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Abstract
We propose a new decomposition model and a multi-column generation algorithm for solving the
Locomotive Assignment Problem (LAP). The decomposition scheme relies on consist configura-
tions, where each configuration is made of a set of trains pulled by the same set of locomotives.
We use the concept of conflict graphs in order to reduce the number of trains to be considered in
each consist configuration generator problem: this contributes to significantly reduce the fraction
of the computational times spent in generating new potential consists. In addition, we define a
column generation problem for each set of variables, leading to a multi-column generation process,
with different types of columns.

Numerical results, with different numbers of locomotives, are presented on adapted data sets
coming from Canada Pacific Railway (CPR). They show that the newly proposed algorithm
is able to solve exactly realistic data instances for a timeline spanning up to 6 weeks, in very
reasonable computational times.
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1 Introduction

Rail transport is a very energy efficient means of freight transport. Compared to road
transport using trucks, it consumes substantially less energy. Consequently, in many countries,
governments are developing policies in order to encourage the use of trains for freight transport.
At the same time, at least in North America, freight railways have increasingly shifted toward
using longer, heavier trains to transport goods over the past 10 years, in order to not only
improve the efficiency of the rails by reducing the number of trains required to transport
goods, but also to reduce the crews needed and the fuel used to move their shipments.
One consequence is that more locomotives need to be assigned to a single train, and then
locomotive assignment becomes a critical problem in view of locomotive costs, and the
objective of maintaining the smallest possible locomotive fleet.

Management of a locomotive fleet includes the assignment of proper locomotives to each
train in schedule, satisfying the horsepower requirements, remotely relocating locomotives
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6:2 Multi-Column Generation Model for the Locomotive Assignment Problem

for the trains, and making sure to obey to the locomotive maintenance rules. In this paper,
we focus solely on the locomotive assignment problem. The set of locomotives that is used
to pull a given train is called a consist. Note that today, some railway industry use the
so-called distributed power trains, in which the locomotives are interspersed throughout the
full length of the train, cutting down on the in-train forces and making the near-boundless
vehicle easier to control. Beyond the distributed power system, a time-consuming process
is called consist busting. It corresponds to disassembling the consist of an inbound train
into stand alone locomotives and reassigning them to several outbound trains. It requires
additional labor, induces operational cost and time. It also reduces the robustness of the
train schedules because it allows an outbound train to get locomotives from multiple inbound
trains. If any of the inbound trains is delayed, the outbound train has to be delayed as well.
So consist busting should be avoided as much as possible.

We focus on the optimization of locomotive assignment problem (LAP), which aims to
optimize the locomotive fleet size to satisfy the horsepower requests of scheduled trains
and the other technical and business constraints. The objective of LAP is not only to
minimize the total number of locomotives in operation, but to view the locomotive manage-
ment as a whole, i.e., with the integration of the minimization of locomotive number and
operational/maintenance costs.

There are many solution methodologies proposed for locomotive assignment, including
exact mathematical models and heuristics. In this paper, we concentrate on the former part,
and the latter part can be found in the survey of Piu et al. [13].

Ziarati et al. [19] focus on LAP with heterogeneous consists, i.e., made of different types
of locomotives. In addition, the locomotive assignment also includes the need to perform
some maintenance shopping and outpost process. In order to get a feasible solution in a
reasonable computational time, Ziarati et al. decompose the original 1-week problem into
several sub-problems which have overlapping day between adjacent ones. Rouillon et al.
[14] improve the solution algorithm of Ziarati et al. [19] with different branching methods
and search strategies to develop a branch-and-price algorithm for LAP of a freight railway
on operational level. Ahuja et al. [1] develop a MILP for LAP of CSX Transportation
for a cyclic weekly train schedule. However, the maintenance process, i.e., routing back to
shop site for critical locomotive is not considered. The authors develop a neighborhood
search algorithm/heuristic to improve the performance for large scale data instances, with
no information on the accuracy of the output solutions. Ahuja’s model neither considers
locomotive maintenance nor consist busting issue. To avoid the issues of the model of Ahuja
et al. [2] (e.g., scalability and consist busting issues), Vaidyanathan et al. [18] focus on a
consist based assignment model, which assigns pre-configured consists to pull the scheduled
trains with respect to the minimum power and other business constraints. Their consist
based formulation uses a data set with 382/388 trains, 6 locomotive types, 87 stations, and 3
up to 17 types of consists in the test scenarios, without considering the maintance/shopping
constraints for locomotives.

