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Abstract
We study various versions of the problem of scheduling platoons of autonomous vehicles through
an unregulated intersection, where an algorithm must schedule which platoons should wait so
that others can go through, so as to minimize the maximum delay for any vehicle. We provide
polynomial-time algorithms for constructing such schedules for a k-way merge intersection, for
constant k, and for a crossing intersection involving two-way traffic. We also show that the more
general problem of scheduling autonomous platoons through an intersection that includes both
a k-way merge, for non-constant k, and a crossing of two-way traffic is NP-complete.
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1 Introduction

The advent of autonomous vehicles is introducing a number of interesting algorithmic ques-
tions concerned with how to coordinate the motion of such vehicles, especially through un-
regulated intersections (e.g., see [1, 2, 4, 6, 5, 7, 8, 9, 10, 11, 12, 14, 18, 17, 19, 21, 22, 25, 26]).
Such an intersection would not have any stop signs or lights and would instead rely on algo-
rithmic coordination between the autonomous vehicles approaching the intersection in order
to prevent collisions.

In addition to intersection management, another interesting algorithmic development
for autonomous vehicle control is the use of platoons, where a sequence of autonomous
vehicles operates in close proximity, much like the cars of a locomotive train, so as to save
time and/or energy. (E.g., see [3, 14, 23, 24].) Ideally, we would like to keep platoons as
contiguous sequences of vehicles, even as they are traveling through an intersection.

Thus, we are interested in this paper in algorithms for solving the problem of scheduling
autonomous vehicle platoons through an unregulated intersection, so as to minimize the
maximum delay for any vehicle (due to waiting in traffic at the intersection) while keeping
platoons as contigous sequences of vehicles. The algorithms we describe are agnostic about
whether times and locations are continuous variables or (following the discrete framework of
Dasler and Mount [8]) discretized to be integers, which we may consider as normalized such
that each platoon moves one unit of distance in one unit of time. No two vehicles are allowed
to occupy the same point at the same time, but platoons advance in “lock step”, with all
vehicles within a platoon moving the same distance as each other in each time unit. For
continuous models of time and space, we obtain strongly polynomial time bounds, and for
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5:2 Scheduling Autonomous Vehicle Platoons

discrete models we obtain time bounds that are polynomial both in the number of platoons
and in the logarithm of the total travel time.

Although online scheduling algorithms would also be of interest, in this paper, we focus
on the offline scheduling problem, where we are given in advance the location and path for
each platoon wishing to travel through a given intersection.

1.1 Related Work
Prior related work on autonomous vehicle coordination through an intersection is usually
referred to as autonomous intersection management, with most of the previous work focused
on low-level sensor, multi-agent, and acceleration/braking control algorithms (e.g., see [9, 10,
11, 17, 19, 21, 25]) or high-level management policies and strategies (e.g., see [1, 7, 22, 26]).

Closer to the mid-level approach that we take in this paper, Guler et al. [14] study the
problem of scheduling platoons through an unregulated intersection, but they focus on the
problem of minimizing the total number of stops for all vehicles or the total delay for all
vehicles, e.g., in simple first-in/first-out strategies, rather than minimizing the maximum
delay for any vehicle. Also in this mid-level framework, Dasler and Mount [8] build on the
work of Berger and Klein [6] for solving a geometric version of the “Frogger” video game
to study the problem of routing variable-length cars (which could also model platoons)
through multiple intersections. They introduce a discrete model for autonomous vehicle
scheduling, which, as we mentioned above, we use in this paper. They show that the problem
of scheduling vehicles through an arbitrary grid configuration of multiple intersections to
minimize the maximum delay for any vehicle is NP-complete. Such a result is also implied
by the work of Hatzack and Nebel [15] on modeling traffic scheduling as job-shop scheduling
with blocking. These hardness results do not apply to the single intersection problem that
we study in this paper, however, because their proofs require interactions between multiple
intersections. Dasler and Mount [8] also give several polynomial-time algorithms for special
cases in which horizontally-traveling vehicles must always yield to and never block vertically-
traveling vehicles, but these algorithms similarly do not apply to the problems we study in
this paper, since we don’t assign different priorities to different platoons.

In the problems that we study in this paper, platoons must always move monotonically,
that is, they may move forward or stop, but they may not back up. If platoons are allowed
both forward and backward movements, then path planning becomes much harder. See,
e,g., the PSPACE-completeness proofs of Hearn and Demaine for various traffic-clearing
problems [16].

