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Abstract
Stochastic timed games (STGs), introduced by Bouyer and Forejt, naturally generalize both
continuous-time Markov chains and timed automata by providing a partition of the locations
between those controlled by two players (Player Box and Player Diamond) with competing ob-
jectives and those governed by stochastic laws. Depending on the number of players – 2, 1, or 0
– subclasses of stochastic timed games are often classified as 2 1

2 -player, 1 1
2 -player, and

1
2 -player

games where the 1
2 symbolizes the presence of the stochastic “nature” player. For STGs with

reachability objectives it is known that 1 1
2 -player one-clock STGs are decidable for qualitative

objectives, and that 2 1
2 -player three-clock STGs are undecidable for quantitative reachability

objectives. This paper further refines the gap in this decidability spectrum. We show that quant-
itative reachability objectives are already undecidable for 1 1

2 player four-clock STGs, and even
under the time-bounded restriction for 2 1

2 -player five-clock STGs. We also obtain a class of 1 1
2 ,

2 1
2 player STGs for which the quantitative reachability problem is decidable.
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1 Introduction

Two-player zero-sum games over finite state-transition graphs are a natural framework for
controller synthesis for discrete event systems. In this setting two players – say Player Box
and Player Diamond (after necessity and possibility operators) – represent the controller and
the environment, and control-program synthesis corresponds to finding a winning (or optimal)
strategy of the controller for some given performance objective. Finite graphs, however,
often do not satisfactorily model real-time safety-critical systems as they disregard not only
the continuous dynamics of the physical environment but also the presence of stochastic
behavior. Stochastic behavior in such systems stems from many different sources, e.g., faulty
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8:2 Stochastic Timed Games Revisited

or unreliable sensors or actuators, uncertainty in timing delays, the random coin flips of
distributed communication and security protocols.

Timed automata [2] were introduced as a formalism to model asynchronous real-time
systems interacting with a continuous physical environment. Timed automata and their
two-player counterparts [3] provide an intuitive and semantically unambiguous way to
model non-stochastic real-time systems, and a number of case-studies [23] demonstrate their
application in the design and analysis of real-time systems. On the other hand, classical
formalisms (discrete-time and continuous-time) Markov decision processes (MDPs) and
stochastic games [22, 15] naturally model analysis and synthesis problems for
stochastic systems, and have been applied in control theory, operations research, and
economics.

For the formal analysis of stochastic real-time systems, a number of recent works con-
sidered a combination of stochastic features with timed automata, e.g. probabilistic timed
automata [18], continuous probabilistic timed automata [17] and stochastic timed auto-
mata [9]. Probabilistic timed automata, respectively continuous probabilistic and stochastic
timed automata can be considered as generalizations of timed automata with the features
of discrete-time Markov decision processes, respectively continuous-time Markov chains [5]
(or even generalized semi-Markov processes [13]). Stochastic timed games [12] form the
most general formalism for studying controller-synthesis for stochastic real-time systems.
These games can be considered as interactions between three players – Player Box, Player
Diamond and the stochastic player (Nature) – such that Player Box and Player Diamond are
adversarial and choose their delay and action so as to maximize and minimize probability
to reach a given set of target states, while the stochastic player plays according to a given
probability distribution. A key verification problem in this setting is that of games with
reachability objectives, where the goal of Player Diamond is to reach a set of target states,
while the goal of the Player Box is to avoid it.

Related Work. Probabilistic timed automata [18] and games [16] can be considered as
subclasses of stochastic timed games where all of the locations controlled by stochastic players
are urgent (no time delay allowed), while the decision-stochastic timed automata of [10]
can be seen as a subclass of 1 1

2 -player STGs where the locations of the rational players are
urgent. The quantitative reachability problem for probabilistic timed automata is known to
be decidable [18] with any number of clocks, while the best known decidability result for the
quantitative reachability problem for 1 1

2 -player STGs is using a single clock. 1
2 -player STGs,

also called stochastic timed automata (STA) [9], have also received considerable attention:
an abstraction based on the region abstraction has been proposed, which allows to solve the
qualitative reachability problem under a fairness assumption on the STA (several subclasses
of STAs have been proven to be fair). For quantitative reachability, the only decidability
result is for a subclass of single-clock STA [8], but a recent approximability result has been
shown in [7] for the class of fair STA.

Other variants of stochastic timed automata have been studied in the past. The model
in [17] uses “countdown clocks” (which decrease from a set value) unlike the more timed-
automata style of clock variables used in our model. The model in [11] (which is also called
stochastic timed automata; we shall refer to them here as Modest-STA) is very general and
encompasses most models with time and probabilities (and in particular the STA of [9]).
However, Modest-STA is more aimed at capturing general languages (and providing a tool-set
to simulate their runs) and less with decidability issues, and hence is orthogonal to our
approach.
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Table 1 Results in bold are contributions from this paper. “Conj” are conjectures.

