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Abstract
Most approaches for optimizing traffic signal timings deal with the daily traffic. However, there
are a few occasional events like football matches or concerts of musicians that lead to exceptional
traffic situations. Still, such events occur more or less regularly and place and time are known in
advance. Hence, it is possible to anticipate such events with special signal timings. In this paper,
we present an extension of a cyclically time-expanded network flow model and a corresponding
mixed-integer linear programming formulation for simultaneously optimizing traffic signal timings
and traffic assignment for such events. Besides the mathematical analysis of this approach, we
demonstrate its capabilities by computing signal timings for a real world scenario.
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1 Traffic signal settings for major events

Some major sporting events or gigs of celebrated musicians attract tens to hundreds of
thousands of supporters and fans. A venue in a downtown area is also a major challenge for
the transportation infrastructure. In inner-city traffic, intersections are the main bottleneck,
since crossing traffic has to obey traffic signals and the right of way, reducing the available
capacity significantly. Traffic signals either operate in a pretimed manner or they rely on
sensor data to switch adaptively. Anyway, common standard strategies for operating traffic
signals do not suffice to cope with the extreme traffic situations due to such mega events
since the traffic volume on some roads may exceed the normal traffic volumes many times.

In this paper we present an approach to optimize traffic signal timings for such mega
events in advance. That is, we compute optimal signal timings for inner-city traffic, where a
subset of commodities has very high demand and a common origin or a common destination,
respectively. The main objective is a fast reduction of the additional demand without
disrupting the normal traffic.
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8:2 Optimizing Traffic Signal Timings for Mega Events

1.1 Literature Overview
In practice, there exist various approaches to optimize traffic signal timings. Roughly one
can distinguish two main approaches. In pretimed signal settings, green and red phases
follow a fixed schedule and repeat periodically. Actuated timings use sensor data to react
on actual traffic.

The Traffic Signal Timing Manual [11] suggests to use pretimed signals when traffic de-
mands and patterns do not vary widely, when crossing roads carry a similar traffic load,
and when short distances between intersections allow a coordination of consecutive traf-
fic signals. Several approaches have been developed to optimize such coordinations. First
results date back to 1964, when Morgan and Little [16] presented a graphical method for
maximizing the bandwidth of a signalized road. This approach was later extended using
mixed integer programming [15]. First results for road networks were obtained by All-
sop [1]. Shortly after, Robertson [17] presented his theoretical work on offset optimization
based on a simplified simulation model and genetic programming which lead to the devel-
opment of TRANSYT. These early approaches did not consider route choice, but Allsop
and Charlesworth [2] demonstrated that coordination and assignment do interact. Since
then, besides several heuristic algorithms, only a few models using exact mathematical pro-
gramming techniques for optimizing coordination and assignment have been reported, e.g.,
[3, 14, 19, 20]. Recently, we presented a cyclically time-expanded network flow model to
address this task [8, 9, 10].

Actuated signal timings may perform well where detection is provided in locations with-
out nearby signals, rural areas or intersections of two arterials where traffic patterns vary
widely [11]. Depending on the used sensors, e.g., only stop-line detection or upstream-
downstream detectors and communication between signals, actuated or adaptive systems
can be subdivided into further categories. The most widely deployed adaptive system is
SCOOT (Split Cycle Offset Optimisation Technique, developed in the United Kingdom),
but there are several other systems in use like RHODES (Real Time Hierarchical Optimized
Distributed Effective System, using peer-to-peer-communication) or SYLVIA+ (widely de-
ployed in Germany). Recently, a new approach was presented by Lämmer [12]. The author
states stability as one of the main problems of all adaptive systems and he suggests an
underlying pretimed signal coordination to stabilize the system. Further, he states that an
adaptive system has to be run below saturated traffic demand to prevent degeneracy [13].
As a disadvantage, all adaptive systems need accurate detection systems, hence, initial and
maintenance costs are higher than that of other control types.

Transportation is considered to be one of the critical factors for the success of sporting
events like the Olympic Games in Rio de Janeiro in 2016 [18]. However, traffic signals in
particular are rarely studied in this context. The Traffic Signal Timing Manual ([11], see
Section 9.5) highlights the importance of adjusted timings for such situations and it suggests
to increase green times of (manually identified) arterial roads or corridors. Yet, automated
routines how to identify such arterials and how to set timings, also with respect to the
normal traffic, are not specified.