1.2 Our Contributions
In this paper, we study various versions of the problem of scheduling platoons of autonomous
vehicles through an unregulated intersection, where the set of such platoons and their paths
are given in advance. The optimization goal in the problems that we study is to minimize
the maximum delay for any vehicle. We provide polynomial-time algorithms for constructing
such schedules for a k-way merge intersection, for constant k, and for a crossing intersection
involving two-way traffic. Our solutions are based on novel uses of dynamic programming
and parametric search techniques.

We also show that the more general problem of scheduling autonomous platoons through
an intersection that includes both a k-way merge, for non-constant k, and a crossing of two-
way traffic is NP-complete, via a reduction from the partition problem, which is known to
be NP-complete (e.g., see Garey and Johnson [13]).
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2 Definitions

An intersection may be modeled as a collection of incoming and outgoing traffic lanes,
together with constraints on which pairs of incoming and outgoing lanes can be used for
simultaneous traffic flows without interference with each other. Each platoon can be specified
by the incoming and outgoing lanes it follows, together with the times that the start and end
of the platoon would reach the intersection if no delays are imposed; by analogy to job shop
scheduling, we call the time at which the start of the platoon would reach the intersection
the release time of the platoon. The length of a platoon is the difference between its start and
end times. We require that the platoons initially occupy disjoint positions on each of their
incoming lanes (that is, on each lane, the start and end times of each platoon form disjoint
ranges of time) and that they remain disjoint throughout any valid schedule of traffic: two
platoons on the same lane cannot exchange positions. A platoon cannot be subdivided into
smaller units of traffic.

A schedule for such a problem can be described by specifying the time that each platoon
begins crossing the intersection, which we call the crossing time of the platoon. The time
that it finishes crossing is the crossing time plus the length. A schedule is valid if it meets
the following conditions:

Every platoon’s crossing time is on or after its release time. (Platoons can’t break the
speed limit to reach the intersection more quickly.)
For every two platoons on the same incoming lane, the crossing time of the second
platoon is on or after the release time plus length of the first platoon. (Platoons in the
same lane can’t pass each other.)
If two platoons are on incompatible pairs of incoming and outgoing lanes, the open
intervals between their crossing times and crossing times plus lengths are disjoint. (Cross
traffic should not collide.)

The delay of any platoon, in a valid schedule, is the difference between its crossing time
and its release time (equivalently, the difference between the time that the end of the platoon
finishes crossing in the schedule and the time that the end would finish crossing if there were
no delays). The delay of a valid schedule is the maximum of the delays of the platoons. Our
goal is to find a valid schedule with minimum delay. (See Figure 1.)

The main parameter in our analysis will be the size of a scheduling problem, which we
define to be the number of platoons and which we will usually denote by the variable n. In
some cases the analysis of our algorithms will also depend on the numerical resolution of
the input. If all release times are integers, then there necessarily exists an optimal schedule
in which the crossing times are also integers. In this case we define the length of a schedule
to be the maximum release time plus the sum of the lengths of all platoons. This number,
which we denote by L, provides a naïve bound on the maximum time required by a valid
schedule that does not introduce gratuitous delays.

3 Polynomial-time Algorithms

In this section, we provide algorithms for platoon scheduling, whose time bounds are either
strongly polynomial (i.e., with a runtime that depends polynomially on the number of pla-
toons, but not at all on the timing of the platoons) or polynomial (depending polynomially
on the number of platoons and on the number of bits of precision needed to specify their
timing). In contrast, algorithms whose running time includes terms proportional to the total
number of time units of the schedule are not polynomial.

ATMOS 2016
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t = 0 t = 1 t = 3

Figure 1 At t = 0 platoon A, of length 3, reaches the intersection and begins to cross it. The
release time of A is 0 and it’s delay is also 0. Later at t = 1 platoon B arrives at the intersection;
its release time is 1 but it cannot cross immediately because A is in the intersection. Finally at
t = 3 B begins to cross, with delay 2. The delay of the overall schedule of these platoons is the
maximum of the delays of the two platoons, 2.

3.1 Parametric search
We will provide different algorithms for different intersection models, but they will all be
based on an algorithmic metaprinciple, the parametric search technique of Megiddo [20],
which allows us to convert decision algorithms (which answer whether or not there is a
schedule with a given delay) into optimization algorithms (which find a schedule with min-
imum delay).