Model Qualitative Results Quantitative Results

1
2 player 1 clock Dec. [4] Dec. (some restrictions) [8]

n clocks Open in general
Dec. (fair) [9]

Open in general
Approx. (fair) [7]

1 1
2 player 1 clock Dec. [12] Dec. (Initialized, Theorem 8)

n clocks Open Undec. (Theorem 3)
Conj: Undec. (Time bounded)

2 1
2 player 1 clock Conj: Dec. Dec. (Initialized, Corollary 9)

n clocks Open Undec [12]
Undec. (Time bounded, Theorem 6)

Contributions. The scope of this paper is to investigate decidability of the reachability
problem in STGs as defined in [12], for which the decidability picture is far from complete.
In [12], the authors showed the decidability of qualitative reachability problem on 1-clock
1 1

2 -player STGs, and the undecidability of quantitative reachability problem on STGs (with
2 1

2 -players). This leaves a wide gap in the decidability horizon of STGs. In this paper, we
study 1 1

2 , 2 1
2 -player games and contribute to a better understanding of the decidability status

of STGs with quantitative reachability objectives.
Table 1 summarizes the results presented in this paper. We show that the quantitative

reachability problem is already undecidable for 1 1
2 -player games for systems with 4 or more

clocks and for 2 1
2 -player games the quantitative reachability problem remains undecidable

even under the time-bounded restriction with 5 or more clocks. Another key contribution of
this paper is the characterization of a previously unexplored subclass of stochastic timed
games for which we recover decidability of quantitative reachability game for 1 1

2 (and even
2 1

2 )-player stochastic timed games. We call a 1-clock stochastic timed game initialized if (i)
all the transitions from non-stochastic states to stochastic states reset the clock, and (ii)
in every bounded cycle, the clock is reset. The definition can be generalized to multiple
clocks using the notion of strong reset where one resets all the clocks together. For some
of the gaps in this spectrum, we provide our best conjectures as justified in the Discussion
section:–the undecidability of time-bounded quantitative reachability for 1 1

2 -player STG, and
the decidability of qualitative reachability of 1-clock 2 1

2 -player STG. Due to lack of space,
details of some proofs can be found in [1].

2 Stochastic Timed Games

We use standard notations for the set of reals (R), rationals (Q), and integers (Z), and
add subscripts to indicate additional constraints (for instance R≥0 is for the set of non-
negative reals). Let C be a finite set of real-valued variables called clocks. A valuation on
C is a function ν : C → R≥0. We assume an arbitrary but fixed ordering on the clocks
and write xi for the clock with order i. This allows us to treat a valuation ν as a point
(ν(x1), ν(x2), . . . , ν(xn)) ∈ R|C|≥0. Abusing notations slightly, we use a valuation on C and a
point in R|C|≥0 interchangeably. For a subset of clocks X ⊆ C and valuation ν ∈ R|C|≥0, we write
ν[X:=0] for the valuation where ν[X:=0](x) = 0 if x ∈ X, and ν[X:=0](x) = ν(x) otherwise.
For t ∈ R≥0, write ν + t for the valuation defined by ν(x) + t for all x ∈ X. The valuation
0 ∈ R|C|≥0 is a special valuation such that 0(x) = 0 for all x ∈ C. A clock constraint over C is

MFCS 2016



8:4 Stochastic Timed Games Revisited

a subset of R|C|≥0 defined by a (finite) conjunction of constraints of the form x ./ k, where
k ∈ Z≥0, x ∈ C, and ./ ∈ {<,≤,=, >,≥}. We write ϕ(C) for the set of clock constraints. For
a constraint g ∈ ϕ(C), and a valuation ν, we write ν |= g to represent the fact that valuation
ν satisfies constraint g (defined in a natural way). A timed automaton (TA) [2] is a tuple
A = (L, C, E, I) such that (i) L is a finite set of locations, (ii) C is a finite set of clocks,
(iii) E ⊆ L × ϕ(C) × 2C × L is a finite set of edges, (iv) I : L → ϕ(C) assigns an invariant
to each location. A state s of a timed automaton is a pair s = (`, ν) ∈ L× R|C|≥0 such that
ν |= I(`) (the clock valuation should satisfy the invariant of the location). If s = (`, ν), and
t ∈ R≥0, we write s+ t for the state (`, ν + t). A transition (t, e) from a state s = (`, ν) to a
state s′ = (`′, ν′) is written as s t,e−−→ s′ if e = (`, g, C, `′) ∈ E, such that ν + t |= g, and for
every 0 ≤ t′ ≤ t we have ν + t′ |= I(`) and ν′ = ν + t[C:=0](x). A run is a finite or infinite
sequence of transitions ρ = s0

t1,e1−−−→ s1
t2,e2−−−→ s2 . . . of states and transitions. An edge e is

enabled from s whenever there is a state s′ such that s 0,e−−→ s′. Given a state s of A and an
edge e, we define I(s, e) = {t ∈ R≥0 | s

t,e−−→ s′} for some s′ and I(s) =
⋃
e∈E I(s, e). We say

that A is non-blocking iff for all states s, I(s) 6= ∅. Now we are ready to introduce stochastic
timed games.

I Definition 1 (Stochastic Timed Games [12]). A stochastic timed game (STG) is a tuple
G = (A, (L2, L3, L©), ω, µ) where
A=(L, C, E, I) is a timed automaton;
L2, L3, and L© form a partition of L characterizing the set of locations controlled by
players 2 and 3 and the stochastic player, respectively;
ω : E(L©) → Z>0 assigns some positive weight to each edge originating from L©
(notation E(L©));
µ is a function assigning a measure over I(s) to all states s ∈ L© × R|C|≥0 satisfying the
properties that µ(s)(I(s)) = 1 and for Lebesgue measure λ, if λ(I(s)) > 0 then for each
measurable set B ⊆ I(s) we have λ(B) = 0 if and only if µ(s)(B) = 0.