In contrast, most urban administrations seem to simply believe that actuated signal
control will suffice to cope with the additional traffic. Such adaptive signal timings are used
quite often, but to the best of our knowledge, there is no scientific justification and the
prerequisites contradict the proposals of the Traffic Signal Timing Manual. Unfortunately,
such high traffic volumes may lead to permanent requests for green on all incoming roads
of an intersection since all sensors are permanently triggered. In such situations, most
actuated signal timings behave like pretimed signals, but coordination between consecutive
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intersections is not present. Hence, a coordinated pretimed signal control anticipating the
upcoming traffic peak may perform much better than the standard traffic signal timings for
the daily traffic or actuated signal timings.

1.2 Our contribution
In this paper, we discuss how mega-events or evacuation scenarios can be integrated in
traffic signal control such that the extreme traffic volume is resolved in an optimized way.
We consider route choice simultaneously, i.e., roads and arterials to be used by the visitors of
such an event are not fixed in advance. Instead, we use an integrated approach to optimize
signal settings and traffic assignment simultaneously. Parameters under consideration are
offsets, split times and phase orders of the signals in the road network. Our approach uses
mixed integer linear programming techniques, hence, it also provides dual bounds on the
obtained solutions. We present numerical results for a real world scenario, namely a football
match in the city of Cottbus, Germany.

This paper is organized as follows. In Section 2, we present the basic model for optimizing
traffic signal timings and traffic assignment simultaneously. The modifications that are
necessary for coping with peak commodities are presented in Section 3. Afterwards, we
study the real-world scenario in Section 4. Finally, we close with a discussion of our results.

2 Basic model

Signal coordination requires the optimization of a large number of parameters. In the
simplest approach, we have to choose the beginning and the end of green times for each
turning direction at each signalized intersection of a road network with respect to several
constraints. Computing route choice at the same time adds time-dependent flow variables
and corresponding constraints for each arc and each commodity.

Recently, we presented a cyclically time-expanded network flow model [8, 10] for opti-
mizing signal coordination and traffic assignment simultaneously, which reduces the number
of variables significantly. In the following, we present the main ideas of this mixed-integer
linear programming model. However, it is not directly suitable for computing traffic signal
timings for situations with high peaks in traffic volume. Thus, we also describe an extension
of the model in the subsequent section.

2.1 Basic Model
Time-expanded networks have been used to study dynamic network flows since Ford and
Fulkerson introduced them in their seminal work about flows more than 60 years ago [4, 5].
However, the time horizon determines the size of the networks and corresponding approaches
lead almost directly to models of pseudo-polynomial size.

But inner-city traffic with traffic signals has a very high periodicity. Let Γ be the least
common multiple of all cycle times of signals in the road network, we can define a cyclically
time-expanded network.

I Definition 1 (Cyclically time-expanded network). Let G = (V,A, u) be a network with
capacities u : A→ N and non-negative integral transit times te for each e ∈ A. For a given
number k of time steps of length t = Γ

k , the corresponding cyclically time-expanded network
Gk = (V k, Ak, uk) is constructed as follows.

For each node v ∈ V , we create k copies v0, v1, . . . , vk−1, thus V k = {vt|v ∈ V, t ∈
{0, . . . , k − 1}}.

ATMOS 2016
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Figure 1 A very simple example of a cyclically time-expanded network with three consecutive
nodes s, v, and t and k = 6 time steps. A traffic signal is installed at node v, a sample timing and
corresponding capacities (dashed: bi = 0, standard: bi = 1) of the outgoing links are shown. On
the right-hand side, an intersection of the unexpanded model with separate arcs for each turning
direction is shown.

For each link e = (v, w) ∈ A, we create k copies e0, e1, . . . , ek−1 in Ak where arc et
connects node vt to node w(t+[ tek

Γ ]) mod k. These arcs are called transit arcs and et has

capacity u(et) := u(e)
k and cost te.

Additionally, we add waiting arcs from vt to vt+1 ∀v ∈ V and ∀t ∈ {0, . . . , k − 2} and
from vk−1 to v0 ∀v ∈ V with cost Γ

k and infinite capacity to Ak.