There are also some model for similar problems. Cordeau et al. [6] propose a exact model
based on the Benders decomposition approach, for the locomotive and car assignment in
passenger transportation. Fügenschuh et al. [8] propose an ILP model for the locomotive
and car cycle scheduling problem with time window, which allow the train delay within given
time window. Cacchiani et al. [3] focus on the train unit assignment problem in passenger
transportation. A type of train unit includes a set of passenger cars with a supported
locomotive. It is self-contained and may fulfill one or part of a scheduled trip. They propose
two integer linear programming formulations, one with linear programming (LP) relaxation
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based heuristic, the other with Lagrangian relaxation based heuristic. None of these three
models consider maintenance constraint, neither for consist busting issue.

In our previous papers (Jaumard et al. [10] & [11]), we proposed a consist travel
plan(previously called train string) based optimization model, which includes all those con-
straints including maintenance, and consist busting constraints. The model can be efficiently
solved using large scale optimization techniques, namely column generation techniques, to
optimize the locomotive requirements and the operations including consist busting and the
deadheading. The resulting model can solve LAP with up to 1,394 scheduled trains and 9
types of locomotives over a two-week time period, over the railway network infrastructure of
Canada Pacific Railway. The computational time of the largest test scenario took more than
2 days.

In this paper, we propose to enhance the scalability of our previous work, throughout a
multi-column generation strategy.

Other authors have explored various strategies at different stages of column generation
algorithms, which can accelerate the computational time or the convergence rate. Firstly,
in the pre-processing stage, there are heuristics that can reduce the initial size of original
problem, e.g., for network flow problem, to eliminate arcs for the initial network (e.g.,
Mingozzi et al. [12]), to initialize with a good-enough solution (e.g., Sadykov et al. [16]), to
separate a large scale problem to smaller parts in time or space horizon, and merge them
after (e.g., Desaulniers et al. [7] ). Secondly, in the sub-problem stage, Chen et al. [4] use
some problem-specific knowledge to generate a column-pool a priori for the subproblem, and
allow selections of solutions from the pool. In column generation practice, some schemes
allow a subproblem to return multiple columns with negative reduced cost. Goffin et al. [9]
observe that the non-correlated columns selection increases the performance in the analytic
center cutting plane method. At the master problem level, Surapholchai et al. [17] develop
Eligen-algorithm that applies column elimination which removes columns with positive
reduced cost from the matrix. Saddoune et al. [15] use dynamic constraint aggregation to
reduce number of constraints and reintroduce them as needed are two general strategies.
Sadykov et al. [16] use a diversified diving heuristic to get feasible and good integer solution.

This paper is organized as follows. In Section 2, we generally describe LAP. Section 3
gives the details of LAP model. In Section 4, the solution scheme for the model is presented
with two enhanced schemes/algorithms. In Section 5, we analyze the numerical results.

2 Statement of LAP

The locomotive assignment problem (LAP) is to minimize the total number and/or cost of
assigning locomotives on existing trains while all the technical and business constraints are
satisfied. A locomotive fleet usually contains different types of locomotives, e.g., SD60 and
AC4400CW, each with its own parameters. We do not distinguish the locomotives of same
type, except for their maintenance status (regular or critical). A critical locomotive, i.e., a
locomotive due to maintenance, must stop at a shop for maintenance operations during the
given scheduled time period. A consist travel planis defined as a set of trains that use the
same locomotive consist one train after the other one, without any consist busting.

