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Abstract
The periodic event scheduling problem (PESP) is a well studied problem known as intrinsically
hard, but with important applications mainly for finding good timetables in public transportation.
In this paper we consider PESP in public transportation, but in a reduced version (r-PESP) in
which the driving and waiting times of the vehicles are fixed to their lower bounds. This results in
a still NP-hard problem which has less variables, since only one variable determines the schedule
for a whole line. We propose a formulation for r-PESP which is based on scheduling the lines.
This enables us on the one hand to identify a finite candidate set and an exact solution approach.
On the other hand, we use this formulation to derive a matching-based heuristic for solving PESP.
Our experiments on close to real-world instances from LinTim show that our heuristic is able to
compute competitive timetables in a very short runtime.
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1 PESP: The Periodic Event Scheduling Problem

The Periodic Event Scheduling Problem (PESP) in which events have to be scheduled periodi-
cally is a complex and well-known discrete problem with interesting real-world applications.
It has been introduced in [17]. The PESP is known to be NP hard - in fact, even finding a
feasible solution is so. The PESP can be formulated as linear mixed-integer program and
has been extensively studied. Still, even heuristics are rare and suffer under high empirical
run times. Nevertheless using constraint programming techniques, [7] were able to support
the decision process of the Netherlands Railway (NS) using the PESP model, and the basic
concept of the 2005 timetable of Berlin Underground has been computed in [9]. Solution
approaches include constraint generation [14], techniques using the cycle space (see [11, 16, 8]),
or the modulo-simplex heuristic [12, 3]. Recently SAT-solvers proved to be successful for
solving the PESP [4]. Under research is the construction of timetables under uncertainty,
see, e.g., [6, 1].

We start by giving the mathematical formulation of PESP, its interpretation in the
context of public transportation will be provided in Section 2. Let an event-activity network
N = (E ,A) with nodes (or events) E and directed arcs (or activities) A be given. We want to
assign a time πi to every event i ∈ E . For setting up feasibility constraints, we furthermore
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1:2 A Matching Approach for Periodic Timetabling

assume time spans ∆a = [La, Ua] with a lower bound La and an upper bound Ua for all
activities a ∈ A, and weights wa which represent the importance of activity a ∈ A. Finally,
we need a period T ∈ N. An instance I of PESP is hence given by N , w, L, U, T . Defining

[x]T := min{x− zT : z ∈ Z, x− zT ≥ 0},

PESP can be formulated as

(PESP) min
∑

a=(i,j)∈A

wa[πj − πi − La]T

s.t. [πj − πi − La]T ∈ [0, Ua − La] for all a ∈ A
πi ∈ {0, 1, . . . , T − 1} for all i ∈ E .

The variables πi assign a point of time to each event i ∈ E . This time is usually assumed
to be integer (in minutes) and takes only values in {0, 1, . . . , T − 1} since it is repeated
periodically with a period of T . Note that the PESP only looks at the differences of the π
values, hence one of the variables can always be fixed, e.g., π1 := 0.

The objective function minimizes the sum of slack times over all activities of the resulting
periodic schedule while the constraints ensure that the minimal duration La and maximal
duration Ua of all activities a = (i, j) ∈ A are respected by the periodic schedule. Note that
[πj − πi − La]T ∈ [0, Ua − La] is equivalent to La ≤ πj − πi + zaT ≤ Ua for some integer
za ∈ Z which can be used to linearize the formulation given above to receive a linear integer
program. For details on the periodicity and the meaning of the time spans ∆a we refer to
the extensive literature on PESP.

Our contribution. In this paper we study the PESP in the context of its main application,
namely for timetabling in public transportation. We use the special underlying structure of
the event-activity network to design an exact and a heuristic approach for solving the PESP
in this case.

2 r-PESP: The reduced periodic event scheduling problem in public
transportation

We first repeat how the event-activity network is constructed for the case of periodic
timetabling in public transportation.

Given a set of traffic lines L, the event-activity network N = (E ,A) consists of nodes
E = Earr ∪ Edep which are called arrival and departure events and of edges A = Adrive ∪
Await ∪ Atrans called driving activities, waiting activities and transfer activities. These are
constructed as follows (see, e.g., [11, 8]):

Let l ∈ L be a line passing through stations s1, s2, . . . , sp. Such a line corresponds to p−1
arrival and to p− 1 departure events (s1, l, dep), (s2, l, arr), (s2, l, dep), . . . , (sp, l, arr).
A departure event (si, l, dep) and its consecutive arrival event (si+1, l, arr) on the same
line l at its next station are linked by a directed driving activity. Waiting activities link
an arrival event of a line (si, l, arr) and its consecutive departure event (si, l, dep) at the
same station.
Transfer activities connect an arrival event (s, l, arr) of one line l at some station s to
a departure event (s, k, dep) of another line k at the same station s if a transfer for the
passengers should be possible here.
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Note that in railway applications also headway activities are needed which ensure a minimal
distance between two consecutive trains on the same piece of infrastructure.

