
The Ground-Set-Cost Budgeted Maximum
Coverage Problem
Irving van Heuven van Staereling1, Bart de Keijzer2, and
Guido Schäfer3

1 Centrum Wiskunde & Informatica (CWI), Networks and Optimization Group,
Amsterdam, The Netherlands
heuven@cwi.nl

2 Centrum Wiskunde & Informatica (CWI), Networks and Optimization Group,
Amsterdam, The Netherlands
keijzer@cwi.nl

3 Centrum Wiskunde & Informatica (CWI), Networks and Optimization Group,
Amsterdam, The Netherlands; and
Vrije Universiteit Amsterdam, Department of Econometrics and Operations
Research, Amsterdam, The Netherlands
schaefer@cwi.nl

Abstract
We study the following natural variant of the budgeted maximum coverage problem: We are
given a budget B and a hypergraph G = (V,E), where each vertex has a non-negative cost and a
non-negative profit. The goal is to select a set of hyperedges T ⊆ E such that the total cost of the
vertices covered by T is at most B and the total profit of all covered vertices is maximized. Besides
being a natural generalization of the well-studied maximum coverage problem, our motivation
for investigating this problem originates from its application in the context of bid optimization
in sponsored search auctions, such as Google AdWords.

It is easily seen that this problem is strictly harder than budgeted max coverage, which means
that the problem is (1 − 1/e)-inapproximable. The difference of our problem to the budgeted
maximum coverage problem is that the costs are associated with the covered vertices instead
of the selected hyperedges. As it turns out, this difference refutes the applicability of standard
greedy approaches which are used to obtain constant factor approximation algorithms for several
other variants of the maximum coverage problem. Our main results are as follows:

We obtain a (1− 1/
√
e)/2-approximation algorithm for graphs.

We derive a fully polynomial-time approximation scheme (FPTAS) if the incidence graph of
the hypergraph is a forest (i.e., the hypergraph is Berge-acyclic). We also extend this result
to incidence graphs with a fixed-size feedback hyperedge node set.
We give a (1 − ε)/(2d2)-approximation algorithm for every ε > 0, where d is the maximum
degree of a vertex in the hypergraph.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases maximum coverage problem, approximation algorithms, hypergraphs,
submodular optimization, sponsored search

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.50

1 Introduction

In the budgeted maximum coverage problem we are given a hypergraph G = (V,E) with a
non-negative cost c(e) ∈ R≥0 for every hyperedge e ∈ E and a non-negative profit p(i) ∈ R≥0

© Irving van Heuven van Staereling, Bart de Keijzer, and Guido Schäfer;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 50; pp. 50:1–50:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.50
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

50:2 The Vertex-Cost Budgeted Max-Coverage Problem

for every vertex i ∈ V , and a non-negative budget B ∈ R≥0. The goal is to select a set of
hyperedges T ⊆ E whose total cost is at most B such that the total profit of all vertices
covered by the hyperedges in T is maximized.

This is a fundamental combinatorial optimization problem with many applications in
resource allocation, job scheduling and facility location (see, e.g., [6] for examples). Feige [4]
showed that this problem is not polynomial-time approximable within a factor of (1− 1/e)
unless NP ⊆ DTIME(nO(log logn)), even if all hyperedges have unit cost. Khuller, Moss and
Naor [9] derived a (1− 1/e)-approximation algorithm for the budgeted maximum coverage
problem (which is the best possible). Their algorithms are based on a natural greedy approach
in combination with a standard enumeration technique. Similar approaches were used to
derive constant factor approximation algorithms for several other variants and generalizations
of the maximum coverage problem.

In this paper, we study the following natural variant of the budgeted maximum coverage
problem, which we call the ground-set-cost budgeted maximum coverage problem (GBMC):
We are given a hypergraph G = (V,E) with a non-negative cost c(i) ∈ R≥0 and a non-
negative profit p(i) ∈ R≥0 for every vertex i ∈ V , and a non-negative budget B ∈ R≥0. For a
subset T ⊆ E, define c(T) =

∑
i∈∪T c(i) and p(T) =

∑
i∈∪T p(i) as the total cost and profit,

respectively, of all vertices covered by the hyperedges in T .1 Our goal is to select a set of
hyperedges T ⊆ E such that the total cost c(T) of all covered vertices is at most B and the
total profit p(T) of all covered vertices is maximized. To the best of our knowledge, this
problem has not been studied before.

Note that a crucial difference here is that in our problem costs are incurred per covered
vertex, while in the budgeted maximum coverage problem costs are incurred per selected
hyperedge. Albeit seemingly minor, this change makes the problem much harder to tackle
algorithmically. More specifically, most greedy approaches (which give rise to constant factor
approximation guarantees for several variants of the maximum coverage problem) turn out
to be inapplicable in our setting because of the following reason: The basic idea underlying
these greedy approaches is to select in each iteration a hyperedge that is most cost-efficient,
i.e., maximizes the ratio of the profit of newly covered vertices over the cost of selecting
the hyperedge. A property that is crucially exploited in the analysis of these algorithms is
that the cost for selecting a hyperedge is constant, i.e., its cost-efficiency can only decrease
throughout the course of the algorithm (as more of its vertices get covered). However, this
monotonicity property is no longer guaranteed in our setting because the cost for picking a
hyperedge depends on the set of already covered vertices. In fact, it is not hard to see that
the cost-efficiency of a hyperedge can change arbitrarily from one iteration to the next.