Throughout this paper, we choose k = Γ, i.e., a time step is exactly one second long.
In our numerical experiments, this choice seems to be the best trade-off between accuracy
and calculation time. With larger steps of 2, 3, or even 5 seconds, the model is solved
much faster but solutions get worse. Especially steps of length 5 and larger may cause
conflicts, since minimum green times, clearance times, et cetera have to be rounded up to
multiples of the step length. Thus, one may not even find a feasible signal setting for a single
intersection that meets all the constraints. In contrast, shorter steps less than a second have
no significant impact on the objective value.

Commodities are expanded in the same way. Let Φ ⊂ V × V × R+ be the set of
commodities with ϕ = (s, t, d) ∈ Φ being a triple of a source (or origin) s, a sink (or
destination) t, and demand d. Here, d is scaled to Γ, that is, d denotes the amount of
flow starting during one cycle. For simplicity, we assume that traffic demand is uniformly
distributed over all copies of the original source. That is, the net outflow of flow of commodity
ϕ of each si, i ∈ {0, . . . , k− 1}, is d

k . However, flow may also directly use a waiting arc from
si to si+1. Each commodity may leave the network at an arbitrary copy ti of the original
sink t, i.e., we do not fix the net inflow of each ti, but the total inflow is d. Flow is now a
standard multi-commodity network flow fϕ : Ak → R≥0 ∀ϕ ∈ Φ in this network, obeying to
flow conservation at each node for each commodity separately and obeying the capacities in
total, i.e.,

∑
ϕ∈Φ fϕ(et) ≤ u(et) for all et ∈ Ak.

Traffic signals can now be modeled via variable capacities. For this purpose, each turning
direction at an intersection (cf. Figure 1) is represented by an arc which is expanded into
a set of k arcs as described in Definition 1. The capacity of these arcs is multiplied with
binary decision variables. Let e1 and e2 be two such arcs with capacities u1 and u2, then
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e1
0, . . . , e

1
k−1 and e2

0, . . . , e
2
k−1 are the arcs in the cyclically time-expanded network with

capacities u1
k and u2

k , and let b10, . . . , b1k−1 ∈ {0, 1} and b20, . . . , b2k−1 ∈ {0, 1} be the binary
decision variables. A signal for ei can now be realized by setting the capacity of arc eij to
bij
ui

k for all j ∈ {0, . . . , k−1}. Green at the same time for both signals can now be prohibited
by b1j + b2j ≤ 1 ∀j ∈ {0, . . . , k − 1}.

Yet, this is not a realistic timing and we have to link the binary variables, e.g., for
achieving only one period of green during one cycle. We introduce binary decision variables
Bi,onj and Bi,offj for each turning direction i and each time step j. Now, the (in-)equalities
bij−1 ≥ bij −B

i,on
j and

∑k−1
j=0 B

i,on
j = 1 guarantee only one switch to green per cycle at time

step ̂ with Bi,on̂ = 1. Similarly, the signal switches to red at time step ̂ with Bi,off̂ =
1. Several other requirements can now be modeled via linear constraints. For example
a minimum green time of x time steps is realized by

∑k−1
j=0 b

i
j ≥ x. For a more detailed

description, we refer to [10]. Now, this model allows the simultaneous optimization of traffic
assignment (multi-commodity flow) and traffic signal timings (coordination).

The main advantage of this approach is a rather low number of variables and a complete
linear model which allows the use of exact mathematical programming techniques and the
use of solvers like CPLEX or GUROBI, i.e., we can prove optimality of a solution or we
can at least provide dual bounds. Although the model is a linear one, we have shown that
it provides very realistic travel times and link performance functions, i.e., the raise in the
travel times is non-linear in relation to an increasing traffic demand [10].

As a disadvantage, the rolling horizon limits the total capacity. Whereas we can send
any desired amount of flow in a standard time-expanded network whenever the time horizon
is chosen large enough, flows in the cyclically time-expanded network may turn out to be
infeasible due to exceeded capacities.

2.2 Queues and Overload
Before we focus on very high demand and traffic load in the network, let us shortly describe
how queues and spillback are handled in the cyclically time-expanded model. When a signal
is red, i.e., the capacity of arc ei = (vi, wj) is set to zero, incoming flow to vi may either use
the waiting arc (vi, vi+1) or any other outgoing arc if there is one. Thus, instead of setting
the capacity of a waiting arc to infinity, a finite capacity can limit the amount of flow waiting
at a certain node. This may be interpreted as a limited queue length and parameters should
be chosen appropriately. Consequently, when the capacity on the waiting arc is reached,
flow already has to wait, i.e., use the waiting arcs, at the previous node. Thus, also spillback
may occur in the cyclically time expanded network.

