem where the objective is to find the shortest path between a source and a destination
node which passes through a fixed sequence of intermediate nodes. In this paper, we deviate
from the common approach for solving this problem, that is, finding first the shortest paths
between successive nodes in the above sequence and then synthesizing the final solution from the
solutions of these sub-problems. We propose a more direct approach and solve the problem by
a label-setting approach which is able to early prune a lot of partial paths that cannot be part
of the optimal solution. In addition, we study a different version of the main problem where it
is only required that the solution path should pass through a set of specific nodes irrespectively
of the particular order in which these nodes are included in the path. As a case study, we have
applied the proposed techniques for solving the itinerary planning of a ship with respect to two
conflicting criteria, in the area of the Aegean Sea, Greece. Moreover, the algorithm handles the
case that the ship speed is not constant throughout the whole voyage. Specifically, it can be set
at a different level each time the ship departs from an intermediate port in order to obtain low
cost solutions for the itinerary planning. The experimental results confirm the high performance
of the proposed algorithms.
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1 Introduction

The Time-Dependent Shortest Path Problem (TDSPP) is a fundamental and well studied
multi-objective optimization problem with many applications. However, less effort has been
made for addressing the Time-Dependent Shortest Path Problem that must go through a
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11:2 Time-dependent bi-criteria itinerary planning algorithm

given sequence of nodes, which is also known as travel planning problem. In this case, apart
from optimizing the selected objective, the given sequence defines intermediate nodes that
must be visited after departing from the origin and before arriving at the destination. This
problem arises from both travel industry and daily life activities. Trip planning applications,
such as location-based services and car navigation systems need efficient algorithms for the
earliest arrival problem as well as for multi-criteria problems in large road networks. Usually,
the intermediate nodes represent specific Points of Interest (POIs) and the duration of each
intermediate stop varies. As we are working with a time-dependent network, we need to know
in advance how long the user expects to stay at each POI and specify the exact departure
time from the intermediate POI.

An important property of the network which much differentiates the complexity of the
time-dependent algorithms is the FIFO property [4, 12, 19]. A network is said to fulfill the
FIFO property if all of its arcs fulfill that property i.e., for each arc (i, j) of the network,
earlier departure from i always leads to earlier arrival at j, that is, the arrival events at j

are in the same chronological order as the departure events at i. More explicitly, it may be
defined in the following mathematical form:

∀(i, j, t), t + c(i, j, t) ≤ (t + 1) + c(i, j, t + 1) (1)

where cost function c(i, j, t) denotes the cost for traversing arc (i, j) at time instance t and
has integer-valued domain and positive integer-valued range. When the FIFO property holds,
waiting at the nodes of the network is pointless since leaving immediately from each node is
always a beneficial practice leading to optimal solution paths. Computing shortest paths
in FIFO networks is a polynomially solvable problem [12]. On the other hand, when the
FIFO property does not hold, optimal solutions may require waiting at certain nodes of the
network. Therefore, in non-FIFO networks the complexity of the time-dependent shortest
path problem depends on the waiting policy at nodes. If waiting is allowed, the problems is
polynomially solvable otherwise, the problem is NP-hard [18].

This paper is motivated by itinerary planning problems in sea transportation. The
duration of a voyage and the distance travelled in such a voyage are the two causal factors
which determine the voyage cost [8]. The time spent while at a port is also accounted in
the total voyage time. Especially, in short distance voyages, the delay incurred in ports
is much more important for the whole voyage duration than the travelling time itself [15].
In particular, we address the problem of finding the Pareto optimal set of paths which
pass through a fixed sequence of nodes with predefined visiting time and specific time
constraints at each intermediate node, in a time-dependent setting. Indeed, there may be
several constraints that should be considered when drawing up a travel plan. For instance,
in maritime there are several charter types which imply different constraints. For example,
a voyage charter specifies a period, known as laytime, for loading and unloading the cargo.
If laytime is exceeded, the charterer must pay demurrage. If laytime is saved, the charter
party may require the ship owner to pay despatch to the charterer. Moreover, in a contract
of Affreightment, apart from the period in which the transfer of the cargo must be carried,
the route of the voyage is also specified. On the contrary, in a time charter, only the period
of time is defined and the charterer is responsible for the selection of the ports that the
vessel approaches. The arrival time at a port affects directly the total visiting time at that
port since in case of congestion at that particular port, the ship may have to queue for port
facilities. Thus, besides optimizing several economical, safety and ecological objectives, it is
also crucial to take into account the constraints imposed by the strict schedule of a vessel.
To this end, the ship speed may be different but within an acceptable range for each travel
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leg between successive intermediate ports in such a way that the stay at each port incurs the
least operational cost.