Our motivation for investigating the vertex-cost budgeted maximum coverage problem
is two-fold: (i) It is a generalization of the well-studied maximum coverage problem and
a natural variant of the budgeted maximum coverage problem. (ii) It is a fundamental
combinatorial optimization problem having several applications in practice. Of particular
importance is its relation to the problem of computing optimal bids in sponsored search
auctions such as Google AdWords (details will be given in the full version of the paper).

Our contributions

The contributions presented in this paper are as follows:
1. We obtain a (1− 1/

√
e)/2-approximation algorithm for graphs (Sections 2 and 3).

1 Throughout this paper, for a collection of sets F we write ∪F to refer to the set ∪S∈F S.

I. van Heuven van Staereling, B. de Keijzer, and G. Schäfer 50:3

The main idea here is to reduce this problem to the budgeted maximum coverage problem
with an exponential number of hyperedges. However, we do not need to generate the
exponentially large instance explicitly; but instead we make use of a concise representation
of the instance and show that such instances can be approximated in polynomial time,
given that we have access to an oracle that can select in polynomial time a hyperedge
with approximately highest profit per unit of cost. As a last step in our reduction, we
prove that such an oracle exists.

2. We derive in Section 5 a pseudo-polynomial time algorithm for the case when the incidence
graph of the hypergraph is a forest (i.e., the hypergraph is Berge-acyclic). Further, we
adapt this algorithm into a fully polynomial-time approximation scheme (FPTAS).
At the core of this algorithm lies a bi-level dynamic program. The case of forests is
important in its own right and, additionally, this algorithm constitutes an important
building block of our O(1/d2)-approximation algorithm (see Contribution 4).

3. In Section 6, we extend the above algorithm to a pseudo-polynomial time algorithm for
incidence graphs with a bounded set of nodes that covers all cycles (i.e., the general case,
but parametrized).
More specifically, we show that for any incidence graph with a fixed-size feedback hyperedge
node set, i.e., a hyperedge node set such that removing it from the incidence graph leaves
no cycles, there exists a pseudo-polynomial time algorithm for the GBMC problem.

4. We give a (1 − ε)/(2d2)-approximation algorithm for every ε > 0 for the general case,
where d is the maximum degree of a vertex in the hypergraph (Section 4).
In this algorithm, we first decompose the incidence graph of the hypergraph into a
collection of at most d trees for which we compute an approximate solution by using our
FPTAS for forests above. From this we then extract a solution that is feasible for the
original instance and guarantees an approximation ratio of at least (1− ε)/(2d2).

Related work

Much literature is available on the maximum coverage problem and its variants (see, e.g.,
[1, 3, 9] and the references therein). Most related to our problem is the budgeted maximum
coverage problem [9]. As outlined above, the greedy approach of [9] cannot take into account
that the costs are incurred per vertex instead of per set. Moreover, in [3], a generalized
version of the budgeted maximum coverage problem is studied, but this generalization does
not include GBMC as a special case.

Note that our GBMC problem on graphs reduces to the knapsack problem if the incidence
graph is a matching. This problem is known to be weakly NP-hard and admits an FPTAS
(see, e.g., [8]).

Our GBMC problem is related to the budgeted bid optimization problem. This problem
was first proposed in the paper by Feldman et al. [5]. The authors derive a (1 − 1/e)-
approximation algorithm if the budget constraint is soft, i.e., has to be met in expectation
only. In contrast, in the budgeted bid optimization problem considered here, this budget
constraint is hard.

The GBMC problem can be seen as a special case of a more general set of problems
where we have to maximize a submodular profit function subject to the constraint that a
submodular cost function does not exceed a given budget. This can be seen by considering
the set of hyperedges to be the ground set of the submodular functions. However, when we
have oracle access to both submodular functions, it has been shown that this more general
problem is not approximable within a factor of log(m)/

√
m, where m is the number of

elements in the ground set. This holds even for the special case that the objective function is

MFCS 2016

50:4 The Vertex-Cost Budgeted Max-Coverage Problem

the modular function that returns the cardinality of the set. This follows from Theorem 4.2
in [10]; see also [7].

Preliminaries

For an integer a ∈ N, we write [a] and [a]0 to denote the sets {1, . . . , a} and {0, 1, . . . , a}
respectively. When F is a family of sets, we write

⋃
F to denote the set

⋃
S∈F S.

Let G = (V,E) be a hypergraph. The incidence graph I(G) of G is defined as the bipartite
graph I(G) = (E ∪ V,H) with H = {{e, v} | v ∈ e}. We say that G is acyclic if its incidence
graph I(G) does not contain a cycle. Given a subset E′ ⊆ E, we use G[E′] to refer to the
subgraph of G induced by the hyperedges in E′, i.e., G[E′] = (V ′, E′) with V ′ = ∪E′. A
hypergraph T is called a subtree of G if T is a subgraph of G that is acyclic.