Still, the total amount of flow that can be sent from a source s to a sink t is obviously
limited. In other words, we cannot store arbitrary amounts of flow at a node and we also
cannot store flow for more than one cycle at each node even when the waiting arcs have
infinite capacity. Eventually, all flow has to reach the sink. In contrast, considering peak
traffic after a mega event, already the first signalized intersection can be the main bottleneck
and most road users will not pass it during the first cycle.

3 Coping with congested roads

In this section, we consider additional event commodities Θ ⊂ V × V × R+. As a first
difference, the demand of these commodities is not scaled to a time unit and flow does not
start uniformly distributed over time. Instead, the entire demand d of ϑ = (s, t, d) enters the
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8:6 Optimizing Traffic Signal Timings for Mega Events

cyclically time-expanded network at the first copy s0. Due to the limited outflow of s0, the
flow of this commodity will use several consecutive waiting arcs (si, si+1). Given a feasible
flow, the draining time of commodity ϑ is Γ i

k with i = min{j ≥ 0 : fϑ((sj , sj+1)) = 0}. In
other words, it is the time until the last flow unit has left the source.

Unfortunately, the demand of the event commodities will be too high to be drained
during one cycle and the flow will turn out to be infeasible in many cases. Of course, it is
possible to extend the cyclic expansion to multiple cycles, i.e., the cyclic time span is αΓ
for some integer α and αk time steps. However, this foils several advantages of the cyclic
model like the rather low number of binary variables. Increasing α, the computation time
increased more than linearly in our numerical experiments. The main reason, however, is
the lack of a good guess for α. It is not known a priori how much time is needed to drain
the whole demand of the event commodities. Hence, there is also no reasonable choice for α
which also depends on signal settings. Nevertheless, we will use this approach to compute
travel times in a second step once the best choice for α is known and signal timings are
optimized.

Before we can do this, we need another method to optimize signal timings in a first step.
To cope with high traffic volumes and bottlenecks due to traffic signals, we introduce overload
edges in the following subsection. Since these overload edges are suitable for optimizing the
signal timings, but they do not provide the correct travel times, total travel time and final
route choice are computed in the second step as mentioned above.

3.1 Implementing overload edges
The intended use of overload edges is to provide additional network capacity such that
a feasible flow can be found. Furthermore, the remaining flow which is not using these
overload edges should reproduce an realistic traffic load in the network which is important
for calculating signal timings.

Here, we make the following assumptions. Firstly, overload edges start at the nodes
where a signal reduces the total capacity of the outgoing edges, since these are the main
bottlenecks. Secondly, overload edges have to remove traffic from the original network. If
overload edges bring flow back into the network somewhere else, it loads edges that would
not have been loaded in the original network, since the flow would have been locked in front
of the bottleneck. Thirdly, the costs have to be chosen carefully. If costs are too low, flow
directly uses overload edges. If costs are too high, flow takes unrealistic long detours in the
network to avoid these expensive edges. Furthermore, the costs have to reflect the remaining
distance to the sink. Flow should not use the first available overload edge. Instead, it should
stay in the original network until the actual bottleneck is reached.

For this purpose, we define overload edges as follows.

I Definition 2. Let ϑ = (s, t, d) be an event commodity from s to t and let S ⊆ V be
the set of nodes where signals are present. The set of overload edges of commodity ϑ is
Aϑ = {(v, t) : v ∈ S ∪ {s}}. The cost of an overload edge from v ∈ S to t is given by
t(v, t) + nΓ where t(v, t) denotes the travel time of a shortest path from v to t and n is the
number of signalized nodes w ∈ S on this path. Overload edges have infinite capacity.

Thus, overload edges connect each node with a signal directly to the sink and they are
exclusive for each commodity. The shortest paths in G can easily be computed by a reverse
Dijkstra’s algorithm starting at the sink of the event commodity. Here, the cycle time is
assigned to each traffic light edge as cost. Thus, also the travel time on overload edges is
obtained easily.
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Since we are interested in solutions where the normal traffic is not blocked by the event
traffic, we do not introduce overload edges for the standard commodities. Flow of the
standard commodities is not allowed to use any overload edge. Overload edges are cyclically
time-expanded like any other edge yielding the subset Akϑ ⊆ Ak of overload edges for each
event commodity ϑ. Due to the overload edge from s to t for each event commodity, we can
state the following result.

