
Shortest Unique Substring Queries on Run-Length
Encoded Strings
Takuya Mieno1, Shunsuke Inenaga2, Hideo Bannai3, and
Masayuki Takeda4

1 Department of Informatics, Kyushu University, Fukuoka, Japan
takuya.mieno@inf.kyushu-u.ac.jp

2 Department of Informatics, Kyushu University, Fukuoka, Japan
inenaga@inf.kyushu-u.ac.jp

3 Department of Informatics, Kyushu University, Fukuoka, Japan
bannai@inf.kyushu-u.ac.jp

4 Department of Informatics, Kyushu University, Fukuoka, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
We consider the problem of answering shortest unique substring (SUS) queries on run-length
encoded strings. For a string S, a unique substring u = S[i..j] is said to be a shortest unique
substring (SUS) of S containing an interval [s, t] (i ≤ s ≤ t ≤ j) if for any i′ ≤ s ≤ t ≤ j′ with
j − i > j′ − i′, S[i′..j′] occurs at least twice in S. Given a run-length encoding of size m of
a string of length N , we show that we can construct a data structure of size O(m + πs(N,m))
in O(m logm + πc(N,m)) time such that queries can be answered in O(πq(N,m) + k) time,
where k is the size of the output (the number of SUSs), and πs(N,m), πc(N,m), πq(N,m) are,
respectively, the size, construction time, and query time for a predecessor/successor query data
structure of m elements for the universe of [1, N]. Using the data structure by Beam and Fich
(JCSS 2002), this results in a data structure of O(m) space that is constructed in O(m logm)
time, and answers queries in O(

√
logm/ log logm+ k) time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases string algorithms, shortest unique substring, run-length encoding

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.69

1 Introduction

The shortest unique substring (SUS) problem is, given a string S of length N and query
interval [s, t] ⊆ [1, N] of positions in S, find the shortest substring S[x..y] of S that contains
[s, t] (i.e., [s, t] ⊆ [x, y]) and is unique (i.e., occurs only once) in S. Finding SUSs has possible
applications in various fields, including alignment free genome comparison [10], PCR primer
design [17], and display of search results [17]. The problem was first introduced by Pei et
al. [17], who considered only a single position (i.e., an interval of size 1) as the query input,
and showed that the string can be preprocessed in O(N2) time and O(N) space so that
a single SUS for a query position can be returned in constant time. Again for the single
position query, Tsuruta et al. [20], Ileri et al. [13], and Hon et al. [11] independently showed
that the preprocessing can be improved to O(N) time and space, with constant query time.
Tsuruta et al. [20] and Ileri et al. [13] also showed that all SUSs that contain the query
position can be answered in O(k) time, where k is the number of SUSs to output. Hu et
al. [12] further generalized the problem to interval queries, and showed that it can be solved

© Takuya Mieno, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 69; pp. 69:1–69:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.69
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

69:2 Shortest Unique Substring Queries on Run-Length Encoded Strings

in O(N) time and space, and all SUSs that contain the query interval can be answered in
O(k) time.

In this paper, we consider the SUS problem for interval queries in the case where the
string is given in run-length encoding (RLE). The RLE of a string is a natural compressed
representation where each maximal character run of a character a of length e is encoded
as ae. String processing on the compressed representation of a string without explicit
decompression [1] is a heavily studied topic, and can lead to time and space efficient
processing [18]. There have been many studies on efficient algorithms for processing RLE
strings [7, 8, 2, 3, 16, 14, 9, 15, 4]. We show that given a run-length encoding of size m of a
string, we can construct a data structure of size O(m+ πs(N,m)) in O(m logm+ πc(N,m))
time such that all SUSs that contain the query interval can be answered in O(πq(N,m) + k)
time, where k is the number of such SUSs and πs(N,m), πc(N,m), πq(N,m) are, respectively,
the size, construction time, and query time for a predecessor/successor query data structure
of m elements for the universe of [1, N]. Using the data structure by Beam and Fich [5], this
results in a data structure of size O(m) space that is constructed in O(m logm) time, and
answers queries in O(

√
logm/ log logm+ k) time. Thus, compared to previous work [12],

our algorithm allows for more time and space efficient preprocessing for RLE compressible
strings, with a slight increase in query time.

Our result is an outcome of a non-trivial mixed use of combinatorial properties of RLE
strings and data structures built on RLE strings: All existing solutions [17, 20, 13, 12, 11] to
the SUS problem precompute minimal unique substrings (MUSs) of a given string, which
are minimal substrings of S occurring exactly once in S, and store them in Θ(N) space,
since, in general, there can be Θ(N) MUSs in a given string. However, using combinatorial
properties of MUSs and RLE strings, we show in this paper that any string of RLE size m
contains at most 2m− 1 MUSs, enabling our space-efficient O(m)-size data structure for the
SUS problem. This bound is indeed tight, namely, some strings contain 2m− 1 MUSs. In
our algorithm, we separately treat MUSs that are completely contained in runs, those that
start at the last characters of runs, and the rest. We then show that all the MUSs can be
precomputed in O(m logm) time using a special type of suffix arrays for RLE strings [19].
Finally, we show how, given all MUSs, to efficiently compute all SUSs for any given query
interval.