Throughout this paper we will use the convention that when discussing a hypergraph, n
denotes the number of vertices of the hypergraph and m denotes the number of hyperedges
of the hypergraph. Moreover, in the remainder of this paper, we assume without loss of
generality that all costs (on the nodes or edges) are strictly positive.

It is not hard to prove that GBMC cannot be approximated to within a factor of (1−1/e)
in polynomial time, unless NP ⊆ DTIME(nO(log logn)) (details will be provided in the full
version of the paper).

Due to space limitations, some figures and technical content is omitted from this paper
and will be provided in the full version.

2 Budgeted Maximum Coverage with Oracles

In this section we first consider the classical budgeted maximum coverage problem. The
result presented in this section will serve as a building block in the approximation algorithm
presented in the next section, for solving GBMC on graphs.

A polynomial-time (1−1/e)-approximation algorithm for the budgeted maximum coverage
problem was previously given in [9]. In the same paper, various simpler algorithms with
worse approximation factors are presented. In this section, we present a variation of one of
these algorithms that achieves a (1− 1/e)/2-approximation guarantee, which can run even if
the algorithm is not granted direct access to the input instance. We make this precise in the
following definition.

I Definition 1 (cost-efficiency oracle). Let I = (G = (V,E), c, p, B) be an instance of the
budgeted maximum coverage problem, i.e., G = (V,E) is a hypergraph, c : E → Q≥0 is
a function that specifies a cost c(e) for each hyperedge e ∈ E, p : V → Q is a function
that specifies a profit p(i) for each vertex i ∈ V , with B ∈ Q the budget. For α ∈ [0, 1],
an α-approximate cost-efficiency oracle for I is a function fI : 2V → E that maps a set of
vertices S ⊆ V to a hyperedge e ∈ E such that c(e) ≤ B and∑

i∈e\S

p(i)
c(e) ≥ α ·

∑
i∈e′\S

p(i)
c(e′) .

for all e′ ∈ E with c(e′) ≤ B. Thus, a cost-efficiency oracle takes as input vertex set S
and selects the hyperedge with the approximately highest cost-efficiency (up to a factor α),
excluding the profit that would be contributed by vertices in S. Only hyperedges of which
the cost does not exceed the budget are considered.

Let I = (G = (V,E), c, p, B) be an instance of the budgeted maximum coverage problem,
and let fI be an α-approximate cost-efficiency oracle for this instance for some α ∈ (0, 1].

I. van Heuven van Staereling, B. de Keijzer, and G. Schäfer 50:5

Consider now the following greedy algorithm A that takes as input only the cost-efficiency
oracle fI .
1. Set S := ∅ and X := ∅. Throughout the execution of the algorithm, X represents a

feasible solution and S represents the set of vertices covered by X.
2. Let e := fI(S). If S = V (i.e., there is no profitable hyperedge left) or if c(e) +∑

e′∈X c(e′) > B (i.e., adding the hyperedge to X would exceed the budget), go to Step
3. Otherwise, set X := X ∪ {e}, set S =

⋃
X, and repeat this step.

3. Output the solution with the highest total profit among the two solutions X and {e}.

I Theorem 2. Algorithm A outputs an (1 − 1/eα)/2-approximate solution to I in time
O(n · t), where t is the amount of time it takes to evaluate fI .

The approximation factor is obtained by following rather closely the analysis given in [9]
for a similar algorithm (that works without oracle access).

3 GBMC on Graphs

In this section, we present a (1− 1/
√
e)/2-approximation algorithm for the GBMC problem

when the hypergraph is a graph. We do this by reducing the problem to the budgeted
maximum coverage problem. An instance I of GBMC is reduced to an instance r(I) of
budgeted maximum coverage on the same set of vertices, such that the optimal solution
of r(I) has the same profit as the optimal solution of I. The instance r(I) may have
a superpolynomial number of hyperedges. However, instead of generating the budgeted
maximum coverage instance explicitly, we construct only a 1/2-approximate cost-efficiency
oracle fr(I) for r(I). We then use Algorithm A on fr(I) in order to obtain a (1− 1/

√
e)/2-

approximately optimal solution to r(I) in polynomial time. Last, we show how to transform
in polynomial time a feasible solution for r(I) into a feasible solution for I with equal profit.

We begin by defining our reduction r.

I Definition 3. Let I = (G = (V,E), c, p, B) be an instance of GBMC where G is a graph.
Define the budgeted maximum coverage instance r(I) as r(I) = (G′ = (V,E′), c′, p, B), where

E′ =
⋃
i∈V

E′i and E′i = {S ∪ {i} | ∀i′ ∈ S : {i′, i} ∈ E},

that is, E′i consists of the hyperedges X such that i is in X and all other vertices in X are
connected to i by an edge. In other words, E′ are all hyperedges corresponding to the stars
of G. The cost function c′ assigns a cost to each hyperedge: for a hyperedge e ∈ E′ we set
c′(e) =

∑
i∈e c(i). Note that c is a function that assigns a cost to each vertex, while c′ is

a function that assigns a cost to each hyperedge in E′. Note that the vertex sets, profit
functions, and budgets of I and r(I) are equal.