I Lemma 3. Each instance of network flow in the cyclically time expanded network with
standard commodities Φ, event commodities Θ, and overload edges for each ϑ ∈ Θ is feasible
if it is feasible for the standard commodities Φ.

The choice of travel times on overload edges also guarantees the following property.

I Theorem 4. Let vi-tj be a path in Gk, such that the underlying v-t-path is a shortest
path in G. If the vi-tj-path has a residual capacity greater than zero for a cost minimal
multi-commodity flow fϑ : Ak → R≥0, ϑ ∈ Θ, then fϑ((vq, tr)) = 0 ∀ϑ ∈ Θ with sink tϑ = t

and for all overload edges (vq, tr) with q, r ∈ {0, . . . , k − 1}.

Proof. The vi-tj-path has cost lower than t(v,t) +nΓ, since it may use at most k−1 waiting
arcs at each of the n signals of length Γ

k . Thus, if there would be flow on the overload edge
(vq, tr) in the optimal solution, the value could be improved by rerouting flow from (vq, tr)
to the vi-tj-path. J

In other words, flow remains on reasonable paths in the standard cyclically time-expanded
network as long as possible before switching to an overload edge.

3.2 Optimization procedure
Optimization of signal timings and traffic assignment is carried out in two steps. After
adding overload edges for all event commodities ϑ = (sϑ, tϑ, dϑ), the cyclically time-expanded
network Gk is created as described in Definition 1 with rolling time horizon Γ. Traffic signals
and corresponding constraints are added. The resulting mixed integer linear program is
solved with a standard solver. This yields a simultaneous optimization of traffic signal
timings and traffic assignment in the cyclically time-expanded network with overload edges.

Afterwards, we determine the ratio between flow in the network and flow on the overload
edges for each commodity. We set

α =
⌈

max
ϑ∈Θ

dϑ
dϑ −

∑
e∈Ak

ϑ
fϑ(e)

⌉
.

In other words, at least a fraction of 1
α of each commodity reaches the sink without using

overload edges. Thus, if the network is completely blocked by the standard commodities
and the event commodities only use overload edges, no feasible solution exists and we set
α = ∞. For α < ∞, we cyclically time-expand the original network without overload edges
with time span αΓ and αk time steps in the second phase of the optimization procedure,
obtaining a network Gαk. Again, event commodities ϑ ∈ Θ start at the first copy of the
original source, but standard commodities (sϕ, tϕ, dϕ) ∈ Φ start uniformly distributed over
the whole time span αΓ with dϕ

k flow units entering the network at every time step. Fur-
thermore, we canonically transfer the signal timings obtained for Gk to Gαk, that is, we
repeat the sequences α times. This yields a network with α-times the capacity for the event
commodities, hence, we can conclude the following theorem.

ATMOS 2016



8:8 Optimizing Traffic Signal Timings for Mega Events

I Theorem 5. If α <∞, there exists a feasible multi-commodity flow for commodities Φ and
event commodities Θ in the cyclically time-expanded network Gαk (without overload edges).

Since all binary variables are fixed in the corresponding programming formulation ob-
tained from Gk, we now have a standard multi-commodity flow problem in Gαk to solve.
This yields an optimized assignment in Gαk without using any overload edges.

Please note that α can be infinite, when all the flow of one event commodity only uses
overload edges. In this case, the network does not provide enough capacity, i.e., we cannot
find a reasonable solution to drain the event commodities without blocking the standard
commodities. Moreover, the optimal assignment still depends on α. Considering the pro-
jection of the flow from Gk into G, i.e., computing the underlying static traffic assignment
by ignoring the time component, there may be differences between the projections of Gk
with overload edges and Gαk as well as between the projections of Gαk and G(α+1)k. Due
to space limitations, we have to omit an example.