The timed automaton A is said equipped with uniform distributions over delays if for every
state s, I(s) is bounded, and µ(s) is the uniform distribution over I(s). The timed automaton
A is said equipped with exponential distributions over delays whenever, for every state s,
either I(s) has Lebesgue measure zero, or I(s)=R≥0 and for every location l, there is a
positive rational αl such that µ(s)(I(s))=

∫
t∈I αle

−αltdt. For s ∈ L© × R|C|≥0, both delays
and discrete moves will be chosen probabilistically: from s, a delay t is chosen following
the probability distribution over delays µ(s). Then, from state s + t, an enabled edge is
selected following a discrete probability distribution that is given in a usual way with the
weight function w: in state s+ t, the probability of edge e (if enabled), denoted p(s+ t)(e)
is w(e)/

∑
e′ {w(e′) | e′ is enabled in s+ t}. This way of probabilizing behaviours in timed

automata has been presented in [9].
If L2=∅ then the STGs are called 1 1

2 STGs or 1 1
2 -player STGs while STGs with L2 =

L3=∅ are called 1
2 STGs or 1

2 -player STGs or STAs. We often refer to l∈L© as stochastic
nodes, l ∈ L2 as box (or 2) nodes and l ∈ L3 as diamond (or 3) nodes.

Fix a STG G = (A, (L2, L3, L©), ω, µ) with A = (L, C, E, I) for the rest of this section.

Strategies, Profiles, and Runs. A strategy for Player 2 (resp. 3) is a function that
maps a finite run ρ = s0

t0,e0−−−→ s1
t1,e1−−−→ . . . sn to a pair (t, e) such that sn

t,e−−→ s′ for some
state s′, whenever sn = (`n, νn) and `n ∈ L2 (resp. `n ∈ L3). In this work we focus on
deterministic strategies, though randomized strategies could also make sense; nevertheless
understanding the case of deterministic strategies is already challenging. A strategy profile
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is a pair Λ = (λ3, λ2) where λ3, λ2 respectively are strategies of players 3 and 2. In
order to measure probabilities of certain sets of runs, the following measurability condition
is imposed on strategy profiles Λ = (λ3, λ2): for every finite sequence of edges e1, . . . , en
and every state s, the function κs : (t1, . . . , tn)→ (t, e) defined by κs(t1, . . . , tn) = (t, e) iff
Λ(s t1,e1−−−→ s1

t2,e2−−−→ s2 . . .
tn,en−−−→ sn) = (t, e), should be measurable.

Given a finite run ρ ending in state s0, and a strategy profile Λ, define Runs(G, ρ,Λ)
(resp. Runsω(G, ρ,Λ)) to be the set of all finite (resp. infinite) runs generated by Λ after
prefix ρ; that is, the set of all runs of the automaton satisfying the following condition: If
si = (`i, νi) and `i ∈ L3 (resp. `i ∈ L2), then λ3 (resp. λ2) returns (ti+1, ei+1) when applied
to ρ t1,e1−−−→ s1

t2,e2−−−→ . . .
ti,ei−−−→ si. Given a finite sequence e1, . . . , en of edges, a symbolic path

πΛ(ρ, e1 . . . en) is defined as

πΛ(ρ, e1 . . . en) = {ρ′ ∈ Runs(G, ρ,Λ) | ρ′ = ρ
t1,e1−−−→ s1

t2,e2−−−→ s2 . . .
tn,en−−−→ sn, with ti ∈ R≥0}.

When Λ is clear, we simply write π(ρ, e1 . . . en).

Probability Measure of a Strategy Profile. Given a strategy profile Λ = (λ3, λ2), and
a finite run ρ ending in s = (`, ν), a measure PΛ can be defined on the set Run(G, ρ,Λ),
following [12]: First, for the empty sequence ε, PΛ(π(ρ, ε)) = 1, and

If ` ∈ L3 (resp. ` ∈ L2), and λ3(ρ) = (t, e) (resp. λ2(ρ) = (t, e)), then
PΛ(π(ρ, e1 . . . en)) equals 0 if e1 6= e and equals PΛ(π(ρ t,e−−→ s′, e2 . . . en)), otherwise.
If `∈L©, PΛ(π(ρ, e1 . . . en)) =

∫
t∈I(s,e1) p(s+ t)(e1) · PΛ(π(ρ t,e1−−→ s′, e2 . . . en)) dµ(s)(t)

where s t,e1−−→ s′ for every t ∈ I(s, e1).
The cylinder generated by a symbolic path is defined as follows: an infinite run ρ′′ is in the
cylinder generated by πΛ(ρ, e1, . . . , en) denoted Cyl(πΛ(ρ, e1, . . . , en)) if ρ′′ is in
Runsω(G, ρ,Λ) and there is a finite prefix ρ′ of ρ′′ such that ρ′ ∈ πΛ(ρ, e1, . . . , en). It
is routine to extend the above measure PΛ to cylinders, and thereafter to the generated
σ-algebra; extending [9], one can show this is a probability measure over Runsω(G, ρ,Λ).