We first show that every feasible solution X ′ for r(I) can be transformed into a feasible
solution X for I in polynomial time such that the profit is preserved. Consider the following
function gI that maps solutions of r(I) to I:

I Definition 4. Let I = (G = (V,E), c, p, B) be an instance of GBMC and let X ′ be a
feasible solution for r(I) = (G′ = (V,E′), c′, p, B). The function gI maps X ′ to the following
solution for I.

gI(X ′) =
{
{i′, i} ∈ E

∣∣∣{i′, i} ∈⋃X
}
.

In words, gI(X ′) is the set of edges of G that are contained in a hyperedge of X ′.

MFCS 2016

50:6 The Vertex-Cost Budgeted Max-Coverage Problem

I Lemma 5. Let X ′ be a feasible solution for r(I). The edge set gI(X ′) is computable in
time O(mn|X ′|). Moreover, the solution gI(X ′) is feasible (i.e., the total cost of all vertices
covered by gI(X ′) does not exceed B). Also, p(X ′) = p(gI(X ′)).

Proof. For the first claim, observe that for each hyperedge in X ′ and edge in E we need to
check if that edge is contained in the hyperedge. This can be done in O(n) time.

The second claim follows from the fact that the edge set gI(X ′) covers the same vertex
set as X ′, and by definition

B ≥
∑
e∈X′

c′(e) =
∑

i∈
⋃
X′

c(i) · |{e ∈ X ′ : i ∈ e}| ≥
∑

i∈
⋃
X′

c(i) =
∑

i∈
⋃
X′

c(i).

The third claim follows from the fact that the edge set gI(X ′) covers the same vertex set
as X ′. J

Next we show that the optimal solution for I is at most the profit of the optimal solution
for r(I). (Combined with the previous lemma, this entails that the optimal profits of I and
r(I) are equal.)

I Lemma 6. Let popt be the maximum profit achievable in instance I. There exists a solution
for r(I) with profit popt.

Proof. Let X be a profit-maximizing feasible solution for I. Assume without loss of generality
that all paths in X are of size at most 2. In other words: no edge in X covers two vertices that
are both covered by another edge (such an edge can be removed from X without decreasing
the profit). Under this assumption, X is a set of stars. We construct from X a feasible
solution X ′ for r(I) that has the same profit, as follows. We define X ′ to be the collection of
hyperedges that correspond to the maximal stars of X, i.e., for each maximal star of X, we
add to X ′ the hyperedge consisting of the vertices covered by the star.

Since no pair of hyperedges in X ′ intersects, by definition of c′ the total cost
∑
e∈X′ c

′(e)
equals

∑
i∈
⋃
X c(i) < B, and therefore X ′ is a feasible solution for r(I). Moreover, X ′ and

X cover the same set of vertices, and therefore profits of X in I equals the profit of X ′ in
r(I). J

A final ingredient that we need is a 1/2-approximate cost-efficiency oracle f for r(I).

I Definition 7. We define the function f algorithmically as follows. Let S be the input
argument to f . (As a reminder, S represents the set of vertices already covered during the
execution of algorithm A.) The high level idea is that we compute for each vertex i a set of
vertices ei in the star centered at i. Our goal for each of these stars is to select for each such
i the substar with the (approximately) highest possible cost-efficiency, such that the cost of
the vertices in the substar does not exceed the budget. We output the set in {ei : i ∈ V }
that has the highest cost-efficiency.
1. Let V ′ be subset of vertices of V that have at least one neighbor not in S. For each

i ∈ V ′ (note that i itself may be in S):
a. Initialize ei := {i}, and di = c(i). If i ∈ S, set ni := 0, and otherwise set ni := p(i).
b. Order non-increasingly the vertices i′ that are not in S and are attached to i in graph
G, according to ratio p(i′)/c(i′). Denote this ordering by σi.

c. Let i′ be the next vertex of σi (starting with the first vertex). If (ni+p(i′))/(di+c(i′)) ≥
ni/di, then add i′ to ei, set ni := ni+p(i′), and set di := di+c(i′), and repeat this step in
case the total cost of ei does not exceed B. Otherwise, if (ni+p(i′))/(di+c(i′)) < ni/di
or if ei exceeds the budget, stop iterating this step.

I. van Heuven van Staereling, B. de Keijzer, and G. Schäfer 50:7

d. If the total cost of ei lies within the budget, skip this step. Otherwise, let i′ be the
vertex last added in the previous step (i.e., the vertex in ei with the least p(i′)/c(i′)).
We consider two substars of ei that are within the budget: The one consisting only
of vertices i and i′, and the one consisting of vertices ei \ {i′}. We set ei to be the
substar with the highest cost-efficiency. Formally:
i. If i 6∈ S: if (p(i) + p(i′))/(c(i) + c(i′)) ≥ (ni − p(i′))/(di − p(i′)) then set ei = {i, i′},
ni := p(i) +p(i′), and di := c(i) + c(i′). Otherwise set ei := ei \{i′}, ni := ni−p(i′),
and di := di − c(i′).

ii. If i ∈ S: if p(i′)/(c(i) + c(i′)) ≥ (ni − p(i′))/(di − p(i′)) then set ei := {i, i′},
ni := p(i′), and di := c(i) + c(i′) otherwise set ei := ei \ {i′}, ni := ni − p(i′), and
di := di − c(i′).