3.3 Additional modeling issues

If several overload commodities start at the same source s, we force the optimization to
distribute the flow over the overload edges (s, tϑ) according to the fraction of the demand
of the commodity to the total demand at this source. Let d∗ be the total demand of
all commodities originating from s and let f∗ be the total flow over overload edges from
source s, then the flow fϑ((s, tϑ)) on overload edge (s, tϑ) of commodity ϑ = (s, tϑ, dϑ)
has to fulfill fϑ((s, tϑ)) = dϑ

d∗ f
∗. The main reason for this condition is a uniform shift

of flow to overload edges. In reality, we assume the traffic of the different commodities
to be uniformly distributed in the queue, hence, there is no preference who has to wait.
Without this constraint, the optimization will prefer sending traffic with a greater gap
between overload cost and normal cost to the normal network and commodities with a
smaller gap will disproportionately often use the overload edges. Note that this additional
constraint may imply that Theorem 4 holds only for at least one commodity, but it no longer
holds for all commodities.

The normal traffic of the standard commodities Φ can be considered as in the standard
model, i.e., they are subject to rerouting. However, some road users may be aware of the
mega event, others are not. We use the following approach to integrate this base traffic
volume in a more realistic way. Firstly, traffic assignment of the normal commodities Φ is
optimized for the standard signal timings, that is, there is no mega event and we compute a
base case. Secondly, each commodity ϕ ∈ Φ is split into two commodities. The first one (the
unaware road users) uses the same relative path decomposition as the original commodity
in the base case, that is, their routes are fixed. In contrast, the assignment of the second
commodity (the knowing) is completely re-optimized together with the new signal timings
and the event commodities Θ. The percentage of the split has to be given as a predefined
parameter.

4 Numerical results

We will now present a numerical case study of our traffic signal optimization scheme for
mega events. To this end, let us have a look on the city of Cottbus, Germany, and a
match of the local association football team on a Saturday afternoon. Cottbus is a city with
about 100,000 inhabitants and we consider the whole inner-city with about thirty signalized
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Figure 2 The Cottbus network with source s at the "Stadion der Freundschaft", destinations 1,
2, and 3 of the three football commodities, and about 30 signalized intersections. Minor roads in
housing areas et cetera are not shown.

intersections. The road network is presented in Figure 2 and the underlying scenario was
already presented in previous work [10].

Figure 2 also shows the location of the football stadium, which holds up to 20,000
spectators. For football matches, many supporters from the surrounding rural area arrive
by car. In the following, we assume three football commodities (Θ) to leave the stadium after
the end of the match, headed towards the three major roads leading out of Cottbus. The
demand of each commodity is around 300 cars. Furthermore, we use 17 standard commodities
(Φ) to represent the normal traffic on a Saturday afternoon. Corresponding to the rather
low traffic volume at this time, the total demand of these commodities is scaled to 100 cars
per minute. Please note, that 900 cars in total may not sound ‘mega’ at first glance, but the
traffic volume of the event commodities is about 100 times higher than the average demand
of the standard commodities. Furthermore, 900 is a realistic number of cars, since most
cars are used by three or four persons, local spectators arrive by foot, and supporters of the
visiting team usually arrive by train. The common cycle time of the network is Γ = 90s.
Accordingly, we use k = 90 time steps of one second for the cyclic time-expansion.

Using CPLEX 12.6, we are now going to compute and compare the following scenarios.
Firstly, we determine the base case. This is an optimal signal timing computed for the 17
standard commodities, that is, no football match is happening. We will test this fixed signal
timings for the three football commodities and for all 20 commodities together. Thus, we
estimate the draining time using overload edges. Then, we calculate average travel times
and the draining time in a sufficient cyclically time-expanded network as described in the
previous section. In both cases, we apply complete re-routing of all standard commodities,
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8:10 Optimizing Traffic Signal Timings for Mega Events

Table 1 Average travel times and draining times for combinations of signal settings and demands.
Travel times are given in seconds, draining time is given in multiples of the cycle time Γ. Travel
times are computed in G27Γ, G6Γ, and G10Γ, respectively.

signal setting average travel times for draining time

standard football total
standard football

base 225.46 253.33 225.86 256.88 26.31
football offset 288.22 156.53 290.66 159.86 26.31
total offset 225.71 225.73 225.87 227.13 26.31
football split - 149.57 - - 5.78
total split 242.27 170.52 242.83 174.46 9.62

that is, all road users are aware of the match and the increased traffic volume around the
stadium.