In the PESP formulation, the La describe lower bounds on the activities, i.e., the minimal
driving time for driving activities, the minimal dwell time at stations for waiting activities
and the minimal time needed for a transfer (i.e., getting off the train, changing the platform
and boarding the next train) for the passengers for transfer activities. The weights wa give
the number of passengers who use activity a ∈ A. Minimizing the sum of all slack times
in PESP hence can be interpreted as minimizing the sum of all traveling times over the
passengers.

2.1 r-PESP in public transportation

In public transportation it is often assumed that there are no upper bounds for transfer
activities, since a passenger can always take the train of the next period, and the objective
function aims at minimizing the transfer slack times anyway. We will also use this assumption
here, i.e., that

∆a = [La, La + T − 1] for all a ∈ Atrans. (1)

As mentioned above, in the practice of public transportation planning, every event i ∈ E
belongs to exactly one line l ∈ L. Hence, the events E of the event-activity network can be
partitioned into the lines they belong to, i.e.,

E =
⋃
l∈L

El.

Every line l induces a subgraph Nl = (El,Al) with Al ⊆ Await ∪Adrive, i.e., Al consists only
of waiting and driving activities. Solving PESP on such a subgraph is easy: The optimal
solution is to fix all driving and waiting activities to their lower bounds. This motivates the
formulation of a reduced PESP in which we require that all driving and waiting times are
fixed to their lower bounds. This can formally be done by setting

∆a := [La, La] for all a ∈ Await ∪ Adrive. (2)

Using both the assumptions (1) and (2) we obtain the following straightforward formulation
for the reduced PESP in which we fix the length of all waiting and driving activities to their
lower bounds and do not have any restriction on the transfer activities. The latter are the
only activities which are then relevant in the objective function.

(r−PESP) min
∑

a=(i,j)∈Atrans

wa[πj − πi − La]T

s.t. [πj − πi − La]T = 0 for all a ∈ Adrive ∪ Await

πi ∈ {0, 1, . . . , T − 1} for all i ∈ E .

Fixing the driving and waiting activities to their lower bounds has been done in other
publications before. In [13] it has been shown that the resulting problem is still NP-hard. A
theoretical analysis of the error which is made by fixing the values of the waiting and driving
activities to their lower bounds is provided in the next section, an experimental evaluation
can be found in Section 4.

ATMOS 2016



1:4 A Matching Approach for Periodic Timetabling

2.2 Comparing PESP and r-PESP

We are interested in a bound on the error which is made by fixing the driving and waiting
activities to their lower bounds. To this end, we denote the objective values of PESP and
r-PESP by PESP(I), or r-PESP(I), respectively. Then the gap between the reduced version
of PESP and the original PESP is specified by

Gap := sup
Instances I

r-PESP(I)− PESP(I),

where for an instance I = (N , w, L, U, T ) r-PESP(I) is defined by (2), i.e., the time windows
for waiting and driving activities a are set to ∆a := [La, La].

I Lemma 1. If (1) holds we have

0 ≤ Gap ≤ T
2

∑
a∈Atrans

wa

Proof.
Under assumption (1) we have that every feasible solution of r-PESP is also feasible for
PESP and satisfies

∑
a=(i,j)∈A wa[πj − πi − La]T =

∑
a=(i,j)∈Atrans

wa[πj − πi − La]T ,
hence PESP is a relaxation of r-PESP. This gives that Gap ≥ 0.
On the other hand, it can be shown that for every instance I of r-PESP we have
r-PESP(I) ≤ T

2
∑

a∈Atrans
wa, i.e., any optimal solution is bounded by the waiting time

which would be received if trains are scheduled according to a uniform distribution (for
details, see [15, 13]). We hence obtain r-PESP(I)− PESP(I) ≤ T

2
∑

a∈Atrans
wa − 0 for

all instances I, and hence Gap ≤ T
2
∑

a∈Atrans
wa.

J

We will also see in the experiments that solving r-PESP seems to be a very good heuristic
for finding PESP solutions.

2.3 An equivalent formulation for r-PESP and a finite candidate set

We now consider some line l ∈ L with its corresponding events El. We need the following
notation.

For every line l, let first(l) denote the first event of line l.
For every event i ∈ El of line l define dur(i) as the length of the (unique) path from first(l)
to i in the subnetwork Nl with edge weights La. This is the duration which a vehicle of
line l needs from its start to event i. Note that dur(i) is well defined since every event i
belongs to exactly one line l.
For two lines k, l ∈ L define Atrans(k, l) := {a = (i, j) ∈ Atrans : i ∈ Ek, j ∈ El} as the
(possibly empty) set of transfer activities from line k to line l.