2. Output the set in {ei : |ei| ≥ 2 ∧ i ∈ V ′} with the highest cost-efficiency (i.e., the ratio
ni/di).

I Lemma 8. The function f is a 1/2-approximate cost-efficiency oracle for r(I) and can be
computed in time O(n2).

Proof. It is easy to see that the set output by f is always a hyperedge in E′, as it only
outputs sets of hyperedges that correspond to stars of G. Moreover, in the last step, it is
easy to verify that the set {ei : |ei| ≥ 2 ∧ i ∈ V ′} is never empty when S 6= V . This implies
that f is a valid cost-efficiency oracle. From the description of the algorithm above, it is also
straightforward to see that f runs in time n2: For each vertex, all neighbors are considered,
where processing each neighbor takes a constant amount of time. (Not taking into account
the bit-complexity of the arithmetic operations in this analysis, although the runtime would
remain polynomial if we would take this aspect into account.)

What still needs to be proved is the approximation factor. Let e1, e2, . . . be the sets
used in Step 2 of the algorithm. It suffices to show that for each i ∈ V ′ for which it holds
that |ei| ≥ 2, the ratio ni/di is at least (1/2) ·

∑
i∈e′\S p(i)/c(e′) for all e′ ∈ E′i. In words,

the cost-efficiency ni/di of the set ei is at least half the maximum cost-efficiency among all
hyperedges in E′i (with respect to the input set S). (Note that we need not consider those
i ∈ V ′ for which |ei| = 1: It can be easily verified that in this case, the optimal star centered
at i is a single edge {i, i′}. This edge is also in E′i′ , and it is necessarily true that |e′i| ≥ 2.)

Let i ∈ V ′ such that |ei| ≥ 2. Denote by Γ(i) the vertices attached to i that are not in S.
We will compare |ei| to an optimal fractional solution x: In this fractional solution each of the
vertices i′ attached to i (and not in S) is picked with a certain fraction xi′ ∈ [0, 1], and vertex

i is selected with fraction xi = 1. The cost-efficiency is defined as
p(i)+

∑
i′∈Γ(S)

xi′p(i′)∑
i′∈Γ(S)

x′
i
c(i′)

if

i 6∈ S, and otherwise as
∑

i′∈Γ(S)
xi′p(i′)∑

i′∈Γ(S)
x′

i
c(i′)

. Then it holds that the cost-efficiency of efraci exceeds

the cost-efficiency of the hyperedge e∗i ∈ E′i that maximizes
∑
i∈e∗\S p(i)/c(e∗), which would

be the optimal integral solution.
We claim that x is obtained by greedily selecting vertices in Γ(i) according to non-

increasing cost-efficiency (i.e., according to the order σi as given in Definition 7). A considered
vertex is selected with the highest possible fraction as long as the budget is not exceeded,
and as long as adding the vertex increases the cost-efficiency of the solution. Hence, in x all
vertices of Γ(i) are selected with either fraction 0 or 1, except at most one vertex, which is
selected with a fraction in (0, 1).

To see why this is true, suppose for contradiction that x has a different structure. In
that case, if there is a vertex i′ ∈ Γ(i) with xi′ > 0 such that the cost-efficiency of i′ is less

MFCS 2016

50:8 The Vertex-Cost Budgeted Max-Coverage Problem

than the cost-efficiency of x, then setting xi′ to 0 will increase the cost-efficiency of the
solution. Therefore, we may assume that the only vertices that are selected with a positive
fraction, are vertices that have a cost-efficiency of at least the cost-efficiency of x. We can
then consider the following operation: There must be two vertices i′, i′′ ∈ Γ(i) for which
it holds that x′i < 1, x′′i > 0, and the cost-efficiency of i′ exceeds that of i′′. In that case,
decreasing xi′′ by an amount ε and increasing xi′ by a maximal amount would increase the
cost-efficiency (for a suitably small choice of ε), which is a contradiction to x being optimal.
This shows that x is obtained by the aforementioned greedy procedure.

Next, we observe that if x happens to be integral, then the set of integrally selected
vertices is precisely ei, which means that ei is the vertex set that maximizes the cost-efficiency.
In this case the claim is proved. We now consider the case that x is not integral. From now
on, let i′ be the vertex that is fractionally selected in x and let S′ be the integral vertices of
x excluding i, i.e., S′ = {i′′ : i′′ 6= i ∧ xi′′ = 1}. It follows from Definition 7 that ei is either
the set {i} ∪ S or the set {i, i′}.