2 Preliminaries

2.1 Notations

Let Σ = {1, . . . , σ} be an alphabet. An element of Σ∗ is called a string. The length of a string
S is denoted by |S|. The empty string ε is the string of length 0, namely, |ε| = 0. The i-th
character of a string S of length N is denoted by S[i] for 1 ≤ i ≤ N . For 1 ≤ i ≤ j ≤ N ,
let S[i..j] = S[i] · · ·S[j], i.e., S[i..j] is the substring of S starting at position i and ending at
position j in S. For convenience, let S[i..j] = ε if j < i. For any 1 ≤ i ≤ N , non-empty strings
S[1..i] and S[i..N] are respectively called prefixes and suffixes of S. Let suf S(i) = S[i..N]. For
any strings X and Y , let lcp(X,Y) denote the length of the longest common prefix of X and
Y . For any string S of length n and any 1 ≤ i ≤ j ≤ N , let lceS(i, j) = lcp(suf S(i), suf S(j)).
If a string X is lexicographically smaller than another string Y , then we write X ≺ Y or
Y � X.

T. Mieno, S. Inenaga, H. Bannai, M. Takeda 69:3

Figure 1 All the MUSs of string S = aabaabbaabaaabb are S[2..6] = abaab, S[3..7] = baabb,
S[6..8] = bba, S[7..11] = baaba, and S[11..13] = aaa.

Figure 2 Consider the same string S = aabaabbaabaaabb as in Figure 1. All the SUSs that
contain a query interval [4, 6] are S[2..6] = abaab, S[3..7] = baabb, and S[4..8] = aabba. The first
two SUSs are also MUSs of S, while the last SUS is obtained by taking the beginning position 4 of
the query interval [4, 6] and the ending position of a MUS S[6..8] that overlaps the query interval.

2.2 MUSs and SUSs
For any non-empty strings S and w, let occS(w) denote the set of occurrences of w in S,
namely, occS(w) = {i | 1 ≤ i ≤ |S| − |w|+ 1, w = S[i..i+ |w| − 1]}. A substring w of a string
S is called a unique substring (resp. a repeat) of S if |occS(w)| = 1 (resp. |occS(w)| ≥ 2).
In the sequel, we will identify each unique substring w of S with its corresponding (unique)
interval [i, j] in S such that w = S[i..j]. A unique substring u = S[i..j] is said to be right
minimal unique if for any i ≤ j′ < j, S[i..j′] is a repeat of S. A unique substring u = S[i..j]
is said to be left minimal unique if for any i < i′ ≤ j, S[i′..j] is a repeat of S. A substring
u = S[i..j] is said to be a minimal unique substring (MUS) of S if u is right minimal unique
and left minimal unique. LetMS denote the set of all MUSs of S. Also, a unique substring
u = S[i..j] is said to be a shortest unique substring (SUS) of S containing an interval
[s, t] (i ≤ s ≤ t ≤ j) if for any i′ ≤ s ≤ t ≤ j′ with j − i > j′ − i′, S[i′..j′] is a repeat of
S. Hu et al. [12] showed that precomputing all MUSsMS in a given string S, later allows
to efficiently answer all SUSs that contain any query range [s, t]. See Figures 1 and 2 for
examples of MUSs and SUSs of a string.

2.3 Run-length encodings and our problem
The run-length encoding (RLE) of string S of length N is a compact representation of
S which encodes each maximal character run S[i..i + e − 1] by ae, if (1) S[j] = a for
all i ≤ j ≤ i + e − 1, (2) S[i − 1] 6= S[i] or i = 1, and (3) S[i + e − 1] 6= S[i + e] or
i+ e− 1 = N . E.g., RLE(aabbbbcccaaa$) = a2b4c3a3$1. The size of RLE(S) = ae1

1 · · · aem
m

is the number m of maximal character runs in S and is denoted by |RLE(S)|. For any
1 ≤ i ≤ m, let bposS(i), eposS(i), and expS(i) respectively denote the beginning position,
ending position, and exponent of the ith run of RLE(S) in the original string S; namely,
bposS(i) = 1 +

∑i−1
k=1 ek, eposS(i) =

∑i
k=1 ek, and expS(i) = ei.

In this paper, we will tackle the following problem:

I Problem 1 (SUSs on RLE strings).
Preprocess: RLE(S) = ae1

1 · · · aem
m of size m of string S of length N .

Query: An interval [s, t] ∈ [1, N].
Return: All SUSs of S containing the query interval [s, t].