If πfirst(l) is fixed for the first event of line l, the resulting arrival and departure times for all
other events i ∈ El in r-PESP can be determined as

πi := πfirst(l) + dur(i) for all i ∈ El.
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Plugging this into r-PESP, the objective function can be transformed to∑
a=(i,j)∈Atrans

wa[πj − πi − La]T

=
∑

k,l∈L

∑
a=(i,j)∈Atrans(k,l)

wa[πfirst(l) + dur(j)− πfirst(k) − dur(i)− La]T

:=
∑

k,l∈L

∑
a∈Atrans(k,l)

wa[da + πfirst(l) − πfirst(k)]T

where

da := [dur(j)− dur(i)− La]T for a = (i, j) ∈ Atrans.

We abbreviate πl := πfirst(l) emphasizing that we now determine only one point of time for
every line l ∈ L. Given πl for all lines l ∈ L we furthermore denote

fk,l(π) :=
∑

a∈Atrans(k,l)

wa[da + πl − πk]T

f(π) :=
∑

k,l∈L

fk,l(π)

r-PESP can hence be equivalently formulated as

(r−PESP) min
∑

a∈
⋃

k,l∈L
Atrans(k,l)

wa[πl − πk + da]T

s.t. πl ∈ {0, 1, . . . , T − 1} for all l ∈ L

which is a PESP on a reduced event-activity network, without any feasibility requirements,
but with possibly multiple activities between every pair of events. In the following, when
we talk about a solution to r-PESP we mean a solution π ∈ {0, . . . , T − 1}|L| to the above
reformulation r-PESP. We now illustrate this reformulation on two special cases which will
be used later in our algorithmic approach.

An optimal timetable for the case of two lines. For only two lines L = {k, l} we receive
a problem with two variables πk, πl ∈ {0, 1, . . . , T − 1}. We can further reduce its objective
function to only one variable by computing

f(πk, πl) = fk,l(πk, πl) + fl,k(πk, πl)

=
∑

a∈Atrans(k,l)

wa[da + πl − πk]T +
∑

a∈Atrans(l,k)

wa[da + πk − πl]T

and substituting t := πk − πl due to the fact that we can set e.g., πl := 0 and then receive
t := πk − πl = πk. We obtain

min
t=0,...,T−1

g(t) :=
∑

a∈Atrans(k,l)

wa[da − t]T +
∑

a∈Atrans(l,k)

wa[da + t]T

=
∑

a∈Atrans(k,l)

wa[d̄a − t]T +
∑

a∈Atrans(l,k)

wa[d̄a + t]T (3)

with d̄a := [da]T ∈ {0, . . . , T − 1} for all a ∈ Atrans, since adding an integer multiple of T in
[da − t]T or in [da + t]T does not change their values.

ATMOS 2016



1:6 A Matching Approach for Periodic Timetabling

Optimal adjustment of two line clusters. A similar situation appears if we have a partition
of the set of all lines L = L1 ∪ L2 into two disjoint line clusters L1,L2. Suppose, a timetable
πl, l ∈ L is given. We want to adjust the two clusters such that they fit as good as possible
to each other without changing the synchronization between any pair of lines within the
same cluster. This can be done by shifting all lines in L1 by an amount of t minutes. The
new timetable π(L1, t) is then given by

π(L1, t)l :=
{
πl if l ∈ L2
πl + t if l ∈ L1

(4)

We are now interested in the best t, i.e., the optimal shift between the two clusters. The
objective function f(π(L1, t)) is only dependent on t and can hence be simplified to

g(t) := g(π(L1, t))
=

∑
k,l∈L1

fk,l(π) +
∑

k,l∈L2

fk,l(π) +
∑

k∈L1,l∈L2

∑
a∈Atrans(k,l)

wa[πl − (πk + t) + da]T

+
∑

k∈L2,l∈L1

∑
a∈Atrans(k,l)

wa[(πl + t)− πk + da]T

= const+
∑

a∈Atrans(k,l)
k∈L1,l∈L2

wa[d̄a − t]T +
∑

a∈Atrans(k,l)
k∈L2,l∈L1

wa[d̄a + t]T (5)

with d̄a := [da + πl − πk]T ∈ {0, . . . , T − 1} for all a ∈ Atrans(k, l), k, l ∈ L.

Note that using this formula one directly sees that

g(π(L1, t)) = g(π(L2, T − t)). (6)

The following lemma applies to solving problems of type (3) or (5).

I Lemma 2. Let A1 and A2 be two disjoint sets and let da ∈ {0, . . . , T − 1}, wa ≥ 0 for all
a ∈ A1 ∪ A2. Consider the optimization problem

(P ) min
t∈{0,1,...,T−1}

g(t) :=
∑

a∈A1

wa[da − t]T +
∑

a∈A2

wa[da + t]T .

Then there exists an optimal solution t∗ to (P) which satisfies

t∗ ∈ {da : a ∈ A1} ∪ {T − da : a ∈ A2}.