A greedy approach to solve the itinerary planning problem is to search for independent
shortest paths locally between each pair of successive stops. More specifically, we first locate
the nearest stop from the query location, then we locate the nearest stop from the current
stop, and so on, until the destination is reached. As discussed in [21], the travel planning
problem can not be solved optimally by using this approach and this clearly also applies for
the time-dependent problem.

In [1], the bi-criteria itinerary problem for time-dependent networks is studied. The
proposed method is based on the decomposition of the problem into a sequence of elementary
itinerary sub-problems, solved by a backward dynamic programming algorithm. Adapting
also the Bellman’s backward optimality principle, the solution of the sub-problems starts
from the destination and traverses the route backwards using the Decreased Order Time
(DOT) technique described in [4].

In [3], a travel planning problem was proposed which consists in finding the best travel
plan from a origin to a destination that follows a given sequence of nodes on a transportation
network with deterministic time-dependent travel times. The authors proposed a decomposi-
tion scheme in which the whole problem is divided into sub-problems and each of them is
solved as a one-to-many shortest path problem by adding a surrogate node to the graph.

In [5], an algorithm is proposed for finding the shortest distance route that passes through
a fixed sequence of POIs in a time-dependent road network. The method is based on A∗

algorithm, together with a suitable admissible heuristic function and a pruning scheme that
reduces the search space. The method is also applicable to static road networks.

Another relevant problem was proposed in [14], termed as the Trip Planning Query
(TPQ). In TPQ, only the subset of the intermediate POIs is defined by the user. Aim of
the optimization problem is to find the path that minimizes the travel cost between origin
and destination, and subsequently to define the visiting order of POIs. As this problem is
NP-hard due to the existence of multiple possibilities in POI ordering, the authors proposed
a number of approximation algorithms.

Recent research for trip planning in public multi-modal transportation networks has
produced several speedup techniques and algorithms. In this paper, we focus on the travel
itinerary problem in sea transportation. The objective is to reach the destination port, at
minimum fuel consumption and maximum safety, visiting all the predefined intermediate
ports and at the same time, respecting the constraint on the travelling time as well as other
technical and operational restrictions. The itinerary planning problem can be cast as a
multi-objective, non-linear optimization problem with constraints where the desired solution
should be found among a number of conflicting objectives.

The main complicating factor in sea transportation is the weather. Regardless of the
specific objectives, the cost functions in this kind of transportation depend heavily on weather
conditions and thus the itinerary planning problem for ships is a time-dependent problem.
Besides weather variations, moving obstacles with known or unknown trajectories, such as
other vessels or marine protected populations, are additional factors that make the problem
even more dynamic.

In our problem setting, the ship speed along each sub-route between successive interme-
diate ports are decision variables whose values should be optimized for returning low cost
solutions. It is worth mentioning that since the ship speed can vary only within a certain
range due to operational constraints and since the relation between fuel consumption and
speed is approximated by a cubic function [20], it is always beneficial to sail at the lowest

ATMOS 2016



11:4 Time-dependent bi-criteria itinerary planning algorithm

allowable speed that does not disrupt the ship schedule. Indeed, when fuel consumption is
the only objective, it has been proven that this strategy for selecting the ship speed gives
the optimal solution [10]. However, since our problem is time-dependent and there is also
the objective of the minimum incurred risk other than the fuel consumption, the above rule
cannot be applied for finding the optimal speed. For example, a high speed may negatively
affect the fuel consumption criterion but it may help in avoiding adverse weather conditions.
Thus, sailing at the minimum allowable speed is not profitable for both objectives in this
case.

The rest of the paper is organised as follows. In the next section, the Time-Dependent
Bi-criteria Shortest Path Problem with fixed sequence of intermediate stops is defined. In
section 3, the proposed algorithm is described and then in section 4, the algorithm is tested
in maritime scenarios for finding ship itineraries. Finally, the conclusions are discussed in
section 5.

2 Preliminaries

Firstly, a description of the Time-Dependent Bi-criteria Shortest Path Problem (TDBiSPP)
is given and then we define the itinerary planning problem addressed in this paper.