2.0.0.1 Multi Commodity Network

The present study focuses on reducing the size and time consumption of pricing problem
for the decomposition of LAP. As in our previous study [10], we convert LAP to a multi-
commodity network problem. The multi commodity network is a time/space network, see
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Figure 1 Multi commodity network.

Figure 1, where each node v is associated with station location, and time. The arcs represent
activities such as waiting periods, train travel between two stations (usually the origin and
the destination) or train maintenance, and commodities are the locomotives.

We now describe in detail the generic multi-commodity network G = (V,L) associated
with the overall set of locomotives. V denotes the set of nodes, indexed by v, where each v has
a space and a time coordinate. L is the set (indexed by `) where L = LT ∪Lshop ∪LW ∪LD
which represents train links, maintenance shop links, waiting links and deadheading links
respectively.

Among the nodes, we identify the so-called source and destination nodes as follows: V src:
indexed by vsrc, as the set of nodes where some locomotives are first available in the planning
period. vsink: dummy destination node, where all destination arcs converge. See the links
represented by the long dash lines in Figure 1 for an illustration.

3 LAP Model

3.1 Notations
S is the set of consist travel plans, where a consist travel plans ∈ S defines a sequence of
trains led by the same locomotive consist. Note that S =

⋃
v∈V

S+
v , where S+

v (resp. S−v )

denotes the set of consist travel plansoriginating at (resp. destined to) v.

K denotes the set of locomotives, indexed by k, which represents a certain locomotive.
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Each locomotive k is characterized by different parameters: the horsepower hpk, and the
subtype of regular (indexed by kr) and critical (kc).

Moreover, we use the following additional parameters to characterize the generated consist
travel plans:
nsk ∈ {0, 1}. nsk is equal to 1 if locomotive k belongs to consist travel plan s ∈ S, 0 otherwise.
nspare
k,v ∈ {0, 1}. nspare

k,v is equal to 1 if there is a spare locomotive k in starting node v ∈ V src,
0 otherwise.
ds` ∈ {0, 1}. ds` is equal to 1 if train link ` ∈ LT belongs to consist travel plans, 0 otherwise.
Note that ds` is not a decision variable, but an attribute of consist travel plans.
nspare
k,v ∈ Z+

0 . It is equal to the number of spare locomotives of type k in source node v ∈ V src.
Lastly, we have the following last general parameters:

cap(`shop) ∈ Z+
0 . It defines an upper bound on the number of critical locomotives that can

be maintained in shop link `shop ∈ Lshop.
TimeSrc(t),TimeDst(t) ∈ Z+

0 . They define the start and end times (in days) of train t,
counted from the start time of LAP scheduling period.

3.2 Variables.

We use three sets of variables:
zs ∈ {0, 1}: equals to 1 if ctp s is selected, 0 otherwise.
xneed
kv ∈ Z+

0 : number of additional required locomotives of type k at source node v ∈ V src in
order to be able to assign adequate locomotives to all trains.
xloco
k` ∈ Z+

0 : number of locomotive of type k going through waiting link ` ∈ LW ∪LD ∪Lshop.

3.3 Objective

We next develop the LAP optimization model we propose for the locomotive assignment. In
order to alleviate the presentation, we describe it without the legacy trains.

The primary objective is to minimize both the number of consist busting and the size of
the locomotive fleet. While the minimization of those two numbers seem to go in opposite
directions, the maintenance constraints force to withdraw locomotives from the tracks for
a short period, hence creating some avoidable consist busting. Moreover, if the locomotive
fleet is too small, depending of the train schedule, there might be a lack of locomotives in
order to be able to move all the trains. We therefore propose the following objective with
the minimization of: (i) the number of consist travel plans; (ii) the number of additional
locomotives, which reflects the number of trains that can not be assigned enough power; (iii)
the number of total locomotives in operation, (iv) the number of deadheading activities.

min
∑

`∈ω−(vsink)

∑
k∈K

penalk · xloco
k` +

∑
`∈LD

∑
k∈K

penalk · xloco
k`

+
∑
v∈V src

∑
k∈K

penalk xneed
kv +

∑
s∈S

∑
k∈K

nsk zs (1)

3.4 Constraints

The set of constraints can be written as follows.