We distinguish four (very similar) subcases.
We first consider the case that i 6∈ S and p(i′) ≥

∑
i′′∈S′ p(i′′). Because x is the optimal

fractional solution, the cost-efficiency of S′ ∪ i, i′ exceeds the optimal fractional solution
and thus also the cost-efficiency of the optimal hyperedge e∗i . Therefore, we conclude
that the cost-efficiency of ei is at least

p(i) + p(i′)
c(i) + c(i′) ≥

p(i) + p(i′)
c(i) + c(i′) +

∑
i′′∈S′ c(i′′)

≥ 1
2 ·

p(i) + p(i′) +
∑
i′′∈S′ c(i′′)

c(i) + c(i′) +
∑
i′′∈S′ c(i′′)

≥ 1
2 ·
∑
i′′∈e∗

i
p(i)∑

i′′∈e∗
i
c(i) ,

as needed.
In case i 6∈ S and p(i′) <

∑
i′′∈S′ p(i′′) we similarly obtain that the cost-efficiency of ei is

at least

p(i) +
∑
i′∈S′ p(i′′)

c(i) +
∑
i′′∈S′ c(i′′)

≥
p(i) +

∑
i′′∈S′ p(i′′)

c(i) + c(i′) +
∑
i′′∈S′ c(i′′)

≥ 1
2 ·

p(i) + p(i′) +
∑
i′′∈S′ c(i′′)

c(i) + c(i′) +
∑
i′′∈S′ c(i′′)

≥ 1
2 ·
∑
i′′∈e∗

i
p(i)∑

i′′∈e∗
i
c(i) .

The remaining two cases are analogous to the above two, where we replace p(i) with 0.
J

We are now ready to present the algorithm for GBMC on graphs, which we refer to as
Algorithm B. The algorithm is defined as follows. Let I = (G = (V,E), c, p, B) be an input
instance of GBMC where G is a graph.

Run algorithm A on the 1/2-approximate cost-efficiency oracle f of Definition 7. This
results in a solution X ′ for instance r(I) (where r(I) is given in Definition 3).
Compute and output gI(X ′) (see Definition 4).

The correctness, polynomial runtime, and approximation factor of (1− 1/
√
e)/2 of algorithm

B follow directly from the lemmas and definitions above. Note that the bound on the runtime
can most likely be improved by a more careful analysis, but that is beyond the scope and
goal of this work.

I. van Heuven van Staereling, B. de Keijzer, and G. Schäfer 50:9

4 GBMC with bounded degree vertices

In this section we derive an approximation algorithm for GBMC for arbitrary hypergraphs
G = (V,E) with approximation ratio of O(1/d2), where d refers to the maximum frequency
of a node in a decomposition of G into trees. We first define formally the notions of trees of
hypergraphs, and frequency.

A tree of a hypergraph G is defined as a partial hypergraph (i.e., a hypergraph that can
be obtained by removing from each hyperedge a set of vertices) of which the incidence graph
is a tree (i.e., a partial hypergraph that is Berge-acyclic). A decomposition of a hypergraph
G into trees is a collection of trees of G such that (i) the incidence graphs of any two trees
in the collection have disjoint edge sets, and (ii) the union of the incidence graphs of these
trees equals the incidence graph of G. For a node i ∈ V , define the frequency di of i with
respect to the tree collection T as the number of times i occurs in a tree of the collection,
i.e., di = |{Tt ∈ T | i ∈ Vt}|. Let the maximum frequency of a tree collection T be defined as
d = maxi∈V di. Therefore, in the worst case, d is the maximum degree of a node, as we can
always decompose a hypergraph into subtrees that each consist of a single hyperedge of G.
Our algorithm, which we name Algorithm C, proceeds in three steps:

Step 1: Decomposition into trees. Let I = (G = (V,E), p, c, B) be an instance of GBMC.
We first decompose G into a collection of subtrees of G as follows: Initialize t = 0 and let
G0 = G be the initial hypergraph. For t ≥ 0 extract a subtree Tt+1 = (Vt+1, Et+1) from Gt
and let Gt+1 = Gt \Tt+1 be the hypergraph that remains if we remove all hyperedges in Et+1
(but not the nodes) from Gt. Repeat the above procedure until eventually we obtain a graph
Gz whose set of hyperedges is empty. Let T = {T1, . . . , Tz} be the collection of subtrees
extracted throughout this procedure. Note that by construction, for every two distinct trees
Tt, Tt′ ∈ T the set of hyperedges Et and Et′ are disjoint.

Using the above decomposition, we now define a new instance I ′ = (G′, p′, c′, B′) of
GBMC. The hypergraph G′ consists of all trees T1, . . . , Tz, where each tree Tt = (Vt, Et),
t ∈ [z], has its own “representative” for each node in Vt (with costs and profits being identical
to the original ones). Thus, each node i ∈ V has at most di representatives in G′ and all
trees in G′ are node-disjoint. Finally, the budget B′ of I ′ is set to B′ = dB.

Step 2: Bin-packing the optimal solution of the decomposed instance. We compute a
(1− ε)-approximate solution X ′ for I ′ which respects the overall budget B′ = dB and also
ensures that the total cost of every Tt ∈ T is at most B. The latter condition can easily be
incorporated in our dynamic program for forests (thus also in our FPTAS) in Section 5.

The next step is to partition the trees in T = {T1, . . . , Tz} into at most 2d sets T1, . . . , T2d
such that the total cost (according to X ′) in each set does not exceed B. This is in essence
a bin-packing problem (i.e., packing a set of items of varying weights in a set of bins of
limited capacity). Because every tree induces cost at most B and the total cost is at most
dB, standard bin-packing arguments show that such a partition exists and can be computed
in polynomial time [11].2

Step 3: Obtaining a solution for the original instance. Let T be a set of maximum profit
(according to X ′) among the sets T1, . . . , T2d. We obtain the solution X from X ′ by picking

2 To clarify: We can view each tree as an item of weight equal to the cost induced by X ′. The goal then
is to pack these items into bins of capacity B.