More precisely, we define a decision algorithm for a platoon scheduling problem to be
an algorithm that takes as input a scheduling task and a parameter d, and tests whether
there exists a valid schedule whose delay is at most d. We require that the only use the
algorithm makes of its parameter d is to perform a comparison, d ≥ c, of d against another
number, c, calculated from the other input values (not including d). Intuitively, the decision
algorithm is allowed to test questions like “if this platoon were to cross now, would it cause
other platoons’ delays to exceed the given delay parameter?” We will use D(n) to denote
the running time for such an algorithm. However, as well as performing this algorithm
directly, with a numeric parameter d, we will also simulate the algorithm on a parameter
that is not given to it explicitly, by performing some alternative computation to replace the
comparisons with d. As a simple example, we have the following simulation.

I Lemma 1. If there is a decision algorithm (as described above) that either finds a valid
schedule with delay at most d or determines that no such schedule exists, in time D(n), then
there is also an algorithm that tests for a given d whether there is a valid schedule with delay
strictly less than d, in time O(D(n)).

Proof. We simulate the decision algorithm on the parameter d− ε, for an unknown number
ε > 0 that is smaller than the difference in delays between d and the best valid schedule. To
do so, every time the simulated algorithm needs to test whether d ≥ c, for some computed
number c, we substitute the result of the comparison d > c. J

Using this method of simulation, we can transform a decision algorithm into an opti-
mization algorithm, as follows.
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I Lemma 2. Let n denote the size and L denote the length of a platoon scheduling problem.
Suppose that there exists a decision algorithm (as described above) that takes time D(n) to
test whether there is a schedule whose delay is at most a given parameter d. Then it is
possible to compute a minimum-delay schedule in time O(min(D2(n), D(n) logL)).

Proof. We simulate the decision algorithm, as if it were given the (unknown) delay d∗ of a
minimum-delay schedule. To do so, we maintain an open interval (`, r) known to contain
d∗; initially (`, r) = (−∞,∞). Whenever the simulated decision algorithm performs a
comparison of d∗ with some comparison value c, we simulate the comparison by checking
whether c belongs to the interval (`, r), and (if it does) refining this interval to exclude t.
Once c lies outside (`, r), we can determine the relative orders of d∗ and c by comparing c
to ` and r.

To refine the interval (`, r) to exclude t, we choose a test value t within the interval, and
call both the decision algorithm itself and the modified decision of Lemma 1, recursively
with t as their parameters. If the two algorithms produce differing results, then t is the
optimal delay, and we half the simulation and return t. If they determine that there is a
valid schedule with delay less than t, we set r to t, and the new interval to (`, t). And if they
determine that there is no schedule with delay t or less, we set ` to t, and the new interval
to (t, r).

It remains to specify how to choose the test value t that we use to refine the interval. For
each simulated comparison with a value c within the interval, we perform at most two such
tests. The first one selects t to be the integer closest to the midpoint of the current interval
(`, r). If we refine the interval using that choice of t and determine that c still remains within
the interval, then we perform a second refinement with t = c. The first choice of t ensures
that the total number of refinement steps is O(logL), and the second choice of t ensures
that, after these refinement steps, c will be outside the remaining interval (`, r).

The simulated algorithm behaves discontinuously at d∗ (it returns a valid schedule for
larger values and a failure indication for smaller values). Because the only use it makes
of its parameter is to perform comparisons, the only way it can be discontinuous at d∗ is
to eventually perform a comparison in which the comparison value c equals d∗. When it
does so, the simulation will detect this equality and terminate the search with the optimal
delay. J

3.2 One-way crossings or Y merges
The simplest example of our scheduling algorithm arises for two one-way roads that cross
each other, with no platoons that turn from one road to the other. Each road has one
incoming and one outgoing lane of traffic, the only pairs of incoming and outgoing lanes
that are allowed to be used are the ones that stay on the same road, and traffic on one road
cannot cross the intersection simultaneously with traffic on the opposite road.