Example. An example of a STG is shown in the adjoining figure. In this example all the
locations belong to stochastic player (this is an 1

2 STG) and there is only one clock named x.

A
x ≤ 1

B
x ≤ 2

D
x ≤ 1, e1

x := 0

x ≤ 1, e3

x ≥ 1, e2

x ≤ 2, e4

We explain here the method for computing prob-
abilities. We assume uniform distribution over delays
at all states, and initial state s0 = (A, 0). Let dµ(A,0)
be the uniform distribution over [0, 1] and dµ(B,0)
uniform distribution over [0, 2]. Then P(π((A, 0), e1e2)) equals 1

8 :∫ 1

0

P(π((B, 0), e2))
2 dµ(A,0)(t) =

∫ 1

0

1
2(

∫ 2

1

1
2dµ(B,0)(u)) dµ(A,0)(t) = 1

2

∫ 1

0
(
∫ 2

1

1
2

1
2du)) dt)

Reachability Problem. We study the reachability problem for STGs, stated as follows.
Given a STG G with a set T of target locations, an initial state s0 and a threshold ./ p with
p ∈ [0, 1]∩Q, decide whether there is a strategy λ3 for Player 3 such that for every strategy
λ2 for Player 2, PΛ({ρ ∈ Run(G, s0,Λ) | ρ visits T}) ./ p, with Λ = (λ3, λ2). There are
two categories of reachability questions:
1. Quantitative reachability: The constraint on probability involves 0 < p < 1.
2. Qualitative reachability: The constraint on probability involves p ∈ {0, 1}.

MFCS 2016
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The key results of the paper are the following:

I Theorem 2. The quantitative reachability problem is
1. Undecidable for 1 1

2 STGs with 4 or more clocks;
2. Undecidable for 2 1

2 STGs with 5 or more clocks even under the time-bounded semantics;
3. Decidable for 1 1

2 and 2 1
2 initialized STGs with one clock.

Mentioned restrictions (time-bounded semantics and initialized) will be introduced when
needed. In Section 3, we deal with the quantitative reachability problem, where we show
strengthened undecidability results. In Section 4, we explore a new model of STGs with
a single clock and an initialized restriction to recover decidability for the quantitative
reachability problem. In Section 5, we discuss the intrinsic difficulties and challenges ahead,
summarize our key contributions and conjectures.

3 Undecidability Results for Quantitative Reachability

In this section, we focus on the quantitative reachability problem for STGs. We strengthen
the existing undecidability result, which holds for 2 1

2 STGs [12], in two distinct directions.
First, we show the undecidability of the quantitative reachability problem in 1 1

2 STGs,
improving from 2 1

2 . Second, we show the undecidability of the quantitative reachability
problem for 2 1

2 STGs even in the time-bounded setting.
For both results, given a two-counter machine, we construct respectively, 1 1

2 and 2 1
2

STGs whose building blocks are the modules for the instructions in the two-counter machine.
The objective of player 3 is linked to a faithful simulation of various increment, decrement
and zero-test instructions of the two-counter machine by choosing appropriate delays to
adjust the clocks to reflect changes in counter values. However, the two proofs differ in
how this verification is done and even in the problem from which the reduction is done,
i.e., halting/non-halting for two-counter machines. This results in two quite different and
non-trivial reductions as described in Subsection 3.1 and Subsection 3.2 respectively.

3.1 Quantitative reachability for 11
2 STGs

As mentioned above, in the case of 1 1
2 STGs we improve the corresponding result of [12]

for 2 1
2 STGs. But unlike in [12], we reduce from the non-halting problem for two-counter

machines to the existence of a winning strategy for Player 3 with the desired objective.
This crucial difference makes it possible for the probabilistic player to verify the simulation
performed by player 3.

I Theorem 3. The quantitative reachability problem is undecidable for 1 1
2 STGs with ≥ 4

clocks.

LetM be a two-counter machine. Our reduction uses a 1 1
2 player STG G with four clocks

and uniform distributions over delays, and a set of target locations T such that player 3 has
a strategy to reach T with probability 1

2 iffM does not halt. Each instruction (increment,
decrement and test for zero value) is specified using a module. The main invariant in our
reduction is that upon entry into a module, we have that x1 = 1

2c1 , x2 = 1
2c2 , x3 = x4 = 0,

where c1 (resp. c2) is the value of counter C1 (resp. C2) inM.
We outline the simulation of an increment instruction « `i : increment counter C1, goto

`j » in Figure 1 (top). The module is entered with values x1 = 1
2c1 , x2 = 1

2c2 , x3 = x4 = 0. A
time 1− 1

2c1 is spent at location `i, so that at location B we have x1 = 0, x2 = 1
2c2 + 1− 1

2c1

(or 1
2c2 − 1

2c1 , if c2 > c1 – we write in all cases 1
2c2 + 1− 1

2c1 mod 1), x3 = 1− 1
2c1 , x4 = 0.
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`ix1 = 1
2c1 B C