ATMOS 2016
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∑
s∈S+

v

nsk zs +
∑

`w∈ω+(v)

xloco
kLw +

∑
`w∈ω+(v)

xloco
k`D − xneed

kv ≤ nspare
k,v k ∈ Kr, v ∈ V src (2)

∑
s∈S+

v

nsk zs +
∑

`w∈ω+(v)

xloco
kLw +

∑
`w∈ω+(v)

xloco
k`D ≤ nspare

k,v k ∈ Kc, v ∈ V src (3)

∑
`∈ω−(vsink)

xloco
k` ≤ nk k ∈ K (4)

∑
s∈S+

v

nsk zs +
∑

`∈ω+(v) ∩ (Lwait∪LD)

xloco
k` =

∑
s∈S−v

nsk zs +
∑

`w∈ω−(v) ∩ (Lwait∪LD)

xloco
k`

v ∈ V \
(
V src ∪ vsink ∪ δ+(Lshop)

)
, k ∈ Kr ∪Kc (5)∑

s∈S+
v

nskr
zs +

∑
`∈ω+(v) ∩ (Lwait∪LD)

xloco
kr`

=
∑
s∈S−v

nskr
zs +

∑
`∈ω−(v) ∩ Lshop

xloco
kc` +

∑
`∈ω−(v) ∩ (Lwait∪LD)

xloco
kr`

v ∈ δ+(Lshop), k = {kr, kc} ∈ K (6)∑
s∈S+

v

nskzs +
∑

`∈ω+(v) ∩ (Lwait∪LD)

xloco
k` =

∑
s∈S−v

nskzs +
∑

`∈ω−(v) ∩ (Lwait∪LD)

xloco
k`

v ∈ δ+(Lshop), k ∈ Kc. (7)∑
s∈S+

v

nsk zs ≤
∑

`w∈ω−(v) ∩ Lwait

xloco
k` v ∈ V \

(
V src ∪ vsink ∪ δ+(Lshop)

)
,

k ∈ Kr ∪Kc (8)∑
s∈S+

v

nskr
zs ≤

∑
`∈ω−(v) ∩ Lshop

xloco
kc` +

∑
`∈ω−(v) ∩ Lwait

xloco
kr` v ∈ δ+(Lshop), k ∈ K (9)

∑
s∈S+

v

nskzs ≤
∑

`∈ω−(v) ∩ Lwait

xloco
k` v ∈ δ+(Lshop), k ∈ Kc (10)

∑
s∈S

ds` · zs = 1 ` ∈ LT (11)∑
k∈K

xloco
kc`shop ≤ cap(`shop) `shop ∈ Lshop (12)∑

k∈K

xloco
kLw = 0 `w ∈ Lw_in \ ω+(V src) : time(`w) < dwell_loco. (13)

Constraints (2) and (3) guarantee that we do not exceed the number of spare locomotives,
or, if we do it, it is with the minium number of additional (regular) locomotives, thanks to
the minimization of the third term in the objective.

Constraints (4) guarantee that, even if we allow the usage of additional locomotives, the
overall number of used locomotives can not exceed the size of the locomotive fleet, i.e., the
maximum number of locomotives of each type. Constraints (4) also serve the purpose of
deadheading locomotives, before either renting locomotives, or delaying a train.