MFCS 2016

69:4 Shortest Unique Substring Queries on Run-Length Encoded Strings

Figure 3 tRLESAS , tRLESA−1
S , tRLELCPS , and EXPS for RLE(S) = a3c2a1c2a2b2c3$1 with

m = 8 and N = |S| = 16. We remark that the exponents of the first runs in parentheses are
all regarded as 1. For instance, consider the suffixes of lexicographical ranks 2 and 3. Although
a1c2a2b2c3$1 is lexicographically greater than a3c2a1c2a2b2c3$1, a1c2a2b2c3$1 is lexicographically
smaller than a1c2a1c2a2b2c3$1, and tRLESAS builds on the latter ordering.

Our model of computation is a standard word RAM with machine word size Ω(logN).
The space complexity of our algorithm to solve Problem 1 will be evaluated by the number
of words (rather than bits).

3 Tools

In this section, we list some data structure which we use to solve Problem 1.

3.1 Suffix arrays and related arrays for RLE strings
Let S be a string of length N and let B ⊆ [1, N] be any subset of positions in S called
sampled positions. The sparse suffix array SSAB of a string S w.r.t. B is an array of size
|B| such that SSAB [i] ∈ B for all 1 ≤ i ≤ |B| and suf S(SSAB [i]) ≺ suf S(SSAB [i+ 1]) for all
1 ≤ i < N .

We will use the following arrays in our algorithm for computing SUSs on RLE strings.
These arrays were first introduced in [19]. Letm = |RLE(S)| and E = {eposS(i) | 1 ≤ i ≤ m}.
The truncated RLE suffix array for RLE(S), denoted tRLESAS , is the sparse suffix array
of S w.r.t. E. Namely, for any 1 ≤ i ≤ m, tRLESAS [i] = j iff j ∈ E and the lexicograph-
ical rank of the suffix S[j..N] is i among all suffixes of S that begin with positions in E.
Let tRLESA−1

S be an array of size m such that tRLESAS [tRLESA−1
S [i]] = eposS(i) for all

1 ≤ i ≤ m. Let tRLELCPS be an array of size m+1 such that tRLELCPS [1] = tRLELCPS [m+
1] = 0 and tRLELCPS [i] = lceS(tRLESAS [i − 1], tRLESAS [i]) = lcp(suf S(tRLESAS [i −
1]), suf S(tRLESAS [i])) for all 2 ≤ i ≤ m. Also, let EXPS be an array of size m such
that EXPS [i] = expS(k) where tRLESAS [i] = eposS(k) for all 1 ≤ i ≤ m, namely, EXPS [i]
stores the ignored exponent of the first run of the ith suffix in tRLESAS . See Figure 3 for
concrete examples of these arrays.

I Lemma 2 ([19]). Given RLE(S) of size m, tRLESAS, tRLESA−1
S , tRLELCPS, and EXPS

can be computed in a total of O(m logm) time with O(m) working space.

The following is a simple observation of these arrays we will exploit.

T. Mieno, S. Inenaga, H. Bannai, M. Takeda 69:5

I Observation 3. For any 1 ≤ i ≤ m, let

l = max{tRLELCPS [p], tRLELCPS [p+ 1]},

where p = tRLESA−1
S [i]. If l 6= 0, then l is the length of the longest repeat of S that starts at

eposS(i).

For example of Observation 3, see Figure 3. There, for position i = 3, we have p =
tRLESA−1

S [3] = 2. Then, observe that l = max{1, 4} = 4 is the length of the longest repeat
ac2a that starts at position eposS(3) = 6. On the other hand, for position i = 6, we have
p = tRLESA−1

S [6] = 4. Then, l = max{0, 0} = 0, but this is not equal to the length 1 of
the longest repeat b that starts at position eposS(6) = 12. In our algorithm, we will use
Observation 3 only the case where l 6= 0.

3.2 Range minimum/maximum query data structure
Let A be an integer array of size m. Give a query range [i, j] ∈ [1,m], a range minimum query
RmQA(i, j) returns the index of a minimum element in the subarray A[i, j], namely, it returns
one of arg mini≤k≤j{A[k]}. Similarly, range maximum query RMQA(i, j) returns the index
of a maximum element in the subarray A[i, j], namely, it returns one of arg maxi≤k≤j{A[k]}.
It is well-known (see e.g. [6]) that after an O(m)-time preprocessing over the input array A,
RmQA(i, j) and RMQA(i, j) can be answered in O(1) time for any query range [i, j], using
O(m) space.

3.3 Some functions related to tRLESA
In this subsection, we introduce some functions related to tRLESAS and the other arrays,
which will be used in our algorithm to compute SUSs on RLE strings.

Consider RLE(S) of size m. For any pair (i, j) ∈ [1,m] × [1,m], let trle_lceS(i, j) =
lceS(tRLESAS [i], tRLESAS [j]). Since

trle_lceS(i, j) =
{

RmQtRLELCPS
(i+ 1, j) if i < j,

RmQtRLELCPS
(j + 1, i) otherwise,

after a linear-time preprocessing on tRLELCPS , we can answer trle_lceS(i, j) in O(1) time
for any given pair (i, j).