Furthermore,
t∗ ∈ {da : a ∈ A1} for all optimal solutions t∗ to (P) if

∑
a∈A1

wa >
∑

a∈A2
wa,

t∗ ∈ {T − da : a ∈ A2} for all optimal solutions t∗ to (P) if
∑

a∈A1
wa <

∑
a∈A2

wa.

Proof. The first part of the lemma was already observed by [13]. For the second part, let∑
a∈A1

wa >
∑

a∈A2
wa and consider t ∈ {0, 1, . . . , T − 1}. Let t 6∈ {da : a ∈ A1}. Increasing

t to t+ 1 gives [da − t]T − [da − (t+ 1)]T = 1 and

[da + t]T − [da + (t+ 1)]T =
{

−1 if t 6= T − da − 1
T − 1 ≥ −1 if t = T − da − 1,
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hence

g(t)− g(t+ 1) =
∑

a∈A1

wa ([da − t]T − [da − (t+ 1)]T )

+
∑

a∈A2

wa ([da + t]T − [da + (t+ 1)]T )

≥
∑

a∈A1

wa −
∑

a∈A2

wa > 0,

i.e., increasing t improves the objective function value and t can hence not be optimal. The
other direction works analogously. J

This means the problem for two lines can be solved by testing all t = da in the case
that

∑
a∈Atrans(l,k)

wa ≥
∑

a∈Atrans(k,l)
wa and all t = T − da otherwise. The same holds for

problem (5) with two line clusters where we have to test all t = d̄a or all t = T − d̄a. In both
cases we have a finite candidate set of possible solutions to be checked. Using the Lemma 2
we can even derive a finite candidate set for any instance of (r-PESP). To this end, we define
the line graph

GL = (L, EL)

as the graph with nodes corresponding to the lines L and undirected edges

EL := {{k, l} ⊆ L : Atrans(k, l) ∪ Atrans(l, k) 6= ∅}.

I Theorem 3. There exists an optimal solution π ∈ {0, 1, . . . , T − 1}|L| to r-PESP and a
spanning tree S in the line graph GL such that for every edge e = {k, l} ∈ S there exists
some a ∈ Atrans(k, l) ∪ Atrans(l, k) with πl − πk = [da]T .

Proof. We give a sketch of the proof here, its details can be found in the appendix.

In the proof we start with some timetable π. We determine the set E(π) of all edges {k, l}
in the line graph which satisfy the condition of the theorem. If the set of these edges does
not contain a spanning tree, we determine a largest connected component L1 in (L, E(π))
and adjust the timetable optimally between the two line clusters L1 and L \ L1. We receive
a new timetable π̃. We then show that the resulting graph (L, E(π̃)) w.r.t the new timetable
π̃ has a strictly larger connected component. We can repeat this procedure until we find a
timetable π∗ such that E(π∗) contains a spanning tree. J

The result shows that for every optimal solution there exists a spanning tree for which
the tension xkl := πl − πk of its (directed) edge {k, l} comes from a finite set {[da]T : a ∈
Atrans(k, l) ∪ Atrans(l, k)} of values. We hence can enumerate over all trees and all such
tensions to find an optimal timetable which will be formulated as Algorithm 1 in the next
section.

We remark that the structure of the line graph GL = (L, EL) may also be exploited for
decomposing an r-PESP instance into two smaller instances in the following case.

I Lemma 4. Let {k̄, l̄} ∈ EL be a bridge of the line graph GL, i.e., an edge such that
(L, EL \ {e}) decomposes into two components GL1 = (L1, EL1) and GL2 = (L2, EL2). Let
π1 be an optimal solution to r-PESP on L1 and π2 be an optimal solution to r-PESP on L2.
Let furthermore t∗ be the optimal adjustment between the two line clusters L1 and L2. Then

π(L1, t
∗)l :=

{
π1

l + t∗ if l ∈ L1
π2

l if l ∈ L2

is an optimal solution to r-PESP on L.

ATMOS 2016



1:8 A Matching Approach for Periodic Timetabling

Proof. For the case of a bridge {k̄, l̄} with k̄ ∈ L1, l̄ ∈ L2 the objective function (5) for the
adjustment of the two line clusters L1 and L2 with timetables π1 and π2 simplifies to

g(t) = const+
∑

a∈Atrans(k,l)
k∈L1,l∈L2

wa[da + π2
l − π1

k − t]T +
∑

a∈Atrans(k,l)
k∈L2,l∈L1

wa[da + π2
l − π1

k + t]T

= const+
∑

a∈Atrans(k̄,l̄)

wa[da + π2
l̄
− π1

k̄
− t]T +

∑
a∈Atrans(k̄,l̄)

wa[da + π2
l̄
− π1

k̄
+ t]T

Now consider any timetable π∗. We compare f(π∗) with f(π(L1, t
∗)):

f(π∗) =
∑

k,l∈L1

fk,l(π∗) +
∑

k,l∈L2

fk,l(π∗) + fk̄,l̄(π∗) + fl̄,k̄(π∗)

f(π(L1, t
∗) =

∑
k,l∈L1

fk,l(π1 + t∗) +
∑

k,l∈L2

fk,l(π2) + fk̄,l̄(π(L1, t
∗)) + fl̄,k̄(π(L1, t

∗))

For the first two terms we receive due to the optimality of π1 and π2 directly that∑
k,l∈L1

fk,l(π1 + t∗) =
∑

k,l∈L1

fk,l(π1) ≤
∑

k,l∈L1

fk,l(π∗) and
∑

k,l∈L2

fk,l(π2) ≤
∑

k,l∈L2

fk,l(π∗).