MFCS 2016

50:10 The Vertex-Cost Budgeted Max-Coverage Problem

all hyperedges chosen in T . Note that X is a feasible solution for I ′ but also for I as argued
in Step 2. The algorithm outputs X.

I Theorem 9. Algorithm C is a (1− ε)/(2d2)-approximation algorithm for GBMC that runs
in polynomial time, where d is the maximum frequency of a node.

Proof. It is clear that the algorithm runs in polynomial time. Moreover, the algorithm
outputs a feasible solution because the total cost induced by the nodes covered by X ′ in T is
at most B (by construction). Therefore, the total cost of X in I is at most B.

It remains to analyze the approximation ratio. Let OPT I be the optimal profit of the
original instance I and let OPT I′ be the optimal profit of the decomposed instance. Note
that any feasible solution for I is also feasible for I ′. This follows because the total cost of a
solution for I is at most d times larger in I ′ and B′ = dB. Therefore, the total profit pI′(X ′)
of X ′ in I ′ is at least (1− ε)OPT I′ ≥ (1− ε)OPT I .

Because we choose the maximum set T among the 2d many sets, the total profit of X in
I ′ is at least (1 − ε)OPT I/(2d). Also, the total profit of X in I is at most a factor d less
than the total profit it induces in I ′. Therefore, the total profit pI(X) of X in I satisfies
pI(X) ≥ (1− ε)OPT I/(2d2), which completes the proof. J

5 GBMC when the incidence graph is a forest

In this section, we derive a bi-level dynamic program for the case when the incidence graph
is a forest. We refer to this special case as GBMC-Forest. We also show that our dynamic
program can be turned into an FPTAS, for which we introduce P as the maximum profit of
a vertex, i.e., P = maxv∈V p(v).

I Theorem 10. GBMC-Forest can be solved optimally in time O(mn3P 2).

Suppose the given incidence graph is a forest and consists of z trees T1, . . . , Tz. In order
to facilitate the exposition of our dynamic program we combine these trees simply into a
single tree T as follows. Introduce an artificial hyperedge e0, representing the root of the
tree. Furthermore, we introduce for each tree Tt with t ∈ [z] a dummy vertex node dt with
zero profit and cost, i.e., p(dt) = c(dt) = 0, and connect it to e0. Finally, we connect dt
to its respective tree Tt by adding an edge in the incidence graph from dt to an arbitrary
hyperedge from Tt.

This yields a bipartite graph that is a single tree. Note that the nodes along a path from
the root to any other node are alternately hyperedge/vertex nodes. Assume we “unfold” this
tree in order to draw the bipartite graph in a layered manner, as illustrated in Figure 1.

Our dynamic program processes the unfolded tree T in a bottom-up manner. It consists
of two separate dynamic programs, one for the hyperedges, and one for the vertices. We
describe these programs informally in this section (technical details of the dynamic program
will be given in the full version).

Consider an arbitrary subtree in T rooted at either a node represented by a hyperedge or
vertex. Both dynamic programs rely on the fact that a subset of this subtree can be solved
to optimality, which immediately can be used to solve a greater subset to optimality. In
case the subtree is rooted at a node represented by a hyperedge, we consider the subtree
up until the first s children in the subtree of the hyperedge. Once the optimal solutions
(minimum required cost to obtain a specific profit, if possible) are known for every possible
profit (upper bounded by nP), it is possible to find optimal solutions for the subtree until
the first s+ 1 children by linear enumeration. A similar, but slightly adapted method works
in case the subtree is rooted by a vertex rather than a hyperedge.

I. van Heuven van Staereling, B. de Keijzer, and G. Schäfer 50:11

1

2

3

4

5

6

7

1

2

3

4

5

6

7

E V e0

d1 d2 d3

1 4 7

2 3 4 6 7

2 3 5 6

1 5

Figure 1 Example of a incidence graph (left) and its “unfolded’ tree (right).

Furthermore, we can employ standard techniques (profit truncation) to turn the above
pseudo-polynomial time algorithm into an FPTAS, i.e., an algorithm that takes an error
parameter ε > 0 and computes in time polynomial in the input size and 1/ε a (1 − ε)-
approximation to the optimal solution.

I Theorem 11. There exists an FPTAS for GBMC-Forest that runs in time O(mn5/ε2).

6 GBMC with a bounded size feedback vertex set

We have shown in the previous section that GBMC-Forest can be solved in pseudo-
polynomial time and that there is an FPTAS. This implies that the inapproximability of the
general problem is caused by the cycles in the incidence graph. In this section, we provide
a fixed parameter tractability result that allows us to handle incidence graphs with cycles.
The fixed parameter is the minimum number α of hyperedge nodes that we need to remove
in order to make the incidence graph acyclic.