Secondly, we re-optimize offsets for both cases, the three football commodities alone and
all 20 commodities together. This optimization is carried out in the cyclically time-expanded
network with one cycle and overload edges. The restriction to offsets reduces the number
of binary variables significantly, since a lot of binaries can be fixed. Thus, solutions can be
obtained faster and the gap is smaller in most cases. On the other hand, re-optimizing only
offsets does not resolve bottlenecks. Thus, one should expect a reduced average travel time,
especially for the three football commodities, but the draining time will only be slightly
affected. To compare, we also compute the travel times and draining times for all pairs of
demands and signal timings, that is, we also compute the consequences when timings and
demand do not match. Again, this final travel time calculation is done in the cyclically
time-expanded network with multiple cycles.

Thirdly, we also re-optimize split times and phase orders on all routes used by the
football commodities. Doing so for the three football commodities should reduce the draining
time significantly. However, when considering only these three commodities, we may create
bottlenecks for the 17 standard commodities. In other words, the total demand of these 17
commodities could not be routed with this signal timing due to short green splits. Hence,
we also calculate optimal signal timings for all 20 commodities. This should yield a slightly
higher draining time, but all standard commodities can reach their destinations.

4.1 The base case
The base case signal timings are computed as described above. Introducing overload edges
the estimate for draining all demand is α = 27 cycles for the three football commodities as
well as for all 20 commodities. The obtained average travel times (in seconds) and draining
times (in multiples of Γ) are presented in Table 1 (signal setting base).

Please note that the average travel time for the three football commodities in Table 1
is the time spent in the standard network, i.e., it does not include the waiting time at the
source s. These costs are taken into account in the draining time. Thus, the total average
travel time for the event commodities is around 1400 seconds.

The standard commodities are only slightly decelerated. The increased traffic volume
only yields an increase of about 1 percent in travel time. On the other hand, since the
progressive signal timings for these commodities are still in effect, a very significant increase
would have been surprising.
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4.2 Optimizing offsets
Offsets are now re-optimized with help of the cyclically time expanded network model with
overload edges. Since the 17 standard commodities in the base case use routes which will
be partially used by the three football commodities as well, already the base case should
provide a rather good signal timing for the football commodities.

Nevertheless, as can be seen in Table 1 (signal settings football offset and total offset),
offset optimization can reduce the average pure travel time of the football commodities by
nearly 40 percent. However, when optimization only considers the football commodities
(football offset), the travel time of the standard commodities is increased by 30 percent.
Considering both football and standard commodities in the optimization (total offset), we
can reduce the travel time of the football commodities by 10 percent compared to the base
case. Surprisingly, the travel time of the standard commodities in this case is nearly the
same as in the base case.

Again, average travel time in Table 1 only accounts for travel and waiting times in the
network. The time which is spent before the first link is entered does not add to the average
travel time, but it is indirectly accounted for in the draining time. As expected, offset
optimization can only improve the travel times, but draining times are unaffected. Thus,
the total average travel time for the football commodities is still around 1300 seconds when
including the waiting time at the source s.

4.3 Optimizing split times and phase orders
Finally, we also re-optimize split times and phase orders. The results are presented in
Table 1 in the rows football split and total split. As expected, the specifically for the football
commodities optimized signal timings (football split) do not provide a feasible solution for
the standard commodities, because bottlenecks are created and there is not enough capacity
available due to short green phases. Hence, one should always consider all commodities
in practice. Yet, focusing only on the football commodities yields a solution, where the
additional traffic is drained four times faster compared to the solution with fixed split times.
Also the average travel time is improved.

To guarantee feasibility, signal timings are optimized for all commodities in a final run
(total split). Of course, the very short draining time cannot be maintained, but the event
commodities are still drained three times faster than in the base case solution. Also the
average travel time for the football commodities is significantly reduced compared to offset
optimization. Surprisingly, this solution also means an increase in travel time of only seven
percent for the standard commodities compared to the base case.

Overload edges were introduced, since a good choice for α was not known. After comput-
ing traffic assignments in both the network with overload edges and the extended network
GαΓ, we can now compare the travel times in Table 2 to evaluate the accuracy of the model
with overload edges. In other words, flows in GΓ and GαΓ should behave the same. Since
there are only slight differences, the travel times and the traffic assignment in GΓ with
overload edges is a reasonable prediction about the situation in a classically time-expanded
network without these overload edges.