x4 = 0
D `j

GetProb

x1 = 1
{x1, x4}

x2 = 1, {x2} x2 = 1, {x2}

0<x1, x3<1
{x4} {x1}

{x2}

x2 = 1, {x2}

x3 = 1
{x3, x4}

E0x4 ≤ 2

T1

T2

T3

T4

R1

R2

R3

R4

P1x4 ≤ 2P2 x4 ≤ 2

G1

H1

G

H E1

E2

E3

E4

I

J

I1

J1

x1 ≥ 1 ∧ x4 ≤ 1

x3 ≥ 2 ∧ x4 ≤ 2

x1 ≤ 1

x4 ≥ 1 ∧ x3 ≤ 2

x4 = 2
{x2, x4}

x4 = 2
{x2, x4}

x4 = 2
{x2, x4}

x4 = 2
{x2, x4}

x3 = 3, {x3}

x3 = 3, {x3}

x3 = 3, {x3}

x3 = 3, {x3}

x1 = 3
{x1, x2}

x1 = 3
{x1, x2}

x1 = 3
{x1, x2}

x1 = 3
{x1, x2}

x4 = 1
{x2, x4}

x4 = 1
{x2, x4}

x4 = 1
{x2, x4}

x4 = 1
{x2, x4}

x1 ≤ 1

x4 ≥ 1 ∧ x3 ≤ 2

x1 ≥ 1 ∧ x4 ≤ 1

x3 ≥ 2 ∧ x4 ≤ 2

x1 ≤ 1

x4 ≥ 1 ∧ x3 ≤ 2

x1 ≥ 1 ∧ x4 ≤ 1

x3 ≥ 2 ∧ x4 ≤ 2

Figure 1 The Increment c1 module on the top and the GetProb gadget below

An amount of time t ∈ (0, 1
2c1 ) is spent at B, which is decided by Player 3. We rewrite this

as t = 1
2c1+1 ± ε for − 1

2c1+1 < ε < 1
2c1+1 . This is because, ideally we want t to be 1

2c1+1 and
want to consider any deviation as an error.

Now at C, we have x1 = t, x2 = 1
2c2 + 1− 1

2c1 + t mod 1, x3 = 1− 1
2c1 + t, x4 = 0. The

computation proceeds to D with probability 1
2 , and the location `j corresponding to the next

instruction `j is reached with x1 = 1
2c1 − t, x2 = 1

2c2 , x3 = x4 = 0. On the other hand, with
probability 1

2 , the gadget GetProb is reached. The gadget GetProb has 4 target locations
T1, T2, T3, T4, which we will show are reached with probability 1

2 from the start location
E0 of GetProb iff t = 1

2c1+1 . Thus, in this case when t = 1
2c1+1 , we reach `j with the values

x1 = 1
2c1+1 , x2 = 1

2c2 , x3 = x4 = 0 which implies that c1 has been incremented correctly
according to our encoding. We now look at the gadget GetProb.

I Lemma 4. For any value ε ∈ (− 1
2c1+1 ,

1
2c1+1 ), the probability to reach a target location in

GetProb from E0 is 1
2 (1− 4ε2) (≤ 1

2). Further this probability is equal to 1
2 iff ε = 0.

Proof. Note that when the start location E0 of GetProb is reached, we have x1 = 1
2c1+1 + ε,

x2 = 0, x3 = 1 − 1
2c1+1 + ε, x4 = 0. A total of 2 time units can be spent at E0. It can

be seen that transitions to E3 and E4 are respectively enabled with the time intervals
[0, 1 − 1

2c1+1 − ε] and [1, 1 + 1
2c1+1 − ε]. Similarly, reaching E1 and E2 are enabled by the

time intervals [1− 1
2c1+1 − ε, 1] and [1 + 1

2c1+1 − ε, 2]. The sum of probabilities of reaching
either E3 or E4 is thus 1

2 (1− 2ε). Similarly, the sum of probabilities for reaching E1 or E2
is 1

2 (1 + 2ε). The locations P1, P2 are then reached with the values x1 = 1
2c1+1 + ε, x2 = 0,

x3 = 1− 1
2c1+1 + ε, x4 = 0. The probability of reaching the target locations T3 or T4 (i.e.,

through P1) from E0 is hence 1
2 (1+2ε) 1

2 (1−2ε) = 1
4 (1−4ε2), while the probability of reaching

a target location T1 or T2 (i.e., through P2) from E0 is 1
2 (1 + 2ε) 1

2 (1 − 2ε) = 1
4 (1 − 4ε2).

Thus, the probability of reaching a target location (one of T1, T2, T3, T4) in GetProb is,
1
2 (1− 4ε2), which is always ≤ 1

2 . This completes the first statement of the lemma. Further,
from the expression, we immediately have that the probability to reach a target location in
GetProb from E0 is 1

2 iff ε = 0. J
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The decrement c1, increment c2 as well as decrement c2 modules are similar and these as
well as the zero test modules can be found in [1].

I Lemma 5. Player 3 has a strategy to reach the (set of) target locations in G with probability
1
2 iff the two-counter machine does not halt.

Proof. Suppose the two-counter machine halts (say in k steps). Then there are two cases:
(a) the simulations of all instructions are correct in G. In this case, the target location can
be reached in either of the first k steps. By Lemma 4, the probability of reaching a target
location in the first k steps is the summation 1

2 .
1
2 + ( 1

2 )2. 12 + ( 1
2 )3. 12 + · · ·+ ( 1

2 )k. 12 <
1
2 . (b)

Player 3 made an error in the computation in the first k steps. But then again by Lemma 4,
the finite sum obtained is < 1

2 (since in the error step(s), the probability to reach target
locations is 1

2 − 4ε2 < 1
2 ). Thus, if the two-counter machine halts, under any strategy of 3

player, the probability to reach the target locations is < 1
2 .