Constraints (5), (6) and(7) are the flow conservation constraints for normal nodes and shop
end nodes, excluding the source and dummy sinking nodes. Note that critical locomotives are
relabelled as regular after completing the maintenance process at a shop node. Constraints
(8), (9), (10) take care of that relabelling in the flow conservation constraints. Constraints (11)
guarantee that each train should belong to exactly one consist travel planin the locomotive
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assignment. Constraints (12) limit the number of critical locomotives at any given time in
a maintenance shop. Constraints (13) guarantee that between any two consecutive consist
travel plans, there is a dwell time of at least dwell_loco (set to 2 hours in this study), for the
time required to bust and re-assemble locomotive consists.

4 Solution Process

4.1 CG Decomposition
The model described in the previous section, called Restricted Master Problem (RMP), is first
solved with an initial limited number of consist travel plans. A consist travel plangenerator,
so-called pricing problem in optimization, see, e.g., Chvátal et al. [5], create an improving
column, i.e., a consist travel planwhose addition improves the value of the linear relaxation
of the current restricted master problem, or concludes that the current solution of the
RMP is indeed the optimal solution of the linear relaxation of RMP. It then remains to
generate an integer solution, which can be done using an iterative rounding off procedure.
Such a procedure has proved to be effective in order to reach accurate ILP solutions, see
the numerical results in Section 5.2. So we use the simple rounding of process instead of
developing a more computational costly ILP solution method.

4.2 Enhanced Pricing Problem: Multiple Column Generation Based on
Reduced Network

For the CG decomposition process described in [10], the proposed algorithm can reach an
optimal solution but the time and space requirements are still high for large scale data sets.
For further improvement of CG, we introduce a key feature: a reduced network for each train,
which is the set of trains that can be connected by the waiting links, i.e., those trains can be
assigned to a consist travel planor consist travel plan. There is a two-stage pre-process to get
the reduced network of each train: firstly to cut off the un-used links from the time-space
network architecture for the given train, based on the time limitation, and then to remove
un-connectable trains.

In the CG process used in [10], each pricing problem (PP) (and there are as many as the
number of possible origins for a consist) uses the same data set of RMP and the same set
of dual values. In the newly proposed LAP model, we introduce the flexibility for each PP
to choose any train source node as the origin to build the consist travel plan and generate
a new column for RMP. While not fixing the origin of the consist generated in a given
PP offers more flexibility, it leads to more computational expensive PPs. However, this is
counterbalanced by the reduced time for checking the optimality condition. Observe that
in the original CG algorithm of [10], while each PP takes significantly much less time for
its solution, satisfying the optimality condition for an optimal LP solution requires solving
a whole sequence of PPs without being able to generate a single consist with a negative
reduced cost: this this is computational costly. Observe that we can generate more than one
consist with a negative cost when solving a given PP. In practice, we generated the one with
the most negative reduced cost, as well as potentially several other ones. // Re-using the
idea of reduced network and of conflict graphs introduced in [10], we wrote a more generic
PP than in [10]. Indeed, instead of rooting each PP to a given train, the generic PP selects
the leading train of the generated consist, and generates the associated reduced network. A
major advantage of such a PP leads to a much faster way to check whether the LP optimality
condition is satisfied,as it requires the solution of a single PP.

ATMOS 2016
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In order to use the last feature in the newly proposed column generation, instead of considering
the overall set of trains in the multi-commodity network, we divide it (but not with a partition
scheme) into several overlapping reduced networks. Indeed, we break the original network
around some critical trains, and consider each time two cases, whether the consist will use or
not those critical trains. If we allow the consist to use a given critical train, we eliminate
those trains that are unreachable within a consist, leading to a reduced graph. In order to
generate a reduced network with only denied trains, the set of critical trains is selected in
such a way that, in any optimal solution, one of the critical train has to be selected and
embedded in a consist. This way, we generate a set of reduced balanced networks, that are
usually not train disjoint.