To provide an initial intuition, construct a graph G′ = (E,E′) where every hyperedge
e ∈ E is represented by a node, and two nodes are connected if and only if the corresponding
hyperedges share at least one element. This defines the edge set E′ in the new graph.
Consider the case in which G contains solely one cycle. Select a hyperedge node of the cycle
and fix whether this hyperedge is chosen or not in a solution (i.e., set x = 0 or 1). We then
consider the reduced problem in which hyperedge e is removed. The incidence graph of the
reduced problem is a forest and can thus be solved optimally by using the pseudo-polynomial
time algorithm (or approximately by using the FPTAS) of the previous section. Solving this
GBMC-Forest problem for every possible choice of hyperedge to remove, and taking the
best solution, yields a solution to the general GBMC problem for the instance with one cycle.
Thus, if the graph contains one cycle, the running time is multiplied by 2. We can extend
this idea to more general graphs.

Define α as the minimum number of hyperedges whose removal turn the graph into a
forest, i.e., α is the cardinality of the minimum feedback vertex subset of the hyperedge nodes
of the incidence graph. We refer to the latter as the minimum feedback hyperedge node set.
Then the running time of the algorithms mentioned in the previous sections is multiplied by
a factor of 2α, because it is necessary to solve the problem on a forest for every combination
on those α hyperedges.

The problem of finding a minimum feedback vertex set is NP-hard in general, but it is
fixed parameter tractable. Cao et al. [2] give an O(3.83ααn2) time algorithm to solve the

MFCS 2016

50:12 The Vertex-Cost Budgeted Max-Coverage Problem

1

2

3

4

5

1

2

3

4

5

E V 1

2

34

5

Figure 2 Example of a transformation to the feedback vertex set problem.

problem, where n here refers to the number of nodes in the graph. We use this to prove the
following theorem.

I Theorem 12. GBMC is solvable in O(mn3P 22α + 3.83ααm2) time, where α is the size
of the minimum feedback hyperedge node set.

All that needs to be shown is how to use the O(3.83ααn2) algorithm of [2] in order to
find a minimum feedback vertex set restricted to only the hyperedge nodes of the incidence
graph. This is straightforward: We reduce the incidence graph of G to the aforementioned
multigraph G′ = (E,E′) with only E as its vertex set. The edge set E′ is constructed as
follows: there exists an edge between two hyperedges if they share at least one vertex in
the original graph. It is now easy to see that there is a one-to-one correspondence between
the cycles in the incidence graph of G and the cycles in G′, and each cycle in the incidence
graph of G corresponds to a cycle in G′ on the same set of vertices. Therefore, a minimum
feedback vertex set of G′ corresponds to a minimum feedback hyperedge node set of G, and
the algorithm of Cao et al. will find such a set in O(3.83ααn2) time.

The transformation is illustrated in Figure 2. There, hyperedge 3 and 5 are connected
by vertex 4 in (the incidence graph representation of) G, thus an edge {3, 5} is added in
G′. The edge labels are omitted. Note that hyperedge 4 and 5 are connected by two edges,
because they are both connected to vertex 4 and vertex 5.

7 Conclusions

In this paper we have presented various approximation algorithms for important special cases
of the GBMC problem. Clearly, the most interesting open problem that remains to be solved
is whether there exists a constant factor approximation algorithm for the general GBMC
problem that runs in polynomial-time. Such a result would form a very interesting contrast
with the inapproximability result for the problem of submodular function maximization with
a submodular budget constraint under the oracle access model, which we mentioned in the
introduction.

An interesting and challenging intermediate goal would be to find a constant factor
approximation algorithm for the case that the hyperedges have a fixed size k. Algorithm A
and Theorem 2 might serve as a useful tool for achieving this goal.

I. van Heuven van Staereling, B. de Keijzer, and G. Schäfer 50:13

References
1 G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a monotone submodular

function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–1766,
2011.

2 Y. Cao, J. Chen, and Y. Liu. On feedback vertex set new measure and new structures.
In Proceedings of the 12th Scandinavian conference on Algorithm Theory, pages 93–104.
Springer-Verlag, 2010.

3 R. Cohen and L. Katzir. The generalized maximum coverage problem. Information Pro-
cessing Letters, 108(1):15–22, 2008.

4 U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634–
652, 1998.

5 J. Feldman, S. Muthukrishnan, M. Pál, and C. Stein. Budget optimization in search-based
advertising auctions. In Proceedings of the 8th ACM conference on electronic commerce,
pages 40–49, New York, NY, USA, 2007. ACM.

6 D.S. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS Publishing
Co., 1997.

7 R.K. Iyer and J.A. Bilmes. Submodular optimization with submodular cover and submod-
ular knapsack constraints. In Advances in Neural Information Processing Systems, pages
2436–2444. MIT Press, 2013.

8 H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer-Verlag, 2004.
9 S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage problem. Information

Processing Letters, 70(1):39–45, 1999.
10 Z. Svitkina and L. Fleischer. Submodular approximation: Sampling-based algorithms and

lower bounds. SIAM Journal of Computing, 40(6):1715–1737, 2011.
11 V.V. Vazirani. Approximation algorithms. Springer-Verlag, 2003.

MFCS 2016

	Introduction
	Budgeted Maximum Coverage with Oracles
	GBMC on Graphs
	GBMC with bounded degree vertices
	GBMC when the incidence graph is a forest
	GBMC with a bounded size feedback vertex set
	Conclusions