On the other hand, suppose the two-counter machine does not halt. Then, if Player 3
chooses the strategy which faithfully simulates all instructions of the two-counter machine, the
probability to reach the (set of) target locations is given by the infinite sum

∑∞
i=0( 1

2 )i 1
2 = 1

2 .
Any other strategy of Player 3 corresponds to performing at least one error in the simulation.
In this case, the infinite sum obtained has at least one term of the form ( 1

2 )k( 1
2 − 4ε2), for

ε2 > 0. Clearly, such an infinite sum does not sum to 1
2 . This concludes the proof. J

The previous proof can be changed for other thresholds and to use unbounded intervals
and exponential distributions.

3.2 Time-bounded quantitative reachability for 21
2 STGs

In this section, we tackle the time-bounded version of the quantitative reachability problem.
This strengthens the definition of reachability by considering a given time bound ∆, and
requiring that Pσ({ρ ∈ Run(G, s0, σ) | ρ visits T within ∆ time units) ./ p.

In this new framework, we show the undecidability of the quantitative reachability problem
for 2 1

2 STGs. We reduce from the halting problem for two-counter machines (unlike in the
previous section, where our reduction was from the non-halting problem), using Player 2 to
verify the correctness of the simulation. The complication here is that the total time spent
should be bounded and hence we cannot allow arbitrary time elapses. We will in fact show a
global time bound of ∆ = 5 for this reduction.

I Theorem 6. The time-bounded quantitative reachability problem is undecidable for 2 1
2

STGs with ≥ 5 clocks.

Proof. LetM be a two-counter machine. We construct an STG with 5 clocks such that the
two-counter machineM halts iff Player 3 has a strategy to reach some desired locations
with probability 1

2 , whatever Player 2 does, and such that the total time spent is bounded
by ∆ = 5 units.

The main idea behind the proof is that the total time spent in the simulation of the kth
instruction will be 1

2k . We thus get a decreasing sequence of times 1
2 ,

1
4 ,

1
8 . . . for simulating

the instructions 1, 2 . . . and so on. In total, we will use five clocks x1, x2, z, a and b. The
clocks x1 and x2 are used encode the counter values (along with the current instruction
number) such that at the end of the kth instruction, if k is even the values are encoded in x1
and if k is odd they are encoded in x2 as follows:
(encx1) k is even and x1 = 1

2k+c1 3k+c2 , x2 = 0, z = 1− 1
2k , a = b = 0;

(encx2) k is odd and x2 = 1
2k+c1 3k+c2 , x1 = 0, z = 1− 1

2k , a = b = 0;
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`ia, b, x2 = 0 B Check
b = 0

`j

Check z Check x2

a < 1
x2 := 0

a < 1
b := 0 x1, a := 0

Figure 2 Module for incrementing C1 (after an even number of steps)

A0
b = 0

B0
b ≤ 1

C0
a ≤ 1

a > 1

D0b = 0

E0 F0
b ≤ 1

a = 1?
b := 0

G0
z ≤ 2

z > 2

A1
b = 0

B1
b ≤ 1

F1b = 0

x2 ≤ 1
x2 > 1

C2
11

C1
1

D1
a = 1?
a := 0 E1

b ≤ 1
x1 = 2
b := 0

a ≤ 1

a > 1

Figure 3 Widgets ‘Check z’ (left) and ‘Check x2’ (right).

We start the simulation with x1 = 1, x2 = z = 0 = a = b corresponding to the initial
instruction (k = 0) and the fact that the values of C1, C2 are 0. Moreover, if x1 = 1

2k+c1 3k+c2

at the end of the kth instruction, and if the (k + 1)th instruction is an increment C1
instruction, then at the end of the (k+ 1)th instruction, x2 = 1

2k+c1+23k+c2+1 . Clock z keeps a
separate track of the number of instructions simulated so far, by having a value 1− 1

2k after
completing the simulation of k instructions. Clocks a and b are auxiliary clocks that we need
for the simulation. We assume uniform distribution over delays in probabilistic locations.
If no weight is written on an edge, it is assumed to be 1. We outline the simulation of a
increment instruction « `i : increment counter C1, goto `j » in Figure 2, assuming this is
the (k + 1)th instruction, where k is even. Thus, at the end of the k first instructions, we
have x1 = 1

2k+c1 3k+c2 , z = 1− 1
2k and a = b = x2 = 0 (the other case of odd k, i.e., (encx2)

encoding is symmetric). At the end of this (k + 1)th instruction’s simulation, the value of
clock z should be z = 1− 1

2k+1 to mark the end of the (k + 1)th instruction. Also, we must
obtain x2 = x1

22·3 = x1
12 , marking the successful increment of C1.

Player 3 elapses times t1, t2 in locations `i, B. When the player 2 location Check is
reached, we have a = t1 + t2 = t and x2 = t2, z = 1 − 1

2k + t1 + t2. Player 2 has three
possibilities : (1) to continue the simulation going to `k+2, (2) verify that t2 = 1

2k+c1+23k+c2+1

by going to the widget ‘Check x2’ or (3) verify that t1 + t2 = 1
2k+1 by going to the widget

‘Check z’. These widgets are given in Figure 3. The probability of reaching a target location
in widget ‘Check z’ is 1

2 (1− t) + 1
4

1
2k = 1

2 iff t = 1
2k+1 . In widget ‘Check x2’, the transitions

from F1 to C1 and F1 to C2 are taken with probability 1
12 and 11

12 , respectively since the
weights of edges connecting F1,C1 and F1,C2 are respectively 1 and 11. With this, for
n = 1

2k+c1 3k+c2 , the probability of reaching a target location in ‘Check x2’ is 1
2 (1−t2)+ n

24 = 1
2

iff t2 = n
12 .