4.3 Pricing Problem: Multiple Consist Travel PlansGenerator

4.3.1 Multi-CG Model

Variables.
srcv ∈ {0, 1}. srcv is equal to 1 if a consist travel planunder construction starts at node v,
0 otherwise, for v ∈ δ−(LTc ). And same situation is applied to dstv for its end node.
x` ∈ {0, 1}. :x` is equal to 1 if link ` ∈ LT ∪ LW belongs to the path supporting any of the
consist travel plans, 0 otherwise.
nk` ∈ Z

+
0 . It defines the number of locomotives of type k going through ` ∈ LT ∪ LW . Note

that nk`t > 0 if and only if x`t = 1, but there is no such limit for nk`w .
Observe that the flow decision variables x` and nk` have no path index, as paths (consist
travel plans) are node-disjoint.

Objective.

cost =
∑

k∈Kr∪Kc

∑
`∈ω−(vsink)∩LW

nk`

−
∑

k∈Kr∪kc

∑
v∈V \(V src∪{vsink}∪δ+(Lshop))

u
(5)
kv ·

 ∑
`∈δ−(v)

nk` −
∑

`∈δ+(v)

nk`


−
∑
k∈Kr

∑
v∈δ+(Lshop)

u
(6)
kv ·

 ∑
`∈δ−(v)

nk` −
∑

`∈δ+(v)

nk`


−
∑
k∈Kc

∑
v∈δ+(Lshop)

u
(7)
kv ·

 ∑
`∈δ−(v)

nk` −
∑

`∈δ+(v)

nk`


+

∑
k∈Kr∪kc

∑
v∈V \(V src∪{vsink}∪δ+(Lshop))

u
(8)
kv ·

∑
`∈δ+(v)

nk`

+
∑

v∈δ+(Lshop)

u
(9)
k,v ·

∑
`∈δ+(v)

nk` +
∑

v∈δ+(Lshop)

u
(10)
k,v ·

∑
`∈δ+(v)

nk` −
∑
`∈LT

u
(11)
` · x`. (14)
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Constraints.∑
v∈δ−(LT∩c)

srcv ≤ 1 c ∈ C (15)

∑
v∈δ+(LT )

dstv =
∑

v∈δ−(LT )

srcv (16)

∑
`∈ω+(v)

x` −
∑

`∈ω−(v)

x` = −dstv v ∈ δ+(LT ) (17)

∑
`∈ω+(v)

x` −
∑

`∈ω−(v)

x` = srcv v ∈ δ−(LT ) (18)

∑
`∈ω+(v)

x` −
∑

`∈ω−(v)

x` = 0 v ∈ V \
(
δ+(LT ) ∪ δ−(LT ) ∪ V src ∪ vsink) (19)

∑
`∈ω−(v) & 6̀∈LT

x` = 0 v ∈ V src (20)

∑
`∈ω+(vsink) & ` 6∈LT

x` = 0 (21)

x` ≥ srcδ+(`) ; x` ≥ dstδ−(`) ` ∈ LT (22)∑
k∈Kr

hpk · nk` +
∑
k∈Kc

hpk · nk` ≥ x` · hpt `(≡ t) ∈ LT (23)

∑
k∈Kr∪Kc

nk` ≤M · x` ` ∈ L \
(
ω+(V src) ∪ ω−(vsink)

)
(24)

∑
k∈Kr∪Kc

∑
`∈ω−(v)∩ω+(v′)∩LW

nk` ≤M · srcv v ∈ V \ V src, v′ ∈ V src (25)

∑
k∈Kr∪Kc

∑
`∈ω−(vsink)∩ω+(v)∩LW

nk` ≤M · dstv v ∈ V \ vsink (26)

∑
`∈ω−(v)∪LW∪LT

nk` =
∑

`∈ω+(v)∪LW∪LT

nk` v ∈ V \ (V src ∪ vsink) , k ∈ Kr ∪Kc (27)

consist_sizemin ≤
∑
k∈Kr

nk` +
∑
k∈Kc

nk` ≤ consist_sizemax ` ∈ LT . (28)