For any 1 ≤ q ≤ m and e ≥ 1, let exp_pos(q, e) denote a query which returns a position
q′ 6= q, if it exists, that satisfies EXPS [q′] ≥ e and S[tRLESAS [q′]] = S[tRLESAS [q]] while
maximizing trle_lce(q, q′), and nil otherwise. Thus, with q′ = exp_pos(q, e), we can obtain
the length of the longest repeating substring starting at position tRLESAS [q] − e + 1 as
e− 1 + trle_lce(q, q′).

I Lemma 4. Given EXPS for RLE(S) of size m, we can preprocess EXPS in O(m) time so
that subsequent exp_pos(q, e) queries can be answered in O(logm) time for any 1 ≤ q ≤ m
and e ≥ 1.

Proof. We construct an RMQ data structure for EXPS in O(m) time. Since lexicographically
close strings share a longer prefix, exp_pos(q, e) is one of the two closest neighbours of q in
EXPS that stores an exponent at least e, corresponding to a run of the same character. Thus,
we can compute exp_pos(q, e) using two binary searches on EXP, by comparing e with the
answer of the RMQ queries, starting with the initial range [1, q − 1] and [q + 1,m]. Since the
size of EXPS is m and each RMQ query takes O(1) time, it takes O(logm) time to locate
exp_pos(q, e). J

MFCS 2016

69:6 Shortest Unique Substring Queries on Run-Length Encoded Strings

For any 1 ≤ q ≤ m and ` ≥ 0, let lce_pos(q, `) denote a query which returns a position
q′ 6= q, if it exists, such that trle_lce(q, q′) ≥ ` while maximizing EXPS [q′], and nil otherwise.
In other words, lce_pos(q, `) corresponds to a suffix that has the maximum exponent out of
suffixes which, have a common prefix of length ` with the suffix corresponding to q. Note
that if ` > max{tRLELCP[q], tRLELCP[q + 1]}, lce_pos(q, `) = nil.

I Lemma 5. Given tRLELCPS for RLE(S) of size m, we can preprocess tRLELCPS in
O(m) time so that subsequent lce_pos(q, `) queries can be answered in O(logm) time for
any 1 ≤ q ≤ m and ` ≥ 0.

Proof. We construct an RmQ data structure on tRLELCPS . Since, as noted previously,
lexicographically close strings share a longer prefix, values of trle_lce(q, q′′) are larger when
q′′ is closer to q. Thus, similar to Lemma 4, we can conduct two binary searches on tRLELCPS

using RmQ and obtain the maximal range [qp, qn] such that trle_lce(q, q′′) ≥ ` if and only
if q′′ ∈ [qp, qn]. After finding the range, the larger of the two RMQ queries for the ranges
[qp, q − 1] and [q + 1, qn] on EXPS gives the answer. J

3.4 Predecessor/successor query data structure
Let A[1..m] be an array containing positive integers less than or equal to N , in increasing
order. The predecessor and successor queries on A are defined for any 1 ≤ d ≤ N as

PredA(d) =
{

max{i | A[i] ≤ d} if it exists,
0 otherwise.

SuccA(d) =
{

min{i | A[i] ≥ d} if it exists,
N + 1 otherwise.

There exists a data structure of O(m) space that can be built in O(m
√

logm/ log logm)
time, such that later, for any given 1 ≤ d ≤ N , PredA(d) and SuccA(d) can be answered in
O(

√
logm/ log logm) time [5].

4 Computing MUSs from RLE strings

In this section we show how we can compute MS given RLE(S), which is the main part
of our preprocessing. As will be seen in Section 4.1, we partition MUSs into three disjoint
groups; those that are completely contained in runs, those that start at the last characters of
runs, and the rest.

4.1 Size of MS

We begin with the analysis of the size ofMS in terms of m = |RLE(S)|. Let

M(1) ={[x, y] ∈MS | bposS(i) ≤ x ≤ y ≤ eposS(i) for some 1 ≤ i ≤ m},

M(2) ={[x, y] ∈MS | x = eposS(i) < y for some 1 ≤ i < m}, and

M(3) ={[x, y] ∈MS | bposS(i) ≤ x < eposS(i) < y for some 1 ≤ i < m}.

Clearly,MS =M(1)∪M(2)∪M(3). For example, for the same string S = aaaccaccaabbccc$
as in Figure 3, MS = {[1, 3], [2, 4], [5, 7], [8, 10], [10, 11], [11, 12], [12, 13], [13, 15], [16, 16]} =
{aaa, aac, cac, caa, ab, bb, bc, ccc, $}, M(1) = {aaa, bb, ccc, $}, M(2) = {cac, caa, ab, bc},
andM(3) = {aac}.