Let G = (V, A) be a directed graph, where V is the set of nodes and A is the set of arcs
with |V | = n and |A| = m. Each arc (i, j) ∈ A is associated with three attributes c1(i, j, t, U),
c2(i, j, t, U) and pt(i, j, t, U), whose values are assumed to be non-negative and may change
over time; c1(i, j, t, U) and c2(i, j, t, U) denote the two costs for traversing (i, j) with speed
U and pt(i, j, t, U) denotes the travel time for traversing (i, j), departing from node i at time
instance t with speed U . In the TDBiSPP the speed U is assumed to be constant. The two
costs are the objectives to be minimized, while the travel time is the “resource” constrained
in the problem. The frozen arc model [19] is also assumed where the arc cost is determined
at the arrival time at the tail of the arc and does not change during its traversal.

Let C1(P ), C2(P ) denote the total cost of a path P according to the first and the second
criterion respectively, and PT (P ) denote the total travel time along P . Given a start node
s ∈ V , a destination node d ∈ V , a departure time tstart, an upper bound T on the maximum
permissible total travel time, with no waiting at nodes, the problem is to find a path P from
s to d departing at tstart from s that minimizes the two objectives C1(P ) and C2(P ) without
violating the travel time constraint i.e., PT (P ) ≤ T . Since the objective functions may be
conflicting, a single solution that simultaneously optimizes each objective may not exist
and therefore, the problem actually is to find the set of Pareto optimal or non dominated
solutions. A solution is termed as a non dominated solution if none of the objectives can be
improved in value without degrading the value of the other objective. Formally, a path p is
said to dominate another path p′ if (C1(p) < C1(p′) and C2(p) ≤ C2(p′)) or (C1(p) ≤ C1(p′)
and C2(p) < C2(p′)).

In TDBiSPP with fixed sequence of intermediate stops, besides the usual origin and
destination node, a fixed sequence of nodes through which the path must pass is also given
as an input. This sequence of intermediate stops will be denoted by IS where IS ⊆ V . For
each intermediate stop isk, the Earliest Arrival Time (EAT) and the Latest Arrival Time
is specified and thus isk should be visited within the time window [EATisk

, LATisk
]. Also,

the visiting time of isk may not be always the same but may vary according to the type of
the vessel and the arrival time at isk. Specifically, we use the notation L(isk, t) to denote
the laytime of a vessel reaching the intermediate stop isk at time instance t. Moreover, a
vessel is allowed to extend its laytime in a port if that helps in avoiding congestion or adverse
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weather conditions. Recall also that waiting at intermediate stops is beneficial in non-FIFO
networks. However, although waiting is allowed at stops, it might be an upper bound on
this time. Thus, we define the Latest Departure Time (LDT) for each intermediate stop isk

denoted by LTDisk
.

Upon departing from an intermediate stop or the origin node, we have to decide the
nominal cruising speed U which must lie in the interval {Umin, Umax} where Umin and Umax

are the minimum and the maximum allowable speed respectively. Along a sub-route between
successive intermediate stops, the nominal speed is assumed to be constant.

It is now clear that the itinerary planning problem can be solved as a Time-Dependent
Shortest Path Problem (TDSPP) where the arcs are labelled with a pair of costs, namely
fuel consumption and risk incurred along the arcs. With regard to the TDSPP classification,
the itinerary planning problem is characterized by the following:

Goal: minimization of two costs.
Decision variables: ship course and ship speed along each sub-route.
Waiting at stops: waiting is allowed only at the intermediate stops and not at any other
node of the input graph.
Source and destination: one source to one destination node through many intermediate
stops.
Network properties: non-periodic network and non-FIFO regarding the costs c1 and c2.

3 The proposed bi-objective algorithm

We propose a forward label setting algorithm (Algorithm 1) for finding the set of Pareto
optimal paths in time-dependent non-FIFO networks, visiting also a fixed sequence of
intermediate destinations, based on a Time-Dependent Bi-criteria Shortest Path algorithm
[24].