Although it describes a different configuration of streets, this model is mathematically
equivalent to one with two incoming lanes and one outgoing lane, forming a Y where the
two incoming lanes merge. The pairs of lanes that are allowed are formed by one of the
two incoming lanes together with the single outgoing lane. As before, it is not allowed for
platoons from both incoming lanes to cross the merge point simultaneously. Almost the
same mathematical model also applies to a T-junction of a minor two-way street onto a
more major boulevard, restricted so that left turns from or to the boulevard are disallowed:
right-turning traffic from the boulevard to the street, and through traffic on the far side of
the boulevard from the street, can both flow freely, as they cannot interfere with any other

ATMOS 2016
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(a) (b) (c)

Figure 2 Three intersections that are mathematically equivalent in our model: (a) a crossing,
(b) a Y merge, and (c) a T-junction.

Figure 3 An example where crossing if possible is not always the best choice. Delaying the cross-
ing of the long platoon, until the short platoon has cleared the intersection, reduces the maximum
delay of the schedule.

platoons, and the remaining traffic has the same pattern as a Y merge. (See Figure 2.)
If we are trying to find a minimum-delay schedule, it is not always safe to allow a platoon

to cross, even when there is no platoon on the other incoming lane that can cross at the
same time. For example, consider the situation where one incoming road has a long platoon,
ready to cross, while the other incoming road has a short platoon that is not yet ready but
will reach the crossing soon. If we allow the long platoon to cross, the short platoon may be
delayed for an excessive amount of time while waiting for the long platoon to finish crossing.
On the other hand, if we delay the long platoon while we wait for the short platoon to arrive
and cross, the delay for these two platoons may be better, but the time until both platoons
have cleared the crossing will be longer, potentially causing greater delays for later platoons.
(See Figure 3.) Nevertheless, if we know the maximum delay that we are willing to tolerate,
we can apply a simple greedy algorithm that will either find a valid schedule with that delay
or determine that no such schedule is possible.

I Lemma 3. Let d be a delay parameter for a platoon scheduling problem with an intersection
configured as a one-way crossing or Y merge and with n platoons. Then an algorithm given
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d as a parameter can either find a valid schedule with delay at most d, or determine that no
such schedule is possible, in time O(n).

Proof. After each platoon finishes crossing the intersection, the algorithm selects between
the next two platoons, pi and pj , to arrive at the intersection (one on each of the two
incoming lanes), as follows. Let pi be the first of these platoons to arrive at the intersection
(choosing arbitrarily when they both arrive at the same time). If allowing pi to cross as soon
as it can would delay pj by at most d time units, then pi is allowed to cross next. Otherwise,
pj crosses next. If the resulting schedule has delay at most d, it is returned; otherwise, the
algorithm reports that no such schedule is possible.

Clearly, this simple algorithm takes time O(n) and, when it returns a valid schedule,
the schedule has delay at most d. It remains to show that, if a valid schedule S with delay
at most d exists, then our algorithm will succeed in finding a schedule (possibly different
from S) that also has delay at most d. We may assume without loss of generality that (like
our greedy algorithm) S schedules each platoon as early as possible given the ordering of
platoons across the crossing that it selects. We may also assume without loss of generality
that the hypothetical valid schedule S follows the same sequence of scheduling choices as
our greedy algorithm for as many steps as possible. We will prove by contradiction that,
with this assumption, S must actually equal our greedy schedule.

For, if not, S and the greedy schedule diverge at some point t in time, when two platoons
pi and pj are arriving on the two incoming lanes, S chooses one of them as the next to cross,
and our greedy algorithm selects the other one as the next to cross. Let pi be the first of
these platoons that our greedy algorithm considers as a candidate for the next one to cross.
Then our algorithm will only choose pj if it is forced to (because choosing pi would cause
an excessive delay to pj), and in this case S cannot choose pi for the same reason. So the
only way for our algorithm and S to differ would be for our algorithm to allow pi to cross
and for S to instead let pj be the next platoon to cross. But in this case let S′ be a schedule
modified from S by allowing pi to cross next, and otherwise keeping all platoons in the same
order given by S. The platoons that are disadvantaged by this change are pj and the other
platoons on the same incoming lane that immediately follow pj in schedule S, but their
maximum delay in S′ is at most d. For all remaining platoons, this change in schedule does
not cause any additional delays, because the total time until pi, pj , and the other platoons
following pj in the same lane have all crossed can only decrease because of the earlier release
time of pi relative to pj . So, like S, schedule S′ also has maximum delay at most d, but
it agrees with our greedy algorithm for one more step. This contradicts the choice of S as
the schedule that agrees with the greedy algorithm for as many steps as possible, and the
contradiction can only be resolved by S (a valid schedule with delay at most d) equalling
the greedy schedule. J

I Theorem 4. A minimum-delay schedule for a platoon scheduling problem with an inter-
section configured as a one-way crossing or Y merge and with n platoons can be found in
time O(min(n2, n logL)).