T. Mieno, S. Inenaga, H. Bannai, M. Takeda 69:7

Since, by definition, a MUS cannot be a proper substring of another MUS, there can be
at most one MUS that starts at any given position. Thus, it follows that |M(2)| ≤ m− 1.

For |M(3)|, we have the following lemma.

I Lemma 6. For any [x, y] ∈ M(3) and p ∈ occS(S[x + 1..y]) \ {x + 1}, we have that
p = bposS(i) for some 1 ≤ i < m.

Proof. Since S[x..y] is a MUS, S[x+ 1..y] is not unique and thus occS(S[x+ 1..y]) \ {x+ 1}
is not empty. If p 6= bposS(i) for any 1 ≤ i < m, then S[p− 1] = S[p] and thus gives another
occurrence of S[x..y] contradicting that it is unique. J

We now show |M(3) ∪M(1)| ≤ m. Let R = {bposS(i) | 1 ≤ i ≤ m}. From Lemma 6, we can
define a function f :M(3) ∪M(1) → R as follows:

f([x, y]) =
{

min(occS(S[x+ 1..y]) \ {x+ 1}) if [x, y] ∈M(3)

x if [x, y] ∈M(1)

Suppose f is not an injective function, i.e., there exist distinct intervals [x1, y1], [x2, y2] ∈
M(3) ∪M(1) such that x1 6= x2 and p = f([x1, y1]) = f([x2, y2]). Note that by definition,
M(3) ∩M(1) = ∅.

If [x1, y1], [x2, y2] ∈M(3), assume w.l.o.g. y1 − x1 ≤ y2 − x2. By definition of f , we have
S[x1 + 1..y1] = S[p..p+ y1 − x1 − 1] and S[x2 + 1..y2] = S[p..p+ y2 − x2 − 1]. Also, from the
definition of M(3), we have S[x1] = S[x1 + 1] = S[p] = S[x2 + 1] = S[x2]. It follows that
S[x1..y1] is a prefix of S[x2..y2], contradicting that S[x1..y1] is unique. If [x1, y1] ∈ M(3)

and [x2, y2] ∈ M(1), this implies that S[x2..y2] is a prefix of S[x1 + 1..y1] which is not
unique, thus contradicting that S[x2..y2] is unique. Finally, if [x1, y1], [x2, y2] ∈ M(1),
p = f([x1, y1]) = f([x2, y2]) implies that p = x1 = x2 contradicting that x1 6= x2. Thus, f
must be an injective function. Therefore, |M(3) ∪M(1)| ≤ |R| = m.

From the above arguments, we have:

I Lemma 7. |MS | ≤ 2m− 1.

We note that the upper bound of Lemma 7 is tight, and there exists a string S such that
|MS | = 2m − 1. Consider S = ae1

1 a
e2
2 · · · aem

m such that for any 1 ≤ i, j ≤ m, ei ≥ 2, and
ai 6= aj when i 6= j. Clearly, aei

i is a MUS for all 1 ≤ i ≤ m, and aiai+1 is a MUS for all
1 ≤ i < m, giving 2m− 1 MUSs.

4.2 Computing MS

We now show how to obtain MS in O(m logm) time and O(m) space, by computing the
setsM(1),M(2),M(3) as defined in Section 4.1.

4.2.1 Computing M(1)

To computeM(1), we first show a necessary and sufficient condition for an interval [x, y] to
be inM(1).

I Lemma 8. For any string S where RLE(S) = ae1
1 · · · aem

m , an interval [x, y] ∈ M(1) if
and only if there exists some 1 ≤ i ≤ m such that bposS(i) = x, eposS(i) = y, and for any
j ∈ [1,m] \ {i}, either ai 6= aj or ej < ei.

MFCS 2016

69:8 Shortest Unique Substring Queries on Run-Length Encoded Strings

Proof. (⇒) Since [x, y] is a MUS and any proper substring of [x, y] is not unique, it must be
that x = bposS(i), y = eposS(i) for some 1 ≤ i ≤ m. Furthermore, it must be that ai 6= aj or
ej < ei for any j ∈ [1,m] \ {i}, since otherwise, [x, y] will not be unique. (⇐) The condition
implies that S[x..y] is the longest run of character ai in S and is unique. Since any proper
substring of S[x..y] is not unique, [x, y] is a MUS and is thus inM(1). J

Let ΣS be the subset of Σ consisting of letters occurring in S. Using Lemma 8, we can
compute M(1) by simply checking for each character a ∈ ΣS , whether there exists a run
of character a with a unique (w.r.t. runs of character a) maximum exponent, and if so,
include the interval corresponding to the run inM(1). Since |ΣS | ≤ m, this can be done in
O(m logm) time and O(m) space using any standard sorting algorithm.