For the third term we know that

fk̄,l̄(π(L1, t
∗)) + fl̄,k̄(π(L1, t

∗))

=
∑

a∈Atrans(k̄,l̄)

wa[da + π2
l̄
− π1

k̄
− t∗]T +

∑
a∈Atrans(l̄,k̄)

wa[da + π1
k̄
− π2

l̄
+ t∗]T

≤
∑

a∈Atrans(k̄,l̄)

wa[da + π2
l̄
− π1

k̄
− t]T +

∑
a∈Atrans(l̄,k̄)

wa[da + π1
k̄
− π2

l̄
+ t]T

for all t ∈ {0, . . . , T − 1} since t∗ is a minimizer of g(t). In particular, this holds for
t := [π2

l̄
− π1

k̄
− π∗

l̄
+ π∗

k̄
]T . Plugging this in, we receive

fk̄,l̄(π(L1, t
∗)) + fl̄,k̄(π(L1, t

∗))

≤
∑

a∈Atrans(k̄,l̄)

wa[da + π∗
l̄
− π∗

k̄
]T +

∑
a∈Atrans(l̄,k̄)

wa[da + π∗
k̄
− π∗

l̄
]T

= fk̄,l̄(π∗) + fl̄,k̄(π∗),

which finally shows that f(π(L1, t
∗) ≤ f(π∗). J

3 Algorithms for r-PESP

3.1 An exact approach
The naive approach to solve r-PESP would be to enumerate brute-force and evaluate all
possible T |L|−1 timetables of the reduced formulation r-PESP in O(T |L|−1 · |Atrans|). The
result of Theorem 3 provides a finite set of values for the tensions on the edges of a specific
spanning tree. Recall (e.g., from [11]) that fixing the tensions on a spanning tree (with
directed edges) already determines the timetable π: It can be found by setting, e.g, π1 := 0
and then iteratively choosing a neighbor i of a node j with already assigned time πj and
setting πi = [πj + x1i]T if (1, i) ∈ E and πi = [πj − x1i]T if (i, 1) ∈ E) until all events have a
time assigned. This approach works since a tree does not contain a cycle. We use this for
proposing the following new exact approach for solving r-PESP:
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Algorithm 1: Exact approach for finding an optimal solution to r-PESP

1. For every spanning tree S of the line graph GL with edges ES find an optimal timetable
πS for S by
a. fixing an (arbitrary) direction of every edge {k, l} of the tree S
b. computing the corresponding timetable for all combinations of possible tensions values

on the directed edges (k, l)
{da : a ∈ Atrans(k, l)} if

∑
a∈Atrans(k,l) wa >

∑
a∈Atrans(l,k) wa

{T − da : a ∈ Atrans(l, k)} if
∑

a∈Atrans(k,l) wa ≤
∑

a∈Atrans(l,k) wa.
2. Choose π as minimizer of min{f(πs) : S is a spanning tree of GL}.

Using Cayley’s formula saying that the number of spanning trees in a complete graph
with n nodes is nn−2, and that evaluating a timetable is of order O(Atrans) it turns out that
the complexity if Algorithm 1 is O(|L||L|−2 · η|L|−1 · |Atrans|) in a complete line graph GL
with η transfers between any pair of lines, i.e. η = |Atrans(k, l)| for all k, l ∈ L. Note that
for this time complexity we make use of Lemma 2, namely that we only need to evaluate all
da, a ∈ Atrans(k, l) or T − da, a ∈ Atrans(l, k).

Even in this worst case we end up with a smaller time complexity than the naive brute-
force approach if η|L| ≤ T which will be the case in small to medium-size metro systems,
assuming a period of T = 60 minutes. In practice, the line graph is usually not a complete
graph, and the number of possible transfers η from a line l to another line k is usually small
(often even zero) such that the complexity can be significantly reduced.

3.2 A heuristic based on matching
The idea of the matching heuristic is taken from [10] where a similar approach was used for
aperiodic timetabling based on given vehicle routes. In every iteration we use a partition of
the set of lines into line clusters C = {L1, . . . ,Lk} with L = L1 ∪ . . . ∪ Lk and the Lp are
pairwise disjoint. In the first step each line cluster consists of one single line only. In every
iteration, the line clusters are matched pairwise. For every pair of clusters being matched
one looks for the optimal adjustment of them by solving the optimization problem (5).