In order to improve the performance of the algorithm, we employ a heuristic function h

to estimate a lower bound of the passage time of the path from the current position to the
final destination passing through the remaining intermediate stops. Summing the current
cost of the path (denoted as g) and the h value, we compute the f value, which is a lower
bound of the total passage time of the path. We use this estimation to check if the extension
of the current, partial, path will violate the constraint of the total passage time T . Using this
heuristic, we can prune paths from a very early stage of the algorithm, since we can be sure
that this path is never going to reach the destination node in time. The heuristic function
is computed in a preprocessing phase by running a single-objective Dijkstra algorithm for
finding the least passage time path from the destination to any other node of the input
graph. For this computation, we use as edge weight the least passage time cost of each edge
occurring within the passage time window namely, [tstart, tstart + T ] and as ship speed the
maximum allowable speed Umax. Likewise, we also employ two heuristic functions h1(i, k, k′)
and h2(i, k, k′) with k < k′ to estimate a lower bound of costs C1 and C2 respectively of the
path starting from the node i and visiting the kth, (k + 1)th, . . . , k′th intermediate stop in
that order. These heuristic estimates are used for checking the domination relation between
two different paths. Similarly with the heuristic function h, the heuristic functions h1 and
h2 are pre-computed by running a single-objective Dijkstra algorithm for finding the optimal
path from each intermediate stop to any other node of the input graph, that minimizes the
fuel consumption and the risk respectively. For this computation, we use as edge weight the
least fuel consumption and risk cost of each edge occurring within the passage time window
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[tstart, tstart + T ] and for all possible speed levels. All heuristic functions, h, h1 and h2, are
admissible and hence they provide a lower bound on the corresponding real cost value.

Algorithm 1 keeps a set of labels li(t) where i is a node and t a time instance. Each label
is a tuple of six elements namely, li(t) = (C1, C2, j, prev_ptr, k, Spd) and corresponds to a
path from the source node s to i arriving at node i exactly at time t. C1, C2 is the total cost
of the estimated path from s to i with respect to the two criteria c1, c2 respectively. The
integer j is the predecessor node of i on the path from s to i. The pointer prev_ptr points
to the Pareto optimal label of the j whose extension gave li(t). The integer k denotes that
the most recently visited intermediate stop is the kth stop in the IS. The integer Spd is the
nominal travel speed between the kth and the (k + 1)th intermediate stop.

We also need to revisit the definition of dominance between two paths. Suppose two
paths p and p′ starting from the same source node and leading to the same destination node
i. We assume also that paths p and p′ have already visited the k and k′th intermediate
stop respectively and k′ < k. The path p is said to dominate p′ (p ≺ p′) if (C1(p) <

C1(p′)+h1(i, k′+1, k) and C2(p) ≤ C2(p′)+h2(i, k′+1, k)) or (C1(p) ≤ C1(p′)+h1(i, k′+1, k)
and C2(p) < C2(p′) + h2(i, k′ + 1, k)). In case that the two paths p and p′ have already
visited exactly the same intermediate nodes (k′ = k), they are comparable without using the
heuristic functions h1 and h2 and the path p is said to dominate another path p′ (p ≺ p′) if
(C1(p) < C1(p′) and C2(p) ≤ C2(p′)) or (C1(p) ≤ C1(p′) and C2(p) < C2(p′)). Finally, when
k′ > k and it holds either that C1(p) + h1(i, k + 1, k′) < C1(p′) and C2(p) + h2(i, k + 1, k′) ≤
C2(p′) or that C1(p) + h1(i, k + 1, k′) ≤ C1(p′) and C2(p) + h2(i, k + 1, k′) < C2(p′), no
conclusion about the dominance between these two paths can be safely reached; path p must
surely be extended till it reaches the intermediate node k′ and this additional route may
eventually make the cost of p higher than that of p′ even though the heuristic estimates show
otherwise.

It is important to note that the FIFO property does not hold for the cost functions
employed in our scenario, since leaving as much as earlier from a node does not necessarily
reduce the cost of the outgoing edge. Thus, there is no possible way to know the ideal
time of leaving a node in advance for obtaining an optimal cost path to the destination
node. As a result, for each node and for each arrival time instance at this node, we should
keep all the non-dominated labels referring to that particular arrival time. In contrast, in a
static bi-criteria shortest path problem there is no need to partition the labels at each node
according to their arrival time and only a single set of non-dominated labels can be kept at
each node.