Proof. We apply the parametric search technique of Lemma 2, using the greedy algorithm
of Lemma 3 as the decision algorithm. J

3.3 Multiway merges
It is not clear how to extend our greedy scheduling decision algorithm even to 3-way merges.
For instance, consider a situation where a long platoon arrives on one incoming lane, some-
what earlier than two shorter platoons would arrive on two other lanes. Even if the long

ATMOS 2016
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Figure 4 An example 5-way merge intersection.

platoon would not necessarily cause excessive delays to either short platoon by itself, allow-
ing the long platoon to cross might lead to a situation where neither of the two short platoons
can cross, because it would excessively delay the other one. Untangling these indirect effects
seems beyond the scope of the local decisions made by the greedy algorithm.

Nevertheless, we can find an optimal schedule for a k-way merge in polynomial time using
a somewhat more complicated dynamic programming algorithm. We model the intersection
as having k incoming lanes and one outgoing lane. The outgoing lane can be paired with
any incoming lane, but only one such pair of an incoming and outgoing lane can use the
intersection at any given time. (See Figure 4.)

We define a state of an intersection to be a situation in which some platoons have
completely crossed the intersection and some others still remain to cross, without there
being a platoon that is only partly across. For a scheduling task with n platoons and k

incoming lanes, there are O(nk) possible states that could occur. Any actual schedule for
this task can be represented as a sequence of n+ 1 states, starting from a state in which no
platoons have crossed and ending at a state in which all platoons have crossed. For any such
sequence of states, it is safe to allow each platoon to cross as early as possible, consistent
with the ordering of the platoons determined by the sequence of states.

I Lemma 5. For a k-way merge platoon scheduling problem as described above (with k

constant), and a given parameter d, it is possible to determine in time O(nk) whether a
valid schedule with delay at most d exists.

Proof. We use dynamic programming to find, for each state s, the earliest time td(s) that
it is possible to reach state s via a partial schedule in which the maximum delay of any
platoon that crosses the intersection within the partial schedule is d (or +∞ if no such
schedule exists). As a base case, for the state in which no platoons have crossed, td(s) may
be set to the earliest release time of any platoon.

For each state s, there are (at most) k states s1, . . . sk that could be the predecessor
of s in a valid sequence of states, obtained from s by omitting the last platoon to cross
on each of the k incoming lanes (if s includes a platoon that has already crossed on that
lane). A potential schedule for s may be obtained by choosing an incoming lane i, choosing
a schedule for si obtaining the earliest possible completion time td(si), and then allowing
the final platoon on lane i to cross at the maximum of td(si) and its release time. If this
potential schedule does not delay the platoon on lane i by more than d, it is valid. The
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Figure 5 A two-way crossing.

earliest completion time td(s) may be computed by finding all valid schedules of this type
and choosing one for which the final platoon finishes crossing as early as possible.

The overall algorithm loops through the states in a consistent ordering, chosen so that
for each state s the predecessor states si will all already have been looped through. For each
state s in this loop, it uses the computation described above to compute td(s). The time is
constant for each state, and there are O(nk) states, so the total time is O(nk).

A valid schedule for the whole scheduling task exists if and only if the state s representing
the situation in which all platoons have crossed has a finite value of td(s). J

I Theorem 6. A minimum-delay schedule for a platoon scheduling problem with an intersec-
tion configured as a k-way merge and with n platoons can be found in time
O(min(n2k, nk logL)).

Proof. We apply the parametric search technique of Lemma 2, using the dynamic program-
ming algorithm of Lemma 5 as the decision algorithm. J

3.4 Two-way crossing

Our most complicated single-intersection model has two roads with two-way traffic, crossing
each other at a single intersection, with no left turns allowed. There are four incoming
lanes of traffic paired with four outgoing lanes of traffic. Two pairs of lanes on the same
road as each other do not interfere (platoons of traffic traveling on these pairs of lanes can
simultaneously pass through the intersection without delays) but any traffic on one road
interferes with all traffic on the other road. (See Figure 5.)