Algorithm 2: Matching-based heuristic for finding a solution to r-PESP

1. Initialization: Define the initial cluster graph GC = (C, EC) as the line graph graph: C = L
(each line makes up one cluster), and EC := EL, i.e., two such clusters are connected if a
transfer between their lines is possible.
For every line l ∈ L, define πl = 0.

2. While |C| > 1 do
a. For every edge {L1,L2} ∈ EC determine eval(L1,L2) as in (10).
b. Determine a matching M ⊆ EC with maximal weight in GC .
c. For every edge {L1,L2} ∈M do

i. Find an optimal adjustment of the timetable of the two line clusters L1 and L2
(using the result of Lemma 2).

ii. Merge the nodes L1 and L2 to one node L1 ∪ L2 in GC .

The algorithm runs in polynomial time. The main question is how to evaluate two line
clusters L1 and L2. As in the case of two clusters, we look at all transfers a between a
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line k ∈ L1 and another line l ∈ L2 and vice versa. If a timetable π is already given, the
evaluation of the timetable π(L1, t) (as in (4)) is done by computing

gL1,L2(t) := +
∑

a∈Atrans(k,l)
k∈L1,l∈L2

wa[d̄a − t]T +
∑

a∈Atrans(k,l)
k∈L2,l∈L1

wa[d̄a + t]T

with (as usual) d̄a := da + πl − πk. As evaluation functions we tested

best(L1,L2) := min
t∈{1,...,T−1}

gL1,L2(t) (7)

worst(L1,L2) := max
t∈{1,...,T−1}

gL1,L2(t) (8)

span(L1,L2) := worst(L1,L2)− best(L1,L2) (9)

expected(L1,L2) := 1
T

(
T−1∑
t=0

gL1,L2(t)
)
− best(L1,L2) (10)

Note that all these evaluation functions are symmetric in L1 and L2, i.e., it does not matter
if we look at gL1,L2(t) or at gL2,L1(t) when determining the values of (7)-(10).

I Lemma 5. All the evaluation functions (7) - (10) are symmetric, i.e.,

best(L1,L2) = best(L2,L1), worst(L1,L2) = worst(L2,L1),
span(L1,L2) = span(L2,L1), expected(L1,L2) = expected(L2,L1).

Proof. As in (6) we can easily verify that gL1,L2(t) = gL2,L1(T − t). Using furthermore that
gL2,L1(0) = gL2,L1(T ), we receive that

{gL1,L2(t) : t = 0, . . . , T − 1} = {gL2,L1(t) : t = 0, . . . , T − 1},

hence the result follows from the fact that

min
t∈{1,...,T−1}

gL1,L2(t) = min
t∈{1,...,T−1}

gL2,L1(t),

max
t∈{1,...,T−1}

gL1,L2(t) = max
t∈{1,...,T−1}

gL2,L1(t),

T−1∑
t=0

gL1,L2(t) =
T−1∑
t=0

gL2,L1(t).

J

The different evaluation functions follow different strategies. best (7) matches the lines
first which are most expensive to get adjusted even in the best case. worst (8) matches
the lines which could make the objective value really bad later. span (9) and expected (10)
consider how much the objective value for adjusting two line clusters can change between the
best and the worst case, or between the expected and the best case. If the change is rather
low there is no need to match such a pair.

Our pre-evaluation show that span and expected perform better than best and worst with
expected providing the overall best results. We hence used expected (10) in Algorithm 2.
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3.3 A hybrid algorithm
We can combine the exact and the matching approach by starting with the matching approach
and changing to the exact approach when the complexity for solving the instance with an
exact approach gets small enough. In case that brute-force is used as exact approach, we
check the size of T |C| where C contains the remaining clusters. When using Algorithm 1 as
exact approach the decision is based on the number of spanning trees in the remaining graph.

Algorithm 3: Hybrid heuristic for finding a solution to r-PESP

1. Initialization: Define the initial cluster graph GC = (C, EC) as the line graph graph: C = L
(each line makes up one cluster), and EC := EL, i.e., two such clusters are connected if a
transfer between their lines is possible.
For every line l ∈ L, define πl = 0.

2. While Complexity is too large do
a. For every edge (L1,L2) ∈ EC determine eval(L1,L2) as in (10).
b. Determine a matching M ⊆ EC with maximal weight in GC .
c. For every edge (L1,L2) ∈M do

i. Find an optimal adjustment of the timetable of the two line clusters L1 and L2 as
in Lemma 2.

ii. Merge the nodes L1 and L2 to one node L1 ∪ L2 in GC .
3. Solve the remaining instance exactly by using Algorithm 1 or another exact procedure.

Our experiments show that the runtime of the exact approaches is still too large for more
than five lines; hence this is approximately the size of C when we switch from Algorithm 2 to
an exact approach.