4.2.2 Computing M(2)

To compute,M(2), we check for each 1 ≤ i ≤ m− 1, whether there exists a MUS that starts
at eposS(i) and insert it inM(2) if there is. More specifically, we first compute y such that
S[eposS(i)..y] is right minimal unique. Next, we check whether S[eposS(i) + 1..y] is unique
or not, and if not, we have that [eposS(i), y] is also left minimal unique and thus is a MUS.

Let r = tRLESA−1
S [i]. By Observation 3, we have that l = max{tRLELCPS [r], tRLELCPS [r+

1]} is the length of the longest repeat of S that starts at eposS(i). This implies that
S[eposS(i)..eposS(i) + l] is right minimal unique. Thus, given the tRLELCPS array, y =
eposS(i) + l can be computed in constant time. Next, to determine whether S[eposS(i) + 1..y]
is unique or not, we compute y′ such that S[eposS(i) + 1..y′] is right minimal unique.
Then, [eposS(i) + 1, y] is unique iff y′ ≤ y. Noticing that eposS(i) + 1 = bposS(i + 1),
we can compute y′ as follows. Let q = tRLESA−1

S [i + 1] and x = EXPS [q]. We compute
l′ = x− 1 + trle_lceS(q, q′), where q′ = exp_pos(q, x). By definition, we have that l′ is the
length of the longest repeat of S that starts at bposS(i+ 1). Thus, y′ = bposS(i+ 1) + l′. By
Lemma 4, this can be computed in O(m logm) total time and O(m) space for all i.

4.2.3 Computing M(3)

For each 1 ≤ i < m, we will compute the elements ofM(3) that start in the ith run. Let
s = bposS(i) and we repeat the following while s < eposS(i). First, compute y such that
S[s..y] is right minimal unique. If such y does not exists, i.e., S[s..|S|] is not unique, then
we are done. If y does exist, y ≥ eposS(i) since, as noted earlier, no proper substring of a
run can be unique. If y = eposS(i), we must have that s = bposS(i) and [s, y] is a MUS in
M(1) and not inM(1); thus we simply increment s by 1 and repeat the process. Otherwise,
if y > eposS(i), we try to find x such that S[x..y] is left minimal unique. Then, by definition,
[x, y] is a MUS. If x < eposS(i), then we have that [x, y] is a MUS inM(3), and since there
can be no other MUS that starts in the interval [s, x], we set s = x+ 1 and repeat the process.
Otherwise, if x ≥ eposS(i), then [x, y] is either a MUS inM(2) or does not start in the ith
run, so we are finished for the current value of i. Because we obtain one distinct MUS each
time we determine y and x, the above process is repeated for a total of O(m) times for all i
by Lemma 7. What remains is how to determine y and x.

Whether y = eposS(i) or not can be determined by checking if [s, eposS(i)] is a MUS in
M(1) as described in Section 4.2.1. Next, we assume y ≥ eposS(i) + 1 = bposS(i+ 1). Let
q = tRLESA−1

S [i], q′ = exp_pos(q, eposS(i)− s+ 1). If q′ is nil, this implies that no run other
than the ith one contains a run of character S[eposS(i)] with length at least eposS(i)− s+ 1.
Since y > eposS(i), we have that S[s..eposS(i)] is not unique but S[s..bposS(i+ 1)] is unique
and thus, y = bposS(i+1). Otherwise, if q′ is not nil, then, we have that eposS(i)−s+l, where

T. Mieno, S. Inenaga, H. Bannai, M. Takeda 69:9

l = trle_lceS(q, q′), is the length of the longest repeat of S that starts at s. Therefore, we have
y = eposS(i) + l. From the above arguments and Lemma 4, y can be determined in O(logm)
time. Whether x ≥ eposS(i) or not can be determined by the arguments for checking whether
[eposS(i), y] is a MUS inM(2), as described in Section 4.2.2. Next, we assume x < eposS(i).
Then, S[eposS(i)..y] is a repeat. Let q = tRLESA−1

S (i), q′ = lce_pos(q, y − eposS(i) + 1).
From the definition of lce_pos, we have x = eposS(i)− EXPS [q′] + 1. Thus, from the above
arguments and Lemma 5, x can be determined in O(logm) time.

The arguments from Sections 4.2.1-4.2.3 lead to the following lemma.

I Lemma 9. For any string S, the set MS can be computed from RLE(S) in O(m logm)
time using O(m) space, where m = |RLE(S)|.

5 Solution to the SUS Problem

5.1 Data structure
Our data structure consists of three arrays: XS , YS , and MUSlenS . Arrays XS and YS are
arrays of size |MS | such that for any 1 ≤ i ≤ |MS |, [XS [i],YS [i]] is the ith MUS in order of
their start position in S. Also, let the array MUSlenS [i] = YS [i]− XS [i] + 1 hold the length
of each MUS. Arrays XS and YS are preprocessed for Succ and Pred queries, and MUSlenS

is preprocessed for RmQ queries. From arguments in previous sections, the preprocessing
can clearly be done in a total of O(m logm) time and O(m) space.