Algorithm 1 iterates over all integer time instances in the interval [tstart, T + tstart], where
tstart is the departure time from the source node and T is the maximum allowable total
travel time. During the execution, the algorithm maintains two groups of label lists at each
node and for each time instance namely, the permanent and temporary lists. The labels
of the temporary list of a node for a given time instance are all transferred one by one to
the corresponding permanent list when the algorithm iteration proceeds to that particular
instance. However, just before that transfer, each of these labels is extended, thus creating a
new label. Each of these new labels is kept only if it does not violate the total travel time
constraint (line 19) and also if it is not dominated by another label belonging to the same
node with the same arrival time (lines 31 and 47). In the case that a label corresponds to
the next intermediate stop along the path, it must satisfy the earlier and the latest arrival
time constraint (line 23) in addition. In this case, we must also consider the laytime at
the intermediate stop and the fact that the speed can change. As a consequence, a label
corresponding to an intermediate stop is replicated in order to take into account all possible
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departure time instances from the intermediate stop and all allowable ship speed values (lines
27-28). Also, labels already in the temporary list for that arrival instance are compared
against this newly generated label and discarded when they are dominated by the new label
(line 51). The order in which the labels of the current time instance are extended is not
actually important, since all labels of that time instance should be extended first before
proceeding to the next iteration step. Thus, the label to be extended (pivot label) each
time can be selected randomly (line 9). By the end of the execution, all Pareto-optimal
solution paths will have been stored as permanent labels of the destination node d. Notice
also that for the node d, no label extension takes place (line 15) since the algorithm does
not need to go further down the destination node due to the fact that the cost functions are
non-negative-valued and hence going further only adds to the total cost of the path. Also,
in Algorithm 1, we assume a single departure time from the source node but it is trivial to
handle the case of multiple possible departure time instances too.

The same algorithm can be applied for solving the problem when the only requirement is
to visit a set of intermediate stops regardless of the particular visit order. Notice that this
version of the problem is NP-hard even in the case of only one objective by reduction from
the Hamiltonian path problem [6]. Now, each label should keep the stops already visited and
in the domination check between two labels li and lj , li wins if its intermediate stops are
superset of the stops of lj and the total estimated costs of the extended path of lj which
also includes the missing intermediate stops from li are higher than the corresponding ones
of the path of lj . Furthermore, the heuristic functions h, h1, h2 are redefined as h(i, S),
h1(i, S), h2(i, S) where S is a subset of intermediate stops that should be visited at minimum
cost and in any order starting from node i. In the case of h, after visiting the stops in
S, the path should also reach the final destination. For computing these functions, all
possible permutations of stops in S should be generated, keeping that which derives the
lowest cost. Although computing the heuristic functions for all possible subsets S and nodes
in advance seems to be a heavy computation, in practice it is not, because the set of unvisited
intermediate stops is small. Finally, during the generation of a new label, at line 21, we need
to check that this node is an intermediate stop which has not already been considered as
such along the so far constructed path.

4 Experimental results

We tested the performance of the proposed itinerary planning algorithm in a maritime
application where ship itineraries should be determined. In this problem, the objective is
to reach the destination port after visiting a predefined sequence of intermediate ports, at
minimum fuel consumption and maximum safety, respecting the constraint on the travelling
time as well as other technical and operational restrictions. The proposed algorithm is
compared to the common approach of decomposing the bi-criterion itinerary planning problem
with mandatory intermediate stops into a series of bi-criterion shortest path problems between
successive intermediate stops [1]. For a fair comparison, we have also enhanced the basic
algorithm in [1] with heuristic functions analogous with those employed in the proposed
algorithm.

4.1 Case Study
The two algorithms were tested in finding ship routes in the region of the Aegean sea in
Greece. For modelling this area, the grid structure developed for the AMINESS system
[7] is used. The data grid structure holds a great amount of data, spatially stored in the
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grid nodes and edges. Static as well as dynamic information is taken into account, such as
geographic and bathymetric data, protected areas, risk estimation [13] as well as weather
and sea state predictions. A grid point is assumed to be valid if it does not correspond to a
landmass point. All valid grid points correspond to nodes which are connected with each
other via bidirectional edges. Each node is connected to the 16 geographically closest nodes
in the grid. Furthermore, voyage safety is enhanced by following the IMO recommendations
[11] for avoiding dangerous situations. Regarding IMO recommendations, surf-riding and
broaching-to situations should be avoided when navigating in severe weather conditions.
Surf-riding and broaching-to may occur when the conditions below are satisfied:

135o < a < 225o and VR >
1, 8
√

L

cos(180− a)

with a, VR and L being the ship-wave angle, the speed and the length of the ship respectively.
Since ship speed is constant along each sub-route, the only way to avoid the above

situations is by rejecting the edges of the grid where these conditions arise.
As has been already mentioned, the objectives to be optimized are the fuel consumption

and the risk. For each possible nominal speed U and edge e, the fuel consumption and
incurred risk for traversing e with speed U is assigned to e. For calculating the navigation
time between the endpoints of an edge, we have to consider the actual ship speed along the
edge which is usually lower than the nominal one due to the added resistances induced by
irregular waves and wind during ship navigation. To this end, the ship model described in
[16] is used.