Time elapse for Increment. If player 2 goes ahead with the simulation, the time elapse for
the (k+ 1)th instruction is t1 + t2 = 1

2k+1 . Consider the case when player 2 goes in to ‘Check
z’. The time elapse till now is 1

2 + · · ·+ 1
2k+1 . The time spent in the ‘Check z’ widget is as

follows: one unit is spent at location B0, one unit at location F0, and 1− t units at location
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E0. Thus, ≤ 3 units are spent at the ‘Check z’ widget. Similarly, the time spent in the
‘Check x2’ widget is one unit at B1, 1− t units at C1, 1− n units at D1 and one unit at E1.
Thus a time ≤ 4 is spent in ‘Check x2’. Thus, the time spent till the (k + 1)th instruction is
≤ 1

2 + . . . 1
2k+1 + 4 if player 2 goes in for a check, and otherwise it is 1

2 + · · ·+ 1
2k+1 .

Other increment, decrement, zero-check Instructions. The main module corresponding
to increment C2 and decrement C1, C2 is the same as in Figure 2. The only change needed
is in the ‘Check x2’ widget. While incrementing c2, we need x2 = x1

2·32 = x1
18 . This is done by

changing the weights on the outgoing edges from F1 to C1 and C2 to 1 and 17 respectively.
Similarly, while decrementing C1, we need x2 = x1

3 . This is done by changing the weights on
the outgoing edges of F1 to 1, 2 respectively. Lastly, to decrement C2, we need x2 = x1

2 , and
in this case the weights are 1 each.

The zero check module is a bit more complicated. The broad idea is that we use a
diamond node to guess whether the current clock (say C1) value is zero and branch into two
sides (zero and non-zero). Then we use a box node on each branch to verify that the guess
was correct. If correct, we proceed with the next instruction, if not, we check this by going
to a special widget. In this widget, we can reach a target node with probability 1

2 iff the
guess is correct. The details of this widget and the proof that all these simulations can be
done in time bounded by ∆ ≤ 5 units is given in [1]. J

4 Decidability results for quantitative reachability

We have seen in the previous section that the quantitative reachability problem is undecidable
in 1 1

2 STGs with ≥ 4 clocks. In this section we study the quantitative reachability problem in
the setting of 1 1

2 STGs with a single clock. In [8], the quantitative reachability problem in 1
2

STGs with a single clock, under certain restrictions, was shown to be decidable by reducing
it to the quantitative reachability problem for finite Markov chains. In our case, we lift this
to 1 1

2 STGs with a single clock, under similar restrictions, by reducing to the quantitative
reachability problem in finite Markov decision processes (MDPs in short).

For the rest of this section, we consider a 1 1
2 STG G = (A, (L3, L©), ω, µ) with a

single clock denoted x. We write cmax for the maximal constant appearing in a guard
of G. We assume w.l.o.g. that target locations belong to player 3 (a slight modification
of the construction can be done if this is not the case). In the following, when we talk
about regions, we mean the clock regions from the classical region construction for timed
automata [2, 19]: since G has a single clock, regions in this case are simply either singletons
{c} with c ∈ Z≥0 ∩ [0; cmax], or open intervals (c, c+ 1) with c ∈ Z≥0 ∩ [0; cmax − 1], or the
unbounded interval (cmax; +∞). While region automata are standardly finite automata, we
build here from G a region STG GR, which has only clock constraints defined by regions
(that is, either x = c or c < x < c + 1 or x > cmax), and such that each location of GR is
indeed a pair (`, R) where ` is a location of G and R a region (region R is for the region
which is hit when entering the location). While it is not completely standard, this kind of
construction has been already used in [9, 8, 12], and questions asked on G can be equivalently
asked (and answered) on GR. Now, we make the following restrictions on GR (which yields
restrictions to G), which we denote (?):
1. The TA AR is assumed to be structurally non-Zeno: any bounded cycle of AR (a cycle

in which all edges have a non-trivial upper-bound) contains at least one location whose
associated region is the zero region (i.e., edge leading to it, resets the clock).
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Figure 4 An initialized 1 1
2 player STG G, its region game graph GR and the MDP abstraction

MG .

2. For every state s = ((`, r), ν) of GR such that ` ∈ L©, I(s) = R≥0, and µs is an
exponential distribution; Furthermore the rate of µs only depends on location `.

3. GR is initialized, that is, any edge from a non-stochastic location to a stochastic location
resets the clock x.

While the first two assumptions are already made in [8], even in the 1
2 player case, the

third condition is new. In the following we denote 0 for the region {0} and ∞ for the
unbounded region (cmax; +∞). We now show how to obtain an MDP from the STG GR.
The construction is illustrated on Figure 4. A node (`, R) of GR with ` ∈ L© is deletable
if R is neither the region 0 nor the region ∞. In Figure 4, (B, (0, 1)) and (A, (0, 1)) in GR
are what we call deletable nodes. Then, we recursively remove all deletable nodes GR while
labelling remaining paths with (finite) sequences of edges; each surviving edge is labelled
by the probability of the (provably) finitely many sequences of edges appearing in the label.
One can prove that this object is actually an MDP, which we denote MG . Target states in
MG are defined as the pairs (`, R) where ` is a target location in G. We can prove (see [1])
that:

I Lemma 7. If G is an 1 1
2 player STG with one clock satisfying the hypotheses (?), then

MG is an MDP such that: (a) for every strategy λ3 of player 3 in G, we can construct a
strategy σ3 of player 3 in MG such that the probability of reaching a target location in G is
the same as the probability of reaching a target state in MG; and (b) for every strategy σ3 of
player 3 in MG, we can construct a strategy λ3 of player 3 in G such that the probability of
reaching a target location in MG is the same as the probability of reaching a target state in G.