5.2 Answering queries
For any two intervals [s, t] and [x, y], let cover([s, t], [x, y]) be the smallest interval that
contains both [s, t], [x, y], i.e., cover([s, t], [x, y]) = [min{s, x},max{t, y}].

Given a query interval [s, t], let i = PredYS
(t) and j = SuccXS

(s). Clearly, all SUSs that
contain interval [s, t] are contained in the set {|cover([s, t], [XS [r],YS [r]])| | i ≤ r ≤ j}. Thus,
it suffices to find the intervals of smallest size in this set, i.e., if p ∈ arg min{|cover([s, t], [X[r],
Y[r]])| | i ≤ r ≤ j}, then cover([s, t], [XS [p],YS [p]]) is a SUS. Notice that for all i < r < j,
we have that cover([s, t], [XS [r],YS [r]]) = [XS [r],YS [r]]. Thus, the shortest of these can be
found by considering cover([s, t], [XS [i],YS [i]]), cover([s, t], [XS [j],YS [j]]), and performing
an RmQ query on MUSlenS . An example is shown in Figure 4. For finding a single SUS,
the query time is dominated by the Pred and Succ queries, and thus is O(πq(N,m)) time.
To output all SUSs that contain [s, t], recursive RmQ on sub-intervals of MUSlenS can be
conducted in constant time per output, in order to find all the shortest intervals in the range
[i, j]. Thus, the total query time is O(πq(N,m) + k), where k is the total number of SUSs
that are output.

Putting everything together, we have proved the following theorem:

I Theorem 10. Given RLE(S) of size m representing a string S of length N , we can
compute in O(m logm + πc(N,m)) time a data structure of size O(m + πs(N,m)) which
answers SUS queries for any interval [s, t] ⊆ [1, N] in O(πq(N,m) + k) time, where k is the
number of SUSs to output.

Using known results for predecessor/successor queries [5], we obtain the following corollary.

I Corollary 11. Given RLE(S) of size m representing a string S of length N , we can
compute in O(m logm) time a data structure of size O(m) which answers SUSs queries for
any interval [s, t] ⊆ [1, N] in O(

√
logm/ log logm+ k) time, where k is the number of such

SUSs.

MFCS 2016

69:10 Shortest Unique Substring Queries on Run-Length Encoded Strings

Figure 4 Finding SUSs that contains query interval [s, t]. The SUS must be either a MUS
that completely contains [s, t] (MUS 3,4), or, it must be an interval that covers both [s, t] and the
preceding MUS (MUS 2) or succeeding MUS (MUS 5). Of these, the intervals with shortest length
are the SUSs that contain [s, t].

6 Conclusions and open question

We considered the problem of finding all shortest unique substrings (SUSs) of a string S given
as the run-length encoding (RLE) of size m. We showed that we can preprocess the RLE
in O(m logm) time and O(m) space so that subsequent SUS queries for S can be answered
in O(

√
logm/ log logm+ k) time, where k is the number of outputs for the query interval.

Notice that none of the preprocessing time, space requirement, or query time depends on the
original length N of the string S. This efficiency was achieved by a non-trivial use of the
suffix arrays for RLE strings and by revealing combinatorial properties of MUSs and SUSs
on RLE strings.

The
√

logm/ log logm term in our query time is due to the use of the O(m)-space
dynamic predecessor/successor data structure by Beame and Fich [5]. They also showed
that for a static set A of m integers from the universe [1, N], any predecessor/successor data
structure for A of polynomial size in m must use Ω(

√
logm/ log logm) query time (Corollary

3.10 of [5]). Notice that once we build arrays XS and YS , they will remain static. Hence,
we cannot hope for faster SUS query time as long as we use predecessor/successor queries
to find a MUS for a given interval. Thus, an interesting open question is whether there
exists a data structure of size O(m) that can efficiently answer SUS queries without using
predecessor/successor queries.

Acknowledgements. The authors especially thank an anonymous reviewer for invaluable
comments which helped improve the paper. SI, HB, MT were partly supported by JSPS
KAKENHI Grant Numbers 26280003, 16H02783, 25240003.

References
1 Amihood Amir, Gary Benson, and Martin Farach. Let sleeping files lie: pattern matching

in z-compressed files. Journal of Computer and System Sciences, 52(2):299–307, April 1996.
2 Alberto Apostolico, Gad M. Landau, and Steven Skiena. Matching for run-length encoded

strings. J. Complex., 15(1):4–16, March 1999. doi:10.1006/jcom.1998.0493.
3 Ora Arbell, Gad M. Landau, and Joseph S.B. Mitchell. Edit distance of run-length

encoded strings. Information Processing Letters, 83(6):307–314, 2002. doi:10.1016/
S0020-0190(02)00215-6.