4 Experimental results

For our experiments we used data from the LinTim library [2, 5]. Besides a toy example this
includes close-to real world data from the metro network of Athens, the German high-speed
train network with different line concepts, and the bus network of the local bus company in
Göttingen. The characteristics of the data used are summarized in Table 1. Note that all of
these instances have no restriction on the upper bounds of transfer activities, so they satisfy
assumption (1). On the other hand, none of the instances fixes the waiting or driving times
of the activities to their lower bounds (2) as we do in r-PESP. It will be observed that even
with this variable fixing the resulting outcomes of Algorithm 2 are competitive.

In our first evaluation we tested Algorithm 3 (the hybrid strategy) with three different
settings: We either changed to an exact approach and took the naive brute-force enumeration
or Algorithm 1, or we did not use any exact approach but only performed Algorithm 2. The
results are shown in Table 2. We see that in all but one instance Algorithm 1 is faster than
brute-force while the clear winner in runtime is (as expected) Algorithm 2, i.e., the polynomial
matching heuristic. We also see that there is nearly no benefit in terms of the objective value
solving the reduced final instances exactly instead of just continuing Algorithm 2. Note that
the objective function values between using brute-force or Algorithm 1 as exact approach
differ (although both alternatives are exact approaches) since the point when we switch
to the exact approach depends on the algorithm chosen as explained at the beginning of
Section 3.3.
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Table 1 The characteristics of the test instances. V denotes the set of stations, L the set of
lines, E the set of all arrival and departure events, and Atrans the set of transfer activities.

Name |V | |L| |E| |Atrans|
toy 8 6 64 8

athens 51 20 592 115
bahn-eq-f 250 53 3444 1761
bahn-01 250 65 4184 4370
bahn-02 280 80 5048 3397
bahn-04 319 115 6368 7986
goevb 257 76 3044 9029

Table 2 Different versions of Algorithm 3.

Brute-force in Step 3 Algorithm 1 in Step 3 No exact approach
Instance objective runtime objective runtime objective runtime

toy 22094 10s 22094 <1s 22094 <1s
athens 12274246 30min 12274246 1s 12725934 1s

bahn-eq-f 66473861 1min 66473861 70min 66462971 1s
bahn-01 541120106 29min 540759985 20s 540759985 2s
bahn-02 675040353 35min 675206688 7min 675206688 2s
bahn-04 742637615 1min 742772838 1min 742637615 3s
goevb 20147281 18min 20191871 43s 20191871 1s

We finally compared Algorithm 2 to another procedure for periodic timetabling, namely
to the modulo simplex ([12, 3]) in its implementation within LinTim [2, 5]. We compared
the result of the matching-based heuristic (Algorithm 2) directly to the result of the modulo
simplex, but also used it as a starting solution to check if the modulo simplex is able to
further improve it. The runtime of the modulo Simplex was bounded to 60 minutes.

Note that in our instances slack times of driving and waiting activities are allowed, i.e.,
assumption (2) is not satisfied. This means that Algorithm 2 can only provide a heuristic
solution also from this point of view. However, as we see in Table 3, the objective function
values obtained by Algorithm 2 are highly competitive. The objective function values obtained
by Algorithm 2 were surprisingly good, in one case even better than the result of the modulo
simplex. But the main advantage of Algorithm 2 is its very fast runtime (which is also shown
in the table). It furthermore turns out that the modulo simplex is able to further improve
the solution obtained by Algorithm 2 in all cases, and that it cannot predicted which starting
solution leads to the overall best solution after performance of the modulo simplex in the
end.

5 Extension and conclusion

We presented a new formulation of the PESP in public transportation networks which is
based on the characteristics of instances from timetabling. We show that this formulation
can be used to derive a finite candidate set which is smaller than enumerating all possibilities
in a brute-force approach. We also used the formulation to derive a matching-based heuristic
for the PESP. Our experiments show promising results: the heuristic is competitive with
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Table 3 Comparison with the Modulo Simplex.

Algorithm 2 Algorithm 2 + ModSim ModSim
Instance objective runtime objective runtime objective runtime

toy 22094 < 1s 18236 < 1s 18236 < 1s
athens 12725934 1s 10215458 4s 10215458 30s

bahn-eq-f 66462971 1s 65430934 5min 65388991 13min
bahn-01 540759985 2s 536208754 1h 537965995 1h
bahn-02 675206688 2s 663179698 1h 668819275 1h
bahn-04 742637615 3s 737959364 1h 746841914 1h
goevb 20191871 1s 19691541 11min 18984122 19min

solutions obtained by the modulo simplex but with a runtime only in seconds. We currently
investigate a heuristic in which the starting times πl of the lines are fixed one after another
in a Greedy manner (as proposed in [13]), in particular which of the evaluation functions
(7)-(10) performs best in such an approach for choosing the sequence in which the lines are
processed.