As for the k-way merge, we define a state to be a situation in which some platoons have
completely crossed the intersection and some others still remain to cross, without there being
a platoon that is only partly across. There are O(n4) states, one for each way of selecting an
initial subset of the platoons on each of the four incoming lanes. Unlike the k-way merge,
however, a valid schedule for all the platoons does not necessarily have n+1 states, differing
from each other by a single platoon. Instead, the states can be guaranteed to occur within
a valid schedule only at times when the schedule switches from allowing traffic to cross the
intersection on one of the roads to allowing traffic to cross on the other road. Because the
parts of the schedule between two states are more complicated, the dynamic programming
algorithm for stringing together states into an optimal schedule is also more complicated.

ATMOS 2016
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To be specific, we compute (as before) the minimum time td(s) at which a valid schedule
can reach state s, with maximum delay at most d on the platoons that cross the intersection
as part of state s. To compute td(s), we examine each state s′ that differs from state s only
by traffic on (all four lanes of) a single road. A valid schedule for s can be obtained from
the optimal schedule for s′ (the schedule that achieves completion time td(s′) by greedily
scheduling the remaining traffic by which s differs from s′, scheduling each platoon as soon
as it is released or otherwise available to cross the intersection, as long as this greedy
schedule also achieves maximum delay at most d. The optimal completion time td(s) is
the minimum, over all of the O(n2) potential predecessor states s′, of the completion time
obtained by appending this greedy schedule (whenever it is valid) to the optimal schedule
for s′.

I Lemma 7. Given a state s and a potential predecessor state s′, form a schedule for
s by appending a greedy schedule for the remaining cars to a schedule for s′ that obtains
completion time td(s′). Then it is possible to test whether the schedule for s obtained in
this way has maximum delay at most d, and to compute the completion time of the resulting
schedule, in time O(1).

Proof. By assumption, the part of the schedule for the platoons in s′ has maximum delay
at most d. Among the remaining platoons, the most heavily delayed will be the first ones
to go in the two lanes controlled by the greedy schedule. For each of these two platoons, we
can calculate its delay as max(0, td(s′)− ri) where ri is the release time of the platoon.

The completion time of the schedule is the maximum, over the two lanes controlled by
the greedy part of the schedule, of the end time of the last platoon plus the amount by
which that platoon was delayed. If the delay of the first greedily-scheduled platoon on the
lane is d, then the delay of the last platoon on the same lane is max(0, d−

∑
gi) where the

numbers gi are the gaps between the end time of one platoon and the start time of the next
platoon, for the platoons scheduled on that lane by the greedy algorithm. If we store the
prefix sums of the gaps, we can calculate the sum of the gaps for any contiguous interval of
platoons in constant time, by subtracting the prefix sum up to the first platoon from the
prefix sum for the last platoon. J

I Lemma 8. For a two-way crossing platoon scheduling problem as described above, and a
given parameter d, it is possible to determine in time O(n6) whether a valid schedule with
delay at most d exists.

Proof. There are O(n4) states s, O(n2) predecessor states s′ per state, and O(1) time to
perform the greedy scheduling algorithm that augments a schedule for s′ to a schedule for s.
Multiplying these terms together gives O(n6). J

I Theorem 9. A minimum-delay schedule for a platoon scheduling problem with an intersec-
tion configured as a two-way crossing and with n platoons can be found in time
O(min(n12, n6 logL)).

Proof. We apply the parametric search technique of Lemma 2, using the dynamic program-
ming algorithm of Lemma 8 as the decision algorithm. J

4 Hardness

In this section, we show that combining the two way intersection and multiway merge
versions leads to an NP-complete version of the problem. Specifically, let us consider a
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Figure 6 The intersection used in our hardness proof.

version of the problem where an arbitrary number of lanes are merging onto one outgoing
lane, one lane of traffic is going in the opposite direction, and one lane of traffic crosses these
two. The multilane merge and the lane of traffic in the opposite direction can both use the
intersection simultaneously, but neither of them can use the intersection when a platoon on
the third lane travels through the intersection. (See Figure 6.)

To precisely specify the MULTI-CROSS problem, we name the roads as follows:
The multiway merge has k incoming lanes m1,m2, . . . ,mk for some input parameter k
the street parallel to the multiway merge is a
the street crossing these two is b.