Constraints (15) allow no more than 1 source node per conflict graph. Constraints (16)
guarantee that source nodes and destinations are the same amount. By these two sets, we
allow that in the pricing problem, each conflict graph has at most one complete consist travel
planwhich the source and destination nodes are both in it. So there is no complete consist
travel planin the intersection of any two or more graphs. But multiple destination nodes are
accepted in a graph. Constraints (17) are the flow conservation constraints for dvar x`, work
only on train source nodes, considering the source node dvar srcv. Constraints (18) are the
flow conservation constraints for dvar x`, work on train destination nodes, considering the
source node dvar dstv. Constraints (19) are the flow conservation constraints for dvar x`,
work on other nodes, except source nodes and dummy sink node, considering the source
node dvar dstv. Constraints (20) & (21) guarantee that the path/consist travel plancan
neither start from a station source node, nor end at the dummy sink node, otherwise the
model can build a path without letting any srcv = 1 or dstv = 1, based on the fact that
station source nodes and dummy sink node are artificial nodes and no train can use them
as sourcedestination nodes. Constraints (22) guarantee the train which source/destination
node is the start/end of a consist travel planmust be selected. Note that in our time-space

ATMOS 2016
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networks, trains are node-disjoint. The first flow conservation set above, will generate some
paths, at most one per graph, and totally node-disjoint. This is the base for the next step to
assign locomotive flows over them without the path indices. Constraints (23) assign enough
power to each train selected by any consist travel plan. Constraints (24) guarantee that the
power should be only assigned to the paths we selected by the first set of flow conservation
constraints. Note that this set does not take effect on the waiting links from or to the
artificial nodes (station source node or dummy sink node). Constraints (25) allows only the
locomotive flows on the waiting links from the station source nodes to the source nodes of
selected path(s). Constraints (26) allows only the locomotive flows on the waiting links from
the destination nodes of selected paths to the dummy sink node. Constraints (27) are the
flow conservation constraints.Constraints (28) set the upper and lower bounds of consist size.
The second set of flow conservation constraints build the locomotive flows in order to assign
proper locomotives to each train selected by the first flow conservation constraint set. Since
the paths are node-disjoint, the flows do not need path indices. In addition, the flows are
only half-limited over paths: the paths must be covered, but it is possible to use unselected
waiting links to finish a flows from the "station" source node to the dummy sink node.

5 Numerical Results

The primary objective of this study is to provide a new optimization model and algorithm
for the real-life locomotive assignment problem. For this reason, computational results are
restricted to the CPR data sets, except for the larger data sets, which we generated to add
connectable and feasible trains to the existing train schedule. We now describe the data used
in the computational experiments, followed by a summary of computational results, and a
comparison with our previous LAP algorithm [10].

5.1 Data Instances

We use a set of 9 different types of locomotives, limiting our experiments to the most used
locomotives in the CPR fleet of locomotives. As requested by the mathematical model, the
number of types was doubled in order to distinguish the critical (about 20% of the overall
number of locomotives) from the non critical locomotives.

Data sets (adapted from CPR data sets) contain 862-train schedules over a time period of
7 days and 1,750-train schedule over a time period of 14 days. The maximum time period is
set to two weeks, as it offers for flexibility a better planning, taking into account the overall
travel times from a side of the railway network (e.g., Vancouver) to the other side (e.g.,
New-York). Indeed, a regular coast-to-coast train takes 5-7 days from East to West, so a two
week schedule allows the planning of a round trip for a set of train pair. For larger data sets,
we added 100 and 200 trains to each original CPR data set, while making sure that they can
share some consists with some of the other trains.

We run numerical experiments on an adapted train scheduling data and railway infras-
tructure of CPR. Data include train departure times and stations, train arrival times and
stations, and horse-power requirements. The railway infrastructure of CPR includes CPR’s
entire railway network (from Vancouver to Montreal, covering all of Canada and parts of
the United States), the type of locomotives in operation, and the location and capacity of
maintenance shops.