In our study we neglected headway constraints. However, they can be incorporated by
adding feasibility constraints also in r-PESP meaning that constraints on t have to be taken
into account when adjusting two lines or two line clusters. The implication of headway
constraints and the performance of the matching-based approach in this case are subject of
future research. Another interesting point is the further exploitation of Theorem 3. Since
r-PESP is a special case of a PESP on the line graph GL = (L, EL), the modulo simplex can
directly applied to the reduced formulation. Using the special properties of the line graph GL
together with the finite candidate set on every tree is likely to yield further improvements for
the modulo simplex. This is another point which is interesting to be studied in the future.

Finally, since the set of lines L is used explicitly in Algorithm 2, this seems to be a
promising approach also for solving the integrated line-planning and timetabling problem in
which a line plan and a timetable are optimized simultaneously.
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A Proof of Theorem 3

Theorem 3. There exists an optimal solution π ∈ {0, 1, . . . , T − 1}|L| to r-PESP and a
spanning tree S in the line graph GL such that for every edge e = {k, l} ∈ S there exists
some a ∈ Atrans(k, l) ∪ Atrans(l, k) with πl − πk + da = 0.

Proof. Let π∗ ∈ {0, . . . , T − 1}|L| be a given timetable. Without loss of generality assume
that da ∈ {0, . . . , T − 1}, otherwise just use [da]T instead of da. Define

E(π) := {e = {k, l} ∈ EL : πl − πk − da = 0 for some a ∈ Atrans(k, l) ∪ Atrans(l, k)}

and consider the largest connected component of L1 of (L, E(π)) (which may consist of one
node l ∈ L only). Note that E(π) does not contain any edge between L1 and L2, i.e.,

E(π) ⊆ {{k, l} ∈ EL : k, l ∈ L1} ∪ {{k, l} ∈ EL : k, l ∈ L2}. (11)

If L1 = L, the line graph GL contains a tree which satisfies the condition of the theorem and
we are done. Otherwise we construct a tree and a timetable which is at least as good as π
and satisfies the condition.

To this end, consider again (L, E(π)) with its largest connected component L1, and let
L2 := L \ L1. Let S be a spanning tree of L1 using only edges of E(π). We now construct a
new timetable

π̃ := π(L1, t) =
{
πl if l ∈ L2
πl + t if l ∈ L1
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(see also (4)) which optimally adjusts the two clusters L1 and L2. According to (5) we hence
have to find the minimum of g(t) with

g(t) :=
∑

a∈Atrans(k,l)
k∈L1,l∈L2

wa[d̄a − t]T +
∑

a∈Atrans(k,l)
k∈L2,l∈L1

wa[d̄a + t]T

and d̄a := da + πl − πk as in (5). To this problem we apply Lemma 2 with A1 := {a ∈
Atrans(k, l) : k ∈ L1, l ∈ L2} and A2 := {a ∈ Atrans(k, l) : k ∈ L2, l ∈ L1}. We distinguish
two cases:
Case 1 There exists a minimum t∗ of g(t) with t∗ = d̄a for some a ∈ Atrans(k, l) with

k ∈ L1, l ∈ L2 (if
∑

a∈Atrans(k,l)
k∈L1,l∈L2

wa ≥
∑

a∈Atrans(k,l)
k∈L2,l∈L1

wa):

For the resulting timetable π̃ := π(L1, t
∗) we compute

π̃l − π̃k + da = πl − (πk + t∗) + da = πl − πk − d̄a + da = 0.

Case 2 There exists a minimum t∗ of g(t) with t∗ = T − d̄a for some a ∈ Atrans(k, l) with
k ∈ L2, l ∈ L1 (if

∑
a∈Atrans(k,l)

k∈L1,l∈L2

wa <
∑

a∈Atrans(k,l)
k∈L2,l∈L1

wa):

For the resulting timetable π̃ := π(L1, t
∗) we again receive

π̃l − π̃k + da = πl + t∗ − πk + da = πl + T − d̄a − πk + da = 0.

(Note that this is the same as t∗ = T − (T − d̄a) = d̄a for π̃ = π(L2, d̄a) according to (6).)
We now consider E(π̃) = {e = {k, l} ∈ EL : π̃l − π̃k − da = 0 for some a ∈ Atrans(k, l) ∪
Atrans(l, k)}. Observe that

for k, l both in L1 or for k, l both in L2 we have that π̃l − π̃k − da = 0 if and only if
πl − πk − da = 0,
for k ∈ L1, l ∈ L2 or vice versa, no edge {k, l} is contained in E(π) (see (11)), while we
have just seen that the optimal adjustment of the two clusters L1 and L2 yields at least
one transfer activity a in Atrans(k, l) ∪ Atrans(l, k) for some edge {k, l} between L1 and
L2 with π̃l − π̃k + da = 0. Hence {k, l} ∈ E(π̃) \ E(π).

We conclude that the largest connected component L′1 of E(π̃) contains L1 and at least one
additional node l ∈ L2. We may proceed with L1 := L′1 and π := π̃ and continue the whole
procedure until L1 = L. J
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