4 Golnaz Badkobeh, Gabriele Fici, Steve Kroon, and Zsuzsanna Lipták. Binary jumbled
string matching for highly run-length compressible texts. Information Processing Letters,
113(17):604–608, 2013. doi:10.1016/j.ipl.2013.05.007.

http://dx.doi.org/10.1006/jcom.1998.0493
http://dx.doi.org/10.1016/S0020-0190(02)00215-6
http://dx.doi.org/10.1016/S0020-0190(02)00215-6
http://dx.doi.org/10.1016/j.ipl.2013.05.007

T. Mieno, S. Inenaga, H. Bannai, M. Takeda 69:11

5 Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem and related
problems. Journal of Computer and System Sciences, 65(1):38–72, 2002. doi:10.1006/
jcss.2002.1822.

6 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Proceedings
of the 4th Latin American Symposium on Theoretical Informatics, LATIN 2000, pages 88–
94, 2000. URL: http://dl.acm.org/citation.cfm?id=646388.690192.

7 Horst Bunke and János Csirik. An algorithm for matching run-length coded strings. Com-
puting, 50(4):297–314, 1993.

8 Horst Bunke and János Csirik. An improved algorithm for computing the edit distance of
run-length coded strings. Information Processing Letters, 54(2):93–96, April 1995.

9 Kuan-Yu Chen, Ping-Hui Hsu, and Kun-Mao Chao. Efficient retrieval of approximate
palindromes in a run-length encoded string. Theoretical Computer Science, 432:28–37,
2012. doi:10.1016/j.tcs.2012.01.023.

10 Bernhard Haubold, Nora Pierstorff, Friedrich Möller, and Thomas Wiehe. Genome compar-
ison without alignment using shortest unique substrings. BMC Bioinformatics, 6(1):123,
2005.

11 Wing-Kai Hon, Sharma V. Thankachan, and Bojian Xu. An in-place framework for exact
and approximate shortest unique substring queries. In ISAAC 2015, pages 755–767, 2015.

12 Xiaocheng Hu, Jian Pei, and Yufei Tao. Shortest unique queries on strings. In Proc. SPIRE
2014, pages 161–172, 2014.

13 Atalay Mert Ileri, M. Oguzhan Külekci, and Bojian Xu. A simple yet time-optimal and
linear-space algorithm for shortest unique substring queries. Theor. Comput. Sci., 562:621–
633, 2015.

14 Jin Wook Kim, Amihood Amir, Gad M. Landau, and Kunsoo Park. Computing sim-
ilarity of run-length encoded strings with affine gap penalty. Theoretical Computer
Science, 395(2–3):268–282, 2008. SAIL – String Algorithms, Information and Learn-
ing: Dedicated to Professor Alberto Apostolico on the occasion of his 60th birthday.
doi:10.1016/j.tcs.2008.01.008.

15 Jia-Jie Liu, Guan-Shieng Huang, and Yue-Li Wang. A fast algorithm for finding the
positions of all squares in a run-length encoded string. Theoretical Computer Science,
410(38–40):3942–3948, 2009. doi:10.1016/j.tcs.2009.05.032.

16 Mäkinen, Ukkonen, and Navarro. Approximate matching of run-length compressed strings.
Algorithmica, 35(4):347–369, 2003. doi:10.1007/s00453-002-1005-2.

17 Jian Pei, Wush Chi-Hsuan Wu, and Mi-Yen Yeh. On shortest unique substring queries. In
Proc. ICDE 2013, pages 937–948, 2013.

18 Masayuki Takeda. Encyclopedia of algorithms, chapter "Compressed Pattern Matching",
pages 171–174. Springer US, 2008.

19 Yuya Tamakoshi, Keisuke Goto, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
An opportunistic text indexing structure based on run length encoding. In Proc. CIAC
2015, pages 390–402, 2015.

20 Kazuya Tsuruta, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Shortest unique
substrings queries in optimal time. In Proc. SOFSEM 2014, pages 503–513, 2014.

MFCS 2016

http://dx.doi.org/10.1006/jcss.2002.1822
http://dx.doi.org/10.1006/jcss.2002.1822
http://dl.acm.org/citation.cfm?id=646388.690192
http://dx.doi.org/10.1016/j.tcs.2012.01.023
http://dx.doi.org/10.1016/j.tcs.2008.01.008
http://dx.doi.org/10.1016/j.tcs.2009.05.032
http://dx.doi.org/10.1007/s00453-002-1005-2

	Introduction
	Preliminaries
	Notations
	MUSs and SUSs
	Run-length encodings and our problem

	Tools
	Suffix arrays and related arrays for RLE strings
	Range minimum/maximum query data structure
	Some functions related to
	Predecessor/successor query data structure

	Computing MUSs from RLE strings
	Size of
	Computing
	Computing
	Computing
	Computing

	Solution to the SUS Problem
	Data structure
	Answering queries

	Conclusions and open question