This lemma allows to reduce the quantitative reachability problem from the 1 1
2 STG G to

the MDP MG .
As an example, in Figure 4, we show a 1 1

2 player STG G, its region game graph GR
(guards omitted for readability) and the MDP abstraction MG . Note that all 3 nodes remain,
while only those stochastic nodes with regions 0 and ∞ are retained in MG . The stochastic
nodes (B, (0, 1)) as well as (C, (0, 1)) are deleted in MG . On deleting nodes from the region
graph, the probability on the edges of MG is the probability of the respective paths from
the region graph. For example, the edge from (A, 0) to (D, (0, 1)) is labelled with e4e7 by
deleting (B, (0, 1)).

Thus, the remaining thing that has to be addressed now is how to compute the probabilties
and compare them with a rational threshold. The first thing to note is that the edges of
the MDP are all labelled with polynomials over exponentials obtained using the delays
from the underlying game with rational coefficients. For example, in Figure 4, in the
MDP in the rightmost picture, we obtain: P(e1)=P(e2)=P(e5)=e−1, P(e6, e7, e8)=1−e−1,
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P(e4e5)=e−1−e−2, P(e4e7)=1−2e−1, P(e3e4e7)=2−5e−1+e−2, P(e3e4e5)=1−e−1+e−2,
P(e3e1)= 1

2 (1−e−2). It can be seen that we can write each of these probabilities as a
polynomial in e−1. More generally, for any MDP with differing rates (of the exponential
distribution) in each state, we get a set of rational functions in e−

1
q for some q ∈ Z>0, where

q is obtained as a function of the rates in each state. Thus, using standard algorithms for
MDPs [6], and as done for Markov chains in [8], we get that we can compute expressions for
the probability of reaching the targets, and decide the threshold problem.

I Theorem 8. Quantitative reachability for 1-clock 1 1
2 -player STGs satisfying (?) is decidable.

We can lift this construction to include 2 player nodes, keeping the same initialized
restriction with 2 nodes as well. Then the region game graph GR includes 2 nodes in the
obvious way, and we consider strategy profiles of 2 and 3. The question then is to check if
3 has a strategy to reach a target with probability ∼ c against all possible strategies of 2 in
MG . Hence we have that

I Corollary 9. Quantitative reachability for 1-clock 2 1
2 player STGs satisfying (?) is decidable.

5 Discussion

In this paper, we have refined the decidability boundaries for STGs as summarized in the table
in Introduction. The significance of our undecidability results for quantitative reachability
(via different two-counter machine reductions) lies in the fact that they introduce ideas which
could potentially help in settling other open problems. We highlight these below:

for 1 1
2 player games, the crux is to cleverly encode the error ε made by player 3 in such

a way that it reflects as 1
2 − ε

2 in the resulting probability. This ensures that the 3
player can never cheat and the probability will be < 1

2 as soon as there is an error (even
when simulating a non-halting run of the two-counter machine). Indeed, this is why the
reduction is from the non-recursively enumerable non-halting problem.
for 2 1

2 player games in the time-bounded setting, we obtain undecidability by showing
a reduction from halting problem for two-counter machines. This is surprising, as
time-boundedness restores decidability in several classical undecidable problems like
the inclusion problem in timed automata [20, 21]. In the case of priced timed games
[14], time-boundedness gives undecidability; however, this can be attributed to the fact
that price variables are not clocks, and can grow at different rates in different locations.
Somehow, the combination of simple clocks and probabilities achieves the same.

Combining these ideas might allow us, for eg., to improve Theorem 6 by showing undecidability
of time bounded, quantitative reachability in 1 1

2 player STGs with a larger number of clocks.
The main challenge is to replace 2 player nodes by stochastic nodes, and adapt the gadgets
in such a way that, within a global time bound, the probability of reaching a target is 1

2 iff
all simulations are correct and the two-counter machine does not halt. As another example,
if in the first item above, we obtain a probability of 1− ε2 (rather than 1

2 − ε
2), this would

settle the (currently open) qualitative reachability problem for 2 1
2 games [12].

Coming to decidability results, we have for the first time characterized a family of 1 1
2 ,2

1
2

player STGs for whom the quantitative reachability is decidable. The use of exponential
distributions is mandatory to get a closed form expression for the probability. It is unclear
if this construction can be extended to some larger classes of STGs. Figure 9 in [9] shows
an example of a two-clock 1

2 player game for which the region abstraction fails to give any
relevant information on the real “probabilistic” behaviour of the system (lack of so-called
fairness); in particular it cannot be used for qualitative, and therefore quantitative, analysis
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of reachability properties. The decidability of qualitative reachability in 1 1
2 , 2

1
2 , multi-clock

STG seems then hard due to the same problem of unfair runs.
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