Programs/algorithms were run using CPlex 12.6.1 on a server with 40-cores, 1TB memory.
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Table 1 Computational Comparison of the Different CG Model/Algorithm

# of LAP LP Total Time ILP # Columns Round Req. GAP
Trains Model Obj. Obj. Generated Selected Loc. (%)
7-day, SCG 630,182 20h19m36s 637,980 2,207 516 4 962 1.24
862 SCG+ 11h03m21s

trains MCG 630,898 1h36m02s 635,500 1,543 506 155 961 0.73

+ SCG 675,010 23h22m53s 683,280 2,387 534 4 1,014 1.23
100 SCG+ 13h32m22s

trains MCG 674,918 2h13m05s 681,360 2,027 521 203 1,006 0.95

+ SCG 729,404 26h34m12s 737,320 2,507 541 4 1,129 1.09
200 SCG+ 14h38m55s

trains MCG 730,585 3h08m55s 735,520 2,325 533 233 1,109 0.68

14-day SCG 1,057,813 44h41m53s 1,077,100 1,835 1,294 4 1,289 1.82
1,750 SCG+ 26h29m31s
trains MCG 1,057,949 11h18m55s 1,071,300 1,263 1,284 127 1,290 1.26

+ SCG 1,113,992 50h58m21s 1,126,780 1,654 1,355 4 1,350 1.15
100 SCG+ 28h19m45s

trains MCG 1,113,926 12h50m21s 1,129,860 1,544 1,355 155 1,350 1.43

+ SCG 1,165,227 56h19m41s 1,178,880 1,853 1,345 4 1,464 1.17
200 SCG+ 31h17m56s

trains MCG 1,164,679 21h27m17s 1,185,140 1,727 1,317 173 1,481 1.76

5.2 Computational Comparison of the Different CG Models/Algorithms
In Table 1, we compare different solution scenarios, for each data set: the original CG
algorithm of [10] (marked as LAP-SCG), the original CG algorithm with PPs using the
concept of conflict graphs (marked as LAP-SCG+), and the newly proposed multiple column
generated (marked as LAP-MCG, and we set 10 columns per call of PP).

In Table 1, we provide the total computational times, the objective value of LP and ILP,
the number of columns that all PPs generated throughout the overall solution process, and
the number of columns selected in the final ILP solutions. The column rounds shows how
many times that all possible nodes are checked as the origin of PP. The second last column
contains the size of locomotive fleet that the final ILP solution recommends. The last column
shows the gap between the optimal LP solution and the ε-optimal ILP solution.

We can also observe that gap is very small in practice, close to 1%, sometimes even smaller
than 1%, meaning that the current multi-column algorithm outputs very good ε-optimal ILP
solution.

From Table 1, we can see that using the concept of conflict graphs can reduce the total
computational time by about half its value. The multi-CG algorithm can save another half
of the computational times, without reducing the quality of the final ε-optimal ILP solution.

5.3 Analysis of Multi-CG Architecture
From Table 1, we can see that the Multi-CG model reduces the computational times by about
70%. The first reason is that for each PP call, the Multi-CG algorithm converges faster than
the former CG from [10]: the Multi-CG model can select the consist with the best origin
node rather than comparing all best consists with a fixed origin node. The second reason
comes from allowing each PP call of the Multi-CG algorithm to generate several columns.
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Figure 2 Analysis of the computational computing times (CPU).

The third reason is that, even if each PP requires a longer computational time in the
Multi-CG algorithm, as showed in Figure 2(a) it can generate up to 10 columns, so the time
per column is much less, as showed in Figure 2(b).

6 Conclusions

The key contributions of the paper is a new CG architecture with the generation of multiple
columns per pricing problem, which can greatly reduce the CPU time of the original
LAP model. This multi-CG architecture can be used in CG associated with network flow
formulations for networks that can be decomposed into semi-independent conflict graphs
with some small overlapping. The multi-CG algorithm significantly increases the convergence
rate and decreases the average generation time per column, so reduces the total time for
reaching the final optimal or ε-optimal solution.
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