This model is general, independent of specific ship features. According to this model, the
speed reduction depends only on the significant wave height H and the ship-wave relative
direction Θ.

Estimating the fuel consumption rate along a vessel route is a complex issue still under
investigation. As a rule of thumb, the following formula is used in practice [2, 9, 17, 23, 22]:

F = K · P (2)

where F is the rate of fuel consumption measured in kg/h, K is the specific fuel consumption
of the ship and P is the engine power in BHP1 (kW) of the ship. The engine power of a
ship also determines the nominal speed of the ship. Now, the total fuel consumption along a
route with constant engine power P in the ship and hence constant nominal speed is the
product of its passage time PT and the rate of fuel consumption per hour F :

FCtotal = F · PT (3)

Concerning implementation setup, algorithms were implemented in C++. The experi-
ments were performed on a system with an Intel(R) Xeon(R) E5-2430 v2 processor at 2.50GHz
and 16 GB RAM. It is also worth mentioning that we did not exploited any parallelism in
this multi-core architecture during the tests.

For each test case, a random set of starting, intermediate and destination ports were
chosen and the maximum passage time for each voyage was proportional to the sum of
the straight line distances connecting the consecutive ports. The speed of the ship ranges
between 12 and 25 knots.

1 Brake HorsePower (BHP) is the total measure of engine power at the output shaft of the engine.
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Algorithm 1 Bi-objective, Fixed Sequence, Time-Dependent and Time-Constrained Shortest
Path Algorithm
Require: G = (V, A), and C, the cost matrix for all arcs (i, j) ∈ A

Ensure: All Pareto optimal paths from the node s to the node d passing through a fixed
sequence of intermediate nodes

1: s: the start node
d: the destination node
tstart: the departure time
T: the maximum allowed total travel time
IS = (is1, is2, . . . , isk): the fixed sequence of intermediate nodes
EATj: the Earliest Arrival Time at intermediate node j

LATj: the Latest Arrival Time at intermediate node j

LDTj: the Latest Departure Time from intermediate node j

L(j, t): the laytime of an intermediate stop arriving at intermediate node j at time
instance t

U: the nominal speed at which the ship sails since departing from the most recent
intermediate stop
pt(i, j, t, U): the travel time for traversing the arc (i, j) with speed U departing from
the node i at time instance t

fc(i, j, t, U): the total fuel consumption for traversing the arc (i, j) with speed U departing
from the node i at time instance t

r(i, j, t, U): the total risk incurred for traversing the arc (i, j) with speed U departing
from the node i at time instance t

tj
ar: an arrival time instance at the node j

li(t): a label of the node i corresponding to the path from s to i, arriving at i at time
instance t

Ltempi(t): the list of temporary labels of node i at time instance t

Lpermi(t): the list of permanent labels of node i at time instance t

card(li(t), Lpermi(t)): the position of li(t) in the list of permanent labels of node i

lp
i (t): the pth component of a label li(t)

/* Initialization of temporary and permanent labels of every node and for all
t ∈ {tstart, tstart + 1, ..., T + tstart} */

2: Ltempi(t), Lpermi(t)← ∅, ∀i ∈ V,∀t ∈ {tstart, tstart + 1, ..., T + tstart}
/* Initialization of temporary labels of source node for all t ∈ {tstart, tstart +1, ..., T +

tstart} and for all U ∈ {Umin, Umax} */
3: for U = Umin to Umax do
4: Ltemps(tstart)← {(0, 0, null, null, 0, U)}
5: end for
6:
7: for tar = tstart to T + tstart do
8: while (∪i∈V Ltempi(tar) 6= ∅) do
9: Select a pivot label li∗(tar) from ∪i∈V Ltempi(tar)
10: /* Remove li∗(tar) from Ltempi(tar) and add it to Lpermi∗(tar) */
11: Ltempi∗(tar)← Ltempi∗(tar)\{li∗(tar)}
12: Lpermi∗(tar)← Lpermi∗(tar) ∪ {li∗(tar)}
13: /* Store the position of label li∗(tar) in the list Lpermi∗(tar) */
14: p← card(li∗(tar), Lpermi∗(tar))
15: if i∗ 6= d then
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16: /* Label all the successors of i∗ */
17: for all (i∗, j) ∈ E do
18: tj

ar ← tar + pt(i∗, j, tar, l6
i∗(tar))