The resultant traffic assignment for the scenario total split is shown in Figure 3 and 4.
Here, we sum up all traffic volumes over time, i.e., the figures correspond to a projection of
the dynamic traffic into the static network. In this example, there is hardly any difference
between the projection from GΓ with overload edges and GαΓ without overload edges besides
the overload edges themselves. Thus, we only present the figures for GΓ.
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Table 2 The cyclically time-expanded network model with overload edges slightly overestimates
travel times compared to the expansion with multiple cycles. Here, average travel times in GΓ refer
only to flow in the actual network, travel times on overload edges are disregarded.

average travel time in seconds in
GΓ with overload edges GαΓ without overload edges

total offset standard 232.56 225.87
total offset football 228.69 227.13
total split standard 244.24 242.83
total split football 181.19 174.46

Figure 3 Traffic volumes of the three football commodities in the scenario total split (the 17
standard commodities are not shown). Colors encode the traffic density with respect to the total
demand of the football commodities (gray: no traffic; green: very low traffic; red: about 20 % of
the total demand use this road). The first commodity to t1 uses three different routes. Moreover,
other routes were used in the other scenarios.
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Figure 4 Total traffic volumes of all commodities in the scenario total split. Colors now encode
traffic density regarding the total demand of all commodities. Yet, the increased traffic volume due
to the football commodities is clearly visible.

Furthermore, we present an example of the signal settings of the intersection at node s.
In Table 3, the green intervals of the original coordination and of the signal settings football
split and total split are shown.

Summarizing, we have found signal timings for this football scenario, which hardly in-
fluence the base traffic, but which lead the additional event traffic towards its destinations
very efficiently. In practice, one has two switch to these new timings for only about 15 to 20
minutes to drain the stadium. In contrast, leaving the old signal timings in place will stress
the road network with additional traffic for more than 45 minutes. Observe that these times
nearly linearly increase with the demand of the event commodities. That is, doubling the
number of cars will cause about a doubled draining time.

5 Discussion

Concluding, the results of Section 4 provide evidence that optimizing pretimed signals for
mega events can significantly improve traffic flow and reduce traffic congestion. With help of
the optimized signal timings, not only travel times can be reduced in the presented real-world
scenario, but also the duration of this exceptional traffic situation is shortened by around
70 percent. We had to introduce overload edges for two reasons: computing a bound on
draining time and creating a work-around for the strict capacity constraints in the cyclically
time-expanded network flow model. Comparing the predicted travel times in the network
with overload edges to travel times in the network GαΓ with increased time horizon, the
extension with overload edges seems to be a suitable approach to find very good signal
timings for such mega events.

The supposed model can also be used to compute signal timings for evacuation scenarios,
e.g., to evacuate cities as fast as possible in case of a nearby forest fire or volcanic activity.
For this purpose, the standard commodities Φ can be ignored and timings are just computed
for the exceptional commodities as in the scenario football split.
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Table 3 Green intervals at intersection s for different coordinations. The football commodities
arrive from the left and the corresponding splits are increased in both football scenarios. The road to
the right leads into a residential area, splits are reduced. Observe that also phases are significantly
re-arranged.

turning green intervals at intersection s

direction standard football split total split

Traffic simulation with the multi-agent simulation tool MATSim, developed by TU Berlin
and ETH Zurich, also reveals the good performance of our approach for signal optimization,
but we have to omit these results here due to space constraints.

In future developments, we will investigate whether it is possible to re-optimize signal
timings of only a few intersections near to an exceptional traffic event like an accident in a few
seconds to also provide optimized reactions to unexpected events. Furthermore, pedestrians
were not considered so far. On the one hand, traffic signal coordination is hardly possible for
pedestrians, since the comparatively high ratio of distance and differing speeds causes very
high deviations in travel time between consecutive intersections. Without a tight estimation
of arrival times at traffic signals, something like a green wave does not exist. On the other
hand, pedestrians are indirectly incorporated in minimum green times and clearance times
of traffic signals. For example, a minimum green time of traffic light for cars can be at least
as high as the clearance time of the parallel pedestrian signal. Since the considered events
involve an greatly increased number of pedestrians, parameters like the minimum green
times could be included in a simultaneous or parallel optimization process to also improve
the convenience for pedestrians.
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