No two platoons one on mi and one on mj can enter the merge at the same time. If a
platoon on b is in the intersection, no other platoons can be passing through as well. The
platoons on a do not interfere with any platoon on an mi lane.

An instance of the MULTI-CROSS problem is defined by a value for k, a set of platoons
P = [(r1, s1, t1), . . . (rn, sn, tn)] assigned to the roads and their arrival and exit times at the
intersection (platoon pi is on road ri and arrives at the intersection at time si and would
exit the intersection at time ti if there is no delay), and a maximum delay parameter dmax.
The decision problem is to decide whether or not there is a schedule of the platoons through
the intersection such that no platoon experiences a delay more than dmax. Any schedule can
be simulated to check for validity and compute the maximum delay; hence, MULTI-CROSS
is in NP.

To show the MULTI-CROSS problem is NP-hard, we reduce the PARTITION problem
to it. The PARTITION problem is to given a multiset of positive integersX = {x1, . . . , x`},
decide whether or not they can be partitioned into two sets U and V such that

∑
x∈U x =∑

x∈V x. PARTITION is known to be NP-complete [13].
Given an instance of the PARTITION problem X, we build an instance of the MULTI-

CROSS problem as follows. Let q =
∑

x∈X
x

2 and set dmax = 2q + 1 and k = ` + 1.
We place one long platoon on a and one short platoon on b: p1 = (a, 0, 4(q + 1)) and
p2 = (b, 2q, 2q + 1). Then one other long platoon is placed on one of the multiway merge
lanes: p3 = (m`+1, q, q + 4(q + 1)). Finally for each integer xi ∈ X, place one platoon on
lane mi: p3+i = (mi, q, q + xi).
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I Lemma 10. If there is a valid partitioning of X, then there is a viable schedule with
maximum delay 2q + 1.

Proof. Let U and V be such a partitioning of X. Assign the platoons who correspond to
integers in U go through the merge first. Once the short platoon p2 arrives on road b have it
cross immediately. At this point platoon p1 will have been waiting for exactly q+ 1 units of
time and must cross immediately after p2. Simultaneously set the platoons associated with
the integers in V to merge. Finally once every other platoon has merged, send platoon p3
through the merge.

Platoon p1 has a delay of exactly 2q+1 in this schedule, p2 has a delay of 0, and platoon
p3 also has a delay of exactly 2q + 1. The platoons p4, . . . , p3+` all had delays less than
2q + 1. Therefore the maximum delay of this schedule is 2q + 1. J

I Lemma 11. If there is a schedule with maximum delay at most 2q + 1, then there is a
valid partitioning of X.

Proof. If any platoon blocks an intersection for more than 2q+1 units of time while another
platoon is waiting, then the maximum delay must be more than 2q+1. Therefore p1 cannot
go until p2 passes and p3 cannot go until p4, . . . , p3+` all go through the merge. Because p1
has been waiting for 2q time units when p2 arrives at the intersection, p2 must immediately
enter the intersection otherwise p1 will delay more than 2q + 1 time units. The platoons
p4, . . . , p3+` must all clear the intersection before time 3q+ 1 for p3 to enter the intersection
with a delay of at most 2q+1. They arrive at time q, have q time before p2 must go through,
and have q time after before p3 must go through. Therefore if it is possible to route these
platoons through their merge, then the two sets of platoons who go through the merge before
or after p2 each must sum to exactly q. So the two sets of integers these two sets of platoons
correspond to are a valid partitioning of X. J

I Theorem 12. The MULTI-CROSS problem is NP-complete.

Proof. By Lemmas 10 and 11, and our observation that MULTI-CROSS is in NP. J

5 Conclusion and Future Work

We have studied several scheduling problems for routing autonomous vehicle platoons
through an unregulated intersection, providing polynomial-time algorithms for the cases
of a k-way merge (for constant k) and for a crossing involving two-way traffic. We have also
provided an NP-completeness result for instances of the problem that involve a k-way merge
(for non-constant k) and two-way traffic. We leave as open problem to determine whether
the k-way merge version of problem for non-constant k is NP-complete or whether there is a
polynomial-time algorithm for solving this problem. In addition, we studied offline versions
of all these problems, and it may be interesting to study online versions, where the platoons
and their desired paths are not all known in advance.
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