19: /* Check the total duration constraint */
20: if tj

ar − tstart + h ≤ T then
21: /* Check if successor node j is the next Intermediate Stop */
22: if j = is(l5

i∗ (tar)+1) then
23: /* Check the EAT and LAT constraint at Intermediate Stop j */
24: if tj

ar ≥ EATj and tj
ar ≤ LATj then

25: /* Take into account the laytime at Intermediate Stop j */
26: tj

ar ← tj
ar + L(j, tj

ar)
27: for t = tj

ar to LDTj do
28: for U = Umin to Umax do
29: lj(t)← (li∗

1(tar) + fc(i∗, j, tar, l6
i∗(tar)), li∗

2(tar)
30: +r(i∗, j, tar, l6

i∗(tar)), i∗, p, j, U)
31: /* Check that there is no label l′j(t) of node j at time instance t dominating label lj(t)*/
32: if 6 ∃l′j(t) ∈ Ltempj(t) : l′j(t) ≺ lj(t) then
33: /* Store the label lj(t) of node j at time instance t as temporary */
34: Ltempj(t)← Ltempj(t) ∪ {lj(t)}
35: /* Delete all temporary labels of node j at time instance t dominated by lj(t) */
36: Ltempj(t)← Ltempj(t)\{l′j(t) ∈ Ltempj(t) and

37: lj(t) ≺ l′j(t)}
38: end if
39: end for
40: end for
41: end if
42: end if
43: else
44: /* node j is not the next Intermediate Stop */
45: lj(tj

ar)← (li∗
1(tar) + fc(i∗, j, tar, l6

i∗(tar)), li∗
2(tar)

46: +r(i∗, j, tar, l6
i∗(tar)), i∗, p, li∗

5(tar), l6
i∗(tar))

47: /* Check that there is no label l′j(tj
ar) of node j at time instance tj

ar dominating label
lj(tj

ar) */
48: if 6 ∃l′j(tj

ar) ∈ Ltempj(tj
ar) : l′j(tj

ar) ≺ lj(tj
ar) then

49: /* Store the label lj(tj
ar) of node j at time instance tj

ar as temporary */
50: Ltempj(tj

ar)← Ltempj(tj
ar) ∪ {lj(tj

ar)}
51: /* Delete all temporary labels of node j at time instance tj

ar dominated by lj(tj
ar) */

52: Ltempj(tj
ar)← Ltempj(tj

ar)\{l′j(tj
ar) ∈ Ltempj(tj

ar) and lj(tj
ar)

53: ≺ l′j(tj
ar)}

54: end if
55: end if
56: end for
57: end if
58: end while
59: end for
60: /* Output:Lpermd, all Pareto optimal paths from the node s to the node d */
61: return Lpermd
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Table 1 Itinerary planning with predefined visiting order of intermediate ports and with no other
constraints in these ports.

Case
No

Start
Time

Maximum Travel
Duration (hours)

No of
Intermediate
Stops

CPU time (in seconds)
Decomposition
Algorithm

Proposed
Algorithm

1 10:00 am 4 1 88 57
2 1:00 pm 4.5 2 102 68
3 3:00 pm 5 3 117 79
4 3:30 pm 6 4 140 92
5 7:00 am 6.5 5 151 100
6 8:00 am 7.5 6 169 113
7 9:00 am 8.5 7 189 146
8 8:30 am 9.5 8 203 156
9 7:30 am 10 9 224 171
10 7:00 am 11 10 235 194

4.2 Computational Results
Firstly, the proposed algorithm is evaluated in the case that there are no constraints on
the arrival or departing time from the intermediate ports, however, waiting at these ports
is forbidden. Thus, ∀j ∈ IS we can assume that EATj is equal to zero, LATj is equal to
the maximum voyage duration and LDTj = tj

ar (see Algorithm 1, Line 27), since a vessel
can not wait at an intermediate port. The only constraint imposed is on the arrival time at
the final destination. In Table 1, the experimental results clearly show that the proposed
algorithm has lower execution time than that of the common decomposition approach. In
the next experimental setup, the arrival time at each intermediate port is not arbitrary as in
the first case but should be within a certain time window. This scenario is more realistic
since the mooring at the port is a predefined procedure, taking place in specific time frame.
In this case, EAT and LAT parameters of each intermediate port have different values, but
again it is assumed that waiting is not allowed at intermediate ports. The computational
results in Table 2 confirm the high performance of the proposed algorithm, compared to the
common decomposition approach.

Although the anchorage duration is usually fixed, we investigate the possibility of extending
that duration without additional cost. Specifically, we assume that the anchorage duration
could be extended up to 30 minutes and hence LDTj = tj

ar + 30. Clearly, the results of the
Table 3 show that the execution time is increased in both algorithms but still our algorithm
exhibits the best performance.

Our algorithm can also handle the more general case where the visiting order of the
intermediate stops is not predefined. In this scenario, the algorithm should select the most
beneficial visiting order according to the objectives being optimized given the constraint on
the total travel time. The common decomposition algorithm could not be applied in this
case because despite the fact that the initial problem could be divided in sub-problems, the
sub-problem order is unknown and due to time-dependency, synthesizing the sub-problems
solutions is even more difficult. Table 4 lists the execution time of our algorithm for this
problem variation and for different input instances. Interestingly, although the search space
in this variation is much larger than in the case when there is a fixed sequence of intermediate
ports, the execution time of our algorithm is comparable with that in the case of the predefined
visiting order of intermediate stops.
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Table 2 Travel planning with predefined visiting order of intermediate ports and time windows
in these ports.

Case
No

Start
Time

Maximum Travel
Duration (hours)

No of
Intermediate
Stops

CPU time (in seconds)
Decomposition
Algorithm

Proposed
Algorithm

1 10:00 am 4 1 77 49
2 1:00 pm 4.5 2 89 58
3 3:00 pm 5 3 105 70
4 3:30 pm 6 4 127 81
5 7:00 am 6.5 5 134 89
6 8:00 am 7.5 6 145 101
7 9:00 am 8.5 7 162 123
8 8:30 am 9.5 8 181 134
9 7:30 am 10 9 196 149
10 7:00 am 11 10 201 163

Table 3 Itinerary planning with predefined visiting order of intermediate ports and waiting
allowed at these ports.

Case
No

Start
Time

Maximum Travel
Duration (hours)

No of
Intermediate
Stops

CPU time (in seconds)
Decomposition
Algorithm

Proposed
Algorithm

1 10:00 am 4 1 95 61
2 1:00 pm 4.5 2 113 73
3 3:00 pm 5 3 129 85
4 3:30 pm 6 4 158 98
5 7:00 am 6.5 5 173 112
6 8:00 am 7.5 6 180 129
7 9:00 am 8.5 7 201 155
8 8:30 am 9.5 8 226 168
9 7:30 am 10 9 248 183
10 7:00 am 11 10 255 203

5 Conclusions

We have focused on the problem of finding all the Pareto optimal itinerary plans which passes
through a fixed sequence of nodes, in a deterministic time-dependent setting considering
two conflicting objectives and with a constraint on the total duration of the itinerary. We
have proposed a general algorithm which can be applied to several application scenarios.
The time-dependent network on which we search for the Pareto optimal solutions is a non-
FIFO network. Thus, waiting at intermediate stops may be a valid option for achieving
low-cost solutions. We considered also the case where there is a fixed schedule for visiting
the intermediate stops and a constraint on the latest departure time from each intermediate
stop. In order to evaluate the performance of the proposed algorithm, it was compared
with the common decomposition approach in a case study relevant to the sea transportation.
The optimization criteria in the experiments were the total fuel consumption and the total
risk of the itinerary. The main conclusion from these experiments is that due to efficient
early pruning of candidate solutions, our algorithm outperforms the common decomposition
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Table 4 Itinerary planning with no predefined visiting order of the intermediate ports.

Case
No

Start
Time

Maximum Travel
Duration (hours)

No of Intermediate
Stops

CPU time (in seconds)
Proposed Algorithm

1 10:00 am 4 2 61
2 1:00 pm 4.5 2 71
3 3:00 pm 5 3 87
4 3:30 pm 6 4 99
5 7:00 am 6.5 5 112
6 8:00 am 7.5 6 127
7 9:00 am 8.5 7 156
8 8:30 am 9.5 8 170
9 7:30 am 10 9 188
10 7:00 am 11 10 205

method in all tests. Moreover, our algorithm turns out to be applicable also in the case where
the visiting order of the intermediate stops is not predefined. This generalized problem is
more difficult than the original problem, because the set of efficient solutions is even larger.
Finally, another interesting feature of the proposed algorithm is that it permits the change
of the vessel speed between successive intermediate ports. A more general scenario, where
the speed of a ship is allowed to change more frequently even from node to node in the input
grid is not very interesting since the common practice is exactly the opposite, that is, the
ship speed is usually maintained constant while at sea and when there is no emergency.
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